Commit 4edb6fc9 authored by Bhawanpreet Lakha's avatar Bhawanpreet Lakha Committed by Alex Deucher

drm/amd/display: Add Renoir clock manager

Controls display clocks and interfaces with powerplay for
clock and power requirements.
Acked-by: default avatarHarry Wentland <harry.wentland@amd.com>
Signed-off-by: default avatarBhawanpreet Lakha <Bhawanpreet.Lakha@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 6f451b60
......@@ -85,3 +85,13 @@ AMD_DAL_CLK_MGR_DCN20 = $(addprefix $(AMDDALPATH)/dc/clk_mgr/dcn20/,$(CLK_MGR_DC
AMD_DISPLAY_FILES += $(AMD_DAL_CLK_MGR_DCN20)
endif
ifdef CONFIG_DRM_AMD_DC_DCN2_1
###############################################################################
# DCN21
###############################################################################
CLK_MGR_DCN21 = rn_clk_mgr.o rn_clk_mgr_vbios_smu.o
AMD_DAL_CLK_MGR_DCN21 = $(addprefix $(AMDDALPATH)/dc/clk_mgr/dcn21/,$(CLK_MGR_DCN21))
AMD_DISPLAY_FILES += $(AMD_DAL_CLK_MGR_DCN21)
endif
......@@ -37,6 +37,9 @@
#include "dcn10/rv1_clk_mgr.h"
#include "dcn10/rv2_clk_mgr.h"
#include "dcn20/dcn20_clk_mgr.h"
#if defined(CONFIG_DRM_AMD_DC_DCN2_1)
#include "dcn21/rn_clk_mgr.h"
#endif
int clk_mgr_helper_get_active_display_cnt(
......@@ -117,6 +120,12 @@ struct clk_mgr *dc_clk_mgr_create(struct dc_context *ctx, struct pp_smu_funcs *p
rv1_clk_mgr_construct(ctx, clk_mgr, pp_smu);
break;
}
#if defined(CONFIG_DRM_AMD_DC_DCN2_1)
if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev)) {
rn_clk_mgr_construct(ctx, clk_mgr, pp_smu, dccg);
break;
}
#endif /* DCN2_1 */
break;
#endif /* Family RV */
......
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dccg.h"
#include "clk_mgr_internal.h"
#include "dcn20/dcn20_clk_mgr.h"
#include "rn_clk_mgr.h"
#include "dce100/dce_clk_mgr.h"
#include "rn_clk_mgr_vbios_smu.h"
#include "reg_helper.h"
#include "core_types.h"
#include "dm_helpers.h"
#include "atomfirmware.h"
#include "clk/clk_10_0_2_offset.h"
#include "clk/clk_10_0_2_sh_mask.h"
#include "renoir_ip_offset.h"
/* Constants */
#define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
/* Macros */
#define REG(reg_name) \
(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
void rn_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
struct dc *dc = clk_mgr_base->ctx->dc;
int display_count;
bool update_dppclk = false;
bool update_dispclk = false;
bool enter_display_off = false;
bool dpp_clock_lowered = false;
struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
display_count = clk_mgr_helper_get_active_display_cnt(dc, context);
if (display_count == 0)
enter_display_off = true;
if (enter_display_off == safe_to_lower) {
rn_vbios_smu_set_display_count(clk_mgr, display_count);
}
if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
}
if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
}
if (should_set_clock(safe_to_lower,
new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
}
if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
dpp_clock_lowered = true;
clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
update_dppclk = true;
}
if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
update_dispclk = true;
}
if (dpp_clock_lowered) {
// if clock is being lowered, increase DTO before lowering refclk
dcn20_update_clocks_update_dpp_dto(clk_mgr, context);
rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
} else {
// if clock is being raised, increase refclk before lowering DTO
if (update_dppclk || update_dispclk)
rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
if (update_dppclk)
dcn20_update_clocks_update_dpp_dto(clk_mgr, context);
}
if (update_dispclk &&
dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
/*update dmcu for wait_loop count*/
dmcu->funcs->set_psr_wait_loop(dmcu,
clk_mgr_base->clks.dispclk_khz / 1000 / 7);
}
}
static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
{
/* get FbMult value */
struct fixed31_32 pll_req;
unsigned int fbmult_frac_val = 0;
unsigned int fbmult_int_val = 0;
/*
* Register value of fbmult is in 8.16 format, we are converting to 31.32
* to leverage the fix point operations available in driver
*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
pll_req = dc_fixpt_from_int(fbmult_int_val);
/*
* since fractional part is only 16 bit in register definition but is 32 bit
* in our fix point definiton, need to shift left by 16 to obtain correct value
*/
pll_req.value |= fbmult_frac_val << 16;
/* multiply by REFCLK period */
pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
/* integer part is now VCO frequency in kHz */
return dc_fixpt_floor(pll_req);
}
static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL); //dcf deep sleep divider
internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
}
/* This function collect raw clk register values */
static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
{
struct rn_clk_internal internal = {0};
char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
unsigned int chars_printed = 0;
unsigned int remaining_buffer = log_info->bufSize;
rn_dump_clk_registers_internal(&internal, clk_mgr_base);
regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
regs_and_bypass->dppclk_bypass = 0;
regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
regs_and_bypass->dcfclk_bypass = 0;
regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
regs_and_bypass->dispclk_bypass = 0;
regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
regs_and_bypass->dprefclk_bypass = 0;
if (log_info->enabled) {
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
regs_and_bypass->dcfclk,
regs_and_bypass->dcf_deep_sleep_divider,
regs_and_bypass->dcf_deep_sleep_allow,
bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
regs_and_bypass->dprefclk,
bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
regs_and_bypass->dispclk,
bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
//split
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
// REGISTER VALUES
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
internal.CLK1_CLK3_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
internal.CLK1_CLK3_DS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
internal.CLK1_CLK3_ALLOW_DS);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
internal.CLK1_CLK2_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
internal.CLK1_CLK0_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
internal.CLK1_CLK1_CURRENT_CNT);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
internal.CLK1_CLK3_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
internal.CLK1_CLK2_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
internal.CLK1_CLK0_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
internal.CLK1_CLK1_BYPASS_CNTL);
remaining_buffer -= chars_printed;
*log_info->sum_chars_printed += chars_printed;
log_info->pBuf += chars_printed;
}
}
/* This function produce translated logical clk state values*/
void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
{
struct clk_state_registers_and_bypass sb = { 0 };
struct clk_log_info log_info = { 0 };
rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
s->dprefclk_khz = sb.dprefclk;
}
void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
{
struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
rn_vbios_smu_enable_pme_wa(clk_mgr);
}
static struct clk_mgr_funcs dcn21_funcs = {
.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
.update_clocks = rn_update_clocks,
.init_clocks = dcn2_init_clocks,
.enable_pme_wa = rn_enable_pme_wa,
/* .dump_clk_registers = rn_dump_clk_registers */
};
struct clk_bw_params rn_bw_params = {
.vram_type = Ddr4MemType,
.num_channels = 1,
.clk_table = {
.entries = {
{
.voltage = 0,
.dcfclk_mhz = 400,
.fclk_mhz = 400,
.memclk_mhz = 800,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 483,
.fclk_mhz = 800,
.memclk_mhz = 1600,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 602,
.fclk_mhz = 1067,
.memclk_mhz = 1067,
.socclk_mhz = 0,
},
{
.voltage = 0,
.dcfclk_mhz = 738,
.fclk_mhz = 1333,
.memclk_mhz = 1600,
.socclk_mhz = 0,
},
},
.num_entries = 4,
},
.wm_table = {
.entries = {
{
.wm_inst = WM_A,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 23.84,
.valid = true,
},
{
.wm_inst = WM_B,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 23.84,
.valid = true,
},
{
.wm_inst = WM_C,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 23.84,
.valid = true,
},
{
.wm_inst = WM_D,
.wm_type = WM_TYPE_PSTATE_CHG,
.pstate_latency_us = 23.84,
.valid = true,
},
},
}
};
void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
{
int i, num_valid_sets;
num_valid_sets = 0;
for (i = 0; i < WM_SET_COUNT; i++) {
/* skip empty entries, the smu array has no holes*/
if (!bw_params->wm_table.entries[i].valid)
continue;
ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;;
/* We will not select WM based on dcfclk, so leave it as unconstrained */
ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* fclk wil be used to select WM*/
if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
if (i == 0)
ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = 0;
else {
/* add 1 to make it non-overlapping with next lvl */
ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = bw_params->clk_table.entries[i - 1].fclk_mhz + 1;
}
ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
} else {
/* unconstrained for memory retraining */
ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Modify previous watermark range to cover up to max */
ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
num_valid_sets++;
}
ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
ranges->num_reader_wm_sets = num_valid_sets;
/* modify the min and max to make sure we cover the whole range*/
ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* This is for writeback only, does not matter currently as no writeback support*/
ranges->num_writer_wm_sets = 1;
ranges->writer_wm_sets[0].wm_inst = WM_A;
ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
}
void clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct hw_asic_id *asic_id)
{
int i;
ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
for (i = 0; i < PP_SMU_NUM_FCLK_DPM_LEVELS; i++) {
if (clock_table->FClocks[i].Freq == 0)
break;
bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i].Freq;
bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[i].Freq;
bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[i].Freq;
bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i].Freq;
bw_params->clk_table.entries[i].voltage = clock_table->FClocks[i].Vol;
}
bw_params->clk_table.num_entries = i;
bw_params->vram_type = asic_id->vram_type;
bw_params->num_channels = asic_id->vram_width / DDR4_DRAM_WIDTH;
for (i = 0; i < WM_SET_COUNT; i++) {
bw_params->wm_table.entries[i].wm_inst = i;
if (clock_table->FClocks[i].Freq == 0) {
bw_params->wm_table.entries[i].valid = false;
continue;
}
bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
bw_params->wm_table.entries[i].valid = true;
}
if (bw_params->vram_type == LpDdr4MemType) {
/*
* WM set D will be re-purposed for memory retraining
*/
bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
bw_params->wm_table.entries[WM_D].valid = true;
}
}
void rn_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_internal *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg)
{
struct dc_debug_options *debug = &ctx->dc->debug;
struct dpm_clocks clock_table = { 0 };
struct clk_state_registers_and_bypass s = { 0 };
clk_mgr->base.ctx = ctx;
clk_mgr->base.funcs = &dcn21_funcs;
clk_mgr->pp_smu = pp_smu;
clk_mgr->dccg = dccg;
clk_mgr->dfs_bypass_disp_clk = 0;
clk_mgr->dprefclk_ss_percentage = 0;
clk_mgr->dprefclk_ss_divider = 1000;
clk_mgr->ss_on_dprefclk = false;
clk_mgr->dfs_ref_freq_khz = 48000;
clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
clk_mgr->dentist_vco_freq_khz = 3600000;
clk_mgr->base.dprefclk_khz = 600000;
} else {
struct clk_log_info log_info = {0};
/* TODO: Check we get what we expect during bringup */
clk_mgr->dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
/* in case we don't get a value from the register, use default */
if (clk_mgr->dentist_vco_freq_khz == 0)
clk_mgr->dentist_vco_freq_khz = 3600000;
rn_dump_clk_registers(&s, &clk_mgr->base, &log_info);
clk_mgr->base.dprefclk_khz = s.dprefclk;
if (clk_mgr->base.dprefclk_khz != 600000) {
clk_mgr->base.dprefclk_khz = 600000;
ASSERT(1); //TODO: Renoir follow up.
}
/* in case we don't get a value from the register, use default */
if (clk_mgr->base.dprefclk_khz == 0)
clk_mgr->base.dprefclk_khz = 600000;
}
dce_clock_read_ss_info(clk_mgr);
clk_mgr->base.bw_params = &rn_bw_params;
if (pp_smu) {
pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
clk_mgr_helper_populate_bw_params(clk_mgr->base.bw_params, &clock_table, &ctx->asic_id);
}
/*
* Notify SMU which set of WM should be selected for different ranges of fclk
* On Renoir there is a maximumum of 4 DF pstates supported, could be less
* depending on DDR speed and fused maximum fclk.
*/
if (!debug->disable_pplib_wm_range) {
struct pp_smu_wm_range_sets ranges = {0};
build_watermark_ranges(clk_mgr->base.bw_params, &ranges);
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &ranges);
}
/* enable powerfeatures when displaycount goes to 0 */
if (!debug->disable_48mhz_pwrdwn)
rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr);
}
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __RN_CLK_MGR_H__
#define __RN_CLK_MGR_H__
struct rn_clk_registers {
uint32_t CLK1_CLK0_CURRENT_CNT; /* DPREFCLK */
};
void rn_clk_mgr_construct(struct dc_context *ctx,
struct clk_mgr_internal *clk_mgr,
struct pp_smu_funcs *pp_smu,
struct dccg *dccg);
#endif //__RN_CLK_MGR_H__
/*
* Copyright 2012-16 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "core_types.h"
#include "clk_mgr_internal.h"
#include "reg_helper.h"
#include "renoir_ip_offset.h"
#include "mp/mp_12_0_0_offset.h"
#include "mp/mp_12_0_0_sh_mask.h"
#define REG(reg_name) \
(MP1_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
#define FN(reg_name, field) \
FD(reg_name##__##field)
#define VBIOSSMC_MSG_TestMessage 0x1
#define VBIOSSMC_MSG_GetSmuVersion 0x2
#define VBIOSSMC_MSG_PowerUpGfx 0x3
#define VBIOSSMC_MSG_SetDispclkFreq 0x4
#define VBIOSSMC_MSG_SetDprefclkFreq 0x5
#define VBIOSSMC_MSG_PowerDownGfx 0x6
#define VBIOSSMC_MSG_SetDppclkFreq 0x7
#define VBIOSSMC_MSG_SetHardMinDcfclkByFreq 0x8
#define VBIOSSMC_MSG_SetMinDeepSleepDcfclk 0x9
#define VBIOSSMC_MSG_SetPhyclkVoltageByFreq 0xA
#define VBIOSSMC_MSG_GetFclkFrequency 0xB
#define VBIOSSMC_MSG_SetDisplayCount 0xC
#define VBIOSSMC_MSG_EnableTmdp48MHzRefclkPwrDown 0xD
#define VBIOSSMC_MSG_UpdatePmeRestore 0xE
int rn_vbios_smu_send_msg_with_param(struct clk_mgr_internal *clk_mgr, unsigned int msg_id, unsigned int param)
{
/* First clear response register */
REG_WRITE(MP1_SMN_C2PMSG_91, 0);
/* Set the parameter register for the SMU message, unit is Mhz */
REG_WRITE(MP1_SMN_C2PMSG_83, param);
/* Trigger the message transaction by writing the message ID */
REG_WRITE(MP1_SMN_C2PMSG_67, msg_id);
REG_WAIT(MP1_SMN_C2PMSG_91, CONTENT, 1, 10, 200000);
/* Actual dispclk set is returned in the parameter register */
return REG_READ(MP1_SMN_C2PMSG_83);
}
int rn_vbios_smu_get_smu_version(struct clk_mgr_internal *clk_mgr)
{
return rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_GetSmuVersion,
0);
}
int rn_vbios_smu_set_dispclk(struct clk_mgr_internal *clk_mgr, int requested_dispclk_khz)
{
int actual_dispclk_set_mhz = -1;
struct dc *core_dc = clk_mgr->base.ctx->dc;
struct dmcu *dmcu = core_dc->res_pool->dmcu;
uint32_t clk = requested_dispclk_khz / 1000;
if (clk <= 100)
clk = 101;
/* Unit of SMU msg parameter is Mhz */
actual_dispclk_set_mhz = rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDispclkFreq,
clk);
if (!IS_FPGA_MAXIMUS_DC(core_dc->ctx->dce_environment)) {
if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
if (clk_mgr->dfs_bypass_disp_clk != actual_dispclk_set_mhz)
dmcu->funcs->set_psr_wait_loop(dmcu,
actual_dispclk_set_mhz / 7);
}
}
return actual_dispclk_set_mhz * 1000;
}
int rn_vbios_smu_set_dprefclk(struct clk_mgr_internal *clk_mgr)
{
int actual_dprefclk_set_mhz = -1;
actual_dprefclk_set_mhz = rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDprefclkFreq,
clk_mgr->base.dprefclk_khz / 1000);
/* TODO: add code for programing DP DTO, currently this is down by command table */
return actual_dprefclk_set_mhz * 1000;
}
int rn_vbios_smu_set_hard_min_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_dcfclk_khz)
{
int actual_dcfclk_set_mhz = -1;
if (clk_mgr->smu_ver < 0xFFFFFFFF)
return actual_dcfclk_set_mhz;
actual_dcfclk_set_mhz = rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetHardMinDcfclkByFreq,
requested_dcfclk_khz / 1000);
return actual_dcfclk_set_mhz * 1000;
}
int rn_vbios_smu_set_min_deep_sleep_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_min_ds_dcfclk_khz)
{
int actual_min_ds_dcfclk_mhz = -1;
if (clk_mgr->smu_ver < 0xFFFFFFFF)
return actual_min_ds_dcfclk_mhz;
actual_min_ds_dcfclk_mhz = rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetMinDeepSleepDcfclk,
requested_min_ds_dcfclk_khz / 1000);
return actual_min_ds_dcfclk_mhz * 1000;
}
void rn_vbios_smu_set_phyclk(struct clk_mgr_internal *clk_mgr, int requested_phyclk_khz)
{
rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetPhyclkVoltageByFreq,
requested_phyclk_khz / 1000);
}
int rn_vbios_smu_set_dppclk(struct clk_mgr_internal *clk_mgr, int requested_dpp_khz)
{
int actual_dppclk_set_mhz = -1;
uint32_t clk = requested_dpp_khz / 1000;
if (clk <= 100)
clk = 101;
actual_dppclk_set_mhz = rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDppclkFreq,
clk);
return actual_dppclk_set_mhz * 1000;
}
void rn_vbios_smu_set_display_count(struct clk_mgr_internal *clk_mgr, int display_count)
{
rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_SetDisplayCount,
display_count);
}
void rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(struct clk_mgr_internal *clk_mgr)
{
rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_EnableTmdp48MHzRefclkPwrDown,
0);
}
void rn_vbios_smu_enable_pme_wa(struct clk_mgr_internal *clk_mgr)
{
rn_vbios_smu_send_msg_with_param(
clk_mgr,
VBIOSSMC_MSG_UpdatePmeRestore,
0);
}
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef DAL_DC_RN_CLK_MGR_VBIOS_SMU_H_
#define DAL_DC_RN_CLK_MGR_VBIOS_SMU_H_
int rn_vbios_smu_get_smu_version(struct clk_mgr_internal *clk_mgr);
int rn_vbios_smu_set_dispclk(struct clk_mgr_internal *clk_mgr, int requested_dispclk_khz);
int rn_vbios_smu_set_dprefclk(struct clk_mgr_internal *clk_mgr);
int rn_vbios_smu_set_hard_min_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_dcfclk_khz);
int rn_vbios_smu_set_min_deep_sleep_dcfclk(struct clk_mgr_internal *clk_mgr, int requested_min_ds_dcfclk_khz);
void rn_vbios_smu_set_phyclk(struct clk_mgr_internal *clk_mgr, int requested_phyclk_khz);
int rn_vbios_smu_set_dppclk(struct clk_mgr_internal *clk_mgr, int requested_dpp_khz);
void rn_vbios_smu_set_display_count(struct clk_mgr_internal *clk_mgr, int display_count);
void rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(struct clk_mgr_internal *clk_mgr);
void rn_vbios_smu_enable_pme_wa(struct clk_mgr_internal *clk_mgr);
#endif /* DAL_DC_DCN10_RV1_CLK_MGR_VBIOS_SMU_H_ */
......@@ -31,6 +31,128 @@
#define DCN_MINIMUM_DISPCLK_Khz 100000
#define DCN_MINIMUM_DPPCLK_Khz 100000
#ifdef CONFIG_DRM_AMD_DC_DCN2_1
/* Constants */
#define DDR4_DRAM_WIDTH 64
#define WM_A 0
#define WM_B 1
#define WM_C 2
#define WM_D 3
#define WM_SET_COUNT 4
#endif
#define DCN_MINIMUM_DISPCLK_Khz 100000
#define DCN_MINIMUM_DPPCLK_Khz 100000
#ifdef CONFIG_DRM_AMD_DC_DCN2_1
/* Will these bw structures be ASIC specific? */
#define MAX_NUM_DPM_LVL 4
#define WM_SET_COUNT 4
struct clk_limit_table_entry {
unsigned int voltage; /* milivolts withh 2 fractional bits */
unsigned int dcfclk_mhz;
unsigned int fclk_mhz;
unsigned int memclk_mhz;
unsigned int socclk_mhz;
};
/* This table is contiguous */
struct clk_limit_table {
struct clk_limit_table_entry entries[MAX_NUM_DPM_LVL];
unsigned int num_entries;
};
struct wm_range_table_entry {
unsigned int wm_inst;
unsigned int wm_type;
double pstate_latency_us;
bool valid;
};
struct clk_log_info {
bool enabled;
char *pBuf;
unsigned int bufSize;
unsigned int *sum_chars_printed;
};
struct clk_state_registers_and_bypass {
uint32_t dcfclk;
uint32_t dcf_deep_sleep_divider;
uint32_t dcf_deep_sleep_allow;
uint32_t dprefclk;
uint32_t dispclk;
uint32_t dppclk;
uint32_t dppclk_bypass;
uint32_t dcfclk_bypass;
uint32_t dprefclk_bypass;
uint32_t dispclk_bypass;
};
struct rv1_clk_internal {
uint32_t CLK0_CLK8_CURRENT_CNT; //dcfclk
uint32_t CLK0_CLK8_DS_CNTL; //dcf_deep_sleep_divider
uint32_t CLK0_CLK8_ALLOW_DS; //dcf_deep_sleep_allow
uint32_t CLK0_CLK10_CURRENT_CNT; //dprefclk
uint32_t CLK0_CLK11_CURRENT_CNT; //dispclk
uint32_t CLK0_CLK8_BYPASS_CNTL; //dcfclk bypass
uint32_t CLK0_CLK10_BYPASS_CNTL; //dprefclk bypass
uint32_t CLK0_CLK11_BYPASS_CNTL; //dispclk bypass
};
struct rn_clk_internal {
uint32_t CLK1_CLK0_CURRENT_CNT; //dispclk
uint32_t CLK1_CLK1_CURRENT_CNT; //dppclk
uint32_t CLK1_CLK2_CURRENT_CNT; //dprefclk
uint32_t CLK1_CLK3_CURRENT_CNT; //dcfclk
uint32_t CLK1_CLK3_DS_CNTL; //dcf_deep_sleep_divider
uint32_t CLK1_CLK3_ALLOW_DS; //dcf_deep_sleep_allow
uint32_t CLK1_CLK0_BYPASS_CNTL; //dispclk bypass
uint32_t CLK1_CLK1_BYPASS_CNTL; //dppclk bypass
uint32_t CLK1_CLK2_BYPASS_CNTL; //dprefclk bypass
uint32_t CLK1_CLK3_BYPASS_CNTL; //dcfclk bypass
};
/* For dtn logging and debugging */
struct clk_state_registers {
uint32_t CLK0_CLK8_CURRENT_CNT; //dcfclk
uint32_t CLK0_CLK8_DS_CNTL; //dcf_deep_sleep_divider
uint32_t CLK0_CLK8_ALLOW_DS; //dcf_deep_sleep_allow
uint32_t CLK0_CLK10_CURRENT_CNT; //dprefclk
uint32_t CLK0_CLK11_CURRENT_CNT; //dispclk
};
/* TODO: combine this with the above */
struct clk_bypass {
uint32_t dcfclk_bypass;
uint32_t dispclk_pypass;
uint32_t dprefclk_bypass;
};
/*
* This table is not contiguous, can have holes, each
* entry correspond to one set of WM. For example if
* we have 2 DPM and LPDDR, we will WM set A, B and
* D occupied, C will be emptry.
*/
struct wm_table {
struct wm_range_table_entry entries[WM_SET_COUNT];
};
struct clk_bw_params {
unsigned int vram_type;
unsigned int num_channels;
struct clk_limit_table clk_table;
struct wm_table wm_table;
};
#endif
/* Public interfaces */
struct clk_states {
......@@ -65,6 +187,9 @@ struct clk_mgr {
struct clk_mgr_funcs *funcs;
struct dc_clocks clks;
int dprefclk_khz; // Used by program pixel clock in clock source funcs, need to figureout where this goes
#ifdef CONFIG_DRM_AMD_DC_DCN2_1
struct clk_bw_params *bw_params;
#endif
};
/* forward declarations */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment