Commit 50c2f5e8 authored by John W. Linville's avatar John W. Linville

Merge tag 'nfc-next-3.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-next

Samuel Ortiz <sameo@linux.intel.com> says:

"This is the first NFC patchset targeted at the 3.9 merge window.

It brings the following goodies:

- LLCP socket timestamping (To be used e.g with the recently released nfctool
  application for a more efficient skb timestamping when sniffing).
- A pretty big pn533 rework from Waldemar, preparing the driver to support
  more flavours of pn533 based devices.
- HCI changes from Eric in preparation for the microread driver support.
- Some LLCP memory leak fixes, cleanups and slight improvements.
- pn544 and nfcwilink move to the devm_kzalloc API.
- An initial Secure Element (SE) API.
- An nfc.h license change from the original author, allowing non GPL
  application code to safely include it."
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parents 990debe2 d3710e74
......@@ -17,10 +17,12 @@ HCI
HCI registers as an nfc device with NFC Core. Requests coming from userspace are
routed through netlink sockets to NFC Core and then to HCI. From this point,
they are translated in a sequence of HCI commands sent to the HCI layer in the
host controller (the chip). The sending context blocks while waiting for the
response to arrive.
host controller (the chip). Commands can be executed synchronously (the sending
context blocks waiting for response) or asynchronously (the response is returned
from HCI Rx context).
HCI events can also be received from the host controller. They will be handled
and a translation will be forwarded to NFC Core as needed.
and a translation will be forwarded to NFC Core as needed. There are hooks to
let the HCI driver handle proprietary events or override standard behavior.
HCI uses 2 execution contexts:
- one for executing commands : nfc_hci_msg_tx_work(). Only one command
can be executing at any given moment.
......@@ -33,6 +35,8 @@ The Session initialization is an HCI standard which must unfortunately
support proprietary gates. This is the reason why the driver will pass a list
of proprietary gates that must be part of the session. HCI will ensure all
those gates have pipes connected when the hci device is set up.
In case the chip supports pre-opened gates and pseudo-static pipes, the driver
can pass that information to HCI core.
HCI Gates and Pipes
-------------------
......@@ -46,6 +50,13 @@ without knowing the pipe connected to it.
Driver interface
----------------
A driver is generally written in two parts : the physical link management and
the HCI management. This makes it easier to maintain a driver for a chip that
can be connected using various phy (i2c, spi, ...)
HCI Management
--------------
A driver would normally register itself with HCI and provide the following
entry points:
......@@ -53,58 +64,113 @@ struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
int (*xmit)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll)(struct nfc_hci_dev *hdev, u32 protocols);
int (*target_from_gate)(struct nfc_hci_dev *hdev, u8 gate,
int (*xmit) (struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll) (struct nfc_hci_dev *hdev,
u32 im_protocols, u32 tm_protocols);
int (*dep_link_up)(struct nfc_hci_dev *hdev, struct nfc_target *target,
u8 comm_mode, u8 *gb, size_t gb_len);
int (*dep_link_down)(struct nfc_hci_dev *hdev);
int (*target_from_gate) (struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*complete_target_discovered) (struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*data_exchange) (struct nfc_hci_dev *hdev,
struct nfc_target *target,
struct sk_buff *skb, struct sk_buff **res_skb);
int (*im_transceive) (struct nfc_hci_dev *hdev,
struct nfc_target *target, struct sk_buff *skb,
data_exchange_cb_t cb, void *cb_context);
int (*tm_send)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*check_presence)(struct nfc_hci_dev *hdev,
struct nfc_target *target);
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb);
};
- open() and close() shall turn the hardware on and off.
- hci_ready() is an optional entry point that is called right after the hci
session has been set up. The driver can use it to do additional initialization
that must be performed using HCI commands.
- xmit() shall simply write a frame to the chip.
- xmit() shall simply write a frame to the physical link.
- start_poll() is an optional entrypoint that shall set the hardware in polling
mode. This must be implemented only if the hardware uses proprietary gates or a
mechanism slightly different from the HCI standard.
- dep_link_up() is called after a p2p target has been detected, to finish
the p2p connection setup with hardware parameters that need to be passed back
to nfc core.
- dep_link_down() is called to bring the p2p link down.
- target_from_gate() is an optional entrypoint to return the nfc protocols
corresponding to a proprietary gate.
- complete_target_discovered() is an optional entry point to let the driver
perform additional proprietary processing necessary to auto activate the
discovered target.
- data_exchange() must be implemented by the driver if proprietary HCI commands
- im_transceive() must be implemented by the driver if proprietary HCI commands
are required to send data to the tag. Some tag types will require custom
commands, others can be written to using the standard HCI commands. The driver
can check the tag type and either do proprietary processing, or return 1 to ask
for standard processing.
for standard processing. The data exchange command itself must be sent
asynchronously.
- tm_send() is called to send data in the case of a p2p connection
- check_presence() is an optional entry point that will be called regularly
by the core to check that an activated tag is still in the field. If this is
not implemented, the core will not be able to push tag_lost events to the user
space
- event_received() is called to handle an event coming from the chip. Driver
can handle the event or return 1 to let HCI attempt standard processing.
On the rx path, the driver is responsible to push incoming HCP frames to HCI
using nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling
This must be done from a context that can sleep.
SHDLC
-----
PHY Management
--------------
The physical link (i2c, ...) management is defined by the following struture:
struct nfc_phy_ops {
int (*write)(void *dev_id, struct sk_buff *skb);
int (*enable)(void *dev_id);
void (*disable)(void *dev_id);
};
enable(): turn the phy on (power on), make it ready to transfer data
disable(): turn the phy off
write(): Send a data frame to the chip. Note that to enable higher
layers such as an llc to store the frame for re-emission, this function must
not alter the skb. It must also not return a positive result (return 0 for
success, negative for failure).
Data coming from the chip shall be sent directly to nfc_hci_recv_frame().
LLC
---
Communication between the CPU and the chip often requires some link layer
protocol. Those are isolated as modules managed by the HCI layer. There are
currently two modules : nop (raw transfert) and shdlc.
A new llc must implement the following functions:
struct nfc_llc_ops {
void *(*init) (struct nfc_hci_dev *hdev, xmit_to_drv_t xmit_to_drv,
rcv_to_hci_t rcv_to_hci, int tx_headroom,
int tx_tailroom, int *rx_headroom, int *rx_tailroom,
llc_failure_t llc_failure);
void (*deinit) (struct nfc_llc *llc);
int (*start) (struct nfc_llc *llc);
int (*stop) (struct nfc_llc *llc);
void (*rcv_from_drv) (struct nfc_llc *llc, struct sk_buff *skb);
int (*xmit_from_hci) (struct nfc_llc *llc, struct sk_buff *skb);
};
- init() : allocate and init your private storage
- deinit() : cleanup
- start() : establish the logical connection
- stop () : terminate the logical connection
- rcv_from_drv() : handle data coming from the chip, going to HCI
- xmit_from_hci() : handle data sent by HCI, going to the chip
Most chips use shdlc to ensure integrity and delivery ordering of the HCP
frames between the host controller (the chip) and hosts (entities connected
to the chip, like the cpu). In order to simplify writing the driver, an shdlc
layer is available for use by the driver.
When used, the driver actually registers with shdlc, and shdlc will register
with HCI. HCI sees shdlc as the driver and thus send its HCP frames
through shdlc->xmit.
SHDLC adds a new execution context (nfc_shdlc_sm_work()) to run its state
machine and handle both its rx and tx path.
The llc must be registered with nfc before it can be used. Do that by
calling nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
Again, note that the llc does not handle the physical link. It is thus very
easy to mix any physical link with any llc for a given chip driver.
Included Drivers
----------------
......@@ -117,10 +183,12 @@ Execution Contexts
The execution contexts are the following:
- IRQ handler (IRQH):
fast, cannot sleep. stores incoming frames into an shdlc rx queue
fast, cannot sleep. sends incoming frames to HCI where they are passed to
the current llc. In case of shdlc, the frame is queued in shdlc rx queue.
- SHDLC State Machine worker (SMW)
handles shdlc rx & tx queues. Dispatches HCI cmd responses.
Only when llc_shdlc is used: handles shdlc rx & tx queues.
Dispatches HCI cmd responses.
- HCI Tx Cmd worker (MSGTXWQ)
Serializes execution of HCI commands. Completes execution in case of response
......@@ -166,6 +234,15 @@ waiting command execution. Response processing involves invoking the completion
callback that was provided by nfc_hci_msg_tx_work() when it sent the command.
The completion callback will then wake the syscall context.
It is also possible to execute the command asynchronously using this API:
static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
const u8 *param, size_t param_len,
data_exchange_cb_t cb, void *cb_context)
The workflow is the same, except that the API call returns immediately, and
the callback will be called with the result from the SMW context.
Workflow receiving an HCI event or command
------------------------------------------
......
Kernel driver for the NXP Semiconductors PN544 Near Field
Communication chip
Author: Jari Vanhala
Contact: Matti Aaltonen (matti.j.aaltonen at nokia.com)
General
-------
The PN544 is an integrated transmission module for contactless
communication. The driver goes under drives/nfc/ and is compiled as a
module named "pn544". It registers a misc device and creates a device
file named "/dev/pn544".
module named "pn544".
Host Interfaces: I2C, SPI and HSU, this driver supports currently only I2C.
The Interface
-------------
The driver offers a sysfs interface for a hardware test and an IOCTL
interface for selecting between two operating modes. There are read,
write and poll functions for transferring messages. The two operating
modes are the normal (HCI) mode and the firmware update mode.
PN544 is controlled by sending messages from the userspace to the
chip. The main function of the driver is just to pass those messages
without caring about the message content.
Protocols
---------
......@@ -47,68 +30,3 @@ and third (LSB) bytes of the message. The maximum FW message length is
For the ETSI HCI specification see
http://www.etsi.org/WebSite/Technologies/ProtocolSpecification.aspx
The Hardware Test
-----------------
The idea of the test is that it can performed by reading from the
corresponding sysfs file. The test is implemented in the board file
and it should test that PN544 can be put into the firmware update
mode. If the test is not implemented the sysfs file does not get
created.
Example:
> cat /sys/module/pn544/drivers/i2c\:pn544/3-002b/nfc_test
1
Normal Operation
----------------
PN544 is powered up when the device file is opened, otherwise it's
turned off. Only one instance can use the device at a time.
Userspace applications control PN544 with HCI messages. The hardware
sends an interrupt when data is available for reading. Data is
physically read when the read function is called by a userspace
application. Poll() checks the read interrupt state. Configuration and
self testing are also done from the userspace using read and write.
Example platform data:
static int rx71_pn544_nfc_request_resources(struct i2c_client *client)
{
/* Get and setup the HW resources for the device */
}
static void rx71_pn544_nfc_free_resources(void)
{
/* Release the HW resources */
}
static void rx71_pn544_nfc_enable(int fw)
{
/* Turn the device on */
}
static int rx71_pn544_nfc_test(void)
{
/*
* Put the device into the FW update mode
* and then back to the normal mode.
* Check the behavior and return one on success,
* zero on failure.
*/
}
static void rx71_pn544_nfc_disable(void)
{
/* turn the power off */
}
static struct pn544_nfc_platform_data rx71_nfc_data = {
.request_resources = rx71_pn544_nfc_request_resources,
.free_resources = rx71_pn544_nfc_free_resources,
.enable = rx71_pn544_nfc_enable,
.test = rx71_pn544_nfc_test,
.disable = rx71_pn544_nfc_disable,
};
......@@ -5,19 +5,6 @@
menu "Near Field Communication (NFC) devices"
depends on NFC
config PN544_HCI_NFC
tristate "HCI PN544 NFC driver"
depends on I2C && NFC_HCI && NFC_SHDLC
select CRC_CCITT
default n
---help---
NXP PN544 i2c driver.
This is a driver based on the SHDLC and HCI NFC kernel layers and
will thus not work with NXP libnfc library.
To compile this driver as a module, choose m here. The module will
be called pn544_hci.
config NFC_PN533
tristate "NXP PN533 USB driver"
depends on USB
......@@ -39,4 +26,6 @@ config NFC_WILINK
Say Y here to compile support for Texas Instrument's NFC WiLink driver
into the kernel or say M to compile it as module.
source "drivers/nfc/pn544/Kconfig"
endmenu
......@@ -2,7 +2,7 @@
# Makefile for nfc devices
#
obj-$(CONFIG_PN544_HCI_NFC) += pn544/
obj-$(CONFIG_NFC_PN544) += pn544/
obj-$(CONFIG_NFC_PN533) += pn533.o
obj-$(CONFIG_NFC_WILINK) += nfcwilink.o
......
......@@ -542,6 +542,7 @@ static int nfcwilink_probe(struct platform_device *pdev)
drv->ndev = nci_allocate_device(&nfcwilink_ops,
protocols,
NFC_SE_NONE,
NFCWILINK_HDR_LEN,
0);
if (!drv->ndev) {
......
This diff is collapsed.
config NFC_PN544
tristate "NXP PN544 NFC driver"
depends on NFC_HCI
select CRC_CCITT
default n
---help---
NXP PN544 core driver.
This is a driver based on the HCI NFC kernel layers and
will thus not work with NXP libnfc library.
To compile this driver as a module, choose m here. The module will
be called pn544.
Say N if unsure.
config NFC_PN544_I2C
tristate "NFC PN544 i2c support"
depends on NFC_PN544 && I2C && NFC_SHDLC
---help---
This module adds support for the NXP pn544 i2c interface.
Select this if your platform is using the i2c bus.
If you choose to build a module, it'll be called pn544_i2c.
Say N if unsure.
\ No newline at end of file
......@@ -2,6 +2,7 @@
# Makefile for PN544 HCI based NFC driver
#
obj-$(CONFIG_PN544_HCI_NFC) += pn544_i2c.o
pn544_i2c-objs = i2c.o
pn544_i2c-y := pn544.o i2c.o
obj-$(CONFIG_NFC_PN544) += pn544.o
obj-$(CONFIG_NFC_PN544_I2C) += pn544_i2c.o
......@@ -376,12 +376,12 @@ static int __devinit pn544_hci_i2c_probe(struct i2c_client *client,
return -ENODEV;
}
phy = kzalloc(sizeof(struct pn544_i2c_phy), GFP_KERNEL);
phy = devm_kzalloc(&client->dev, sizeof(struct pn544_i2c_phy),
GFP_KERNEL);
if (!phy) {
dev_err(&client->dev,
"Cannot allocate memory for pn544 i2c phy.\n");
r = -ENOMEM;
goto err_phy_alloc;
return -ENOMEM;
}
phy->i2c_dev = client;
......@@ -390,20 +390,18 @@ static int __devinit pn544_hci_i2c_probe(struct i2c_client *client,
pdata = client->dev.platform_data;
if (pdata == NULL) {
dev_err(&client->dev, "No platform data\n");
r = -EINVAL;
goto err_pdata;
return -EINVAL;
}
if (pdata->request_resources == NULL) {
dev_err(&client->dev, "request_resources() missing\n");
r = -EINVAL;
goto err_pdata;
return -EINVAL;
}
r = pdata->request_resources(client);
if (r) {
dev_err(&client->dev, "Cannot get platform resources\n");
goto err_pdata;
return r;
}
phy->gpio_en = pdata->get_gpio(NFC_GPIO_ENABLE);
......@@ -435,10 +433,6 @@ static int __devinit pn544_hci_i2c_probe(struct i2c_client *client,
if (pdata->free_resources != NULL)
pdata->free_resources();
err_pdata:
kfree(phy);
err_phy_alloc:
return r;
}
......@@ -458,8 +452,6 @@ static __devexit int pn544_hci_i2c_remove(struct i2c_client *client)
if (pdata->free_resources)
pdata->free_resources();
kfree(phy);
return 0;
}
......@@ -472,29 +464,7 @@ static struct i2c_driver pn544_hci_i2c_driver = {
.remove = __devexit_p(pn544_hci_i2c_remove),
};
static int __init pn544_hci_i2c_init(void)
{
int r;
pr_debug(DRIVER_DESC ": %s\n", __func__);
r = i2c_add_driver(&pn544_hci_i2c_driver);
if (r) {
pr_err(PN544_HCI_I2C_DRIVER_NAME
": driver registration failed\n");
return r;
}
return 0;
}
static void __exit pn544_hci_i2c_exit(void)
{
i2c_del_driver(&pn544_hci_i2c_driver);
}
module_init(pn544_hci_i2c_init);
module_exit(pn544_hci_i2c_exit);
module_i2c_driver(pn544_hci_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);
......@@ -20,6 +20,7 @@
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/nfc.h>
#include <net/nfc/hci.h>
......@@ -675,11 +676,17 @@ static int pn544_hci_im_transceive(struct nfc_hci_dev *hdev,
static int pn544_hci_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb)
{
int r;
/* Set default false for multiple information chaining */
*skb_push(skb, 1) = 0;
return nfc_hci_send_event(hdev, PN544_RF_READER_NFCIP1_TARGET_GATE,
r = nfc_hci_send_event(hdev, PN544_RF_READER_NFCIP1_TARGET_GATE,
PN544_HCI_EVT_SND_DATA, skb->data, skb->len);
kfree_skb(skb);
return r;
}
static int pn544_hci_check_presence(struct nfc_hci_dev *hdev,
......@@ -714,35 +721,40 @@ static int pn544_hci_check_presence(struct nfc_hci_dev *hdev,
return 0;
}
static void pn544_hci_event_received(struct nfc_hci_dev *hdev, u8 gate,
u8 event, struct sk_buff *skb)
/*
* Returns:
* <= 0: driver handled the event, skb consumed
* 1: driver does not handle the event, please do standard processing
*/
static int pn544_hci_event_received(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb)
{
struct sk_buff *rgb_skb = NULL;
int r = 0;
int r;
pr_debug("hci event %d", event);
switch (event) {
case PN544_HCI_EVT_ACTIVATED:
if (gate == PN544_RF_READER_NFCIP1_INITIATOR_GATE)
nfc_hci_target_discovered(hdev, gate);
else if (gate == PN544_RF_READER_NFCIP1_TARGET_GATE) {
if (gate == PN544_RF_READER_NFCIP1_INITIATOR_GATE) {
r = nfc_hci_target_discovered(hdev, gate);
} else if (gate == PN544_RF_READER_NFCIP1_TARGET_GATE) {
r = nfc_hci_get_param(hdev, gate, PN544_DEP_ATR_REQ,
&rgb_skb);
if (r < 0)
goto exit;
nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
NFC_COMM_PASSIVE, rgb_skb->data,
rgb_skb->len);
kfree_skb(rgb_skb);
} else {
r = -EINVAL;
}
break;
case PN544_HCI_EVT_DEACTIVATED:
nfc_hci_send_event(hdev, gate,
NFC_HCI_EVT_END_OPERATION, NULL, 0);
r = nfc_hci_send_event(hdev, gate, NFC_HCI_EVT_END_OPERATION,
NULL, 0);
break;
case PN544_HCI_EVT_RCV_DATA:
if (skb->len < 2) {
......@@ -757,15 +769,15 @@ static void pn544_hci_event_received(struct nfc_hci_dev *hdev, u8 gate,
}
skb_pull(skb, 2);
nfc_tm_data_received(hdev->ndev, skb);
return;
return nfc_tm_data_received(hdev->ndev, skb);
default:
break;
return 1;
}
exit:
kfree_skb(skb);
return r;
}
static struct nfc_hci_ops pn544_hci_ops = {
......@@ -789,7 +801,7 @@ int pn544_hci_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
struct nfc_hci_dev **hdev)
{
struct pn544_hci_info *info;
u32 protocols;
u32 protocols, se;
struct nfc_hci_init_data init_data;
int r;
......@@ -822,8 +834,10 @@ int pn544_hci_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
NFC_PROTO_ISO14443_B_MASK |
NFC_PROTO_NFC_DEP_MASK;
info->hdev = nfc_hci_allocate_device(&pn544_hci_ops, &init_data,
protocols, llc_name,
se = NFC_SE_UICC | NFC_SE_EMBEDDED;
info->hdev = nfc_hci_allocate_device(&pn544_hci_ops, &init_data, 0,
protocols, se, llc_name,
phy_headroom + PN544_CMDS_HEADROOM,
phy_tailroom, phy_payload);
if (!info->hdev) {
......@@ -851,6 +865,7 @@ int pn544_hci_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
err_info_alloc:
return r;
}
EXPORT_SYMBOL(pn544_hci_probe);
void pn544_hci_remove(struct nfc_hci_dev *hdev)
{
......@@ -860,3 +875,7 @@ void pn544_hci_remove(struct nfc_hci_dev *hdev)
nfc_hci_free_device(hdev);
kfree(info);
}
EXPORT_SYMBOL(pn544_hci_remove);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(DRIVER_DESC);
......@@ -57,8 +57,10 @@ struct nfc_hci_ops {
int (*tm_send)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*check_presence)(struct nfc_hci_dev *hdev,
struct nfc_target *target);
void (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb);
int (*enable_se)(struct nfc_dev *dev, u32 secure_element);
int (*disable_se)(struct nfc_dev *dev, u32 secure_element);
};
/* Pipes */
......@@ -82,11 +84,23 @@ typedef int (*xmit) (struct sk_buff *skb, void *cb_data);
#define NFC_HCI_MAX_GATES 256
/*
* These values can be specified by a driver to indicate it requires some
* adaptation of the HCI standard.
*
* NFC_HCI_QUIRK_SHORT_CLEAR - send HCI_ADM_CLEAR_ALL_PIPE cmd with no params
*/
enum {
NFC_HCI_QUIRK_SHORT_CLEAR = 0,
};
struct nfc_hci_dev {
struct nfc_dev *ndev;
u32 max_data_link_payload;
bool shutting_down;
struct mutex msg_tx_mutex;
struct list_head msg_tx_queue;
......@@ -129,12 +143,16 @@ struct nfc_hci_dev {
u8 *gb;
size_t gb_len;
unsigned long quirks;
};
/* hci device allocation */
struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
struct nfc_hci_init_data *init_data,
unsigned long quirks,
u32 protocols,
u32 supported_se,
const char *llc_name,
int tx_headroom,
int tx_tailroom,
......
......@@ -147,6 +147,7 @@ struct nci_dev {
/* ----- NCI Devices ----- */
struct nci_dev *nci_allocate_device(struct nci_ops *ops,
__u32 supported_protocols,
__u32 supported_se,
int tx_headroom,
int tx_tailroom);
void nci_free_device(struct nci_dev *ndev);
......
......@@ -68,6 +68,8 @@ struct nfc_ops {
void *cb_context);
int (*tm_send)(struct nfc_dev *dev, struct sk_buff *skb);
int (*check_presence)(struct nfc_dev *dev, struct nfc_target *target);
int (*enable_se)(struct nfc_dev *dev, u32 secure_element);
int (*disable_se)(struct nfc_dev *dev, u32 secure_element);
};
#define NFC_TARGET_IDX_ANY -1
......@@ -109,12 +111,17 @@ struct nfc_dev {
struct nfc_genl_data genl_data;
u32 supported_protocols;
u32 supported_se;
u32 active_se;
int tx_headroom;
int tx_tailroom;
struct timer_list check_pres_timer;
struct work_struct check_pres_work;
bool shutting_down;
struct nfc_ops *ops;
};
#define to_nfc_dev(_dev) container_of(_dev, struct nfc_dev, dev)
......@@ -123,6 +130,7 @@ extern struct class nfc_class;
struct nfc_dev *nfc_allocate_device(struct nfc_ops *ops,
u32 supported_protocols,
u32 supported_se,
int tx_headroom,
int tx_tailroom);
......
......@@ -5,20 +5,17 @@
* Lauro Ramos Venancio <lauro.venancio@openbossa.org>
* Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __LINUX_NFC_H
......@@ -67,6 +64,11 @@
* subsequent CONNECT and CC messages.
* If one of the passed parameters is wrong none is set and -EINVAL is
* returned.
* @NFC_CMD_ENABLE_SE: Enable the physical link to a specific secure element.
* Once enabled a secure element will handle card emulation mode, i.e.
* starting a poll from a device which has a secure element enabled means
* we want to do SE based card emulation.
* @NFC_CMD_DISABLE_SE: Disable the physical link to a specific secure element.
*/
enum nfc_commands {
NFC_CMD_UNSPEC,
......@@ -86,6 +88,8 @@ enum nfc_commands {
NFC_EVENT_TM_DEACTIVATED,
NFC_CMD_LLC_GET_PARAMS,
NFC_CMD_LLC_SET_PARAMS,
NFC_CMD_ENABLE_SE,
NFC_CMD_DISABLE_SE,
/* private: internal use only */
__NFC_CMD_AFTER_LAST
};
......@@ -114,6 +118,7 @@ enum nfc_commands {
* @NFC_ATTR_LLC_PARAM_LTO: Link TimeOut parameter
* @NFC_ATTR_LLC_PARAM_RW: Receive Window size parameter
* @NFC_ATTR_LLC_PARAM_MIUX: MIU eXtension parameter
* @NFC_ATTR_SE: Available Secure Elements
*/
enum nfc_attrs {
NFC_ATTR_UNSPEC,
......@@ -134,6 +139,7 @@ enum nfc_attrs {
NFC_ATTR_LLC_PARAM_LTO,
NFC_ATTR_LLC_PARAM_RW,
NFC_ATTR_LLC_PARAM_MIUX,
NFC_ATTR_SE,
/* private: internal use only */
__NFC_ATTR_AFTER_LAST
};
......@@ -172,6 +178,11 @@ enum nfc_attrs {
#define NFC_PROTO_NFC_DEP_MASK (1 << NFC_PROTO_NFC_DEP)
#define NFC_PROTO_ISO14443_B_MASK (1 << NFC_PROTO_ISO14443_B)
/* NFC Secure Elements */
#define NFC_SE_NONE 0x0
#define NFC_SE_UICC 0x1
#define NFC_SE_EMBEDDED 0x2
struct sockaddr_nfc {
sa_family_t sa_family;
__u32 dev_idx;
......
......@@ -338,7 +338,7 @@ int nfc_activate_target(struct nfc_dev *dev, u32 target_idx, u32 protocol)
dev->active_target = target;
dev->rf_mode = NFC_RF_INITIATOR;
if (dev->ops->check_presence)
if (dev->ops->check_presence && !dev->shutting_down)
mod_timer(&dev->check_pres_timer, jiffies +
msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS));
}
......@@ -429,7 +429,7 @@ int nfc_data_exchange(struct nfc_dev *dev, u32 target_idx, struct sk_buff *skb,
rc = dev->ops->im_transceive(dev, dev->active_target, skb, cb,
cb_context);
if (!rc && dev->ops->check_presence)
if (!rc && dev->ops->check_presence && !dev->shutting_down)
mod_timer(&dev->check_pres_timer, jiffies +
msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS));
} else if (dev->rf_mode == NFC_RF_TARGET && dev->ops->tm_send != NULL) {
......@@ -684,11 +684,6 @@ static void nfc_release(struct device *d)
pr_debug("dev_name=%s\n", dev_name(&dev->dev));
if (dev->ops->check_presence) {
del_timer_sync(&dev->check_pres_timer);
cancel_work_sync(&dev->check_pres_work);
}
nfc_genl_data_exit(&dev->genl_data);
kfree(dev->targets);
kfree(dev);
......@@ -706,15 +701,16 @@ static void nfc_check_pres_work(struct work_struct *work)
rc = dev->ops->check_presence(dev, dev->active_target);
if (rc == -EOPNOTSUPP)
goto exit;
if (!rc) {
mod_timer(&dev->check_pres_timer, jiffies +
msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS));
} else {
if (rc) {
u32 active_target_idx = dev->active_target->idx;
device_unlock(&dev->dev);
nfc_target_lost(dev, active_target_idx);
return;
}
if (!dev->shutting_down)
mod_timer(&dev->check_pres_timer, jiffies +
msecs_to_jiffies(NFC_CHECK_PRES_FREQ_MS));
}
exit:
......@@ -761,6 +757,7 @@ struct nfc_dev *nfc_get_device(unsigned int idx)
*/
struct nfc_dev *nfc_allocate_device(struct nfc_ops *ops,
u32 supported_protocols,
u32 supported_se,
int tx_headroom, int tx_tailroom)
{
struct nfc_dev *dev;
......@@ -778,6 +775,8 @@ struct nfc_dev *nfc_allocate_device(struct nfc_ops *ops,
dev->ops = ops;
dev->supported_protocols = supported_protocols;
dev->supported_se = supported_se;
dev->active_se = NFC_SE_NONE;
dev->tx_headroom = tx_headroom;
dev->tx_tailroom = tx_tailroom;
......@@ -853,26 +852,27 @@ void nfc_unregister_device(struct nfc_dev *dev)
id = dev->idx;
mutex_lock(&nfc_devlist_mutex);
nfc_devlist_generation++;
/* lock to avoid unregistering a device while an operation
is in progress */
if (dev->ops->check_presence) {
device_lock(&dev->dev);
device_del(&dev->dev);
dev->shutting_down = true;
device_unlock(&dev->dev);
del_timer_sync(&dev->check_pres_timer);
cancel_work_sync(&dev->check_pres_work);
}
mutex_unlock(&nfc_devlist_mutex);
rc = nfc_genl_device_removed(dev);
if (rc)
pr_debug("The userspace won't be notified that the device %s "
"was removed\n", dev_name(&dev->dev));
nfc_llcp_unregister_device(dev);
rc = nfc_genl_device_removed(dev);
if (rc)
pr_debug("The userspace won't be notified that the device %s was removed\n",
dev_name(&dev->dev));
mutex_lock(&nfc_devlist_mutex);
nfc_devlist_generation++;
device_del(&dev->dev);
mutex_unlock(&nfc_devlist_mutex);
ida_simple_remove(&nfc_index_ida, id);
}
EXPORT_SYMBOL(nfc_unregister_device);
......
......@@ -280,14 +280,19 @@ static int nfc_hci_delete_pipe(struct nfc_hci_dev *hdev, u8 pipe)
static int nfc_hci_clear_all_pipes(struct nfc_hci_dev *hdev)
{
u8 param[2];
size_t param_len = 2;
/* TODO: Find out what the identity reference data is
* and fill param with it. HCI spec 6.1.3.5 */
pr_debug("\n");
if (test_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &hdev->quirks))
param_len = 0;
return nfc_hci_execute_cmd(hdev, NFC_HCI_ADMIN_PIPE,
NFC_HCI_ADM_CLEAR_ALL_PIPE, param, 2, NULL);
NFC_HCI_ADM_CLEAR_ALL_PIPE, param, param_len,
NULL);
}
int nfc_hci_disconnect_gate(struct nfc_hci_dev *hdev, u8 gate)
......
......@@ -57,6 +57,8 @@ static void nfc_hci_msg_tx_work(struct work_struct *work)
int r = 0;
mutex_lock(&hdev->msg_tx_mutex);
if (hdev->shutting_down)
goto exit;
if (hdev->cmd_pending_msg) {
if (timer_pending(&hdev->cmd_timer) == 0) {
......@@ -295,6 +297,12 @@ void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
goto exit;
}
if (hdev->ops->event_received) {
r = hdev->ops->event_received(hdev, gate, event, skb);
if (r <= 0)
goto exit_noskb;
}
switch (event) {
case NFC_HCI_EVT_TARGET_DISCOVERED:
if (skb->len < 1) { /* no status data? */
......@@ -320,17 +328,15 @@ void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
r = nfc_hci_target_discovered(hdev, gate);
break;
default:
if (hdev->ops->event_received) {
hdev->ops->event_received(hdev, gate, event, skb);
return;
}
pr_info("Discarded unknown event %x to gate %x\n", event, gate);
r = -EINVAL;
break;
}
exit:
kfree_skb(skb);
exit_noskb:
if (r) {
/* TODO: There was an error dispatching the event,
* how to propagate up to nfc core?
......@@ -669,7 +675,9 @@ static int hci_tm_send(struct nfc_dev *nfc_dev, struct sk_buff *skb)
if (hdev->ops->tm_send)
return hdev->ops->tm_send(hdev, skb);
else
kfree_skb(skb);
return -ENOTSUPP;
}
......@@ -787,7 +795,9 @@ static struct nfc_ops hci_nfc_ops = {
struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
struct nfc_hci_init_data *init_data,
unsigned long quirks,
u32 protocols,
u32 supported_se,
const char *llc_name,
int tx_headroom,
int tx_tailroom,
......@@ -813,7 +823,7 @@ struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
return NULL;
}
hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols,
hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols, supported_se,
tx_headroom + HCI_CMDS_HEADROOM,
tx_tailroom);
if (!hdev->ndev) {
......@@ -830,6 +840,8 @@ struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
hdev->quirks = quirks;
return hdev;
}
EXPORT_SYMBOL(nfc_hci_allocate_device);
......@@ -868,6 +880,28 @@ void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
{
struct hci_msg *msg, *n;
mutex_lock(&hdev->msg_tx_mutex);
if (hdev->cmd_pending_msg) {
if (hdev->cmd_pending_msg->cb)
hdev->cmd_pending_msg->cb(
hdev->cmd_pending_msg->cb_context,
NULL, -ESHUTDOWN);
kfree(hdev->cmd_pending_msg);
hdev->cmd_pending_msg = NULL;
}
hdev->shutting_down = true;
mutex_unlock(&hdev->msg_tx_mutex);
del_timer_sync(&hdev->cmd_timer);
cancel_work_sync(&hdev->msg_tx_work);
cancel_work_sync(&hdev->msg_rx_work);
nfc_unregister_device(hdev->ndev);
skb_queue_purge(&hdev->rx_hcp_frags);
skb_queue_purge(&hdev->msg_rx_queue);
......@@ -876,13 +910,6 @@ void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
skb_queue_purge(&msg->msg_frags);
kfree(msg);
}
del_timer_sync(&hdev->cmd_timer);
nfc_unregister_device(hdev->ndev);
cancel_work_sync(&hdev->msg_tx_work);
cancel_work_sync(&hdev->msg_rx_work);
}
EXPORT_SYMBOL(nfc_hci_unregister_device);
......
......@@ -105,6 +105,13 @@ int nfc_hci_hcp_message_tx(struct nfc_hci_dev *hdev, u8 pipe,
}
mutex_lock(&hdev->msg_tx_mutex);
if (hdev->shutting_down) {
err = -ESHUTDOWN;
mutex_unlock(&hdev->msg_tx_mutex);
goto out_skb_err;
}
list_add_tail(&cmd->msg_l, &hdev->msg_tx_queue);
mutex_unlock(&hdev->msg_tx_mutex);
......
......@@ -304,6 +304,8 @@ int nfc_llcp_send_symm(struct nfc_dev *dev)
skb = llcp_add_header(skb, 0, 0, LLCP_PDU_SYMM);
__net_timestamp(skb);
nfc_llcp_send_to_raw_sock(local, skb, NFC_LLCP_DIRECTION_TX);
return nfc_data_exchange(dev, local->target_idx, skb,
......
......@@ -54,7 +54,6 @@ static void nfc_llcp_socket_purge(struct nfc_llcp_sock *sock)
skb_queue_purge(&sock->tx_queue);
skb_queue_purge(&sock->tx_pending_queue);
skb_queue_purge(&sock->tx_backlog_queue);
if (local == NULL)
return;
......@@ -668,6 +667,8 @@ static void nfc_llcp_tx_work(struct work_struct *work)
if (ptype == LLCP_PDU_I)
copy_skb = skb_copy(skb, GFP_ATOMIC);
__net_timestamp(skb);
nfc_llcp_send_to_raw_sock(local, skb,
NFC_LLCP_DIRECTION_TX);
......@@ -781,9 +782,15 @@ static void nfc_llcp_recv_ui(struct nfc_llcp_local *local,
/* There is no sequence with UI frames */
skb_pull(skb, LLCP_HEADER_SIZE);
if (sock_queue_rcv_skb(&llcp_sock->sk, skb)) {
pr_err("receive queue is full\n");
skb_queue_head(&llcp_sock->tx_backlog_queue, skb);
if (!sock_queue_rcv_skb(&llcp_sock->sk, skb)) {
/*
* UI frames will be freed from the socket layer, so we
* need to keep them alive until someone receives them.
*/
skb_get(skb);
} else {
pr_err("Receive queue is full\n");
kfree_skb(skb);
}
nfc_llcp_sock_put(llcp_sock);
......@@ -976,9 +983,15 @@ static void nfc_llcp_recv_hdlc(struct nfc_llcp_local *local,
pr_err("Received out of sequence I PDU\n");
skb_pull(skb, LLCP_HEADER_SIZE + LLCP_SEQUENCE_SIZE);
if (sock_queue_rcv_skb(&llcp_sock->sk, skb)) {
pr_err("receive queue is full\n");
skb_queue_head(&llcp_sock->tx_backlog_queue, skb);
if (!sock_queue_rcv_skb(&llcp_sock->sk, skb)) {
/*
* I frames will be freed from the socket layer, so we
* need to keep them alive until someone receives them.
*/
skb_get(skb);
} else {
pr_err("Receive queue is full\n");
kfree_skb(skb);
}
}
......@@ -1245,6 +1258,8 @@ static void nfc_llcp_rx_work(struct work_struct *work)
print_hex_dump(KERN_DEBUG, "LLCP Rx: ", DUMP_PREFIX_OFFSET,
16, 1, skb->data, skb->len, true);
__net_timestamp(skb);
nfc_llcp_send_to_raw_sock(local, skb, NFC_LLCP_DIRECTION_RX);
switch (ptype) {
......@@ -1296,6 +1311,13 @@ static void nfc_llcp_rx_work(struct work_struct *work)
local->rx_pending = NULL;
}
static void __nfc_llcp_recv(struct nfc_llcp_local *local, struct sk_buff *skb)
{
local->rx_pending = skb;
del_timer(&local->link_timer);
schedule_work(&local->rx_work);
}
void nfc_llcp_recv(void *data, struct sk_buff *skb, int err)
{
struct nfc_llcp_local *local = (struct nfc_llcp_local *) data;
......@@ -1306,9 +1328,7 @@ void nfc_llcp_recv(void *data, struct sk_buff *skb, int err)
return;
}
local->rx_pending = skb_get(skb);
del_timer(&local->link_timer);
schedule_work(&local->rx_work);
__nfc_llcp_recv(local, skb);
}
int nfc_llcp_data_received(struct nfc_dev *dev, struct sk_buff *skb)
......@@ -1319,9 +1339,7 @@ int nfc_llcp_data_received(struct nfc_dev *dev, struct sk_buff *skb)
if (local == NULL)
return -ENODEV;
local->rx_pending = skb_get(skb);
del_timer(&local->link_timer);
schedule_work(&local->rx_work);
__nfc_llcp_recv(local, skb);
return 0;
}
......
......@@ -121,7 +121,6 @@ struct nfc_llcp_sock {
struct sk_buff_head tx_queue;
struct sk_buff_head tx_pending_queue;
struct sk_buff_head tx_backlog_queue;
struct list_head accept_queue;
struct sock *parent;
......
......@@ -672,25 +672,27 @@ static int llcp_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
copied = min_t(unsigned int, rlen, len);
cskb = skb;
if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
if (!(flags & MSG_PEEK))
skb_queue_head(&sk->sk_receive_queue, skb);
return -EFAULT;
}
sock_recv_timestamp(msg, sk, skb);
if (sk->sk_type == SOCK_DGRAM && msg->msg_name) {
struct nfc_llcp_ui_cb *ui_cb = nfc_llcp_ui_skb_cb(skb);
struct sockaddr_nfc_llcp sockaddr;
struct sockaddr_nfc_llcp *sockaddr =
(struct sockaddr_nfc_llcp *) msg->msg_name;
pr_debug("Datagram socket %d %d\n", ui_cb->dsap, ui_cb->ssap);
msg->msg_namelen = sizeof(struct sockaddr_nfc_llcp);
sockaddr.sa_family = AF_NFC;
sockaddr.nfc_protocol = NFC_PROTO_NFC_DEP;
sockaddr.dsap = ui_cb->dsap;
sockaddr.ssap = ui_cb->ssap;
pr_debug("Datagram socket %d %d\n", ui_cb->dsap, ui_cb->ssap);
memcpy(msg->msg_name, &sockaddr, sizeof(sockaddr));
msg->msg_namelen = sizeof(sockaddr);
sockaddr->sa_family = AF_NFC;
sockaddr->nfc_protocol = NFC_PROTO_NFC_DEP;
sockaddr->dsap = ui_cb->dsap;
sockaddr->ssap = ui_cb->ssap;
}
/* Mark read part of skb as used */
......@@ -806,7 +808,6 @@ struct sock *nfc_llcp_sock_alloc(struct socket *sock, int type, gfp_t gfp)
llcp_sock->reserved_ssap = LLCP_SAP_MAX;
skb_queue_head_init(&llcp_sock->tx_queue);
skb_queue_head_init(&llcp_sock->tx_pending_queue);
skb_queue_head_init(&llcp_sock->tx_backlog_queue);
INIT_LIST_HEAD(&llcp_sock->accept_queue);
if (sock != NULL)
......@@ -821,7 +822,6 @@ void nfc_llcp_sock_free(struct nfc_llcp_sock *sock)
skb_queue_purge(&sock->tx_queue);
skb_queue_purge(&sock->tx_pending_queue);
skb_queue_purge(&sock->tx_backlog_queue);
list_del_init(&sock->accept_queue);
......
......@@ -658,6 +658,7 @@ static struct nfc_ops nci_nfc_ops = {
*/
struct nci_dev *nci_allocate_device(struct nci_ops *ops,
__u32 supported_protocols,
__u32 supported_se,
int tx_headroom, int tx_tailroom)
{
struct nci_dev *ndev;
......@@ -680,6 +681,7 @@ struct nci_dev *nci_allocate_device(struct nci_ops *ops,
ndev->nfc_dev = nfc_allocate_device(&nci_nfc_ops,
supported_protocols,
supported_se,
tx_headroom + NCI_DATA_HDR_SIZE,
tx_tailroom);
if (!ndev->nfc_dev)
......
......@@ -366,6 +366,7 @@ static int nfc_genl_send_device(struct sk_buff *msg, struct nfc_dev *dev,
if (nla_put_string(msg, NFC_ATTR_DEVICE_NAME, nfc_device_name(dev)) ||
nla_put_u32(msg, NFC_ATTR_DEVICE_INDEX, dev->idx) ||
nla_put_u32(msg, NFC_ATTR_PROTOCOLS, dev->supported_protocols) ||
nla_put_u32(msg, NFC_ATTR_SE, dev->supported_se) ||
nla_put_u8(msg, NFC_ATTR_DEVICE_POWERED, dev->dev_up) ||
nla_put_u8(msg, NFC_ATTR_RF_MODE, dev->rf_mode))
goto nla_put_failure;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment