Commit 574fb258 authored by Jonathan Cameron's avatar Jonathan Cameron Committed by Greg Kroah-Hartman

Staging: IIO: VTI sca3000 series accelerometer driver (spi)

Example of how a device with a hardware ring buffer is
handled within IIO.

Changes since V2:
* Moved to new registration functions giving much cleaner
  interface.
Signed-off-by: default avatarJonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 7026ea4b
......@@ -17,3 +17,11 @@ config LIS3L02DQ
Say yes here to build SPI support for the ST microelectronics
accelerometer. The driver supplies direct access via sysfs files
and an event interface via a character device.
config SCA3000
depends on IIO_RING_BUFFER
depends on SPI
tristate "VTI SCA3000 series accelerometers"
help
Say yes here to build support for the VTI SCA3000 series of SPI
accelerometers. These devices use a hardware ring buffer.
\ No newline at end of file
......@@ -5,3 +5,6 @@ obj-$(CONFIG_KXSD9) += kxsd9.o
lis3l02dq-y := lis3l02dq_core.o
obj-$(CONFIG_LIS3L02DQ) += lis3l02dq.o
sca3000-y := sca3000_core.o sca3000_ring.o
obj-$(CONFIG_SCA3000) += sca3000.o
\ No newline at end of file
/*
* sca3000.c -- support VTI sca3000 series accelerometers
* via SPI
*
* Copyright (c) 2007 Jonathan Cameron <jic23@cam.ac.uk>
*
* Partly based upon tle62x0.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Initial mode is direct measurement.
*
* Untested things
*
* Temperature reading (the e05 I'm testing with doesn't have a sensor)
*
* Free fall detection mode - supported but untested as I'm not droping my
* dubious wire rig far enough to test it.
*
* Unsupported as yet
*
* Time stamping of data from ring. Various ideas on how to do this but none
* are remotely simple. Suggestions welcome.
*
* Individual enabling disabling of channels going into ring buffer
*
* Overflow handling (this is signaled for all but 8 bit ring buffer mode.)
*
* Motion detector using AND combinations of signals.
*
* Note: Be very careful about not touching an register bytes marked
* as reserved on the data sheet. They really mean it as changing convents of
* some will cause the device to lock up.
*
* Known issues - on rare occasions the interrupts lock up. Not sure why as yet.
* Can probably alleviate this by reading the interrupt register on start, but
* that is really just brushing the problem under the carpet.
*/
#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
#define SCA3000_READ_REG(a) ((a) << 2)
#define SCA3000_REG_ADDR_REVID 0x00
#define SCA3000_REVID_MAJOR_MASK 0xf0
#define SCA3000_REVID_MINOR_MASK 0x0f
#define SCA3000_REG_ADDR_STATUS 0x02
#define SCA3000_LOCKED 0x20
#define SCA3000_EEPROM_CS_ERROR 0x02
#define SCA3000_SPI_FRAME_ERROR 0x01
/* All reads done using register decrement so no need to directly access LSBs */
#define SCA3000_REG_ADDR_X_MSB 0x05
#define SCA3000_REG_ADDR_Y_MSB 0x07
#define SCA3000_REG_ADDR_Z_MSB 0x09
#define SCA3000_REG_ADDR_RING_OUT 0x0f
/* Temp read untested - the e05 doesn't have the sensor */
#define SCA3000_REG_ADDR_TEMP_MSB 0x13
#define SCA3000_REG_ADDR_MODE 0x14
#define SCA3000_MODE_PROT_MASK 0x28
#define SCA3000_RING_BUF_ENABLE 0x80
#define SCA3000_RING_BUF_8BIT 0x40
/* Free fall detection triggers an interrupt if the acceleration
* is below a threshold for equivalent of 25cm drop
*/
#define SCA3000_FREE_FALL_DETECT 0x10
#define SCA3000_MEAS_MODE_NORMAL 0x00
#define SCA3000_MEAS_MODE_OP_1 0x01
#define SCA3000_MEAS_MODE_OP_2 0x02
/* In motion detection mode the accelerations are band pass filtered
* (aprox 1 - 25Hz) and then a programmable theshold used to trigger
* and interrupt.
*/
#define SCA3000_MEAS_MODE_MOT_DET 0x03
#define SCA3000_REG_ADDR_BUF_COUNT 0x15
#define SCA3000_REG_ADDR_INT_STATUS 0x16
#define SCA3000_INT_STATUS_THREE_QUARTERS 0x80
#define SCA3000_INT_STATUS_HALF 0x40
#define SCA3000_INT_STATUS_FREE_FALL 0x08
#define SCA3000_INT_STATUS_Y_TRIGGER 0x04
#define SCA3000_INT_STATUS_X_TRIGGER 0x02
#define SCA3000_INT_STATUS_Z_TRIGGER 0x01
/* Used to allow accesss to multiplexed registers */
#define SCA3000_REG_ADDR_CTRL_SEL 0x18
/* Only available for SCA3000-D03 and SCA3000-D01 */
#define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01
#define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02
#define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03
#define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04
#define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05
/* BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
will not function */
#define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B
#define SCA3000_OUT_CTRL_PROT_MASK 0xE0
#define SCA3000_OUT_CTRL_BUF_X_EN 0x10
#define SCA3000_OUT_CTRL_BUF_Y_EN 0x08
#define SCA3000_OUT_CTRL_BUF_Z_EN 0x04
#define SCA3000_OUT_CTRL_BUF_DIV_4 0x02
#define SCA3000_OUT_CTRL_BUF_DIV_2 0x01
/* Control which motion detector interrupts are on.
* For now only OR combinations are supported.x
*/
#define SCA3000_MD_CTRL_PROT_MASK 0xC0
#define SCA3000_MD_CTRL_OR_Y 0x01
#define SCA3000_MD_CTRL_OR_X 0x02
#define SCA3000_MD_CTRL_OR_Z 0x04
/* Currently unsupported */
#define SCA3000_MD_CTRL_AND_Y 0x08
#define SCA3000_MD_CTRL_AND_X 0x10
#define SAC3000_MD_CTRL_AND_Z 0x20
/* Some control registers of complex access methods requiring this register to
* be used to remove a lock.
*/
#define SCA3000_REG_ADDR_UNLOCK 0x1e
#define SCA3000_REG_ADDR_INT_MASK 0x21
#define SCA3000_INT_MASK_PROT_MASK 0x1C
#define SCA3000_INT_MASK_RING_THREE_QUARTER 0x80
#define SCA3000_INT_MASK_RING_HALF 0x40
#define SCA3000_INT_MASK_ALL_INTS 0x02
#define SCA3000_INT_MASK_ACTIVE_HIGH 0x01
#define SCA3000_INT_MASK_ACTIVE_LOW 0x00
/* Values of mulipexed registers (write to ctrl_data after select) */
#define SCA3000_REG_ADDR_CTRL_DATA 0x22
/* Measurment modes available on some sca3000 series chips. Code assumes others
* may become available in the future.
*
* Bypass - Bypass the low-pass filter in the signal channel so as to increase
* signal bandwidth.
*
* Narrow - Narrow low-pass filtering of the signal channel and half output
* data rate by decimation.
*
* Wide - Widen low-pass filtering of signal channel to increase bandwidth
*/
#define SCA3000_OP_MODE_BYPASS 0x01
#define SCA3000_OP_MODE_NARROW 0x02
#define SCA3000_OP_MODE_WIDE 0x04
#define SCA3000_MAX_TX 6
#define SCA3000_MAX_RX 2
/**
* struct sca3000_state - device instance state information
* @us: the associated spi device
* @info: chip variant information
* @indio_dev: device information used by the IIO core
* @interrupt_handler_ws: event interrupt handler for all events
* @last_timestamp: the timestamp of the last event
* @mo_det_use_count: reference counter for the motion detection unit
* @lock: lock used to protect elements of sca3000_state
* and the underlying device state.
* @bpse: number of bits per scan element
* @tx: dma-able transmit buffer
* @rx: dma-able receive buffer
**/
struct sca3000_state {
struct spi_device *us;
const struct sca3000_chip_info *info;
struct iio_dev *indio_dev;
struct work_struct interrupt_handler_ws;
s64 last_timestamp;
int mo_det_use_count;
struct mutex lock;
int bpse;
u8 *tx;
/* not used during a ring buffer read */
u8 *rx;
};
/**
* struct sca3000_chip_info - model dependant parameters
* @name: model identification
* @temp_output: some devices have temperature sensors.
* @measurement_mode_freq: normal mode sampling frequency
* @option_mode_1: first optional mode. Not all models have one
* @option_mode_1_freq: option mode 1 sampling frequency
* @option_mode_2: second optional mode. Not all chips have one
* @option_mode_2_freq: option mode 2 sampling frequency
*
* This structure is used to hold information about the functionality of a given
* sca3000 variant.
**/
struct sca3000_chip_info {
const char *name;
bool temp_output;
int measurement_mode_freq;
int option_mode_1;
int option_mode_1_freq;
int option_mode_2;
int option_mode_2_freq;
};
/**
* sca3000_read_data() read a series of values from the device
* @dev: device
* @reg_address_high: start address (decremented read)
* @rx: pointer where recieved data is placed. Callee
* responsible for freeing this.
* @len: number of bytes to read
*
* The main lock must be held.
**/
int sca3000_read_data(struct sca3000_state *st,
u8 reg_address_high,
u8 **rx_p,
int len);
/**
* sca3000_write_reg() write a single register
* @address: address of register on chip
* @val: value to be written to register
*
* The main lock must be held.
**/
int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val);
/* Conversion function for use with the ring buffer when in 11bit mode */
static inline int sca3000_11bit_convert(uint8_t msb, uint8_t lsb)
{
int16_t val;
val = ((lsb >> 3) & 0x1C) | (msb << 5);
val |= (val & (1 << 12)) ? 0xE000 : 0;
return val;
};
static inline int sca3000_13bit_convert(uint8_t msb, uint8_t lsb)
{
s16 val;
val = ((lsb >> 3) & 0x1F) | (msb << 5);
/* sign fill */
val |= (val & (1 << 12)) ? 0xE000 : 0;
return val;
};
#ifdef CONFIG_IIO_RING_BUFFER
/**
* sca3000_register_ring_funcs() setup the ring state change functions
**/
void sca3000_register_ring_funcs(struct iio_dev *indio_dev);
/**
* sca3000_configure_ring() - allocate and configure ring buffer
* @indio_dev: iio-core device whose ring is to be configured
*
* The hardware ring buffer needs far fewer ring buffer functions than
* a software one as a lot of things are handled automatically.
* This function also tells the iio core that our device supports a
* hardware ring buffer mode.
**/
int sca3000_configure_ring(struct iio_dev *indio_dev);
/**
* sca3000_unconfigure_ring() - deallocate the ring buffer
* @indio_dev: iio-core device whose ring we are freeing
**/
void sca3000_unconfigure_ring(struct iio_dev *indio_dev);
/**
* sca3000_ring_int_process() handles ring related event pushing and escalation
* @val: the event code
**/
void sca3000_ring_int_process(u8 val, struct iio_ring_buffer *ring);
#else
static inline void sca3000_register_ring_funcs(struct iio_dev *indio_dev) {};
static inline
int sca3000_register_ring_access_and_init(struct iio_dev *indio_dev)
{
return 0;
};
static inline void sca3000_ring_int_process(u8 val, void *ring) {};
#endif
/*
* sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
*
* See industrialio/accels/sca3000.h for comments.
*/
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include "../iio.h"
#include "../sysfs.h"
#include "../ring_generic.h"
#include "accel.h"
#include "sca3000.h"
enum sca3000_variant {
d01,
d03,
e02,
e04,
e05,
l01,
};
/* Note where option modes are not defined, the chip simply does not
* support any.
* Other chips in the sca3000 series use i2c and are not included here.
*
* Some of these devices are only listed in the family data sheet and
* do not actually appear to be available.
*/
static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
{
.name = "sca3000-d01",
.temp_output = true,
.measurement_mode_freq = 250,
.option_mode_1 = SCA3000_OP_MODE_BYPASS,
.option_mode_1_freq = 250,
}, {
/* No data sheet available - may be the same as the 3100-d03?*/
.name = "sca3000-d03",
.temp_output = true,
}, {
.name = "sca3000-e02",
.measurement_mode_freq = 125,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 63,
}, {
.name = "sca3000-e04",
.measurement_mode_freq = 100,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 50,
.option_mode_2 = SCA3000_OP_MODE_WIDE,
.option_mode_2_freq = 400,
}, {
.name = "sca3000-e05",
.measurement_mode_freq = 200,
.option_mode_1 = SCA3000_OP_MODE_NARROW,
.option_mode_1_freq = 50,
.option_mode_2 = SCA3000_OP_MODE_WIDE,
.option_mode_2_freq = 400,
}, {
/* No data sheet available.
* Frequencies are unknown.
*/
.name = "sca3000-l01",
.temp_output = true,
.option_mode_1 = SCA3000_OP_MODE_BYPASS,
},
};
int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
{
struct spi_transfer xfer = {
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
.tx_buf = st->tx,
};
struct spi_message msg;
st->tx[0] = SCA3000_WRITE_REG(address);
st->tx[1] = val;
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
return spi_sync(st->us, &msg);
}
int sca3000_read_data(struct sca3000_state *st,
uint8_t reg_address_high,
u8 **rx_p,
int len)
{
int ret;
struct spi_message msg;
struct spi_transfer xfer = {
.bits_per_word = 8,
.len = len + 1,
.cs_change = 1,
.tx_buf = st->tx,
};
*rx_p = kmalloc(len + 1, GFP_KERNEL);
if (*rx_p == NULL) {
ret = -ENOMEM;
goto error_ret;
}
xfer.rx_buf = *rx_p;
st->tx[0] = SCA3000_READ_REG(reg_address_high);
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
ret = spi_sync(st->us, &msg);
if (ret) {
dev_err(get_device(&st->us->dev), "problem reading register");
goto error_free_rx;
}
return 0;
error_free_rx:
kfree(*rx_p);
error_ret:
return ret;
}
/**
* sca3000_reg_lock_on() test if the ctrl register lock is on
*
* Lock must be held.
**/
static int sca3000_reg_lock_on(struct sca3000_state *st)
{
u8 *rx;
int ret;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_STATUS, &rx, 1);
if (ret < 0)
return ret;
ret = !(rx[1] & SCA3000_LOCKED);
kfree(rx);
return ret;
}
/**
* __sca3000_unlock_reg_lock() unlock the control registers
*
* Note the device does not appear to support doing this in a single transfer.
* This should only ever be used as part of ctrl reg read.
* Lock must be held before calling this
**/
static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
{
struct spi_message msg;
struct spi_transfer xfer[3] = {
{
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
.tx_buf = st->tx,
}, {
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
.tx_buf = st->tx + 2,
}, {
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
.tx_buf = st->tx + 4,
},
};
st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
st->tx[1] = 0x00;
st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
st->tx[3] = 0x50;
st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
st->tx[5] = 0xA0;
spi_message_init(&msg);
spi_message_add_tail(&xfer[0], &msg);
spi_message_add_tail(&xfer[1], &msg);
spi_message_add_tail(&xfer[2], &msg);
return spi_sync(st->us, &msg);
}
/**
* sca3000_write_ctrl_reg() write to a lock protect ctrl register
* @sel: selects which registers we wish to write to
* @val: the value to be written
*
* Certain control registers are protected against overwriting by the lock
* register and use a shared write address. This function allows writing of
* these registers.
* Lock must be held.
**/
static int sca3000_write_ctrl_reg(struct sca3000_state *st,
uint8_t sel,
uint8_t val)
{
int ret;
ret = sca3000_reg_lock_on(st);
if (ret < 0)
goto error_ret;
if (ret) {
ret = __sca3000_unlock_reg_lock(st);
if (ret)
goto error_ret;
}
/* Set the control select register */
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, sel);
if (ret)
goto error_ret;
/* Write the actual value into the register */
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_DATA, val);
error_ret:
return ret;
}
/* Crucial that lock is called before calling this */
/**
* sca3000_read_ctrl_reg() read from lock protected control register.
*
* Lock must be held.
**/
static int sca3000_read_ctrl_reg(struct sca3000_state *st,
u8 ctrl_reg,
u8 **rx_p)
{
int ret;
ret = sca3000_reg_lock_on(st);
if (ret < 0)
goto error_ret;
if (ret) {
ret = __sca3000_unlock_reg_lock(st);
if (ret)
goto error_ret;
}
/* Set the control select register */
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, ctrl_reg);
if (ret)
goto error_ret;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_CTRL_DATA, rx_p, 1);
error_ret:
return ret;
}
#ifdef SCA3000_DEBUG
/**
* sca3000_check_status() check the status register
*
* Only used for debugging purposes
**/
static int sca3000_check_status(struct device *dev)
{
u8 *rx;
int ret;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_STATUS, &rx, 1);
if (ret < 0)
goto error_ret;
if (rx[1] & SCA3000_EEPROM_CS_ERROR)
dev_err(dev, "eeprom error \n");
if (rx[1] & SCA3000_SPI_FRAME_ERROR)
dev_err(dev, "Previous SPI Frame was corrupt\n");
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret;
}
#endif /* SCA3000_DEBUG */
/**
* sca3000_read_13bit_signed() sysfs interface to read 13 bit signed registers
*
* These are described as signed 12 bit on the data sheet, which appears
* to be a conventional 2's complement 13 bit.
**/
static ssize_t sca3000_read_13bit_signed(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = 0, ret;
int val;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u8 *rx;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, this_attr->address, &rx, 2);
if (ret < 0)
goto error_ret;
val = sca3000_13bit_convert(rx[1], rx[2]);
len += sprintf(buf + len, "%d\n", val);
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static ssize_t sca3000_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *dev_info = dev_get_drvdata(dev);
struct sca3000_state *st = dev_info->dev_data;
return sprintf(buf, "%s\n", st->info->name);
}
/**
* sca3000_show_reg() - sysfs interface to read the chip revision number
**/
static ssize_t sca3000_show_rev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = 0, ret;
struct iio_dev *dev_info = dev_get_drvdata(dev);
struct sca3000_state *st = dev_info->dev_data;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_REVID, &rx, 1);
if (ret < 0)
goto error_ret;
len += sprintf(buf + len,
"major=%d, minor=%d\n",
rx[1] & SCA3000_REVID_MAJOR_MASK,
rx[1] & SCA3000_REVID_MINOR_MASK);
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_show_available_measurement_modes() display available modes
*
* This is all read from chip specific data in the driver. Not all
* of the sca3000 series support modes other than normal.
**/
static ssize_t
sca3000_show_available_measurement_modes(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *dev_info = dev_get_drvdata(dev);
struct sca3000_state *st = dev_info->dev_data;
int len = 0;
len += sprintf(buf + len, "0 - normal mode");
switch (st->info->option_mode_1) {
case SCA3000_OP_MODE_NARROW:
len += sprintf(buf + len, ", 1 - narrow mode");
break;
case SCA3000_OP_MODE_BYPASS:
len += sprintf(buf + len, ", 1 - bypass mode");
break;
};
switch (st->info->option_mode_2) {
case SCA3000_OP_MODE_WIDE:
len += sprintf(buf + len, ", 2 - wide mode");
break;
}
/* always supported */
len += sprintf(buf + len, " 3 - motion detection \n");
return len;
}
/**
* sca3000_show_measurmenet_mode() sysfs read of current mode
**/
static ssize_t
sca3000_show_measurement_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *dev_info = dev_get_drvdata(dev);
struct sca3000_state *st = dev_info->dev_data;
int len = 0, ret;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
/* mask bottom 2 bits - only ones that are relevant */
rx[1] &= 0x03;
switch (rx[1]) {
case SCA3000_MEAS_MODE_NORMAL:
len += sprintf(buf + len, "0 - normal mode\n");
break;
case SCA3000_MEAS_MODE_MOT_DET:
len += sprintf(buf + len, "3 - motion detection\n");
break;
case SCA3000_MEAS_MODE_OP_1:
switch (st->info->option_mode_1) {
case SCA3000_OP_MODE_NARROW:
len += sprintf(buf + len, "1 - narrow mode\n");
break;
case SCA3000_OP_MODE_BYPASS:
len += sprintf(buf + len, "1 - bypass mode\n");
break;
};
break;
case SCA3000_MEAS_MODE_OP_2:
switch (st->info->option_mode_2) {
case SCA3000_OP_MODE_WIDE:
len += sprintf(buf + len, "2 - wide mode\n");
break;
}
break;
};
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_store_measurement_mode() set the current mode
**/
static ssize_t
sca3000_store_measurement_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *dev_info = dev_get_drvdata(dev);
struct sca3000_state *st = dev_info->dev_data;
int ret;
u8 *rx;
int mask = 0x03;
long val;
mutex_lock(&st->lock);
ret = strict_strtol(buf, 10, &val);
if (ret)
goto error_ret;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
rx[1] &= ~mask;
rx[1] |= (val & mask);
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE, rx[1]);
if (ret)
goto error_free_rx;
mutex_unlock(&st->lock);
return len;
error_free_rx:
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret;
}
/* Not even vaguely standard attributes so defined here rather than
* in the relevant IIO core headers
*/
static IIO_DEVICE_ATTR(available_measurement_modes, S_IRUGO,
sca3000_show_available_measurement_modes,
NULL, 0);
static IIO_DEVICE_ATTR(measurement_mode, S_IRUGO | S_IWUSR,
sca3000_show_measurement_mode,
sca3000_store_measurement_mode,
0);
/* More standard attributes */
static IIO_DEV_ATTR_NAME(sca3000_show_name);
static IIO_DEV_ATTR_REV(sca3000_show_rev);
static IIO_DEV_ATTR_ACCEL_X(sca3000_read_13bit_signed,
SCA3000_REG_ADDR_X_MSB);
static IIO_DEV_ATTR_ACCEL_Y(sca3000_read_13bit_signed,
SCA3000_REG_ADDR_Y_MSB);
static IIO_DEV_ATTR_ACCEL_Z(sca3000_read_13bit_signed,
SCA3000_REG_ADDR_Z_MSB);
/**
* sca3000_read_av_freq() sysfs function to get available frequencies
*
* The later modes are only relevant to the ring buffer - and depend on current
* mode. Note that data sheet gives rather wide tolerances for these so integer
* division will give good enough answer and not all chips have them specified
* at all.
**/
static ssize_t sca3000_read_av_freq(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
int len = 0, ret;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
mutex_unlock(&st->lock);
if (ret)
goto error_ret;
rx[1] &= 0x03;
switch (rx[1]) {
case SCA3000_MEAS_MODE_NORMAL:
len += sprintf(buf + len, "%d %d %d\n",
st->info->measurement_mode_freq,
st->info->measurement_mode_freq/2,
st->info->measurement_mode_freq/4);
break;
case SCA3000_MEAS_MODE_OP_1:
len += sprintf(buf + len, "%d %d %d\n",
st->info->option_mode_1_freq,
st->info->option_mode_1_freq/2,
st->info->option_mode_1_freq/4);
break;
case SCA3000_MEAS_MODE_OP_2:
len += sprintf(buf + len, "%d %d %d\n",
st->info->option_mode_2_freq,
st->info->option_mode_2_freq/2,
st->info->option_mode_2_freq/4);
break;
};
kfree(rx);
return len;
error_ret:
return ret;
}
/**
* __sca3000_get_base_frequency() obtain mode specific base frequency
*
* lock must be held
**/
static inline int __sca3000_get_base_freq(struct sca3000_state *st,
const struct sca3000_chip_info *info,
int *base_freq)
{
int ret;
u8 *rx;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
switch (0x03 & rx[1]) {
case SCA3000_MEAS_MODE_NORMAL:
*base_freq = info->measurement_mode_freq;
break;
case SCA3000_MEAS_MODE_OP_1:
*base_freq = info->option_mode_1_freq;
break;
case SCA3000_MEAS_MODE_OP_2:
*base_freq = info->option_mode_2_freq;
break;
};
kfree(rx);
error_ret:
return ret;
}
/**
* sca3000_read_frequency() sysfs interface to get the current frequency
**/
static ssize_t sca3000_read_frequency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
int ret, len = 0, base_freq = 0;
u8 *rx;
mutex_lock(&st->lock);
ret = __sca3000_get_base_freq(st, st->info, &base_freq);
if (ret)
goto error_ret_mut;
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, &rx);
mutex_unlock(&st->lock);
if (ret)
goto error_ret;
if (base_freq > 0)
switch (rx[1]&0x03) {
case 0x00:
case 0x03:
len = sprintf(buf, "%d\n", base_freq);
break;
case 0x01:
len = sprintf(buf, "%d\n", base_freq/2);
break;
case 0x02:
len = sprintf(buf, "%d\n", base_freq/4);
break;
};
kfree(rx);
return len;
error_ret_mut:
mutex_unlock(&st->lock);
error_ret:
return ret;
}
/**
* sca3000_set_frequency() sysfs interface to set the current frequency
**/
static ssize_t sca3000_set_frequency(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
int ret, base_freq = 0;
u8 *rx;
long val;
ret = strict_strtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&st->lock);
/* What mode are we in? */
ret = __sca3000_get_base_freq(st, st->info, &base_freq);
if (ret)
goto error_free_lock;
ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, &rx);
if (ret)
goto error_free_lock;
/* clear the bits */
rx[1] &= ~0x03;
if (val == base_freq/2) {
rx[1] |= SCA3000_OUT_CTRL_BUF_DIV_2;
} else if (val == base_freq/4) {
rx[1] |= SCA3000_OUT_CTRL_BUF_DIV_4;
} else if (val != base_freq) {
ret = -EINVAL;
goto error_free_lock;
}
ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, rx[1]);
error_free_lock:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/* Should only really be registered if ring buffer support is compiled in.
* Does no harm however and doing it right would add a fair bit of complexity
*/
static IIO_DEV_ATTR_AVAIL_SAMP_FREQ(sca3000_read_av_freq);
static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
sca3000_read_frequency,
sca3000_set_frequency);
/**
* sca3000_read_temp() sysfs interface to get the temperature when available
*
* The alignment of data in here is downright odd. See data sheet.
* Converting this into a meaningful value is left to inline functions in
* userspace part of header.
**/
static ssize_t sca3000_read_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
int len = 0, ret;
int val;
u8 *rx;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_TEMP_MSB, &rx, 2);
if (ret < 0)
goto error_ret;
val = ((rx[1]&0x3F) << 3) | ((rx[2] & 0xE0) >> 5);
len += sprintf(buf + len, "%d\n", val);
kfree(rx);
return len;
error_ret:
return ret;
}
static IIO_DEV_ATTR_TEMP(sca3000_read_temp);
/**
* sca3000_show_thresh() sysfs query of a theshold
**/
static ssize_t sca3000_show_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int len = 0, ret;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_ctrl_reg(st,
this_attr->address,
&rx);
mutex_unlock(&st->lock);
if (ret)
return ret;
len += sprintf(buf + len, "%d\n", rx[1]);
kfree(rx);
return len;
}
/**
* sca3000_write_thresh() sysfs control of threshold
**/
static ssize_t sca3000_write_thresh(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
long val;
ret = strict_strtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = sca3000_write_ctrl_reg(st, this_attr->address, val);
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static IIO_DEV_ATTR_ACCEL_THRESH_X(S_IRUGO | S_IWUSR,
sca3000_show_thresh,
sca3000_write_thresh,
SCA3000_REG_CTRL_SEL_MD_X_TH);
static IIO_DEV_ATTR_ACCEL_THRESH_Y(S_IRUGO | S_IWUSR,
sca3000_show_thresh,
sca3000_write_thresh,
SCA3000_REG_CTRL_SEL_MD_Y_TH);
static IIO_DEV_ATTR_ACCEL_THRESH_Z(S_IRUGO | S_IWUSR,
sca3000_show_thresh,
sca3000_write_thresh,
SCA3000_REG_CTRL_SEL_MD_Z_TH);
static struct attribute *sca3000_attributes[] = {
&iio_dev_attr_name.dev_attr.attr,
&iio_dev_attr_revision.dev_attr.attr,
&iio_dev_attr_accel_x.dev_attr.attr,
&iio_dev_attr_accel_y.dev_attr.attr,
&iio_dev_attr_accel_z.dev_attr.attr,
&iio_dev_attr_thresh_accel_x.dev_attr.attr,
&iio_dev_attr_thresh_accel_y.dev_attr.attr,
&iio_dev_attr_thresh_accel_z.dev_attr.attr,
&iio_dev_attr_available_measurement_modes.dev_attr.attr,
&iio_dev_attr_measurement_mode.dev_attr.attr,
&iio_dev_attr_available_sampling_frequency.dev_attr.attr,
&iio_dev_attr_sampling_frequency.dev_attr.attr,
NULL,
};
static struct attribute *sca3000_attributes_with_temp[] = {
&iio_dev_attr_name.dev_attr.attr,
&iio_dev_attr_revision.dev_attr.attr,
&iio_dev_attr_accel_x.dev_attr.attr,
&iio_dev_attr_accel_y.dev_attr.attr,
&iio_dev_attr_accel_z.dev_attr.attr,
&iio_dev_attr_thresh_accel_x.dev_attr.attr,
&iio_dev_attr_thresh_accel_y.dev_attr.attr,
&iio_dev_attr_thresh_accel_z.dev_attr.attr,
&iio_dev_attr_available_measurement_modes.dev_attr.attr,
&iio_dev_attr_measurement_mode.dev_attr.attr,
&iio_dev_attr_available_sampling_frequency.dev_attr.attr,
&iio_dev_attr_sampling_frequency.dev_attr.attr,
/* Only present if temp sensor is */
&iio_dev_attr_temp.dev_attr.attr,
NULL,
};
static const struct attribute_group sca3000_attribute_group = {
.attrs = sca3000_attributes,
};
static const struct attribute_group sca3000_attribute_group_with_temp = {
.attrs = sca3000_attributes_with_temp,
};
/* RING RELATED interrupt handler */
/* depending on event, push to the ring buffer event chrdev or the event one */
/**
* sca3000_interrupt_handler_bh() - handling ring and non ring events
*
* This function is complicated by the fact that the devices can signify ring
* and non ring events via the same interrupt line and they can only
* be distinguished via a read of the relevant status register.
**/
static void sca3000_interrupt_handler_bh(struct work_struct *work_s)
{
struct sca3000_state *st
= container_of(work_s, struct sca3000_state,
interrupt_handler_ws);
u8 *rx;
int ret;
/* Could lead if badly timed to an extra read of status reg,
* but ensures no interrupt is missed.
*/
enable_irq(st->us->irq);
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_INT_STATUS,
&rx, 1);
mutex_unlock(&st->lock);
if (ret)
goto done;
sca3000_ring_int_process(rx[1], st->indio_dev->ring);
if (rx[1] & SCA3000_INT_STATUS_FREE_FALL)
iio_push_event(st->indio_dev, 0,
IIO_EVENT_CODE_FREE_FALL,
st->last_timestamp);
if (rx[1] & SCA3000_INT_STATUS_Y_TRIGGER)
iio_push_event(st->indio_dev, 0,
IIO_EVENT_CODE_ACCEL_Y_HIGH,
st->last_timestamp);
if (rx[1] & SCA3000_INT_STATUS_X_TRIGGER)
iio_push_event(st->indio_dev, 0,
IIO_EVENT_CODE_ACCEL_X_HIGH,
st->last_timestamp);
if (rx[1] & SCA3000_INT_STATUS_Z_TRIGGER)
iio_push_event(st->indio_dev, 0,
IIO_EVENT_CODE_ACCEL_Z_HIGH,
st->last_timestamp);
done:
kfree(rx);
return;
}
/**
* sca3000_handler_th() handles all interrupt events from device
*
* These devices deploy unified interrupt status registers meaning
* all interrupts must be handled together
**/
static int sca3000_handler_th(struct iio_dev *dev_info,
int index,
s64 timestamp,
int no_test)
{
struct sca3000_state *st = dev_info->dev_data;
st->last_timestamp = timestamp;
schedule_work(&st->interrupt_handler_ws);
return 0;
}
/**
* sca3000_query_mo_det() is motion detection enabled for this axis
*
* First queries if motion detection is enabled and then if this axis is
* on.
**/
static ssize_t sca3000_query_mo_det(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
int ret, len = 0;
u8 *rx;
u8 protect_mask = 0x03;
/* read current value of mode register */
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
if ((rx[1]&protect_mask) != SCA3000_MEAS_MODE_MOT_DET)
len += sprintf(buf + len, "0\n");
else {
kfree(rx);
ret = sca3000_read_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
&rx);
if (ret)
goto error_ret;
/* only supporting logical or's for now */
len += sprintf(buf + len, "%d\n",
(rx[1] & this_attr->mask) ? 1 : 0);
}
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_query_free_fall_mode() is free fall mode enabled
**/
static ssize_t sca3000_query_free_fall_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret, len;
u8 *rx;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
mutex_unlock(&st->lock);
if (ret)
return ret;
len = sprintf(buf, "%d\n",
!!(rx[1] & SCA3000_FREE_FALL_DETECT));
kfree(rx);
return len;
}
/**
* sca3000_query_ring_int() is the hardware ring status interrupt enabled
**/
static ssize_t sca3000_query_ring_int(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
int ret, len;
u8 *rx;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_INT_MASK, &rx, 1);
mutex_unlock(&st->lock);
if (ret)
return ret;
len = sprintf(buf, "%d\n", (rx[1] & this_attr->mask) ? 1 : 0);
kfree(rx);
return len;
}
/**
* sca3000_set_ring_int() set state of ring status interrupt
**/
static ssize_t sca3000_set_ring_int(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
long val;
int ret;
u8 *rx;
mutex_lock(&st->lock);
ret = strict_strtol(buf, 10, &val);
if (ret)
goto error_ret;
ret = sca3000_read_data(st, SCA3000_REG_ADDR_INT_MASK, &rx, 1);
if (ret)
goto error_ret;
if (val)
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_INT_MASK,
rx[1] | this_attr->mask);
else
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_INT_MASK,
rx[1] & ~this_attr->mask);
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_set_free_fall_mode() simple on off control for free fall int
*
* In these chips the free fall detector should send an interrupt if
* the device falls more than 25cm. This has not been tested due
* to fragile wiring.
**/
static ssize_t sca3000_set_free_fall_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
long val;
int ret;
u8 *rx;
u8 protect_mask = SCA3000_FREE_FALL_DETECT;
mutex_lock(&st->lock);
ret = strict_strtol(buf, 10, &val);
if (ret)
goto error_ret;
/* read current value of mode register */
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
/*if off and should be on*/
if (val && !(rx[1] & protect_mask))
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
(rx[1] | SCA3000_FREE_FALL_DETECT));
/* if on and should be off */
else if (!val && (rx[1]&protect_mask))
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
(rx[1] & ~protect_mask));
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_set_mo_det() simple on off control for motion detector
*
* This is a per axis control, but enabling any will result in the
* motion detector unit being enabled.
* N.B. enabling motion detector stops normal data acquisition.
* There is a complexity in knowing which mode to return to when
* this mode is disabled. Currently normal mode is assumed.
**/
static ssize_t sca3000_set_mo_det(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct sca3000_state *st = indio_dev->dev_data;
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
long val;
int ret;
u8 *rx;
u8 protect_mask = 0x03;
ret = strict_strtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&st->lock);
/* First read the motion detector config to find out if
* this axis is on*/
ret = sca3000_read_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
&rx);
if (ret)
goto exit_point;
/* Off and should be on */
if (val && !(rx[1] & this_attr->mask)) {
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
rx[1] | this_attr->mask);
if (ret)
goto exit_point_free_rx;
st->mo_det_use_count++;
} else if (!val && (rx[1]&this_attr->mask)) {
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
rx[1] & ~(this_attr->mask));
if (ret)
goto exit_point_free_rx;
st->mo_det_use_count--;
} else /* relies on clean state for device on boot */
goto exit_point_free_rx;
kfree(rx);
/* read current value of mode register */
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto exit_point;
/*if off and should be on*/
if ((st->mo_det_use_count)
&& ((rx[1]&protect_mask) != SCA3000_MEAS_MODE_MOT_DET))
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
(rx[1] & ~protect_mask)
| SCA3000_MEAS_MODE_MOT_DET);
/* if on and should be off */
else if (!(st->mo_det_use_count)
&& ((rx[1]&protect_mask) == SCA3000_MEAS_MODE_MOT_DET))
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
(rx[1] & ~protect_mask));
exit_point_free_rx:
kfree(rx);
exit_point:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/* Shared event handler for all events as single event status register */
IIO_EVENT_SH(all, &sca3000_handler_th);
/* Free fall detector related event attribute */
IIO_EVENT_ATTR_FREE_FALL_DETECT_SH(iio_event_all,
sca3000_query_free_fall_mode,
sca3000_set_free_fall_mode,
0)
/* Motion detector related event attributes */
IIO_EVENT_ATTR_ACCEL_X_HIGH_SH(iio_event_all,
sca3000_query_mo_det,
sca3000_set_mo_det,
SCA3000_MD_CTRL_OR_X);
IIO_EVENT_ATTR_ACCEL_Y_HIGH_SH(iio_event_all,
sca3000_query_mo_det,
sca3000_set_mo_det,
SCA3000_MD_CTRL_OR_Y);
IIO_EVENT_ATTR_ACCEL_Z_HIGH_SH(iio_event_all,
sca3000_query_mo_det,
sca3000_set_mo_det,
SCA3000_MD_CTRL_OR_Z);
/* Hardware ring buffer related event attributes */
IIO_EVENT_ATTR_RING_50_FULL_SH(iio_event_all,
sca3000_query_ring_int,
sca3000_set_ring_int,
SCA3000_INT_MASK_RING_HALF);
IIO_EVENT_ATTR_RING_75_FULL_SH(iio_event_all,
sca3000_query_ring_int,
sca3000_set_ring_int,
SCA3000_INT_MASK_RING_THREE_QUARTER);
static struct attribute *sca3000_event_attributes[] = {
&iio_event_attr_free_fall.dev_attr.attr,
&iio_event_attr_accel_x_high.dev_attr.attr,
&iio_event_attr_accel_y_high.dev_attr.attr,
&iio_event_attr_accel_z_high.dev_attr.attr,
&iio_event_attr_ring_50_full.dev_attr.attr,
&iio_event_attr_ring_75_full.dev_attr.attr,
NULL,
};
static struct attribute_group sca3000_event_attribute_group = {
.attrs = sca3000_event_attributes,
};
/**
* sca3000_clean_setup() get the device into a predictable state
*
* Devices use flash memory to store many of the register values
* and hence can come up in somewhat unpredictable states.
* Hence reset everything on driver load.
**/
static int sca3000_clean_setup(struct sca3000_state *st)
{
int ret;
u8 *rx;
mutex_lock(&st->lock);
/* Ensure all interrupts have been acknowledged */
ret = sca3000_read_data(st, SCA3000_REG_ADDR_INT_STATUS, &rx, 1);
if (ret)
goto error_ret;
kfree(rx);
/* Turn off all motion detection channels */
ret = sca3000_read_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
&rx);
if (ret)
goto error_ret;
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_MD_CTRL,
rx[1] & SCA3000_MD_CTRL_PROT_MASK);
kfree(rx);
if (ret)
goto error_ret;
/* Disable ring buffer */
sca3000_read_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_OUT_CTRL,
&rx);
/* Frequency of ring buffer sampling deliberately restricted to make
* debugging easier - add control of this later */
ret = sca3000_write_ctrl_reg(st,
SCA3000_REG_CTRL_SEL_OUT_CTRL,
(rx[1] & SCA3000_OUT_CTRL_PROT_MASK)
| SCA3000_OUT_CTRL_BUF_X_EN
| SCA3000_OUT_CTRL_BUF_Y_EN
| SCA3000_OUT_CTRL_BUF_Z_EN
| SCA3000_OUT_CTRL_BUF_DIV_4);
kfree(rx);
if (ret)
goto error_ret;
/* Enable interrupts, relevant to mode and set up as active low */
ret = sca3000_read_data(st,
SCA3000_REG_ADDR_INT_MASK,
&rx, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_INT_MASK,
(rx[1] & SCA3000_INT_MASK_PROT_MASK)
| SCA3000_INT_MASK_ACTIVE_LOW);
kfree(rx);
if (ret)
goto error_ret;
/* Select normal measurement mode, free fall off, ring off */
/* Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
* as that occurs in one of the example on the datasheet */
ret = sca3000_read_data(st,
SCA3000_REG_ADDR_MODE,
&rx, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_MODE,
(rx[1] & SCA3000_MODE_PROT_MASK));
kfree(rx);
st->bpse = 11;
error_ret:
mutex_unlock(&st->lock);
return ret;
}
static int __devinit __sca3000_probe(struct spi_device *spi,
enum sca3000_variant variant)
{
int ret, regdone = 0;
struct sca3000_state *st;
st = kzalloc(sizeof(struct sca3000_state), GFP_KERNEL);
if (st == NULL) {
ret = -ENOMEM;
goto error_ret;
}
spi_set_drvdata(spi, st);
st->tx = kmalloc(sizeof(*st->tx)*6, GFP_KERNEL);
if (st->tx == NULL) {
ret = -ENOMEM;
goto error_clear_st;
}
st->rx = kmalloc(sizeof(*st->rx)*3, GFP_KERNEL);
if (st->rx == NULL) {
ret = -ENOMEM;
goto error_free_tx;
}
st->us = spi;
mutex_init(&st->lock);
st->info = &sca3000_spi_chip_info_tbl[variant];
st->indio_dev = iio_allocate_device();
if (st->indio_dev == NULL) {
ret = -ENOMEM;
goto error_free_rx;
}
st->indio_dev->dev.parent = &spi->dev;
st->indio_dev->num_interrupt_lines = 1;
st->indio_dev->event_attrs = &sca3000_event_attribute_group;
if (st->info->temp_output)
st->indio_dev->attrs = &sca3000_attribute_group_with_temp;
else
st->indio_dev->attrs = &sca3000_attribute_group;
st->indio_dev->dev_data = (void *)(st);
st->indio_dev->modes = INDIO_DIRECT_MODE;
sca3000_configure_ring(st->indio_dev);
ret = iio_device_register(st->indio_dev);
if (ret < 0)
goto error_free_dev;
regdone = 1;
ret = iio_ring_buffer_register(st->indio_dev->ring);
if (ret < 0)
goto error_unregister_dev;
if (spi->irq && gpio_is_valid(irq_to_gpio(spi->irq)) > 0) {
INIT_WORK(&st->interrupt_handler_ws,
sca3000_interrupt_handler_bh);
ret = iio_register_interrupt_line(spi->irq,
st->indio_dev,
0,
IRQF_TRIGGER_FALLING,
"sca3000");
if (ret)
goto error_unregister_ring;
/* RFC
* Probably a common situation. All interrupts need an ack
* and there is only one handler so the complicated list system
* is overkill. At very least a simpler registration method
* might be worthwhile.
*/
iio_add_event_to_list(iio_event_attr_accel_z_high.listel,
&st->indio_dev
->interrupts[0]->ev_list);
}
sca3000_register_ring_funcs(st->indio_dev);
ret = sca3000_clean_setup(st);
if (ret)
goto error_unregister_interrupt_line;
return 0;
error_unregister_interrupt_line:
if (spi->irq && gpio_is_valid(irq_to_gpio(spi->irq)) > 0)
iio_unregister_interrupt_line(st->indio_dev, 0);
error_unregister_ring:
iio_ring_buffer_unregister(st->indio_dev->ring);
error_unregister_dev:
error_free_dev:
if (regdone)
iio_device_unregister(st->indio_dev);
else
iio_free_device(st->indio_dev);
error_free_rx:
kfree(st->rx);
error_free_tx:
kfree(st->tx);
error_clear_st:
kfree(st);
error_ret:
return ret;
}
static int sca3000_stop_all_interrupts(struct sca3000_state *st)
{
int ret;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_INT_MASK, &rx, 1);
if (ret)
goto error_ret;
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_INT_MASK,
(rx[1] & ~(SCA3000_INT_MASK_RING_THREE_QUARTER
| SCA3000_INT_MASK_RING_HALF
| SCA3000_INT_MASK_ALL_INTS)));
error_ret:
kfree(rx);
return ret;
}
static int sca3000_remove(struct spi_device *spi)
{
struct sca3000_state *st = spi_get_drvdata(spi);
struct iio_dev *indio_dev = st->indio_dev;
int ret;
/* Must ensure no interrupts can be generated after this!*/
ret = sca3000_stop_all_interrupts(st);
if (ret)
return ret;
if (spi->irq && gpio_is_valid(irq_to_gpio(spi->irq)) > 0)
iio_unregister_interrupt_line(indio_dev, 0);
iio_ring_buffer_unregister(indio_dev->ring);
sca3000_unconfigure_ring(indio_dev);
iio_device_unregister(indio_dev);
kfree(st->tx);
kfree(st->rx);
kfree(st);
return 0;
}
/* These macros save on an awful lot of repeated code */
#define SCA3000_VARIANT_PROBE(_name) \
static int __devinit \
sca3000_##_name##_probe(struct spi_device *spi) \
{ \
return __sca3000_probe(spi, _name); \
}
#define SCA3000_VARIANT_SPI_DRIVER(_name) \
struct spi_driver sca3000_##_name##_driver = { \
.driver = { \
.name = "sca3000_" #_name, \
.owner = THIS_MODULE, \
}, \
.probe = sca3000_##_name##_probe, \
.remove = __devexit_p(sca3000_remove), \
}
SCA3000_VARIANT_PROBE(d01);
static SCA3000_VARIANT_SPI_DRIVER(d01);
SCA3000_VARIANT_PROBE(d03);
static SCA3000_VARIANT_SPI_DRIVER(d03);
SCA3000_VARIANT_PROBE(e02);
static SCA3000_VARIANT_SPI_DRIVER(e02);
SCA3000_VARIANT_PROBE(e04);
static SCA3000_VARIANT_SPI_DRIVER(e04);
SCA3000_VARIANT_PROBE(e05);
static SCA3000_VARIANT_SPI_DRIVER(e05);
SCA3000_VARIANT_PROBE(l01);
static SCA3000_VARIANT_SPI_DRIVER(l01);
static __init int sca3000_init(void)
{
int ret;
ret = spi_register_driver(&sca3000_d01_driver);
if (ret)
goto error_ret;
ret = spi_register_driver(&sca3000_d03_driver);
if (ret)
goto error_unreg_d01;
ret = spi_register_driver(&sca3000_e02_driver);
if (ret)
goto error_unreg_d03;
ret = spi_register_driver(&sca3000_e04_driver);
if (ret)
goto error_unreg_e02;
ret = spi_register_driver(&sca3000_e05_driver);
if (ret)
goto error_unreg_e04;
ret = spi_register_driver(&sca3000_l01_driver);
if (ret)
goto error_unreg_e05;
return 0;
error_unreg_e05:
spi_unregister_driver(&sca3000_e05_driver);
error_unreg_e04:
spi_unregister_driver(&sca3000_e04_driver);
error_unreg_e02:
spi_unregister_driver(&sca3000_e02_driver);
error_unreg_d03:
spi_unregister_driver(&sca3000_d03_driver);
error_unreg_d01:
spi_unregister_driver(&sca3000_d01_driver);
error_ret:
return ret;
}
static __exit void sca3000_exit(void)
{
spi_unregister_driver(&sca3000_l01_driver);
spi_unregister_driver(&sca3000_e05_driver);
spi_unregister_driver(&sca3000_e04_driver);
spi_unregister_driver(&sca3000_e02_driver);
spi_unregister_driver(&sca3000_d03_driver);
spi_unregister_driver(&sca3000_d01_driver);
}
module_init(sca3000_init);
module_exit(sca3000_exit);
MODULE_AUTHOR("Jonathan Cameron <jic23@cam.ac.uk>");
MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
MODULE_LICENSE("GPL v2");
/*
* sca3000_ring.c -- support VTI sca3000 series accelerometers via SPI
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
*
*/
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include "../iio.h"
#include "../sysfs.h"
#include "../ring_generic.h"
#include "../ring_hw.h"
#include "accel.h"
#include "sca3000.h"
/* RFC / future work
*
* The internal ring buffer doesn't actually change what it holds depending
* on which signals are enabled etc, merely whether you can read them.
* As such the scan mode selection is somewhat different than for a software
* ring buffer and changing it actually covers any data already in the buffer.
* Currently scan elements aren't configured so it doesn't matter.
*/
/**
* sca3000_rip_hw_rb() - main ring access function, pulls data from ring
* @r: the ring
* @count: number of samples to try and pull
* @data: output the actual samples pulled from the hw ring
* @dead_offset: cheating a bit here: Set to 1 so as to allow for the
* leading byte used in bus comms.
*
* Currently does not provide timestamps. As the hardware doesn't add them they
* can only be inferred aproximately from ring buffer events such as 50% full
* and knowledge of when buffer was last emptied. This is left to userspace.
**/
static int sca3000_rip_hw_rb(struct iio_ring_buffer *r,
size_t count, u8 **data, int *dead_offset)
{
struct iio_hw_ring_buffer *hw_ring = iio_to_hw_ring_buf(r);
struct iio_dev *indio_dev = hw_ring->private;
struct sca3000_state *st = indio_dev->dev_data;
u8 *rx;
int ret, num_available, num_read = 0;
int bytes_per_sample = 1;
if (st->bpse == 11)
bytes_per_sample = 2;
mutex_lock(&st->lock);
/* Check how much data is available:
* RFC: Implement an ioctl to not bother checking whether there
* is enough data in the ring? Afterall, if we are responding
* to an interrupt we have a minimum content guaranteed so it
* seems slight silly to waste time checking it is there.
*/
ret = sca3000_read_data(st,
SCA3000_REG_ADDR_BUF_COUNT,
&rx, 1);
if (ret)
goto error_ret;
else
num_available = rx[1];
/* num_available is the total number of samples available
* i.e. number of time points * number of channels.
*/
kfree(rx);
if (count > num_available * bytes_per_sample)
num_read = num_available*bytes_per_sample;
else
num_read = count - (count % (bytes_per_sample));
/* Avoid the read request byte */
*dead_offset = 1;
ret = sca3000_read_data(st,
SCA3000_REG_ADDR_RING_OUT,
data, num_read);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : num_read;
}
/* This is only valid with all 3 elements enabled */
static int sca3000_ring_get_length(struct iio_ring_buffer *r)
{
return 64;
}
/* only valid if resolution is kept at 11bits */
static int sca3000_ring_get_bpd(struct iio_ring_buffer *r)
{
return 6;
}
static void sca3000_ring_release(struct device *dev)
{
struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
kfree(iio_to_hw_ring_buf(r));
}
static IIO_RING_ENABLE_ATTR;
static IIO_RING_BPS_ATTR;
static IIO_RING_LENGTH_ATTR;
/**
* sca3000_show_ring_bpse() -sysfs function to query bits per sample from ring
* @dev: ring buffer device
* @attr: this device attribute
* @buf: buffer to write to
**/
static ssize_t sca3000_show_ring_bpse(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = 0, ret;
u8 *rx;
struct iio_ring_buffer *r = dev_get_drvdata(dev);
struct sca3000_state *st = r->indio_dev->dev_data;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
len = sprintf(buf, "%d\n", (rx[1] & SCA3000_RING_BUF_8BIT) ? 8 : 11);
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret ? ret : len;
}
/**
* sca3000_store_ring_bpse() - bits per scan element
* @dev: ring buffer device
* @attr: attribute called from
* @buf: input from userspace
* @len: length of input
**/
static ssize_t sca3000_store_ring_bpse(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_ring_buffer *r = dev_get_drvdata(dev);
struct sca3000_state *st = r->indio_dev->dev_data;
int ret;
u8 *rx;
long val;
ret = strict_strtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (!ret)
switch (val) {
case 8:
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
rx[1] | SCA3000_RING_BUF_8BIT);
st->bpse = 8;
break;
case 11:
ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
rx[1] & ~SCA3000_RING_BUF_8BIT);
st->bpse = 11;
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&st->lock);
return ret ? ret : len;
}
static IIO_CONST_ATTR(bpse_available, "8 11");
static IIO_DEV_ATTR_BPSE(S_IRUGO | S_IWUSR,
sca3000_show_ring_bpse,
sca3000_store_ring_bpse);
/*
* Ring buffer attributes
* This device is a bit unusual in that the sampling frequency and bpse
* only apply to the ring buffer. At all times full rate and accuracy
* is available via direct reading from registers.
*/
static struct attribute *iio_ring_attributes[] = {
&dev_attr_length.attr,
&dev_attr_bps.attr,
&dev_attr_ring_enable.attr,
&iio_dev_attr_bpse.dev_attr.attr,
&iio_const_attr_bpse_available.dev_attr.attr,
NULL,
};
static struct attribute_group sca3000_ring_attr = {
.attrs = iio_ring_attributes,
};
static struct attribute_group *sca3000_ring_attr_groups[] = {
&sca3000_ring_attr,
NULL
};
static struct device_type sca3000_ring_type = {
.release = sca3000_ring_release,
.groups = sca3000_ring_attr_groups,
};
static struct iio_ring_buffer *sca3000_rb_allocate(struct iio_dev *indio_dev)
{
struct iio_ring_buffer *buf;
struct iio_hw_ring_buffer *ring;
ring = kzalloc(sizeof *ring, GFP_KERNEL);
if (!ring)
return 0;
ring->private = indio_dev;
buf = &ring->buf;
iio_ring_buffer_init(buf, indio_dev);
buf->dev.type = &sca3000_ring_type;
device_initialize(&buf->dev);
buf->dev.parent = &indio_dev->dev;
dev_set_drvdata(&buf->dev, (void *)buf);
return buf;
}
static inline void sca3000_rb_free(struct iio_ring_buffer *r)
{
if (r)
iio_put_ring_buffer(r);
}
int sca3000_configure_ring(struct iio_dev *indio_dev)
{
indio_dev->ring = sca3000_rb_allocate(indio_dev);
if (indio_dev->ring == NULL)
return -ENOMEM;
indio_dev->modes |= INDIO_RING_HARDWARE_BUFFER;
indio_dev->ring->access.rip_lots = &sca3000_rip_hw_rb;
indio_dev->ring->access.get_length = &sca3000_ring_get_length;
indio_dev->ring->access.get_bpd = &sca3000_ring_get_bpd;
return 0;
}
void sca3000_unconfigure_ring(struct iio_dev *indio_dev)
{
sca3000_rb_free(indio_dev->ring);
}
static inline
int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
{
struct sca3000_state *st = indio_dev->dev_data;
int ret;
u8 *rx;
mutex_lock(&st->lock);
ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
if (ret)
goto error_ret;
if (state) {
printk(KERN_INFO "supposedly enabling ring buffer\n");
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_MODE,
(rx[1] | SCA3000_RING_BUF_ENABLE));
} else
ret = sca3000_write_reg(st,
SCA3000_REG_ADDR_MODE,
(rx[1] & ~SCA3000_RING_BUF_ENABLE));
kfree(rx);
error_ret:
mutex_unlock(&st->lock);
return ret;
}
/**
* sca3000_hw_ring_preenable() hw ring buffer preenable function
*
* Very simple enable function as the chip will allows normal reads
* during ring buffer operation so as long as it is indeed running
* before we notify the core, the precise ordering does not matter.
**/
static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
{
return __sca3000_hw_ring_state_set(indio_dev, 1);
}
static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
{
return __sca3000_hw_ring_state_set(indio_dev, 0);
}
void sca3000_register_ring_funcs(struct iio_dev *indio_dev)
{
indio_dev->ring->preenable = &sca3000_hw_ring_preenable;
indio_dev->ring->postdisable = &sca3000_hw_ring_postdisable;
}
/**
* sca3000_ring_int_process() ring specific interrupt handling.
*
* This is only split from the main interrupt handler so as to
* reduce the amount of code if the ring buffer is not enabled.
**/
void sca3000_ring_int_process(u8 val, struct iio_ring_buffer *ring)
{
if (val & SCA3000_INT_STATUS_THREE_QUARTERS)
iio_push_or_escallate_ring_event(ring,
IIO_EVENT_CODE_RING_75_FULL,
0);
else if (val & SCA3000_INT_STATUS_HALF)
iio_push_ring_event(ring,
IIO_EVENT_CODE_RING_50_FULL, 0);
}
/*
* ring_hw.h - common functionality for iio hardware ring buffers
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
*
*/
/**
* struct iio_hw_ring_buffer- hardware ring buffer
* @buf: generic ring buffer elements
* @private: device specific data
*/
struct iio_hw_ring_buffer {
struct iio_ring_buffer buf;
void *private;
};
#define iio_to_hw_ring_buf(r) container_of(r, struct iio_hw_ring_buffer, buf)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment