Commit 603699bb authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab Committed by Jonathan Corbet

static-keys.txt: standardize document format

Each text file under Documentation follows a different
format. Some doesn't even have titles!

Change its representation to follow the adopted standard,
using ReST markups for it to be parseable by Sphinx:
- Mark titles;
- Add a warning mark;
- Mark literals and literal blocks;
- Adjust identation.
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@s-opensource.com>
Signed-off-by: default avatarJonathan Corbet <corbet@lwn.net>
parent c6d289d0
Static Keys
-----------
===========
Static Keys
===========
DEPRECATED API:
.. warning::
The use of 'struct static_key' directly, is now DEPRECATED. In addition
static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
DEPRECATED API:
struct static_key false = STATIC_KEY_INIT_FALSE;
struct static_key true = STATIC_KEY_INIT_TRUE;
static_key_true()
static_key_false()
The use of 'struct static_key' directly, is now DEPRECATED. In addition
static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following::
The updated API replacements are:
struct static_key false = STATIC_KEY_INIT_FALSE;
struct static_key true = STATIC_KEY_INIT_TRUE;
static_key_true()
static_key_false()
DEFINE_STATIC_KEY_TRUE(key);
DEFINE_STATIC_KEY_FALSE(key);
DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
static_branch_likely()
static_branch_unlikely()
The updated API replacements are::
0) Abstract
DEFINE_STATIC_KEY_TRUE(key);
DEFINE_STATIC_KEY_FALSE(key);
DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
static_branch_likely()
static_branch_unlikely()
Abstract
========
Static keys allows the inclusion of seldom used features in
performance-sensitive fast-path kernel code, via a GCC feature and a code
patching technique. A quick example:
patching technique. A quick example::
DEFINE_STATIC_KEY_FALSE(key);
......@@ -45,7 +49,8 @@ The static_branch_unlikely() branch will be generated into the code with as litt
impact to the likely code path as possible.
1) Motivation
Motivation
==========
Currently, tracepoints are implemented using a conditional branch. The
......@@ -60,7 +65,8 @@ possible. Although tracepoints are the original motivation for this work, other
kernel code paths should be able to make use of the static keys facility.
2) Solution
Solution
========
gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
......@@ -71,7 +77,7 @@ Using the 'asm goto', we can create branches that are either taken or not taken
by default, without the need to check memory. Then, at run-time, we can patch
the branch site to change the branch direction.
For example, if we have a simple branch that is disabled by default:
For example, if we have a simple branch that is disabled by default::
if (static_branch_unlikely(&key))
printk("I am the true branch\n");
......@@ -87,14 +93,15 @@ optimization.
This lowlevel patching mechanism is called 'jump label patching', and it gives
the basis for the static keys facility.
3) Static key label API, usage and examples:
Static key label API, usage and examples
========================================
In order to make use of this optimization you must first define a key:
In order to make use of this optimization you must first define a key::
DEFINE_STATIC_KEY_TRUE(key);
or:
or::
DEFINE_STATIC_KEY_FALSE(key);
......@@ -102,14 +109,14 @@ or:
The key must be global, that is, it can't be allocated on the stack or dynamically
allocated at run-time.
The key is then used in code as:
The key is then used in code as::
if (static_branch_unlikely(&key))
do unlikely code
else
do likely code
Or:
Or::
if (static_branch_likely(&key))
do likely code
......@@ -120,15 +127,15 @@ Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
be used in either static_branch_likely() or static_branch_unlikely()
statements.
Branch(es) can be set true via:
Branch(es) can be set true via::
static_branch_enable(&key);
static_branch_enable(&key);
or false via:
or false via::
static_branch_disable(&key);
static_branch_disable(&key);
The branch(es) can then be switched via reference counts:
The branch(es) can then be switched via reference counts::
static_branch_inc(&key);
...
......@@ -142,11 +149,11 @@ static_branch_inc(), will change the branch back to true. Likewise, if the
key is initialized false, a 'static_branch_inc()', will change the branch to
true. And then a 'static_branch_dec()', will again make the branch false.
Where an array of keys is required, it can be defined as:
Where an array of keys is required, it can be defined as::
DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
or:
or::
DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
......@@ -159,96 +166,98 @@ simply fall back to a traditional, load, test, and jump sequence. Also, the
struct jump_entry table must be at least 4-byte aligned because the
static_key->entry field makes use of the two least significant bits.
* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
* ``select HAVE_ARCH_JUMP_LABEL``,
see: arch/x86/Kconfig
* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
* ``#define JUMP_LABEL_NOP_SIZE``,
see: arch/x86/include/asm/jump_label.h
* __always_inline bool arch_static_branch(struct static_key *key, bool branch), see:
arch/x86/include/asm/jump_label.h
* ``__always_inline bool arch_static_branch(struct static_key *key, bool branch)``,
see: arch/x86/include/asm/jump_label.h
* __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch),
* ``__always_inline bool arch_static_branch_jump(struct static_key *key, bool branch)``,
see: arch/x86/include/asm/jump_label.h
* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
* ``void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type)``,
see: arch/x86/kernel/jump_label.c
* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
* ``__init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type)``,
see: arch/x86/kernel/jump_label.c
* struct jump_entry, see: arch/x86/include/asm/jump_label.h
* ``struct jump_entry``,
see: arch/x86/include/asm/jump_label.h
5) Static keys / jump label analysis, results (x86_64):
As an example, let's add the following branch to 'getppid()', such that the
system call now looks like:
system call now looks like::
SYSCALL_DEFINE0(getppid)
{
SYSCALL_DEFINE0(getppid)
{
int pid;
+ if (static_branch_unlikely(&key))
+ printk("I am the true branch\n");
+ if (static_branch_unlikely(&key))
+ printk("I am the true branch\n");
rcu_read_lock();
pid = task_tgid_vnr(rcu_dereference(current->real_parent));
rcu_read_unlock();
return pid;
}
The resulting instructions with jump labels generated by GCC is:
ffffffff81044290 <sys_getppid>:
ffffffff81044290: 55 push %rbp
ffffffff81044291: 48 89 e5 mov %rsp,%rbp
ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
ffffffff810442a0: 00 00
ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
ffffffff810442bc: 5d pop %rbp
ffffffff810442bd: 48 98 cltq
ffffffff810442bf: c3 retq
ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
ffffffff810442c7: 31 c0 xor %eax,%eax
ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
Without the jump label optimization it looks like:
ffffffff810441f0 <sys_getppid>:
ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
ffffffff810441f6: 55 push %rbp
ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
ffffffff810441fa: 85 c0 test %eax,%eax
ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
ffffffff81044205: 00 00
ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
ffffffff81044221: 5d pop %rbp
ffffffff81044222: 48 98 cltq
ffffffff81044224: c3 retq
ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
ffffffff8104422c: 31 c0 xor %eax,%eax
ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
ffffffff8104423c: 00 00 00 00
}
The resulting instructions with jump labels generated by GCC is::
ffffffff81044290 <sys_getppid>:
ffffffff81044290: 55 push %rbp
ffffffff81044291: 48 89 e5 mov %rsp,%rbp
ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
ffffffff810442a0: 00 00
ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
ffffffff810442bc: 5d pop %rbp
ffffffff810442bd: 48 98 cltq
ffffffff810442bf: c3 retq
ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
ffffffff810442c7: 31 c0 xor %eax,%eax
ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
Without the jump label optimization it looks like::
ffffffff810441f0 <sys_getppid>:
ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
ffffffff810441f6: 55 push %rbp
ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
ffffffff810441fa: 85 c0 test %eax,%eax
ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
ffffffff81044205: 00 00
ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
ffffffff81044221: 5d pop %rbp
ffffffff81044222: 48 98 cltq
ffffffff81044224: c3 retq
ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
ffffffff8104422c: 31 c0 xor %eax,%eax
ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
ffffffff8104423c: 00 00 00 00
Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
label case adds:
label case adds::
6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
6 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
If we then include the padding bytes, the jump label code saves, 16 total bytes
of instruction memory for this small function. In this case the non-jump label
......@@ -262,7 +271,7 @@ Since there are a number of static key API uses in the scheduler paths,
'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
performance improvement. Testing done on 3.3.0-rc2:
jump label disabled:
jump label disabled::
Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
......@@ -279,7 +288,7 @@ jump label disabled:
1.601607384 seconds time elapsed ( +- 0.07% )
jump label enabled:
jump label enabled::
Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment