Commit 630b25cd authored by Brandeburg, Jesse's avatar Brandeburg, Jesse Committed by Jeff Garzik

e1000: remove unused Kconfig option for disabling packet split

Since the e1000/e1000e split, no hardware supported by e1000
supports packet split, just remove the Kconfig option and associated
code from the driver.
Signed-off-by: default avatarJesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: default avatarJeff Garzik <jgarzik@redhat.com>
parent b2259672
...@@ -1938,15 +1938,6 @@ config E1000 ...@@ -1938,15 +1938,6 @@ config E1000
To compile this driver as a module, choose M here. The module To compile this driver as a module, choose M here. The module
will be called e1000. will be called e1000.
config E1000_DISABLE_PACKET_SPLIT
bool "Disable Packet Split for PCI express adapters"
depends on E1000
help
Say Y here if you want to use the legacy receive path for PCI express
hardware.
If in doubt, say N.
config E1000E config E1000E
tristate "Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support" tristate "Intel(R) PRO/1000 PCI-Express Gigabit Ethernet support"
depends on PCI && (!SPARC32 || BROKEN) depends on PCI && (!SPARC32 || BROKEN)
......
...@@ -155,8 +155,6 @@ do { \ ...@@ -155,8 +155,6 @@ do { \
#endif #endif
#define E1000_MNG_VLAN_NONE (-1) #define E1000_MNG_VLAN_NONE (-1)
/* Number of packet split data buffers (not including the header buffer) */
#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
/* wrapper around a pointer to a socket buffer, /* wrapper around a pointer to a socket buffer,
* so a DMA handle can be stored along with the buffer */ * so a DMA handle can be stored along with the buffer */
...@@ -168,14 +166,6 @@ struct e1000_buffer { ...@@ -168,14 +166,6 @@ struct e1000_buffer {
u16 next_to_watch; u16 next_to_watch;
}; };
struct e1000_ps_page {
struct page *ps_page[PS_PAGE_BUFFERS];
};
struct e1000_ps_page_dma {
u64 ps_page_dma[PS_PAGE_BUFFERS];
};
struct e1000_tx_ring { struct e1000_tx_ring {
/* pointer to the descriptor ring memory */ /* pointer to the descriptor ring memory */
void *desc; void *desc;
...@@ -213,9 +203,6 @@ struct e1000_rx_ring { ...@@ -213,9 +203,6 @@ struct e1000_rx_ring {
unsigned int next_to_clean; unsigned int next_to_clean;
/* array of buffer information structs */ /* array of buffer information structs */
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
/* arrays of page information for packet split */
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
/* cpu for rx queue */ /* cpu for rx queue */
int cpu; int cpu;
...@@ -228,8 +215,6 @@ struct e1000_rx_ring { ...@@ -228,8 +215,6 @@ struct e1000_rx_ring {
((((R)->next_to_clean > (R)->next_to_use) \ ((((R)->next_to_clean > (R)->next_to_use) \
? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1) ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
#define E1000_RX_DESC_PS(R, i) \
(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
#define E1000_RX_DESC_EXT(R, i) \ #define E1000_RX_DESC_EXT(R, i) \
(&(((union e1000_rx_desc_extended *)((R).desc))[i])) (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
...@@ -311,10 +296,8 @@ struct e1000_adapter { ...@@ -311,10 +296,8 @@ struct e1000_adapter {
u32 rx_int_delay; u32 rx_int_delay;
u32 rx_abs_int_delay; u32 rx_abs_int_delay;
bool rx_csum; bool rx_csum;
unsigned int rx_ps_pages;
u32 gorcl; u32 gorcl;
u64 gorcl_old; u64 gorcl_old;
u16 rx_ps_bsize0;
/* OS defined structs */ /* OS defined structs */
struct net_device *netdev; struct net_device *netdev;
......
...@@ -137,15 +137,9 @@ static int e1000_clean(struct napi_struct *napi, int budget); ...@@ -137,15 +137,9 @@ static int e1000_clean(struct napi_struct *napi, int budget);
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring, struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do); int *work_done, int work_to_do);
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do);
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring, struct e1000_rx_ring *rx_ring,
int cleaned_count); int cleaned_count);
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd); int cmd);
...@@ -1331,7 +1325,6 @@ static int __devinit e1000_sw_init(struct e1000_adapter *adapter) ...@@ -1331,7 +1325,6 @@ static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
hw->max_frame_size = netdev->mtu + hw->max_frame_size = netdev->mtu +
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
...@@ -1815,26 +1808,6 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, ...@@ -1815,26 +1808,6 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
} }
memset(rxdr->buffer_info, 0, size); memset(rxdr->buffer_info, 0, size);
rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
GFP_KERNEL);
if (!rxdr->ps_page) {
vfree(rxdr->buffer_info);
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
rxdr->ps_page_dma = kcalloc(rxdr->count,
sizeof(struct e1000_ps_page_dma),
GFP_KERNEL);
if (!rxdr->ps_page_dma) {
vfree(rxdr->buffer_info);
kfree(rxdr->ps_page);
DPRINTK(PROBE, ERR,
"Unable to allocate memory for the receive descriptor ring\n");
return -ENOMEM;
}
if (hw->mac_type <= e1000_82547_rev_2) if (hw->mac_type <= e1000_82547_rev_2)
desc_len = sizeof(struct e1000_rx_desc); desc_len = sizeof(struct e1000_rx_desc);
else else
...@@ -1852,8 +1825,6 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, ...@@ -1852,8 +1825,6 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
"Unable to allocate memory for the receive descriptor ring\n"); "Unable to allocate memory for the receive descriptor ring\n");
setup_rx_desc_die: setup_rx_desc_die:
vfree(rxdr->buffer_info); vfree(rxdr->buffer_info);
kfree(rxdr->ps_page);
kfree(rxdr->ps_page_dma);
return -ENOMEM; return -ENOMEM;
} }
...@@ -1932,11 +1903,7 @@ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) ...@@ -1932,11 +1903,7 @@ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
static void e1000_setup_rctl(struct e1000_adapter *adapter) static void e1000_setup_rctl(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 rctl, rfctl; u32 rctl;
u32 psrctl = 0;
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
u32 pages = 0;
#endif
rctl = er32(RCTL); rctl = er32(RCTL);
...@@ -1988,55 +1955,6 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1988,55 +1955,6 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
break; break;
} }
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
/* 82571 and greater support packet-split where the protocol
* header is placed in skb->data and the packet data is
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
* In the case of a non-split, skb->data is linearly filled,
* followed by the page buffers. Therefore, skb->data is
* sized to hold the largest protocol header.
*/
/* allocations using alloc_page take too long for regular MTU
* so only enable packet split for jumbo frames */
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if ((hw->mac_type >= e1000_82571) && (pages <= 3) &&
PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
adapter->rx_ps_pages = pages;
else
adapter->rx_ps_pages = 0;
#endif
if (adapter->rx_ps_pages) {
/* Configure extra packet-split registers */
rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
/* disable packet split support for IPv6 extension headers,
* because some malformed IPv6 headers can hang the RX */
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
E1000_RFCTL_NEW_IPV6_EXT_DIS);
ew32(RFCTL, rfctl);
rctl |= E1000_RCTL_DTYP_PS;
psrctl |= adapter->rx_ps_bsize0 >>
E1000_PSRCTL_BSIZE0_SHIFT;
switch (adapter->rx_ps_pages) {
case 3:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE3_SHIFT;
case 2:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE2_SHIFT;
case 1:
psrctl |= PAGE_SIZE >>
E1000_PSRCTL_BSIZE1_SHIFT;
break;
}
ew32(PSRCTL, psrctl);
}
ew32(RCTL, rctl); ew32(RCTL, rctl);
} }
...@@ -2053,18 +1971,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2053,18 +1971,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 rdlen, rctl, rxcsum, ctrl_ext; u32 rdlen, rctl, rxcsum, ctrl_ext;
if (adapter->rx_ps_pages) { rdlen = adapter->rx_ring[0].count *
/* this is a 32 byte descriptor */ sizeof(struct e1000_rx_desc);
rdlen = adapter->rx_ring[0].count * adapter->clean_rx = e1000_clean_rx_irq;
sizeof(union e1000_rx_desc_packet_split); adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
adapter->clean_rx = e1000_clean_rx_irq_ps;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
} else {
rdlen = adapter->rx_ring[0].count *
sizeof(struct e1000_rx_desc);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */ /* disable receives while setting up the descriptors */
rctl = er32(RCTL); rctl = er32(RCTL);
...@@ -2109,28 +2019,14 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2109,28 +2019,14 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
/* Enable 82543 Receive Checksum Offload for TCP and UDP */ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
if (hw->mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
rxcsum = er32(RXCSUM); rxcsum = er32(RXCSUM);
if (adapter->rx_csum) { if (adapter->rx_csum)
rxcsum |= E1000_RXCSUM_TUOFL; rxcsum |= E1000_RXCSUM_TUOFL;
else
/* Enable 82571 IPv4 payload checksum for UDP fragments
* Must be used in conjunction with packet-split. */
if ((hw->mac_type >= e1000_82571) &&
(adapter->rx_ps_pages)) {
rxcsum |= E1000_RXCSUM_IPPCSE;
}
} else {
rxcsum &= ~E1000_RXCSUM_TUOFL;
/* don't need to clear IPPCSE as it defaults to 0 */ /* don't need to clear IPPCSE as it defaults to 0 */
} rxcsum &= ~E1000_RXCSUM_TUOFL;
ew32(RXCSUM, rxcsum); ew32(RXCSUM, rxcsum);
} }
/* enable early receives on 82573, only takes effect if using > 2048
* byte total frame size. for example only for jumbo frames */
#define E1000_ERT_2048 0x100
if (hw->mac_type == e1000_82573)
ew32(ERT, E1000_ERT_2048);
/* Enable Receives */ /* Enable Receives */
ew32(RCTL, rctl); ew32(RCTL, rctl);
} }
...@@ -2256,10 +2152,6 @@ static void e1000_free_rx_resources(struct e1000_adapter *adapter, ...@@ -2256,10 +2152,6 @@ static void e1000_free_rx_resources(struct e1000_adapter *adapter,
vfree(rx_ring->buffer_info); vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL; rx_ring->buffer_info = NULL;
kfree(rx_ring->ps_page);
rx_ring->ps_page = NULL;
kfree(rx_ring->ps_page_dma);
rx_ring->ps_page_dma = NULL;
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
...@@ -2292,11 +2184,9 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, ...@@ -2292,11 +2184,9 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
{ {
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
unsigned long size; unsigned long size;
unsigned int i, j; unsigned int i;
/* Free all the Rx ring sk_buffs */ /* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) { for (i = 0; i < rx_ring->count; i++) {
...@@ -2310,25 +2200,10 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, ...@@ -2310,25 +2200,10 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
dev_kfree_skb(buffer_info->skb); dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL; buffer_info->skb = NULL;
} }
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
for (j = 0; j < adapter->rx_ps_pages; j++) {
if (!ps_page->ps_page[j]) break;
pci_unmap_page(pdev,
ps_page_dma->ps_page_dma[j],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ps_page_dma->ps_page_dma[j] = 0;
put_page(ps_page->ps_page[j]);
ps_page->ps_page[j] = NULL;
}
} }
size = sizeof(struct e1000_buffer) * rx_ring->count; size = sizeof(struct e1000_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size); memset(rx_ring->buffer_info, 0, size);
size = sizeof(struct e1000_ps_page) * rx_ring->count;
memset(rx_ring->ps_page, 0, size);
size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
memset(rx_ring->ps_page_dma, 0, size);
/* Zero out the descriptor ring */ /* Zero out the descriptor ring */
...@@ -4234,181 +4109,6 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, ...@@ -4234,181 +4109,6 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
return cleaned; return cleaned;
} }
/**
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
* @adapter: board private structure
**/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do)
{
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info, *next_buffer;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct sk_buff *skb;
unsigned int i, j;
u32 length, staterr;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes=0, total_rx_packets=0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
if (unlikely(*work_done >= work_to_do))
break;
(*work_done)++;
skb = buffer_info->skb;
/* in the packet split case this is header only */
prefetch(skb->data - NET_IP_ALIGN);
if (++i == rx_ring->count) i = 0;
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
pci_unmap_single(pdev, buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
E1000_DBG("%s: Packet Split buffers didn't pick up"
" the full packet\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
dev_kfree_skb_irq(skb);
goto next_desc;
}
length = le16_to_cpu(rx_desc->wb.middle.length0);
if (unlikely(!length)) {
E1000_DBG("%s: Last part of the packet spanning"
" multiple descriptors\n", netdev->name);
dev_kfree_skb_irq(skb);
goto next_desc;
}
/* Good Receive */
skb_put(skb, length);
{
/* this looks ugly, but it seems compiler issues make it
more efficient than reusing j */
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/* page alloc/put takes too long and effects small packet
* throughput, so unsplit small packets and save the alloc/put*/
if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
u8 *vaddr;
/* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping
* very long */
pci_dma_sync_single_for_cpu(pdev,
ps_page_dma->ps_page_dma[0],
PAGE_SIZE,
PCI_DMA_FROMDEVICE);
vaddr = kmap_atomic(ps_page->ps_page[0],
KM_SKB_DATA_SOFTIRQ);
memcpy(skb_tail_pointer(skb), vaddr, l1);
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
pci_dma_sync_single_for_device(pdev,
ps_page_dma->ps_page_dma[0],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
/* remove the CRC */
l1 -= 4;
skb_put(skb, l1);
goto copydone;
} /* if */
}
for (j = 0; j < adapter->rx_ps_pages; j++) {
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
if (!length)
break;
pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
PAGE_SIZE, PCI_DMA_FROMDEVICE);
ps_page_dma->ps_page_dma[j] = 0;
skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
length);
ps_page->ps_page[j] = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += length;
}
/* strip the ethernet crc, problem is we're using pages now so
* this whole operation can get a little cpu intensive */
pskb_trim(skb, skb->len - 4);
copydone:
total_rx_bytes += skb->len;
total_rx_packets++;
e1000_rx_checksum(adapter, staterr,
le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
skb->protocol = eth_type_trans(skb, netdev);
if (likely(rx_desc->wb.upper.header_status &
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
adapter->rx_hdr_split++;
if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->wb.middle.vlan));
} else {
netif_receive_skb(skb);
}
netdev->last_rx = jiffies;
next_desc:
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
buffer_info->skb = NULL;
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = E1000_DESC_UNUSED(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
adapter->total_rx_packets += total_rx_packets;
adapter->total_rx_bytes += total_rx_bytes;
adapter->net_stats.rx_bytes += total_rx_bytes;
adapter->net_stats.rx_packets += total_rx_packets;
return cleaned;
}
/** /**
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
* @adapter: address of board private structure * @adapter: address of board private structure
...@@ -4520,104 +4220,6 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, ...@@ -4520,104 +4220,6 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
} }
} }
/**
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma;
struct sk_buff *skb;
unsigned int i, j;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
while (cleaned_count--) {
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
if (j < adapter->rx_ps_pages) {
if (likely(!ps_page->ps_page[j])) {
ps_page->ps_page[j] =
alloc_page(GFP_ATOMIC);
if (unlikely(!ps_page->ps_page[j])) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
ps_page_dma->ps_page_dma[j] =
pci_map_page(pdev,
ps_page->ps_page[j],
0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
}
/* Refresh the desc even if buffer_addrs didn't
* change because each write-back erases
* this info.
*/
rx_desc->read.buffer_addr[j+1] =
cpu_to_le64(ps_page_dma->ps_page_dma[j]);
} else
rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
}
skb = netdev_alloc_skb(netdev,
adapter->rx_ps_bsize0 + NET_IP_ALIGN);
if (unlikely(!skb)) {
adapter->alloc_rx_buff_failed++;
break;
}
/* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
*/
skb_reserve(skb, NET_IP_ALIGN);
buffer_info->skb = skb;
buffer_info->length = adapter->rx_ps_bsize0;
buffer_info->dma = pci_map_single(pdev, skb->data,
adapter->rx_ps_bsize0,
PCI_DMA_FROMDEVICE);
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count)) i = 0;
buffer_info = &rx_ring->buffer_info[i];
ps_page = &rx_ring->ps_page[i];
ps_page_dma = &rx_ring->ps_page_dma[i];
}
no_buffers:
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
/* Hardware increments by 16 bytes, but packet split
* descriptors are 32 bytes...so we increment tail
* twice as much.
*/
writel(i<<1, hw->hw_addr + rx_ring->rdt);
}
}
/** /**
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
* @adapter: * @adapter:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment