Commit 642978be authored by James Bottomley's avatar James Bottomley

[SCSI] remove m68k NCR53C9x based drivers

These drivers depend on the deprecated NCR53C9X core and need to be converted
to the esp_scsi core.
Acked-by: default avatarBoaz Harrosh <bharrosh@panasas.com>
Cc: Linux/m68k <linux-m68k@vger.kernel.org>
Signed-off-by: default avatarJames Bottomley <James.Bottomley@HansenPartnership.com>
parent da19d2f5
......@@ -1578,45 +1578,6 @@ config GVP11_SCSI
To compile this driver as a module, choose M here: the
module will be called gvp11.
config CYBERSTORM_SCSI
tristate "CyberStorm SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with an original (MkI) Phase5 Cyberstorm
accelerator board and the optional Cyberstorm SCSI controller,
answer Y. Otherwise, say N.
config CYBERSTORMII_SCSI
tristate "CyberStorm Mk II SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with a Phase5 Cyberstorm MkII accelerator board
and the optional Cyberstorm SCSI controller, say Y. Otherwise,
answer N.
config BLZ2060_SCSI
tristate "Blizzard 2060 SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with a Phase5 Blizzard 2060 accelerator board
and want to use the onboard SCSI controller, say Y. Otherwise,
answer N.
config BLZ1230_SCSI
tristate "Blizzard 1230IV/1260 SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga 1200 with a Phase5 Blizzard 1230IV or Blizzard
1260 accelerator, and the optional SCSI module, say Y. Otherwise,
say N.
config FASTLANE_SCSI
tristate "Fastlane SCSI support"
depends on ZORRO && SCSI
help
If you have the Phase5 Fastlane Z3 SCSI controller, or plan to use
one in the near future, say Y to this question. Otherwise, say N.
config SCSI_A4000T
tristate "A4000T NCR53c710 SCSI support (EXPERIMENTAL)"
depends on AMIGA && SCSI && EXPERIMENTAL
......@@ -1644,15 +1605,6 @@ config SCSI_ZORRO7XX
accelerator card for the Amiga 1200,
- the SCSI controller on the GVP Turbo 040/060 accelerator.
config OKTAGON_SCSI
tristate "BSC Oktagon SCSI support (EXPERIMENTAL)"
depends on ZORRO && SCSI && EXPERIMENTAL
help
If you have the BSC Oktagon SCSI disk controller for the Amiga, say
Y to this question. If you're in doubt about whether you have one,
see the picture at
<http://amiga.resource.cx/exp/search.pl?product=oktagon>.
config ATARI_SCSI
tristate "Atari native SCSI support"
depends on ATARI && SCSI
......@@ -1705,18 +1657,6 @@ config MAC_SCSI
SCSI-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
config SCSI_MAC_ESP
tristate "Macintosh NCR53c9[46] SCSI"
depends on MAC && SCSI
help
This is the NCR 53c9x SCSI controller found on most of the 68040
based Macintoshes. If you have one of these say Y and read the
SCSI-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as a module, choose M here: the
module will be called mac_esp.
config MVME147_SCSI
bool "WD33C93 SCSI driver for MVME147"
depends on MVME147 && SCSI=y
......
......@@ -44,15 +44,8 @@ obj-$(CONFIG_A2091_SCSI) += a2091.o wd33c93.o
obj-$(CONFIG_GVP11_SCSI) += gvp11.o wd33c93.o
obj-$(CONFIG_MVME147_SCSI) += mvme147.o wd33c93.o
obj-$(CONFIG_SGIWD93_SCSI) += sgiwd93.o wd33c93.o
obj-$(CONFIG_CYBERSTORM_SCSI) += NCR53C9x.o cyberstorm.o
obj-$(CONFIG_CYBERSTORMII_SCSI) += NCR53C9x.o cyberstormII.o
obj-$(CONFIG_BLZ2060_SCSI) += NCR53C9x.o blz2060.o
obj-$(CONFIG_BLZ1230_SCSI) += NCR53C9x.o blz1230.o
obj-$(CONFIG_FASTLANE_SCSI) += NCR53C9x.o fastlane.o
obj-$(CONFIG_OKTAGON_SCSI) += NCR53C9x.o oktagon_esp_mod.o
obj-$(CONFIG_ATARI_SCSI) += atari_scsi.o
obj-$(CONFIG_MAC_SCSI) += mac_scsi.o
obj-$(CONFIG_SCSI_MAC_ESP) += mac_esp.o NCR53C9x.o
obj-$(CONFIG_SUN3_SCSI) += sun3_scsi.o sun3_scsi_vme.o
obj-$(CONFIG_MVME16x_SCSI) += 53c700.o mvme16x_scsi.o
obj-$(CONFIG_BVME6000_SCSI) += 53c700.o bvme6000_scsi.o
......
/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on the CyberStorm driver, hence the occasional
* reference to CyberStorm.
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
#define MKIV 1
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define BLZ1230_ESP_ADDR 0x8000
#define BLZ1230_DMA_ADDR 0x10000
#define BLZ1230II_ESP_ADDR 0x10000
#define BLZ1230II_DMA_ADDR 0x10021
/* The Blizzard 1230 DMA interface
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Only two things can be programmed in the Blizzard DMA:
* 1) The data direction is controlled by the status of bit 31 (1 = write)
* 2) The source/dest address (word aligned, shifted one right) in bits 30-0
*
* Program DMA by first latching the highest byte of the address/direction
* (i.e. bits 31-24 of the long word constructed as described in steps 1+2
* above). Then write each byte of the address/direction (starting with the
* top byte, working down) to the DMA address register.
*
* Figure out interrupt status by reading the ESP status byte.
*/
struct blz1230_dma_registers {
volatile unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0x7fff];
volatile unsigned char dma_latch; /* DMA latch [0x8000] */
};
struct blz1230II_dma_registers {
volatile unsigned char dma_addr; /* DMA address [0x0000] */
unsigned char dmapad2[0xf];
volatile unsigned char dma_latch; /* DMA latch [0x0010] */
};
#define BLZ1230_DMA_WRITE 0x80000000
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init blz1230_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
struct ESP_regs *eregs;
unsigned long board;
#if MKIV
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
#else
#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
#endif
if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
board = z->resource.start;
if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/* Do some magic to figure out if the blizzard is
* equipped with a SCSI controller
*/
address = ZTWO_VADDR(board);
eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR,
0);
esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
udelay(5);
if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
goto err_out;
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = 0;
esp->dma_led_off = 0;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the Blizzard are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
/* ESP register base */
esp->eregs = eregs;
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
esp->slot = board+REAL_BLZ1230_ESP_ADDR;
if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"Blizzard 1230 SCSI IV", esp->ehost))
goto err_out;
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
err_out:
scsi_unregister(esp->ehost);
esp_deallocate(esp);
release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
sizeof(struct ESP_regs));
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the Blizzard DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the Blizzard DMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
#if MKIV
struct blz1230_dma_registers *dregs =
(struct blz1230_dma_registers *) (esp->dregs);
#else
struct blz1230II_dma_registers *dregs =
(struct blz1230II_dma_registers *) (esp->dregs);
#endif
cache_clear(addr, length);
addr >>= 1;
addr &= ~(BLZ1230_DMA_WRITE);
/* First set latch */
dregs->dma_latch = (addr >> 24) & 0xff;
/* Then pump the address to the DMA address register */
#if MKIV
dregs->dma_addr = (addr >> 24) & 0xff;
#endif
dregs->dma_addr = (addr >> 16) & 0xff;
dregs->dma_addr = (addr >> 8) & 0xff;
dregs->dma_addr = (addr ) & 0xff;
}
void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
#if MKIV
struct blz1230_dma_registers *dregs =
(struct blz1230_dma_registers *) (esp->dregs);
#else
struct blz1230II_dma_registers *dregs =
(struct blz1230II_dma_registers *) (esp->dregs);
#endif
cache_push(addr, length);
addr >>= 1;
addr |= BLZ1230_DMA_WRITE;
/* First set latch */
dregs->dma_latch = (addr >> 24) & 0xff;
/* Then pump the address to the DMA address register */
#if MKIV
dregs->dma_addr = (addr >> 24) & 0xff;
#endif
dregs->dma_addr = (addr >> 16) & 0xff;
dregs->dma_addr = (addr >> 8) & 0xff;
dregs->dma_addr = (addr ) & 0xff;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int blz1230_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-blz1230",
.proc_info = esp_proc_info,
.name = "Blizzard1230 SCSI IV",
.detect = blz1230_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = blz1230_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* blz2060.c: Driver for Blizzard 2060 SCSI Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on the CyberStorm driver, hence the occasional
* reference to CyberStorm.
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define BLZ2060_ESP_ADDR 0x1ff00
#define BLZ2060_DMA_ADDR 0x1ffe0
/* The Blizzard 2060 DMA interface
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Only two things can be programmed in the Blizzard DMA:
* 1) The data direction is controlled by the status of bit 31 (1 = write)
* 2) The source/dest address (word aligned, shifted one right) in bits 30-0
*
* Figure out interrupt status by reading the ESP status byte.
*/
struct blz2060_dma_registers {
volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */
unsigned char dmapad1[0x0f];
volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */
unsigned char dmapad2[0x03];
volatile unsigned char dma_addr1; /* DMA address [0x014] */
unsigned char dmapad3[0x03];
volatile unsigned char dma_addr2; /* DMA address [0x018] */
unsigned char dmapad4[0x03];
volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */
};
#define BLZ2060_DMA_WRITE 0x80000000
/* DMA control bits */
#define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init blz2060_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) {
unsigned long board = z->resource.start;
if (request_mem_region(board+BLZ2060_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
esp = esp_allocate(tpnt, (void *)board + BLZ2060_ESP_ADDR, 0);
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the Blizzard are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
address = (unsigned long)ZTWO_VADDR(board);
esp->dregs = (void *)(address + BLZ2060_DMA_ADDR);
/* ESP register base */
esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR);
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"Blizzard 2060 SCSI", esp->ehost);
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the Blizzard DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the Blizzard DMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
struct blz2060_dma_registers *dregs =
(struct blz2060_dma_registers *) (esp->dregs);
cache_clear(addr, length);
addr >>= 1;
addr &= ~(BLZ2060_DMA_WRITE);
dregs->dma_addr3 = (addr ) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr0 = (addr >> 24) & 0xff;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
struct blz2060_dma_registers *dregs =
(struct blz2060_dma_registers *) (esp->dregs);
cache_push(addr, length);
addr >>= 1;
addr |= BLZ2060_DMA_WRITE;
dregs->dma_addr3 = (addr ) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr0 = (addr >> 24) & 0xff;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static void dma_led_off(struct NCR_ESP *esp)
{
((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl =
BLZ2060_DMA_LED;
}
static void dma_led_on(struct NCR_ESP *esp)
{
((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0;
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int blz2060_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-blz2060",
.proc_info = esp_proc_info,
.name = "Blizzard2060 SCSI",
.detect = blz2060_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = blz2060_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* cyberstorm.c: Driver for CyberStorm SCSI Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* The CyberStorm SCSI driver is based on David S. Miller's ESP driver
* for the Sparc computers.
*
* This work was made possible by Phase5 who willingly (and most generously)
* supported me with hardware and all the information I needed.
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define CYBER_ESP_ADDR 0xf400
#define CYBER_DMA_ADDR 0xf800
/* The CyberStorm DMA interface */
struct cyber_dma_registers {
volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */
unsigned char dmapad1[1];
volatile unsigned char dma_addr1; /* DMA address [0x002] */
unsigned char dmapad2[1];
volatile unsigned char dma_addr2; /* DMA address [0x004] */
unsigned char dmapad3[1];
volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */
unsigned char dmapad4[0x3fb];
volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */
};
/* DMA control bits */
#define CYBER_DMA_LED 0x80 /* HD led control 1 = on */
#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */
#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
/* DMA status bits */
#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */
/* The bits below appears to be Phase5 Debug bits only; they were not
* described by Phase5 so using them may seem a bit stupid...
*/
#define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise
* it should be 6.
*/
#define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
* to ctrl_reg. Always write a copy
* to this register when writing to
* the hardware register!
*/
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init cyber_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
unsigned long board = z->resource.start;
if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
request_mem_region(board+CYBER_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/* Figure out if this is a CyberStorm or really a
* Fastlane/Blizzard Mk II by looking at the board size.
* CyberStorm maps 64kB
* (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
*/
if(z->resource.end-board != 0xffff) {
release_mem_region(board+CYBER_ESP_ADDR,
sizeof(struct ESP_regs));
return 0;
}
esp = esp_allocate(tpnt, (void *)board + CYBER_ESP_ADDR, 0);
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the CyberStorm are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
address = (unsigned long)ZTWO_VADDR(board);
esp->dregs = (void *)(address + CYBER_DMA_ADDR);
/* ESP register base */
esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"CyberStorm SCSI", esp->ehost);
/* Figure out our scsi ID on the bus */
/* The DMA cond flag contains a hardcoded jumper bit
* which can be used to select host number 6 or 7.
* However, even though it may change, we use a hardcoded
* value of 7.
*/
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the CyberStorm DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the CyberDMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
esp->esp_id, ((struct cyber_dma_registers *)
(esp->dregs))->cond_reg));
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
struct cyber_dma_registers *dregs =
(struct cyber_dma_registers *) esp->dregs;
cache_clear(addr, length);
addr &= ~(1);
dregs->dma_addr0 = (addr >> 24) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr3 = (addr ) & 0xff;
ctrl_data &= ~(CYBER_DMA_WRITE);
/* Check if physical address is outside Z2 space and of
* block length/block aligned in memory. If this is the
* case, enable 32 bit transfer. In all other cases, fall back
* to 16 bit transfer.
* Obviously 32 bit transfer should be enabled if the DMA address
* and length are 32 bit aligned. However, this leads to some
* strange behavior. Even 64 bit aligned addr/length fails.
* Until I've found a reason for this, 32 bit transfer is only
* used for full-block transfers (1kB).
* -jskov
*/
#if 0
if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
(addr < 0xff0000)))
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
else
ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
#else
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
#endif
dregs->ctrl_reg = ctrl_data;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
struct cyber_dma_registers *dregs =
(struct cyber_dma_registers *) esp->dregs;
cache_push(addr, length);
addr |= 1;
dregs->dma_addr0 = (addr >> 24) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr3 = (addr ) & 0xff;
ctrl_data |= CYBER_DMA_WRITE;
/* See comment above */
#if 0
if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
(addr < 0xff0000)))
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
else
ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
#else
ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
#endif
dregs->ctrl_reg = ctrl_data;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
/* It's important to check the DMA IRQ bit in the correct way! */
return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
CYBER_DMA_HNDL_INTR));
}
static void dma_led_off(struct NCR_ESP *esp)
{
ctrl_data &= ~CYBER_DMA_LED;
((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
}
static void dma_led_on(struct NCR_ESP *esp)
{
ctrl_data |= CYBER_DMA_LED;
((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int cyber_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-cyberstorm",
.proc_info = esp_proc_info,
.name = "CyberStorm SCSI",
.detect = cyber_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = cyber_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* cyberstormII.c: Driver for CyberStorm SCSI Mk II
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on cyberstorm.c
*/
/* TODO:
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define CYBERII_ESP_ADDR 0x1ff03
#define CYBERII_DMA_ADDR 0x1ff43
/* The CyberStorm II DMA interface */
struct cyberII_dma_registers {
volatile unsigned char cond_reg; /* DMA cond (ro) [0x000] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x000] */
unsigned char dmapad4[0x3f];
volatile unsigned char dma_addr0; /* DMA address (MSB) [0x040] */
unsigned char dmapad1[3];
volatile unsigned char dma_addr1; /* DMA address [0x044] */
unsigned char dmapad2[3];
volatile unsigned char dma_addr2; /* DMA address [0x048] */
unsigned char dmapad3[3];
volatile unsigned char dma_addr3; /* DMA address (LSB) [0x04c] */
};
/* DMA control bits */
#define CYBERII_DMA_LED 0x02 /* HD led control 1 = on */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int __init cyberII_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
struct ESP_regs *eregs;
if ((z = zorro_find_device(ZORRO_PROD_PHASE5_CYBERSTORM_MK_II, z))) {
unsigned long board = z->resource.start;
if (request_mem_region(board+CYBERII_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/* Do some magic to figure out if the CyberStorm Mk II
* is equipped with a SCSI controller
*/
address = (unsigned long)ZTWO_VADDR(board);
eregs = (struct ESP_regs *)(address + CYBERII_ESP_ADDR);
esp = esp_allocate(tpnt, (void *)board + CYBERII_ESP_ADDR, 0);
esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
udelay(5);
if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) {
esp_deallocate(esp);
scsi_unregister(esp->ehost);
release_mem_region(board+CYBERII_ESP_ADDR,
sizeof(struct ESP_regs));
return 0; /* Bail out if address did not hold data */
}
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = 0;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* SCSI chip speed */
esp->cfreq = 40000000;
/* The DMA registers on the CyberStorm are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
esp->dregs = (void *)(address + CYBERII_DMA_ADDR);
/* ESP register base */
esp->eregs = eregs;
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"CyberStorm SCSI Mk II", esp->ehost);
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the CyberStorm DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
/* I don't think there's any limit on the CyberDMA. So we use what
* the ESP chip can handle (24 bit).
*/
unsigned long sz = sp->SCp.this_residual;
if(sz > 0x1000000)
sz = 0x1000000;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
esp->esp_id, ((struct cyberII_dma_registers *)
(esp->dregs))->cond_reg));
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
struct cyberII_dma_registers *dregs =
(struct cyberII_dma_registers *) esp->dregs;
cache_clear(addr, length);
addr &= ~(1);
dregs->dma_addr0 = (addr >> 24) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr3 = (addr ) & 0xff;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
struct cyberII_dma_registers *dregs =
(struct cyberII_dma_registers *) esp->dregs;
cache_push(addr, length);
addr |= 1;
dregs->dma_addr0 = (addr >> 24) & 0xff;
dregs->dma_addr1 = (addr >> 16) & 0xff;
dregs->dma_addr2 = (addr >> 8) & 0xff;
dregs->dma_addr3 = (addr ) & 0xff;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
/* It's important to check the DMA IRQ bit in the correct way! */
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static void dma_led_off(struct NCR_ESP *esp)
{
((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg &= ~CYBERII_DMA_LED;
}
static void dma_led_on(struct NCR_ESP *esp)
{
((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg |= CYBERII_DMA_LED;
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int cyberII_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-cyberstormII",
.proc_info = esp_proc_info,
.name = "CyberStorm Mk II SCSI",
.detect = cyberII_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = cyberII_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* fastlane.c: Driver for Phase5's Fastlane SCSI Controller.
*
* Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
*
* This driver is based on the CyberStorm driver, hence the occasional
* reference to CyberStorm.
*
* Betatesting & crucial adjustments by
* Patrik Rak (prak3264@ss1000.ms.mff.cuni.cz)
*
*/
/* TODO:
*
* o According to the doc from laire, it is required to reset the DMA when
* the transfer is done. ATM we reset DMA just before every new
* dma_init_(read|write).
*
* 1) Figure out how to make a cleaner merge with the sparc driver with regard
* to the caches and the Sparc MMU mapping.
* 2) Make as few routines required outside the generic driver. A lot of the
* routines in this file used to be inline!
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/pgtable.h>
/* Such day has just come... */
#if 0
/* Let this defined unless you really need to enable DMA IRQ one day */
#define NODMAIRQ
#endif
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define FASTLANE_ESP_ADDR 0x1000001
#define FASTLANE_DMA_ADDR 0x1000041
/* The Fastlane DMA interface */
struct fastlane_dma_registers {
volatile unsigned char cond_reg; /* DMA status (ro) [0x0000] */
#define ctrl_reg cond_reg /* DMA control (wo) [0x0000] */
unsigned char dmapad1[0x3f];
volatile unsigned char clear_strobe; /* DMA clear (wo) [0x0040] */
};
/* DMA status bits */
#define FASTLANE_DMA_MINT 0x80
#define FASTLANE_DMA_IACT 0x40
#define FASTLANE_DMA_CREQ 0x20
/* DMA control bits */
#define FASTLANE_DMA_FCODE 0xa0
#define FASTLANE_DMA_MASK 0xf3
#define FASTLANE_DMA_LED 0x10 /* HD led control 1 = on */
#define FASTLANE_DMA_WRITE 0x08 /* 1 = write */
#define FASTLANE_DMA_ENABLE 0x04 /* Enable DMA */
#define FASTLANE_DMA_EDI 0x02 /* Enable DMA IRQ ? */
#define FASTLANE_DMA_ESI 0x01 /* Enable SCSI IRQ */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 vaddr, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_irq_exit(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
* to ctrl_reg. Always write a copy
* to this register when writing to
* the hardware register!
*/
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
static inline void dma_clear(struct NCR_ESP *esp)
{
struct fastlane_dma_registers *dregs =
(struct fastlane_dma_registers *) (esp->dregs);
unsigned long *t;
ctrl_data = (ctrl_data & FASTLANE_DMA_MASK);
dregs->ctrl_reg = ctrl_data;
t = (unsigned long *)(esp->edev);
dregs->clear_strobe = 0;
*t = 0 ;
}
/***************************************************************** Detection */
int __init fastlane_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060, z))) {
unsigned long board = z->resource.start;
if (request_mem_region(board+FASTLANE_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/* Check if this is really a fastlane controller. The problem
* is that also the cyberstorm and blizzard controllers use
* this ID value. Fortunately only Fastlane maps in Z3 space
*/
if (board < 0x1000000) {
goto err_release;
}
esp = esp_allocate(tpnt, (void *)board + FASTLANE_ESP_ADDR, 0);
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = 0;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = &dma_irq_exit;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
/* Initialize the portBits (enable IRQs) */
ctrl_data = (FASTLANE_DMA_FCODE |
#ifndef NODMAIRQ
FASTLANE_DMA_EDI |
#endif
FASTLANE_DMA_ESI);
/* SCSI chip clock */
esp->cfreq = 40000000;
/* Map the physical address space into virtual kernel space */
address = (unsigned long)
z_ioremap(board, z->resource.end-board+1);
if(!address){
printk("Could not remap Fastlane controller memory!");
goto err_unregister;
}
/* The DMA registers on the Fastlane are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
esp->dregs = (void *)(address + FASTLANE_DMA_ADDR);
/* ESP register base */
esp->eregs = (struct ESP_regs *)(address + FASTLANE_ESP_ADDR);
/* Board base */
esp->edev = (void *) address;
/* Set the command buffer */
esp->esp_command = cmd_buffer;
esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
esp->irq = IRQ_AMIGA_PORTS;
esp->slot = board+FASTLANE_ESP_ADDR;
if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"Fastlane SCSI", esp->ehost)) {
printk(KERN_WARNING "Fastlane: Could not get IRQ%d, aborting.\n", IRQ_AMIGA_PORTS);
goto err_unmap;
}
/* Controller ID */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
dma_clear(esp);
esp_initialize(esp);
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
esps_running = esps_in_use;
return esps_in_use;
}
}
return 0;
err_unmap:
z_iounmap((void *)address);
err_unregister:
scsi_unregister (esp->ehost);
err_release:
release_mem_region(z->resource.start+FASTLANE_ESP_ADDR,
sizeof(struct ESP_regs));
return 0;
}
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the Fastlane DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
unsigned long sz = sp->SCp.this_residual;
if(sz > 0xfffc)
sz = 0xfffc;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
esp->esp_id, ((struct fastlane_dma_registers *)
(esp->dregs))->cond_reg));
ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
amiga_custom.intreqr, amiga_custom.intenar));
}
static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
{
struct fastlane_dma_registers *dregs =
(struct fastlane_dma_registers *) (esp->dregs);
unsigned long *t;
cache_clear(addr, length);
dma_clear(esp);
t = (unsigned long *)((addr & 0x00ffffff) + esp->edev);
dregs->clear_strobe = 0;
*t = addr;
ctrl_data = (ctrl_data & FASTLANE_DMA_MASK) | FASTLANE_DMA_ENABLE;
dregs->ctrl_reg = ctrl_data;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
{
struct fastlane_dma_registers *dregs =
(struct fastlane_dma_registers *) (esp->dregs);
unsigned long *t;
cache_push(addr, length);
dma_clear(esp);
t = (unsigned long *)((addr & 0x00ffffff) + (esp->edev));
dregs->clear_strobe = 0;
*t = addr;
ctrl_data = ((ctrl_data & FASTLANE_DMA_MASK) |
FASTLANE_DMA_ENABLE |
FASTLANE_DMA_WRITE);
dregs->ctrl_reg = ctrl_data;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static void dma_irq_exit(struct NCR_ESP *esp)
{
struct fastlane_dma_registers *dregs =
(struct fastlane_dma_registers *) (esp->dregs);
dregs->ctrl_reg = ctrl_data & ~(FASTLANE_DMA_EDI|FASTLANE_DMA_ESI);
#ifdef __mc68000__
nop();
#endif
dregs->ctrl_reg = ctrl_data;
}
static int dma_irq_p(struct NCR_ESP *esp)
{
struct fastlane_dma_registers *dregs =
(struct fastlane_dma_registers *) (esp->dregs);
unsigned char dma_status;
dma_status = dregs->cond_reg;
if(dma_status & FASTLANE_DMA_IACT)
return 0; /* not our IRQ */
/* Return non-zero if ESP requested IRQ */
return (
#ifndef NODMAIRQ
(dma_status & FASTLANE_DMA_CREQ) &&
#endif
(!(dma_status & FASTLANE_DMA_MINT)) &&
(esp_read(((struct ESP_regs *) (esp->eregs))->esp_status) & ESP_STAT_INTR));
}
static void dma_led_off(struct NCR_ESP *esp)
{
ctrl_data &= ~FASTLANE_DMA_LED;
((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
}
static void dma_led_on(struct NCR_ESP *esp)
{
ctrl_data |= FASTLANE_DMA_LED;
((struct fastlane_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
#define HOSTS_C
int fastlane_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_deallocate((struct NCR_ESP *)instance->hostdata);
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-fastlane",
.proc_info = esp_proc_info,
.name = "Fastlane SCSI",
.detect = fastlane_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = fastlane_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/*
* 68k mac 53c9[46] scsi driver
*
* copyright (c) 1998, David Weis weisd3458@uni.edu
*
* debugging on Quadra 800 and 660AV Michael Schmitz, Dave Kilzer 7/98
*
* based loosely on cyber_esp.c
*/
/* these are unused for now */
#define myreadl(addr) (*(volatile unsigned int *) (addr))
#define mywritel(b, addr) ((*(volatile unsigned int *) (addr)) = (b))
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/macints.h>
#include <asm/machw.h>
#include <asm/mac_via.h>
#include <asm/pgtable.h>
#include <asm/macintosh.h>
/* #define DEBUG_MAC_ESP */
extern void esp_handle(struct NCR_ESP *esp);
extern void mac_esp_intr(int irq, void *dev_id);
static int dma_bytes_sent(struct NCR_ESP * esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP * esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP * esp);
static void dma_init_read(struct NCR_ESP * esp, char * vaddress, int length);
static void dma_init_write(struct NCR_ESP * esp, char * vaddress, int length);
static void dma_ints_off(struct NCR_ESP * esp);
static void dma_ints_on(struct NCR_ESP * esp);
static int dma_irq_p(struct NCR_ESP * esp);
static int dma_irq_p_quick(struct NCR_ESP * esp);
static void dma_led_off(struct NCR_ESP * esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP * esp, __u32 addr, int count, int write);
static void dma_setup_quick(struct NCR_ESP * esp, __u32 addr, int count, int write);
static int esp_dafb_dma_irq_p(struct NCR_ESP * espdev);
static int esp_iosb_dma_irq_p(struct NCR_ESP * espdev);
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are transferred to the ESP chip
* via PIO.
*/
static int esp_initialized = 0;
static int setup_num_esps = -1;
static int setup_disconnect = -1;
static int setup_nosync = -1;
static int setup_can_queue = -1;
static int setup_cmd_per_lun = -1;
static int setup_sg_tablesize = -1;
#ifdef SUPPORT_TAGS
static int setup_use_tagged_queuing = -1;
#endif
static int setup_hostid = -1;
/*
* Experimental ESP inthandler; check macints.c to make sure dev_id is
* set up properly!
*/
void mac_esp_intr(int irq, void *dev_id)
{
struct NCR_ESP *esp = (struct NCR_ESP *) dev_id;
int irq_p = 0;
/* Handle the one ESP interrupt showing at this IRQ level. */
if(((esp)->irq & 0xff) == irq) {
/*
* Debug ..
*/
irq_p = esp->dma_irq_p(esp);
printk("mac_esp: irq_p %x current %p disconnected %p\n",
irq_p, esp->current_SC, esp->disconnected_SC);
/*
* Mac: if we're here, it's an ESP interrupt for sure!
*/
if((esp->current_SC || esp->disconnected_SC)) {
esp->dma_ints_off(esp);
ESPIRQ(("I%d(", esp->esp_id));
esp_handle(esp);
ESPIRQ((")"));
esp->dma_ints_on(esp);
}
}
}
/*
* Debug hooks; use for playing with the interrupt flag testing and interrupt
* acknowledge on the various machines
*/
void scsi_esp_polled(int irq, void *dev_id)
{
if (esp_initialized == 0)
return;
mac_esp_intr(irq, dev_id);
}
void fake_intr(int irq, void *dev_id)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: got irq\n");
#endif
mac_esp_intr(irq, dev_id);
}
irqreturn_t fake_drq(int irq, void *dev_id)
{
printk("mac_esp: got drq\n");
return IRQ_HANDLED;
}
#define DRIVER_SETUP
/*
* Function : mac_esp_setup(char *str)
*
* Purpose : booter command line initialization of the overrides array,
*
* Inputs : str - parameters, separated by commas.
*
* Currently unused in the new driver; need to add settable parameters to the
* detect function.
*
*/
static int __init mac_esp_setup(char *str) {
#ifdef DRIVER_SETUP
/* Format of mac53c9x parameter is:
* mac53c9x=<num_esps>,<disconnect>,<nosync>,<can_queue>,<cmd_per_lun>,<sg_tablesize>,<hostid>,<use_tags>
* Negative values mean don't change.
*/
char *this_opt;
long opt;
this_opt = strsep (&str, ",");
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt >= 0 && opt <= 2)
setup_num_esps = opt;
else if (opt > 2)
printk( "mac_esp_setup: invalid number of hosts %ld !\n", opt );
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt > 0)
setup_disconnect = opt;
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt >= 0)
setup_nosync = opt;
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt > 0)
setup_can_queue = opt;
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt > 0)
setup_cmd_per_lun = opt;
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt >= 0) {
setup_sg_tablesize = opt;
/* Must be <= SG_ALL (255) */
if (setup_sg_tablesize > SG_ALL)
setup_sg_tablesize = SG_ALL;
}
this_opt = strsep (&str, ",");
}
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
/* Must be between 0 and 7 */
if (opt >= 0 && opt <= 7)
setup_hostid = opt;
else if (opt > 7)
printk( "mac_esp_setup: invalid host ID %ld !\n", opt);
this_opt = strsep (&str, ",");
}
#ifdef SUPPORT_TAGS
if(this_opt) {
opt = simple_strtol( this_opt, NULL, 0 );
if (opt >= 0)
setup_use_tagged_queuing = !!opt;
}
#endif
#endif
return 1;
}
__setup("mac53c9x=", mac_esp_setup);
/*
* ESP address 'detection'
*/
unsigned long get_base(int chip_num)
{
/*
* using the chip_num and mac model, figure out where the
* chips are mapped
*/
unsigned long io_base = 0x50f00000;
unsigned int second_offset = 0x402;
unsigned long scsi_loc = 0;
switch (macintosh_config->scsi_type) {
/* 950, 900, 700 */
case MAC_SCSI_QUADRA2:
scsi_loc = io_base + 0xf000 + ((chip_num == 0) ? 0 : second_offset);
break;
/* av's */
case MAC_SCSI_QUADRA3:
scsi_loc = io_base + 0x18000 + ((chip_num == 0) ? 0 : second_offset);
break;
/* most quadra/centris models are like this */
case MAC_SCSI_QUADRA:
scsi_loc = io_base + 0x10000;
break;
default:
printk("mac_esp: get_base: hit default!\n");
scsi_loc = io_base + 0x10000;
break;
} /* switch */
printk("mac_esp: io base at 0x%lx\n", scsi_loc);
return scsi_loc;
}
/*
* Model dependent ESP setup
*/
int mac_esp_detect(struct scsi_host_template * tpnt)
{
int quick = 0;
int chipnum, chipspresent = 0;
#if 0
unsigned long timeout;
#endif
if (esp_initialized > 0)
return -ENODEV;
/* what do we have in this machine... */
if (MACHW_PRESENT(MAC_SCSI_96)) {
chipspresent ++;
}
if (MACHW_PRESENT(MAC_SCSI_96_2)) {
chipspresent ++;
}
/* number of ESPs present ? */
if (setup_num_esps >= 0) {
if (chipspresent >= setup_num_esps)
chipspresent = setup_num_esps;
else
printk("mac_esp_detect: num_hosts detected %d setup %d \n",
chipspresent, setup_num_esps);
}
/* TODO: add disconnect / nosync flags */
/* setup variables */
tpnt->can_queue =
(setup_can_queue > 0) ? setup_can_queue : 7;
tpnt->cmd_per_lun =
(setup_cmd_per_lun > 0) ? setup_cmd_per_lun : 1;
tpnt->sg_tablesize =
(setup_sg_tablesize >= 0) ? setup_sg_tablesize : SG_ALL;
if (setup_hostid >= 0)
tpnt->this_id = setup_hostid;
else {
/* use 7 as default */
tpnt->this_id = 7;
}
#ifdef SUPPORT_TAGS
if (setup_use_tagged_queuing < 0)
setup_use_tagged_queuing = DEFAULT_USE_TAGGED_QUEUING;
#endif
for (chipnum = 0; chipnum < chipspresent; chipnum ++) {
struct NCR_ESP * esp;
esp = esp_allocate(tpnt, NULL, 0);
esp->eregs = (struct ESP_regs *) get_base(chipnum);
esp->dma_irq_p = &esp_dafb_dma_irq_p;
if (chipnum == 0) {
if (macintosh_config->scsi_type == MAC_SCSI_QUADRA) {
/* most machines except those below :-) */
quick = 1;
esp->dma_irq_p = &esp_iosb_dma_irq_p;
} else if (macintosh_config->scsi_type == MAC_SCSI_QUADRA3) {
/* mostly av's */
quick = 0;
} else {
/* q950, 900, 700 */
quick = 1;
out_be32(0xf9800024, 0x1d1);
esp->dregs = (void *) 0xf9800024;
}
} else { /* chipnum */
quick = 1;
out_be32(0xf9800028, 0x1d1);
esp->dregs = (void *) 0xf9800028;
} /* chipnum == 0 */
/* use pio for command bytes; pio for message/data: TBI */
esp->do_pio_cmds = 1;
/* Set the command buffer */
esp->esp_command = (volatile unsigned char*) cmd_buffer;
esp->esp_command_dvma = (__u32) cmd_buffer;
/* various functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = NULL;
esp->dma_init_write = NULL;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_ports_p = &dma_ports_p;
/* Optional functions */
esp->dma_barrier = NULL;
esp->dma_drain = NULL;
esp->dma_invalidate = NULL;
esp->dma_irq_entry = NULL;
esp->dma_irq_exit = NULL;
esp->dma_led_on = NULL;
esp->dma_led_off = NULL;
esp->dma_poll = NULL;
esp->dma_reset = NULL;
/* SCSI chip speed */
/* below esp->cfreq = 40000000; */
if (quick) {
/* 'quick' means there's handshake glue logic like in the 5380 case */
esp->dma_setup = &dma_setup_quick;
} else {
esp->dma_setup = &dma_setup;
}
if (chipnum == 0) {
esp->irq = IRQ_MAC_SCSI;
request_irq(IRQ_MAC_SCSI, esp_intr, 0, "Mac ESP SCSI", esp->ehost);
#if 0 /* conflicts with IOP ADB */
request_irq(IRQ_MAC_SCSIDRQ, fake_drq, 0, "Mac ESP DRQ", esp->ehost);
#endif
if (macintosh_config->scsi_type == MAC_SCSI_QUADRA) {
esp->cfreq = 16500000;
} else {
esp->cfreq = 25000000;
}
} else { /* chipnum == 1 */
esp->irq = IRQ_MAC_SCSIDRQ;
#if 0 /* conflicts with IOP ADB */
request_irq(IRQ_MAC_SCSIDRQ, esp_intr, 0, "Mac ESP SCSI 2", esp->ehost);
#endif
esp->cfreq = 25000000;
}
if (quick) {
printk("esp: using quick version\n");
}
printk("esp: addr at 0x%p\n", esp->eregs);
esp->scsi_id = 7;
esp->diff = 0;
esp_initialize(esp);
} /* for chipnum */
if (chipspresent)
printk("\nmac_esp: %d esp controllers found\n", chipspresent);
esp_initialized = chipspresent;
return chipspresent;
}
static int mac_esp_release(struct Scsi_Host *shost)
{
if (shost->irq)
free_irq(shost->irq, NULL);
if (shost->io_port && shost->n_io_port)
release_region(shost->io_port, shost->n_io_port);
scsi_unregister(shost);
return 0;
}
/*
* I've been wondering what this is supposed to do, for some time. Talking
* to Allen Briggs: These machines have an extra register someplace where the
* DRQ pin of the ESP can be monitored. That isn't useful for determining
* anything else (such as reselect interrupt or other magic) though.
* Maybe make the semantics should be changed like
* if (esp->current_SC)
* ... check DRQ flag ...
* else
* ... disconnected, check pending VIA interrupt ...
*
* There's a problem with using the dabf flag or mac_irq_pending() here: both
* seem to return 1 even though no interrupt is currently pending, resulting
* in esp_exec_cmd() holding off the next command, and possibly infinite loops
* in esp_intr().
* Short term fix: just use esp_status & ESP_STAT_INTR here, as long as we
* use simple PIO. The DRQ status will be important when implementing pseudo
* DMA mode (set up ESP transfer count, return, do a batch of bytes in PIO or
* 'hardware handshake' mode upon DRQ).
* If you plan on changing this (i.e. to save the esp_status register access in
* favor of a VIA register access or a shadow register for the IFR), make sure
* to try a debug version of this first to monitor what registers would be a good
* indicator of the ESP interrupt.
*/
static int esp_dafb_dma_irq_p(struct NCR_ESP * esp)
{
unsigned int ret;
int sreg = esp_read(esp->eregs->esp_status);
#ifdef DEBUG_MAC_ESP
printk("mac_esp: esp_dafb_dma_irq_p dafb %d irq %d\n",
readl(esp->dregs), mac_irq_pending(IRQ_MAC_SCSI));
#endif
sreg &= ESP_STAT_INTR;
/*
* maybe working; this is essentially what's used for iosb_dma_irq_p
*/
if (sreg)
return 1;
else
return 0;
/*
* didn't work ...
*/
#if 0
if (esp->current_SC)
ret = readl(esp->dregs) & 0x200;
else if (esp->disconnected_SC)
ret = 1; /* sreg ?? */
else
ret = mac_irq_pending(IRQ_MAC_SCSI);
return(ret);
#endif
}
/*
* See above: testing mac_irq_pending always returned 8 (SCSI IRQ) regardless
* of the actual ESP status.
*/
static int esp_iosb_dma_irq_p(struct NCR_ESP * esp)
{
int ret = mac_irq_pending(IRQ_MAC_SCSI) || mac_irq_pending(IRQ_MAC_SCSIDRQ);
int sreg = esp_read(esp->eregs->esp_status);
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_irq_p drq %d irq %d sreg %x curr %p disc %p\n",
mac_irq_pending(IRQ_MAC_SCSIDRQ), mac_irq_pending(IRQ_MAC_SCSI),
sreg, esp->current_SC, esp->disconnected_SC);
#endif
sreg &= ESP_STAT_INTR;
if (sreg)
return (sreg);
else
return 0;
}
/*
* This seems to be OK for PIO at least ... usually 0 after PIO.
*/
static int dma_bytes_sent(struct NCR_ESP * esp, int fifo_count)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma bytes sent = %x\n", fifo_count);
#endif
return fifo_count;
}
/*
* dma_can_transfer is used to switch between DMA and PIO, if DMA (pseudo)
* is ever implemented. Returning 0 here will use PIO.
*/
static int dma_can_transfer(struct NCR_ESP * esp, Scsi_Cmnd * sp)
{
unsigned long sz = sp->SCp.this_residual;
#if 0 /* no DMA yet; make conditional */
if (sz > 0x10000000) {
sz = 0x10000000;
}
printk("mac_esp: dma can transfer = 0lx%x\n", sz);
#else
#ifdef DEBUG_MAC_ESP
printk("mac_esp: pio to transfer = %ld\n", sz);
#endif
sz = 0;
#endif
return sz;
}
/*
* Not yet ...
*/
static void dma_dump_state(struct NCR_ESP * esp)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_dump_state: called\n");
#endif
#if 0
ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
esp->esp_id, ((struct mac_dma_registers *)
(esp->dregs))->cond_reg));
#endif
}
/*
* DMA setup: should be used to set up the ESP transfer count for pseudo
* DMA transfers; need a DRQ transfer function to do the actual transfer
*/
static void dma_init_read(struct NCR_ESP * esp, char * vaddress, int length)
{
printk("mac_esp: dma_init_read\n");
}
static void dma_init_write(struct NCR_ESP * esp, char * vaddress, int length)
{
printk("mac_esp: dma_init_write\n");
}
static void dma_ints_off(struct NCR_ESP * esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP * esp)
{
enable_irq(esp->irq);
}
/*
* generic dma_irq_p(), unused
*/
static int dma_irq_p(struct NCR_ESP * esp)
{
int i = esp_read(esp->eregs->esp_status);
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_irq_p status %d\n", i);
#endif
return (i & ESP_STAT_INTR);
}
static int dma_irq_p_quick(struct NCR_ESP * esp)
{
/*
* Copied from iosb_dma_irq_p()
*/
int ret = mac_irq_pending(IRQ_MAC_SCSI) || mac_irq_pending(IRQ_MAC_SCSIDRQ);
int sreg = esp_read(esp->eregs->esp_status);
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_irq_p drq %d irq %d sreg %x curr %p disc %p\n",
mac_irq_pending(IRQ_MAC_SCSIDRQ), mac_irq_pending(IRQ_MAC_SCSI),
sreg, esp->current_SC, esp->disconnected_SC);
#endif
sreg &= ESP_STAT_INTR;
if (sreg)
return (sreg);
else
return 0;
}
static void dma_led_off(struct NCR_ESP * esp)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_led_off: called\n");
#endif
}
static void dma_led_on(struct NCR_ESP * esp)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_led_on: called\n");
#endif
}
static int dma_ports_p(struct NCR_ESP * esp)
{
return 0;
}
static void dma_setup(struct NCR_ESP * esp, __u32 addr, int count, int write)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_setup\n");
#endif
if (write) {
dma_init_read(esp, (char *) addr, count);
} else {
dma_init_write(esp, (char *) addr, count);
}
}
static void dma_setup_quick(struct NCR_ESP * esp, __u32 addr, int count, int write)
{
#ifdef DEBUG_MAC_ESP
printk("mac_esp: dma_setup_quick\n");
#endif
}
static struct scsi_host_template driver_template = {
.proc_name = "mac_esp",
.name = "Mac 53C9x SCSI",
.detect = mac_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = mac_esp_release,
.info = esp_info,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = DISABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/*
* Oktagon_esp.c -- Driver for bsc Oktagon
*
* Written by Carsten Pluntke 1998
*
* Based on cyber_esp.c
*/
#if defined(CONFIG_AMIGA) || defined(CONFIG_APUS)
#define USE_BOTTOM_HALF
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/reboot.h>
#include <asm/system.h>
#include <asm/ptrace.h>
#include <asm/pgtable.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "NCR53C9x.h"
#include <linux/zorro.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#ifdef USE_BOTTOM_HALF
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#endif
/* The controller registers can be found in the Z2 config area at these
* offsets:
*/
#define OKTAGON_ESP_ADDR 0x03000
#define OKTAGON_DMA_ADDR 0x01000
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
static void dma_dump_state(struct NCR_ESP *esp);
static void dma_init_read(struct NCR_ESP *esp, __u32 vaddress, int length);
static void dma_init_write(struct NCR_ESP *esp, __u32 vaddress, int length);
static void dma_ints_off(struct NCR_ESP *esp);
static void dma_ints_on(struct NCR_ESP *esp);
static int dma_irq_p(struct NCR_ESP *esp);
static void dma_led_off(struct NCR_ESP *esp);
static void dma_led_on(struct NCR_ESP *esp);
static int dma_ports_p(struct NCR_ESP *esp);
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
static void dma_irq_exit(struct NCR_ESP *esp);
static void dma_invalidate(struct NCR_ESP *esp);
static void dma_mmu_get_scsi_one(struct NCR_ESP *,Scsi_Cmnd *);
static void dma_mmu_get_scsi_sgl(struct NCR_ESP *,Scsi_Cmnd *);
static void dma_mmu_release_scsi_one(struct NCR_ESP *,Scsi_Cmnd *);
static void dma_mmu_release_scsi_sgl(struct NCR_ESP *,Scsi_Cmnd *);
static void dma_advance_sg(Scsi_Cmnd *);
static int oktagon_notify_reboot(struct notifier_block *this, unsigned long code, void *x);
#ifdef USE_BOTTOM_HALF
static void dma_commit(struct work_struct *unused);
long oktag_to_io(long *paddr, long *addr, long len);
long oktag_from_io(long *addr, long *paddr, long len);
static DECLARE_WORK(tq_fake_dma, dma_commit);
#define DMA_MAXTRANSFER 0x8000
#else
/*
* No bottom half. Use transfer directly from IRQ. Find a narrow path
* between too much IRQ overhead and clogging the IRQ for too long.
*/
#define DMA_MAXTRANSFER 0x1000
#endif
static struct notifier_block oktagon_notifier = {
oktagon_notify_reboot,
NULL,
0
};
static long *paddress;
static long *address;
static long len;
static long dma_on;
static int direction;
static struct NCR_ESP *current_esp;
static volatile unsigned char cmd_buffer[16];
/* This is where all commands are put
* before they are trasfered to the ESP chip
* via PIO.
*/
/***************************************************************** Detection */
int oktagon_esp_detect(struct scsi_host_template *tpnt)
{
struct NCR_ESP *esp;
struct zorro_dev *z = NULL;
unsigned long address;
struct ESP_regs *eregs;
while ((z = zorro_find_device(ZORRO_PROD_BSC_OKTAGON_2008, z))) {
unsigned long board = z->resource.start;
if (request_mem_region(board+OKTAGON_ESP_ADDR,
sizeof(struct ESP_regs), "NCR53C9x")) {
/*
* It is a SCSI controller.
* Hardwire Host adapter to SCSI ID 7
*/
address = (unsigned long)ZTWO_VADDR(board);
eregs = (struct ESP_regs *)(address + OKTAGON_ESP_ADDR);
/* This line was 5 lines lower */
esp = esp_allocate(tpnt, (void *)board + OKTAGON_ESP_ADDR, 0);
/* we have to shift the registers only one bit for oktagon */
esp->shift = 1;
esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
udelay(5);
if (esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
return 0; /* Bail out if address did not hold data */
/* Do command transfer with programmed I/O */
esp->do_pio_cmds = 1;
/* Required functions */
esp->dma_bytes_sent = &dma_bytes_sent;
esp->dma_can_transfer = &dma_can_transfer;
esp->dma_dump_state = &dma_dump_state;
esp->dma_init_read = &dma_init_read;
esp->dma_init_write = &dma_init_write;
esp->dma_ints_off = &dma_ints_off;
esp->dma_ints_on = &dma_ints_on;
esp->dma_irq_p = &dma_irq_p;
esp->dma_ports_p = &dma_ports_p;
esp->dma_setup = &dma_setup;
/* Optional functions */
esp->dma_barrier = 0;
esp->dma_drain = 0;
esp->dma_invalidate = &dma_invalidate;
esp->dma_irq_entry = 0;
esp->dma_irq_exit = &dma_irq_exit;
esp->dma_led_on = &dma_led_on;
esp->dma_led_off = &dma_led_off;
esp->dma_poll = 0;
esp->dma_reset = 0;
esp->dma_mmu_get_scsi_one = &dma_mmu_get_scsi_one;
esp->dma_mmu_get_scsi_sgl = &dma_mmu_get_scsi_sgl;
esp->dma_mmu_release_scsi_one = &dma_mmu_release_scsi_one;
esp->dma_mmu_release_scsi_sgl = &dma_mmu_release_scsi_sgl;
esp->dma_advance_sg = &dma_advance_sg;
/* SCSI chip speed */
/* Looking at the quartz of the SCSI board... */
esp->cfreq = 25000000;
/* The DMA registers on the CyberStorm are mapped
* relative to the device (i.e. in the same Zorro
* I/O block).
*/
esp->dregs = (void *)(address + OKTAGON_DMA_ADDR);
paddress = (long *) esp->dregs;
/* ESP register base */
esp->eregs = eregs;
/* Set the command buffer */
esp->esp_command = (volatile unsigned char*) cmd_buffer;
/* Yes, the virtual address. See below. */
esp->esp_command_dvma = (__u32) cmd_buffer;
esp->irq = IRQ_AMIGA_PORTS;
request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
"BSC Oktagon SCSI", esp->ehost);
/* Figure out our scsi ID on the bus */
esp->scsi_id = 7;
/* We don't have a differential SCSI-bus. */
esp->diff = 0;
esp_initialize(esp);
printk("ESP_Oktagon Driver 1.1"
#ifdef USE_BOTTOM_HALF
" [BOTTOM_HALF]"
#else
" [IRQ]"
#endif
" registered.\n");
printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps,esps_in_use);
esps_running = esps_in_use;
current_esp = esp;
register_reboot_notifier(&oktagon_notifier);
return esps_in_use;
}
}
return 0;
}
/*
* On certain configurations the SCSI equipment gets confused on reboot,
* so we have to reset it then.
*/
static int
oktagon_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
{
struct NCR_ESP *esp;
if((code == SYS_DOWN || code == SYS_HALT) && (esp = current_esp))
{
esp_bootup_reset(esp,esp->eregs);
udelay(500); /* Settle time. Maybe unnecessary. */
}
return NOTIFY_DONE;
}
#ifdef USE_BOTTOM_HALF
/*
* The bsc Oktagon controller has no real DMA, so we have to do the 'DMA
* transfer' in the interrupt (Yikes!) or use a bottom half to not to clutter
* IRQ's for longer-than-good.
*
* FIXME
* BIG PROBLEM: 'len' is usually the buffer length, not the expected length
* of the data. So DMA may finish prematurely, further reads lead to
* 'machine check' on APUS systems (don't know about m68k systems, AmigaOS
* deliberately ignores the bus faults) and a normal copy-loop can't
* be exited prematurely just at the right moment by the dma_invalidate IRQ.
* So do it the hard way, write an own copier in assembler and
* catch the exception.
* -- Carsten
*/
static void dma_commit(struct work_struct *unused)
{
long wait,len2,pos;
struct NCR_ESP *esp;
ESPDATA(("Transfer: %ld bytes, Address 0x%08lX, Direction: %d\n",
len,(long) address,direction));
dma_ints_off(current_esp);
pos = 0;
wait = 1;
if(direction) /* write? (memory to device) */
{
while(len > 0)
{
len2 = oktag_to_io(paddress, address+pos, len);
if(!len2)
{
if(wait > 1000)
{
printk("Expedited DMA exit (writing) %ld\n",len);
break;
}
mdelay(wait);
wait *= 2;
}
pos += len2;
len -= len2*sizeof(long);
}
} else {
while(len > 0)
{
len2 = oktag_from_io(address+pos, paddress, len);
if(!len2)
{
if(wait > 1000)
{
printk("Expedited DMA exit (reading) %ld\n",len);
break;
}
mdelay(wait);
wait *= 2;
}
pos += len2;
len -= len2*sizeof(long);
}
}
/* to make esp->shift work */
esp=current_esp;
#if 0
len2 = (esp_read(current_esp->eregs->esp_tclow) & 0xff) |
((esp_read(current_esp->eregs->esp_tcmed) & 0xff) << 8);
/*
* Uh uh. If you see this, len and transfer count registers were out of
* sync. That means really serious trouble.
*/
if(len2)
printk("Eeeek!! Transfer count still %ld!\n",len2);
#endif
/*
* Normally we just need to exit and wait for the interrupt to come.
* But at least one device (my Microtek ScanMaker 630) regularly mis-
* calculates the bytes it should send which is really ugly because
* it locks up the SCSI bus if not accounted for.
*/
if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR))
{
long len = 100;
long trash[10];
/*
* Interrupt bit was not set. Either the device is just plain lazy
* so we give it a 10 ms chance or...
*/
while(len-- && (!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR)))
udelay(100);
if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR))
{
/*
* So we think that the transfer count is out of sync. Since we
* have all we want we are happy and can ditch the trash.
*/
len = DMA_MAXTRANSFER;
while(len-- && (!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR)))
oktag_from_io(trash,paddress,2);
if(!(esp_read(current_esp->eregs->esp_status) & ESP_STAT_INTR))
{
/*
* Things really have gone wrong. If we leave the system in that
* state, the SCSI bus is locked forever. I hope that this will
* turn the system in a more or less running state.
*/
printk("Device is bolixed, trying bus reset...\n");
esp_bootup_reset(current_esp,current_esp->eregs);
}
}
}
ESPDATA(("Transfer_finale: do_data_finale should come\n"));
len = 0;
dma_on = 0;
dma_ints_on(current_esp);
}
#endif
/************************************************************* DMA Functions */
static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
{
/* Since the CyberStorm DMA is fully dedicated to the ESP chip,
* the number of bytes sent (to the ESP chip) equals the number
* of bytes in the FIFO - there is no buffering in the DMA controller.
* XXXX Do I read this right? It is from host to ESP, right?
*/
return fifo_count;
}
static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
unsigned long sz = sp->SCp.this_residual;
if(sz > DMA_MAXTRANSFER)
sz = DMA_MAXTRANSFER;
return sz;
}
static void dma_dump_state(struct NCR_ESP *esp)
{
}
/*
* What the f$@& is this?
*
* Some SCSI devices (like my Microtek ScanMaker 630 scanner) want to transfer
* more data than requested. How much? Dunno. So ditch the bogus data into
* the sink, hoping the device will advance to the next phase sooner or later.
*
* -- Carsten
*/
static long oktag_eva_buffer[16]; /* The data sink */
static void oktag_check_dma(void)
{
struct NCR_ESP *esp;
esp=current_esp;
if(!len)
{
address = oktag_eva_buffer;
len = 2;
/* esp_do_data sets them to zero like len */
esp_write(current_esp->eregs->esp_tclow,2);
esp_write(current_esp->eregs->esp_tcmed,0);
}
}
static void dma_init_read(struct NCR_ESP *esp, __u32 vaddress, int length)
{
/* Zorro is noncached, everything else done using processor. */
/* cache_clear(addr, length); */
if(dma_on)
panic("dma_init_read while dma process is initialized/running!\n");
direction = 0;
address = (long *) vaddress;
current_esp = esp;
len = length;
oktag_check_dma();
dma_on = 1;
}
static void dma_init_write(struct NCR_ESP *esp, __u32 vaddress, int length)
{
/* cache_push(addr, length); */
if(dma_on)
panic("dma_init_write while dma process is initialized/running!\n");
direction = 1;
address = (long *) vaddress;
current_esp = esp;
len = length;
oktag_check_dma();
dma_on = 1;
}
static void dma_ints_off(struct NCR_ESP *esp)
{
disable_irq(esp->irq);
}
static void dma_ints_on(struct NCR_ESP *esp)
{
enable_irq(esp->irq);
}
static int dma_irq_p(struct NCR_ESP *esp)
{
/* It's important to check the DMA IRQ bit in the correct way! */
return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
}
static void dma_led_off(struct NCR_ESP *esp)
{
}
static void dma_led_on(struct NCR_ESP *esp)
{
}
static int dma_ports_p(struct NCR_ESP *esp)
{
return ((amiga_custom.intenar) & IF_PORTS);
}
static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
{
/* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
* so when (write) is true, it actually means READ!
*/
if(write){
dma_init_read(esp, addr, count);
} else {
dma_init_write(esp, addr, count);
}
}
/*
* IRQ entry when DMA transfer is ready to be started
*/
static void dma_irq_exit(struct NCR_ESP *esp)
{
#ifdef USE_BOTTOM_HALF
if(dma_on)
{
schedule_work(&tq_fake_dma);
}
#else
while(len && !dma_irq_p(esp))
{
if(direction)
*paddress = *address++;
else
*address++ = *paddress;
len -= (sizeof(long));
}
len = 0;
dma_on = 0;
#endif
}
/*
* IRQ entry when DMA has just finished
*/
static void dma_invalidate(struct NCR_ESP *esp)
{
}
/*
* Since the processor does the data transfer we have to use the custom
* mmu interface to pass the virtual address, not the physical.
*/
void dma_mmu_get_scsi_one(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
sp->SCp.ptr =
sp->request_buffer;
}
void dma_mmu_get_scsi_sgl(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
sp->SCp.ptr = sg_virt(sp->SCp.buffer);
}
void dma_mmu_release_scsi_one(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
}
void dma_mmu_release_scsi_sgl(struct NCR_ESP *esp, Scsi_Cmnd *sp)
{
}
void dma_advance_sg(Scsi_Cmnd *sp)
{
sp->SCp.ptr = sg_virt(sp->SCp.buffer);
}
#define HOSTS_C
int oktagon_esp_release(struct Scsi_Host *instance)
{
#ifdef MODULE
unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
esp_release();
release_mem_region(address, sizeof(struct ESP_regs));
free_irq(IRQ_AMIGA_PORTS, esp_intr);
unregister_reboot_notifier(&oktagon_notifier);
#endif
return 1;
}
static struct scsi_host_template driver_template = {
.proc_name = "esp-oktagon",
.proc_info = &esp_proc_info,
.name = "BSC Oktagon SCSI",
.detect = oktagon_esp_detect,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.release = oktagon_esp_release,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* -*- mode: asm -*-
* Due to problems while transferring data I've put these routines as assembly
* code.
* Since I'm no PPC assembler guru, the code is just the assembler version of
int oktag_to_io(long *paddr,long *addr,long len)
{
long *addr2 = addr;
for(len=(len+sizeof(long)-1)/sizeof(long);len--;)
*paddr = *addr2++;
return addr2 - addr;
}
int oktag_from_io(long *addr,long *paddr,long len)
{
long *addr2 = addr;
for(len=(len+sizeof(long)-1)/sizeof(long);len--;)
*addr2++ = *paddr;
return addr2 - addr;
}
* assembled using gcc -O2 -S, with two exception catch points where data
* is moved to/from the IO register.
*/
#ifdef CONFIG_APUS
.file "oktagon_io.c"
gcc2_compiled.:
/*
.section ".text"
*/
.align 2
.globl oktag_to_io
.type oktag_to_io,@function
oktag_to_io:
addi 5,5,3
srwi 5,5,2
cmpwi 1,5,0
mr 9,3
mr 3,4
addi 5,5,-1
bc 12,6,.L3
.L5:
cmpwi 1,5,0
lwz 0,0(3)
addi 3,3,4
addi 5,5,-1
exp1: stw 0,0(9)
bc 4,6,.L5
.L3:
ret1: subf 3,4,3
srawi 3,3,2
blr
.Lfe1:
.size oktag_to_io,.Lfe1-oktag_to_io
.align 2
.globl oktag_from_io
.type oktag_from_io,@function
oktag_from_io:
addi 5,5,3
srwi 5,5,2
cmpwi 1,5,0
mr 9,3
addi 5,5,-1
bc 12,6,.L9
.L11:
cmpwi 1,5,0
exp2: lwz 0,0(4)
addi 5,5,-1
stw 0,0(3)
addi 3,3,4
bc 4,6,.L11
.L9:
ret2: subf 3,9,3
srawi 3,3,2
blr
.Lfe2:
.size oktag_from_io,.Lfe2-oktag_from_io
.ident "GCC: (GNU) egcs-2.90.29 980515 (egcs-1.0.3 release)"
/*
* Exception table.
* Second longword shows where to jump when an exception at the addr the first
* longword is pointing to is caught.
*/
.section __ex_table,"a"
.align 2
oktagon_except:
.long exp1,ret1
.long exp2,ret2
#else
/*
The code which follows is for 680x0 based assembler and is meant for
Linux/m68k. It was created by cross compiling the code using the
instructions given above. I then added the four labels used in the
exception handler table at the bottom of this file.
- Kevin <kcozens@interlog.com>
*/
#ifdef CONFIG_AMIGA
.file "oktagon_io.c"
.version "01.01"
gcc2_compiled.:
.text
.align 2
.globl oktag_to_io
.type oktag_to_io,@function
oktag_to_io:
link.w %a6,#0
move.l %d2,-(%sp)
move.l 8(%a6),%a1
move.l 12(%a6),%d1
move.l %d1,%a0
move.l 16(%a6),%d0
addq.l #3,%d0
lsr.l #2,%d0
subq.l #1,%d0
moveq.l #-1,%d2
cmp.l %d0,%d2
jbeq .L3
.L5:
exp1:
move.l (%a0)+,(%a1)
dbra %d0,.L5
clr.w %d0
subq.l #1,%d0
jbcc .L5
.L3:
ret1:
move.l %a0,%d0
sub.l %d1,%d0
asr.l #2,%d0
move.l -4(%a6),%d2
unlk %a6
rts
.Lfe1:
.size oktag_to_io,.Lfe1-oktag_to_io
.align 2
.globl oktag_from_io
.type oktag_from_io,@function
oktag_from_io:
link.w %a6,#0
move.l %d2,-(%sp)
move.l 8(%a6),%d1
move.l 12(%a6),%a1
move.l %d1,%a0
move.l 16(%a6),%d0
addq.l #3,%d0
lsr.l #2,%d0
subq.l #1,%d0
moveq.l #-1,%d2
cmp.l %d0,%d2
jbeq .L9
.L11:
exp2:
move.l (%a1),(%a0)+
dbra %d0,.L11
clr.w %d0
subq.l #1,%d0
jbcc .L11
.L9:
ret2:
move.l %a0,%d0
sub.l %d1,%d0
asr.l #2,%d0
move.l -4(%a6),%d2
unlk %a6
rts
.Lfe2:
.size oktag_from_io,.Lfe2-oktag_from_io
.ident "GCC: (GNU) 2.7.2.1"
/*
* Exception table.
* Second longword shows where to jump when an exception at the addr the first
* longword is pointing to is caught.
*/
.section __ex_table,"a"
.align 2
oktagon_except:
.long exp1,ret1
.long exp2,ret2
#endif
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment