Commit 6a398a3e authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-4.2/drivers' of git://git.kernel.dk/linux-block

Pull block driver updates from Jens Axboe:
 "This contains:

   - a few race fixes for null_blk, from Akinobu Mita.

   - a series of fixes for mtip32xx, from Asai Thambi and Selvan Mani at
     Micron.

   - NVMe:
        * Fix for missing error return on allocation failure, from Axel
          Lin.

        * Code consolidation and cleanups from Christoph.

        * Memory barrier addition, syncing queue count and queue
          pointers. From Jon Derrick.

        * Various fixes from Keith, an addition to support user
          issue reset from sysfs or ioctl, and automatic namespace
          rescan.

        * Fix from Matias, avoiding losing some request flags when
          marking the request failfast.

   - small cleanups and sparse fixups for ps3vram.  From Geert
     Uytterhoeven and Geoff Lavand.

   - s390/dasd dead code removal, from Jarod Wilson.

   - a set of fixes and optimizations for loop, from Ming Lei.

   - conversion to blkdev_reread_part() of loop, dasd, ndb.  From Ming
     Lei.

   - updates to cciss.  From Tomas Henzl"

* 'for-4.2/drivers' of git://git.kernel.dk/linux-block: (44 commits)
  mtip32xx: Fix accessing freed memory
  block: nvme-scsi: Catch kcalloc failure
  NVMe: Fix IO for extended metadata formats
  nvme: don't overwrite req->cmd_flags on sync cmd
  mtip32xx: increase wait time for hba reset
  mtip32xx: fix minor number
  mtip32xx: remove unnecessary sleep in mtip_ftl_rebuild_poll()
  mtip32xx: fix crash on surprise removal of the drive
  mtip32xx: Abort I/O during secure erase operation
  mtip32xx: fix incorrectly setting MTIP_DDF_SEC_LOCK_BIT
  mtip32xx: remove unused variable 'port->allocated'
  mtip32xx: fix rmmod issue
  MAINTAINERS: Update ps3vram block driver
  block/ps3vram: Remove obsolete reference to MTD
  block/ps3vram: Fix sparse warnings
  NVMe: Automatic namespace rescan
  NVMe: Memory barrier before queue_count is incremented
  NVMe: add sysfs and ioctl controller reset
  null_blk: restart request processing on completion handler
  null_blk: prevent timer handler running on a different CPU where started
  ...
parents bfffa1cc 98f57c51
......@@ -7982,6 +7982,7 @@ F: sound/ppc/snd_ps3*
PS3VRAM DRIVER
M: Jim Paris <jim@jtan.com>
M: Geoff Levand <geoff@infradead.org>
L: linuxppc-dev@lists.ozlabs.org
S: Maintained
F: drivers/block/ps3vram.c
......
......@@ -86,8 +86,6 @@ static DEFINE_MUTEX(loop_index_mutex);
static int max_part;
static int part_shift;
static struct workqueue_struct *loop_wq;
static int transfer_xor(struct loop_device *lo, int cmd,
struct page *raw_page, unsigned raw_off,
struct page *loop_page, unsigned loop_off,
......@@ -476,6 +474,28 @@ static int loop_flush(struct loop_device *lo)
return loop_switch(lo, NULL);
}
static void loop_reread_partitions(struct loop_device *lo,
struct block_device *bdev)
{
int rc;
/*
* bd_mutex has been held already in release path, so don't
* acquire it if this function is called in such case.
*
* If the reread partition isn't from release path, lo_refcnt
* must be at least one and it can only become zero when the
* current holder is released.
*/
if (!atomic_read(&lo->lo_refcnt))
rc = __blkdev_reread_part(bdev);
else
rc = blkdev_reread_part(bdev);
if (rc)
pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
__func__, lo->lo_number, lo->lo_file_name, rc);
}
/*
* loop_change_fd switched the backing store of a loopback device to
* a new file. This is useful for operating system installers to free up
......@@ -524,7 +544,7 @@ static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
fput(old_file);
if (lo->lo_flags & LO_FLAGS_PARTSCAN)
ioctl_by_bdev(bdev, BLKRRPART, 0);
loop_reread_partitions(lo, bdev);
return 0;
out_putf:
......@@ -725,6 +745,12 @@ static int loop_set_fd(struct loop_device *lo, fmode_t mode,
size = get_loop_size(lo, file);
if ((loff_t)(sector_t)size != size)
goto out_putf;
error = -ENOMEM;
lo->wq = alloc_workqueue("kloopd%d",
WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 16,
lo->lo_number);
if (!lo->wq)
goto out_putf;
error = 0;
......@@ -755,7 +781,7 @@ static int loop_set_fd(struct loop_device *lo, fmode_t mode,
if (part_shift)
lo->lo_flags |= LO_FLAGS_PARTSCAN;
if (lo->lo_flags & LO_FLAGS_PARTSCAN)
ioctl_by_bdev(bdev, BLKRRPART, 0);
loop_reread_partitions(lo, bdev);
/* Grab the block_device to prevent its destruction after we
* put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
......@@ -827,7 +853,7 @@ static int loop_clr_fd(struct loop_device *lo)
* <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
* command to fail with EBUSY.
*/
if (lo->lo_refcnt > 1) {
if (atomic_read(&lo->lo_refcnt) > 1) {
lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
mutex_unlock(&lo->lo_ctl_mutex);
return 0;
......@@ -836,6 +862,9 @@ static int loop_clr_fd(struct loop_device *lo)
if (filp == NULL)
return -EINVAL;
/* freeze request queue during the transition */
blk_mq_freeze_queue(lo->lo_queue);
spin_lock_irq(&lo->lo_lock);
lo->lo_state = Lo_rundown;
lo->lo_backing_file = NULL;
......@@ -867,11 +896,15 @@ static int loop_clr_fd(struct loop_device *lo)
lo->lo_state = Lo_unbound;
/* This is safe: open() is still holding a reference. */
module_put(THIS_MODULE);
blk_mq_unfreeze_queue(lo->lo_queue);
if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
ioctl_by_bdev(bdev, BLKRRPART, 0);
loop_reread_partitions(lo, bdev);
lo->lo_flags = 0;
if (!part_shift)
lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
destroy_workqueue(lo->wq);
lo->wq = NULL;
mutex_unlock(&lo->lo_ctl_mutex);
/*
* Need not hold lo_ctl_mutex to fput backing file.
......@@ -943,7 +976,7 @@ loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
!(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
lo->lo_flags |= LO_FLAGS_PARTSCAN;
lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
loop_reread_partitions(lo, lo->lo_device);
}
lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
......@@ -1324,9 +1357,7 @@ static int lo_open(struct block_device *bdev, fmode_t mode)
goto out;
}
mutex_lock(&lo->lo_ctl_mutex);
lo->lo_refcnt++;
mutex_unlock(&lo->lo_ctl_mutex);
atomic_inc(&lo->lo_refcnt);
out:
mutex_unlock(&loop_index_mutex);
return err;
......@@ -1337,11 +1368,10 @@ static void lo_release(struct gendisk *disk, fmode_t mode)
struct loop_device *lo = disk->private_data;
int err;
mutex_lock(&lo->lo_ctl_mutex);
if (--lo->lo_refcnt)
goto out;
if (atomic_dec_return(&lo->lo_refcnt))
return;
mutex_lock(&lo->lo_ctl_mutex);
if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
/*
* In autoclear mode, stop the loop thread
......@@ -1358,7 +1388,6 @@ static void lo_release(struct gendisk *disk, fmode_t mode)
loop_flush(lo);
}
out:
mutex_unlock(&lo->lo_ctl_mutex);
}
......@@ -1425,9 +1454,13 @@ static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
struct loop_device *lo = cmd->rq->q->queuedata;
blk_mq_start_request(bd->rq);
if (lo->lo_state != Lo_bound)
return -EIO;
if (cmd->rq->cmd_flags & REQ_WRITE) {
struct loop_device *lo = cmd->rq->q->queuedata;
bool need_sched = true;
......@@ -1441,9 +1474,9 @@ static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
spin_unlock_irq(&lo->lo_lock);
if (need_sched)
queue_work(loop_wq, &lo->write_work);
queue_work(lo->wq, &lo->write_work);
} else {
queue_work(loop_wq, &cmd->read_work);
queue_work(lo->wq, &cmd->read_work);
}
return BLK_MQ_RQ_QUEUE_OK;
......@@ -1455,9 +1488,6 @@ static void loop_handle_cmd(struct loop_cmd *cmd)
struct loop_device *lo = cmd->rq->q->queuedata;
int ret = -EIO;
if (lo->lo_state != Lo_bound)
goto failed;
if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
goto failed;
......@@ -1594,6 +1624,7 @@ static int loop_add(struct loop_device **l, int i)
disk->flags |= GENHD_FL_NO_PART_SCAN;
disk->flags |= GENHD_FL_EXT_DEVT;
mutex_init(&lo->lo_ctl_mutex);
atomic_set(&lo->lo_refcnt, 0);
lo->lo_number = i;
spin_lock_init(&lo->lo_lock);
disk->major = LOOP_MAJOR;
......@@ -1711,7 +1742,7 @@ static long loop_control_ioctl(struct file *file, unsigned int cmd,
mutex_unlock(&lo->lo_ctl_mutex);
break;
}
if (lo->lo_refcnt > 0) {
if (atomic_read(&lo->lo_refcnt) > 0) {
ret = -EBUSY;
mutex_unlock(&lo->lo_ctl_mutex);
break;
......@@ -1806,13 +1837,6 @@ static int __init loop_init(void)
goto misc_out;
}
loop_wq = alloc_workqueue("kloopd",
WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 0);
if (!loop_wq) {
err = -ENOMEM;
goto misc_out;
}
blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
THIS_MODULE, loop_probe, NULL, NULL);
......@@ -1850,8 +1874,6 @@ static void __exit loop_exit(void)
blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
unregister_blkdev(LOOP_MAJOR, "loop");
destroy_workqueue(loop_wq);
misc_deregister(&loop_misc);
}
......
......@@ -28,7 +28,7 @@ struct loop_func_table;
struct loop_device {
int lo_number;
int lo_refcnt;
atomic_t lo_refcnt;
loff_t lo_offset;
loff_t lo_sizelimit;
int lo_flags;
......@@ -54,6 +54,7 @@ struct loop_device {
gfp_t old_gfp_mask;
spinlock_t lo_lock;
struct workqueue_struct *wq;
struct list_head write_cmd_head;
struct work_struct write_work;
bool write_started;
......
......@@ -163,12 +163,6 @@ static bool mtip_check_surprise_removal(struct pci_dev *pdev)
else
dev_warn(&dd->pdev->dev,
"%s: dd->queue is NULL\n", __func__);
if (dd->port) {
set_bit(MTIP_PF_SR_CLEANUP_BIT, &dd->port->flags);
wake_up_interruptible(&dd->port->svc_wait);
} else
dev_warn(&dd->pdev->dev,
"%s: dd->port is NULL\n", __func__);
return true; /* device removed */
}
......@@ -269,8 +263,11 @@ static int mtip_hba_reset(struct driver_data *dd)
/* Flush */
readl(dd->mmio + HOST_CTL);
/* Spin for up to 2 seconds, waiting for reset acknowledgement */
timeout = jiffies + msecs_to_jiffies(2000);
/*
* Spin for up to 10 seconds waiting for reset acknowledgement. Spec
* is 1 sec but in LUN failure conditions, up to 10 secs are required
*/
timeout = jiffies + msecs_to_jiffies(10000);
do {
mdelay(10);
if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))
......@@ -623,8 +620,7 @@ static void mtip_handle_tfe(struct driver_data *dd)
set_bit(MTIP_PF_EH_ACTIVE_BIT, &port->flags);
if (test_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags) &&
test_bit(MTIP_TAG_INTERNAL, port->allocated)) {
if (test_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags)) {
cmd = mtip_cmd_from_tag(dd, MTIP_TAG_INTERNAL);
dbg_printk(MTIP_DRV_NAME " TFE for the internal command\n");
......@@ -896,6 +892,10 @@ static inline irqreturn_t mtip_handle_irq(struct driver_data *data)
/* Acknowledge the interrupt status on the port.*/
port_stat = readl(port->mmio + PORT_IRQ_STAT);
if (unlikely(port_stat == 0xFFFFFFFF)) {
mtip_check_surprise_removal(dd->pdev);
return IRQ_HANDLED;
}
writel(port_stat, port->mmio + PORT_IRQ_STAT);
/* Demux port status */
......@@ -991,15 +991,10 @@ static bool mtip_pause_ncq(struct mtip_port *port,
reply = port->rxfis + RX_FIS_D2H_REG;
task_file_data = readl(port->mmio+PORT_TFDATA);
if (fis->command == ATA_CMD_SEC_ERASE_UNIT)
clear_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag);
if ((task_file_data & 1))
return false;
if (fis->command == ATA_CMD_SEC_ERASE_PREP) {
set_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags);
set_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag);
port->ic_pause_timer = jiffies;
return true;
} else if ((fis->command == ATA_CMD_DOWNLOAD_MICRO) &&
......@@ -1011,8 +1006,10 @@ static bool mtip_pause_ncq(struct mtip_port *port,
((fis->command == 0xFC) &&
(fis->features == 0x27 || fis->features == 0x72 ||
fis->features == 0x62 || fis->features == 0x26))) {
clear_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag);
/* Com reset after secure erase or lowlevel format */
mtip_restart_port(port);
clear_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags);
return false;
}
......@@ -1112,9 +1109,10 @@ static int mtip_exec_internal_command(struct mtip_port *port,
int_cmd = mtip_get_int_command(dd);
set_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags);
port->ic_pause_timer = 0;
clear_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags);
if (fis->command == ATA_CMD_SEC_ERASE_PREP)
set_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags);
clear_bit(MTIP_PF_DM_ACTIVE_BIT, &port->flags);
if (atomic == GFP_KERNEL) {
......@@ -1251,11 +1249,11 @@ static int mtip_exec_internal_command(struct mtip_port *port,
exec_ic_exit:
/* Clear the allocated and active bits for the internal command. */
mtip_put_int_command(dd, int_cmd);
clear_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags);
if (rv >= 0 && mtip_pause_ncq(port, fis)) {
/* NCQ paused */
return rv;
}
clear_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags);
wake_up_interruptible(&port->svc_wait);
return rv;
......@@ -2625,18 +2623,6 @@ static ssize_t mtip_hw_read_registers(struct file *f, char __user *ubuf,
readl(dd->mmio + HOST_IRQ_STAT));
size += sprintf(&buf[size], "\n");
size += sprintf(&buf[size], "L/ Allocated : [ 0x");
for (n = dd->slot_groups-1; n >= 0; n--) {
if (sizeof(long) > sizeof(u32))
group_allocated =
dd->port->allocated[n/2] >> (32*(n&1));
else
group_allocated = dd->port->allocated[n];
size += sprintf(&buf[size], "%08X ", group_allocated);
}
size += sprintf(&buf[size], "]\n");
size += sprintf(&buf[size], "L/ Commands in Q : [ 0x");
for (n = dd->slot_groups-1; n >= 0; n--) {
......@@ -2780,48 +2766,6 @@ static void mtip_hw_debugfs_exit(struct driver_data *dd)
debugfs_remove_recursive(dd->dfs_node);
}
static int mtip_free_orphan(struct driver_data *dd)
{
struct kobject *kobj;
if (dd->bdev) {
if (dd->bdev->bd_holders >= 1)
return -2;
bdput(dd->bdev);
dd->bdev = NULL;
}
mtip_hw_debugfs_exit(dd);
spin_lock(&rssd_index_lock);
ida_remove(&rssd_index_ida, dd->index);
spin_unlock(&rssd_index_lock);
if (!test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag) &&
test_bit(MTIP_DDF_REBUILD_FAILED_BIT, &dd->dd_flag)) {
put_disk(dd->disk);
} else {
if (dd->disk) {
kobj = kobject_get(&disk_to_dev(dd->disk)->kobj);
if (kobj) {
mtip_hw_sysfs_exit(dd, kobj);
kobject_put(kobj);
}
del_gendisk(dd->disk);
dd->disk = NULL;
}
if (dd->queue) {
dd->queue->queuedata = NULL;
blk_cleanup_queue(dd->queue);
blk_mq_free_tag_set(&dd->tags);
dd->queue = NULL;
}
}
kfree(dd);
return 0;
}
/*
* Perform any init/resume time hardware setup
*
......@@ -2944,7 +2888,6 @@ static int mtip_ftl_rebuild_poll(struct driver_data *dd)
mtip_block_initialize(dd);
return 0;
}
ssleep(10);
} while (time_before(jiffies, timeout));
/* Check for timeout */
......@@ -2969,7 +2912,6 @@ static int mtip_service_thread(void *data)
unsigned long slot, slot_start, slot_wrap;
unsigned int num_cmd_slots = dd->slot_groups * 32;
struct mtip_port *port = dd->port;
int ret;
while (1) {
if (kthread_should_stop() ||
......@@ -2990,10 +2932,6 @@ static int mtip_service_thread(void *data)
test_bit(MTIP_PF_SVC_THD_STOP_BIT, &port->flags))
goto st_out;
/* If I am an orphan, start self cleanup */
if (test_bit(MTIP_PF_SR_CLEANUP_BIT, &port->flags))
break;
if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT,
&dd->dd_flag)))
goto st_out;
......@@ -3047,26 +2985,6 @@ static int mtip_service_thread(void *data)
}
}
/* wait for pci remove to exit */
while (1) {
if (test_bit(MTIP_DDF_REMOVE_DONE_BIT, &dd->dd_flag))
break;
msleep_interruptible(1000);
if (kthread_should_stop())
goto st_out;
}
while (1) {
ret = mtip_free_orphan(dd);
if (!ret) {
/* NOTE: All data structures are invalid, do not
* access any here */
return 0;
}
msleep_interruptible(1000);
if (kthread_should_stop())
goto st_out;
}
st_out:
return 0;
}
......@@ -3394,6 +3312,7 @@ static int mtip_hw_exit(struct driver_data *dd)
/* Release the IRQ. */
irq_set_affinity_hint(dd->pdev->irq, NULL);
devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd);
msleep(1000);
/* Free dma regions */
mtip_dma_free(dd);
......@@ -3699,6 +3618,26 @@ static const struct block_device_operations mtip_block_ops = {
.owner = THIS_MODULE
};
static inline bool is_se_active(struct driver_data *dd)
{
if (unlikely(test_bit(MTIP_PF_SE_ACTIVE_BIT, &dd->port->flags))) {
if (dd->port->ic_pause_timer) {
unsigned long to = dd->port->ic_pause_timer +
msecs_to_jiffies(1000);
if (time_after(jiffies, to)) {
clear_bit(MTIP_PF_SE_ACTIVE_BIT,
&dd->port->flags);
clear_bit(MTIP_DDF_SEC_LOCK_BIT, &dd->dd_flag);
dd->port->ic_pause_timer = 0;
wake_up_interruptible(&dd->port->svc_wait);
return false;
}
}
return true;
}
return false;
}
/*
* Block layer make request function.
*
......@@ -3716,6 +3655,9 @@ static int mtip_submit_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq);
unsigned int nents;
if (is_se_active(dd))
return -ENODATA;
if (unlikely(dd->dd_flag & MTIP_DDF_STOP_IO)) {
if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT,
&dd->dd_flag))) {
......@@ -3900,7 +3842,8 @@ static int mtip_block_initialize(struct driver_data *dd)
dd->disk->driverfs_dev = &dd->pdev->dev;
dd->disk->major = dd->major;
dd->disk->first_minor = dd->instance * MTIP_MAX_MINORS;
dd->disk->first_minor = index * MTIP_MAX_MINORS;
dd->disk->minors = MTIP_MAX_MINORS;
dd->disk->fops = &mtip_block_ops;
dd->disk->private_data = dd;
dd->index = index;
......@@ -4066,52 +4009,51 @@ static int mtip_block_remove(struct driver_data *dd)
{
struct kobject *kobj;
if (!dd->sr) {
mtip_hw_debugfs_exit(dd);
mtip_hw_debugfs_exit(dd);
if (dd->mtip_svc_handler) {
set_bit(MTIP_PF_SVC_THD_STOP_BIT, &dd->port->flags);
wake_up_interruptible(&dd->port->svc_wait);
kthread_stop(dd->mtip_svc_handler);
}
if (dd->mtip_svc_handler) {
set_bit(MTIP_PF_SVC_THD_STOP_BIT, &dd->port->flags);
wake_up_interruptible(&dd->port->svc_wait);
kthread_stop(dd->mtip_svc_handler);
}
/* Clean up the sysfs attributes, if created */
if (test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag)) {
kobj = kobject_get(&disk_to_dev(dd->disk)->kobj);
if (kobj) {
mtip_hw_sysfs_exit(dd, kobj);
kobject_put(kobj);
}
/* Clean up the sysfs attributes, if created */
if (test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag)) {
kobj = kobject_get(&disk_to_dev(dd->disk)->kobj);
if (kobj) {
mtip_hw_sysfs_exit(dd, kobj);
kobject_put(kobj);
}
}
if (!dd->sr)
mtip_standby_drive(dd);
/*
* Delete our gendisk structure. This also removes the device
* from /dev
*/
if (dd->bdev) {
bdput(dd->bdev);
dd->bdev = NULL;
}
if (dd->disk) {
if (dd->disk->queue) {
del_gendisk(dd->disk);
blk_cleanup_queue(dd->queue);
blk_mq_free_tag_set(&dd->tags);
dd->queue = NULL;
} else
put_disk(dd->disk);
}
dd->disk = NULL;
spin_lock(&rssd_index_lock);
ida_remove(&rssd_index_ida, dd->index);
spin_unlock(&rssd_index_lock);
} else {
else
dev_info(&dd->pdev->dev, "device %s surprise removal\n",
dd->disk->disk_name);
/*
* Delete our gendisk structure. This also removes the device
* from /dev
*/
if (dd->bdev) {
bdput(dd->bdev);
dd->bdev = NULL;
}
if (dd->disk) {
del_gendisk(dd->disk);
if (dd->disk->queue) {
blk_cleanup_queue(dd->queue);
blk_mq_free_tag_set(&dd->tags);
dd->queue = NULL;
}
put_disk(dd->disk);
}
dd->disk = NULL;
spin_lock(&rssd_index_lock);
ida_remove(&rssd_index_ida, dd->index);
spin_unlock(&rssd_index_lock);
/* De-initialize the protocol layer. */
mtip_hw_exit(dd);
......@@ -4140,12 +4082,12 @@ static int mtip_block_shutdown(struct driver_data *dd)
dev_info(&dd->pdev->dev,
"Shutting down %s ...\n", dd->disk->disk_name);
del_gendisk(dd->disk);
if (dd->disk->queue) {
del_gendisk(dd->disk);
blk_cleanup_queue(dd->queue);
blk_mq_free_tag_set(&dd->tags);
} else
put_disk(dd->disk);
}
put_disk(dd->disk);
dd->disk = NULL;
dd->queue = NULL;
}
......@@ -4507,6 +4449,7 @@ static void mtip_pci_remove(struct pci_dev *pdev)
"Completion workers still active!\n");
}
blk_mq_stop_hw_queues(dd->queue);
/* Clean up the block layer. */
mtip_block_remove(dd);
......@@ -4524,10 +4467,7 @@ static void mtip_pci_remove(struct pci_dev *pdev)
list_del_init(&dd->remove_list);
spin_unlock_irqrestore(&dev_lock, flags);
if (!dd->sr)
kfree(dd);
else
set_bit(MTIP_DDF_REMOVE_DONE_BIT, &dd->dd_flag);
kfree(dd);
pcim_iounmap_regions(pdev, 1 << MTIP_ABAR);
pci_set_drvdata(pdev, NULL);
......
......@@ -142,7 +142,6 @@ enum {
MTIP_PF_SVC_THD_ACTIVE_BIT = 4,
MTIP_PF_ISSUE_CMDS_BIT = 5,
MTIP_PF_REBUILD_BIT = 6,
MTIP_PF_SR_CLEANUP_BIT = 7,
MTIP_PF_SVC_THD_STOP_BIT = 8,
/* below are bit numbers in 'dd_flag' defined in driver_data */
......@@ -150,7 +149,6 @@ enum {
MTIP_DDF_REMOVE_PENDING_BIT = 1,
MTIP_DDF_OVER_TEMP_BIT = 2,
MTIP_DDF_WRITE_PROTECT_BIT = 3,
MTIP_DDF_REMOVE_DONE_BIT = 4,
MTIP_DDF_CLEANUP_BIT = 5,
MTIP_DDF_RESUME_BIT = 6,
MTIP_DDF_INIT_DONE_BIT = 7,
......@@ -412,19 +410,13 @@ struct mtip_port {
* by the DMA when the driver issues internal commands.
*/
dma_addr_t sector_buffer_dma;
/*
* Bit significant, used to determine if a command slot has
* been allocated. i.e. the slot is in use. Bits are cleared
* when the command slot and all associated data structures
* are no longer needed.
*/
u16 *log_buf;
dma_addr_t log_buf_dma;
u8 *smart_buf;
dma_addr_t smart_buf_dma;
unsigned long allocated[SLOTBITS_IN_LONGS];
/*
* used to queue commands when an internal command is in progress
* or error handling is active
......
......@@ -711,7 +711,7 @@ static int __nbd_ioctl(struct block_device *bdev, struct nbd_device *nbd,
bdev->bd_inode->i_size = 0;
set_capacity(nbd->disk, 0);
if (max_part > 0)
ioctl_by_bdev(bdev, BLKRRPART, 0);
blkdev_reread_part(bdev);
if (nbd->disconnect) /* user requested, ignore socket errors */
return 0;
return nbd->harderror;
......
......@@ -243,6 +243,17 @@ static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
cmd = container_of(entry, struct nullb_cmd, ll_list);
entry = entry->next;
end_cmd(cmd);
if (cmd->rq) {
struct request_queue *q = cmd->rq->q;
if (!q->mq_ops && blk_queue_stopped(q)) {
spin_lock(q->queue_lock);
if (blk_queue_stopped(q))
blk_start_queue(q);
spin_unlock(q->queue_lock);
}
}
} while (entry);
}
......@@ -257,7 +268,7 @@ static void null_cmd_end_timer(struct nullb_cmd *cmd)
if (llist_add(&cmd->ll_list, &cq->list)) {
ktime_t kt = ktime_set(0, completion_nsec);
hrtimer_start(&cq->timer, kt, HRTIMER_MODE_REL);
hrtimer_start(&cq->timer, kt, HRTIMER_MODE_REL_PINNED);
}
put_cpu();
......@@ -334,6 +345,7 @@ static int null_rq_prep_fn(struct request_queue *q, struct request *req)
req->special = cmd;
return BLKPREP_OK;
}
blk_stop_queue(q);
return BLKPREP_DEFER;
}
......
......@@ -29,6 +29,7 @@
#include <linux/kdev_t.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/list_sort.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
......@@ -80,6 +81,7 @@ static wait_queue_head_t nvme_kthread_wait;
static struct class *nvme_class;
static void nvme_reset_failed_dev(struct work_struct *ws);
static int nvme_reset(struct nvme_dev *dev);
static int nvme_process_cq(struct nvme_queue *nvmeq);
struct async_cmd_info {
......@@ -102,6 +104,7 @@ struct nvme_queue {
spinlock_t q_lock;
struct nvme_command *sq_cmds;
volatile struct nvme_completion *cqes;
struct blk_mq_tags **tags;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
u32 __iomem *q_db;
......@@ -114,7 +117,6 @@ struct nvme_queue {
u8 cq_phase;
u8 cqe_seen;
struct async_cmd_info cmdinfo;
struct blk_mq_hw_ctx *hctx;
};
/*
......@@ -182,9 +184,12 @@ static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[0];
WARN_ON(nvmeq->hctx);
nvmeq->hctx = hctx;
WARN_ON(hctx_idx != 0);
WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
WARN_ON(nvmeq->tags);
hctx->driver_data = nvmeq;
nvmeq->tags = &dev->admin_tagset.tags[0];
return 0;
}
......@@ -201,27 +206,16 @@ static int nvme_admin_init_request(void *data, struct request *req,
return 0;
}
static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct nvme_queue *nvmeq = hctx->driver_data;
nvmeq->hctx = NULL;
}
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[
(hctx_idx % dev->queue_count) + 1];
if (!nvmeq->hctx)
nvmeq->hctx = hctx;
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
/* nvmeq queues are shared between namespaces. We assume here that
* blk-mq map the tags so they match up with the nvme queue tags. */
WARN_ON(nvmeq->hctx->tags != hctx->tags);
if (!nvmeq->tags)
nvmeq->tags = &dev->tagset.tags[hctx_idx];
WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
hctx->driver_data = nvmeq;
return 0;
}
......@@ -307,9 +301,16 @@ static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
++nvmeq->dev->event_limit;
if (status == NVME_SC_SUCCESS)
dev_warn(nvmeq->q_dmadev,
"async event result %08x\n", result);
if (status != NVME_SC_SUCCESS)
return;
switch (result & 0xff07) {
case NVME_AER_NOTICE_NS_CHANGED:
dev_info(nvmeq->q_dmadev, "rescanning\n");
schedule_work(&nvmeq->dev->scan_work);
default:
dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
}
}
static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
......@@ -320,7 +321,7 @@ static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
u16 status = le16_to_cpup(&cqe->status) >> 1;
u32 result = le32_to_cpup(&cqe->result);
blk_mq_free_hctx_request(nvmeq->hctx, req);
blk_mq_free_request(req);
dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
++nvmeq->dev->abort_limit;
......@@ -333,14 +334,13 @@ static void async_completion(struct nvme_queue *nvmeq, void *ctx,
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
blk_mq_free_request(cmdinfo->req);
}
static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
unsigned int tag)
{
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
return blk_mq_rq_to_pdu(req);
}
......@@ -445,7 +445,7 @@ static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
(unsigned long) rq, gfp);
}
void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
{
const int last_prp = dev->page_size / 8 - 1;
int i;
......@@ -605,22 +605,30 @@ static void req_completion(struct nvme_queue *nvmeq, void *ctx,
spin_unlock_irqrestore(req->q->queue_lock, flags);
return;
}
req->errors = nvme_error_status(status);
if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
req->errors = status;
} else {
req->errors = nvme_error_status(status);
}
} else
req->errors = 0;
if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
u32 result = le32_to_cpup(&cqe->result);
req->special = (void *)(uintptr_t)result;
}
if (cmd_rq->aborted)
dev_warn(&nvmeq->dev->pci_dev->dev,
dev_warn(nvmeq->dev->dev,
"completing aborted command with status:%04x\n",
status);
if (iod->nents) {
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
}
}
......@@ -630,8 +638,8 @@ static void req_completion(struct nvme_queue *nvmeq, void *ctx,
}
/* length is in bytes. gfp flags indicates whether we may sleep. */
int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
gfp_t gfp)
static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
int total_len, gfp_t gfp)
{
struct dma_pool *pool;
int length = total_len;
......@@ -709,6 +717,23 @@ int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
return total_len;
}
static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
struct nvme_iod *iod)
{
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
cmnd->rw.command_id = req->tag;
if (req->nr_phys_segments) {
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
}
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
}
/*
* We reuse the small pool to allocate the 16-byte range here as it is not
* worth having a special pool for these or additional cases to handle freeing
......@@ -807,11 +832,15 @@ static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
return 0;
}
/*
* NOTE: ns is NULL when called on the admin queue.
*/
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_queue *nvmeq = hctx->driver_data;
struct nvme_dev *dev = nvmeq->dev;
struct request *req = bd->rq;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod;
......@@ -822,15 +851,16 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
* unless this namespace is formated such that the metadata can be
* stripped/generated by the controller with PRACT=1.
*/
if (ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8)) {
if (ns && ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8) &&
req->cmd_type != REQ_TYPE_DRV_PRIV) {
req->errors = -EFAULT;
blk_mq_complete_request(req);
return BLK_MQ_RQ_QUEUE_OK;
}
}
iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
if (!iod)
return BLK_MQ_RQ_QUEUE_BUSY;
......@@ -841,8 +871,7 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
* as it is not worth having a special pool for these or
* additional cases to handle freeing the iod.
*/
range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
GFP_ATOMIC,
range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
&iod->first_dma);
if (!range)
goto retry_cmd;
......@@ -860,9 +889,8 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
goto retry_cmd;
if (blk_rq_bytes(req) !=
nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
iod->nents, dma_dir);
nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
goto retry_cmd;
}
if (blk_integrity_rq(req)) {
......@@ -884,7 +912,9 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
nvme_set_info(cmd, iod, req_completion);
spin_lock_irq(&nvmeq->q_lock);
if (req->cmd_flags & REQ_DISCARD)
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
nvme_submit_priv(nvmeq, req, iod);
else if (req->cmd_flags & REQ_DISCARD)
nvme_submit_discard(nvmeq, ns, req, iod);
else if (req->cmd_flags & REQ_FLUSH)
nvme_submit_flush(nvmeq, ns, req->tag);
......@@ -896,10 +926,10 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
return BLK_MQ_RQ_QUEUE_OK;
error_cmd:
nvme_free_iod(nvmeq->dev, iod);
nvme_free_iod(dev, iod);
return BLK_MQ_RQ_QUEUE_ERROR;
retry_cmd:
nvme_free_iod(nvmeq->dev, iod);
nvme_free_iod(dev, iod);
return BLK_MQ_RQ_QUEUE_BUSY;
}
......@@ -942,15 +972,6 @@ static int nvme_process_cq(struct nvme_queue *nvmeq)
return 1;
}
/* Admin queue isn't initialized as a request queue. If at some point this
* happens anyway, make sure to notify the user */
static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
WARN_ON_ONCE(1);
return BLK_MQ_RQ_QUEUE_ERROR;
}
static irqreturn_t nvme_irq(int irq, void *data)
{
irqreturn_t result;
......@@ -972,46 +993,61 @@ static irqreturn_t nvme_irq_check(int irq, void *data)
return IRQ_WAKE_THREAD;
}
struct sync_cmd_info {
struct task_struct *task;
u32 result;
int status;
};
static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct sync_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
wake_up_process(cmdinfo->task);
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
u32 *result, unsigned timeout)
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, void __user *ubuffer, unsigned bufflen,
u32 *result, unsigned timeout)
{
struct sync_cmd_info cmdinfo;
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
bool write = cmd->common.opcode & 1;
struct bio *bio = NULL;
struct request *req;
int ret;
cmdinfo.task = current;
cmdinfo.status = -EINTR;
req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
cmd->common.command_id = req->tag;
req->cmd_type = REQ_TYPE_DRV_PRIV;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
req->__data_len = 0;
req->__sector = (sector_t) -1;
req->bio = req->biotail = NULL;
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
req->cmd = (unsigned char *)cmd;
req->cmd_len = sizeof(struct nvme_command);
req->special = (void *)0;
set_current_state(TASK_UNINTERRUPTIBLE);
nvme_submit_cmd(nvmeq, cmd);
schedule();
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
if (ret)
goto out;
} else if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
if (ret)
goto out;
bio = req->bio;
}
blk_execute_rq(req->q, NULL, req, 0);
if (bio)
blk_rq_unmap_user(bio);
if (result)
*result = cmdinfo.result;
return cmdinfo.status;
*result = (u32)(uintptr_t)req->special;
ret = req->errors;
out:
blk_mq_free_request(req);
return ret;
}
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
}
static int nvme_submit_async_admin_req(struct nvme_dev *dev)
......@@ -1033,7 +1069,7 @@ static int nvme_submit_async_admin_req(struct nvme_dev *dev)
c.common.opcode = nvme_admin_async_event;
c.common.command_id = req->tag;
blk_mq_free_hctx_request(nvmeq->hctx, req);
blk_mq_free_request(req);
return __nvme_submit_cmd(nvmeq, &c);
}
......@@ -1060,41 +1096,6 @@ static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
return nvme_submit_cmd(nvmeq, cmd);
}
static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
int res;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
res = nvme_submit_sync_cmd(req, cmd, result, timeout);
blk_mq_free_request(req);
return res;
}
int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
}
int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_command *cmd, u32 *result)
{
int res;
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
false);
if (IS_ERR(req))
return PTR_ERR(req);
res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
blk_mq_free_request(req);
return res;
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
......@@ -1103,7 +1104,7 @@ static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_admin_cmd(dev, &c, NULL);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
......@@ -1112,6 +1113,10 @@ static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
......@@ -1120,7 +1125,7 @@ static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_admin_cmd(dev, &c, NULL);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
......@@ -1129,6 +1134,10 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
* is attached to the request.
*/
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
......@@ -1137,7 +1146,7 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_admin_cmd(dev, &c, NULL);
return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
......@@ -1150,18 +1159,43 @@ static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
dma_addr_t dma_addr)
int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c;
struct nvme_command c = {
.identify.opcode = nvme_admin_identify,
.identify.cns = cpu_to_le32(1),
};
int error;
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.prp1 = cpu_to_le64(dma_addr);
c.identify.cns = cpu_to_le32(cns);
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
return nvme_submit_admin_cmd(dev, &c, NULL);
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
struct nvme_id_ns **id)
{
struct nvme_command c = {
.identify.opcode = nvme_admin_identify,
.identify.nsid = cpu_to_le32(nsid),
};
int error;
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ns));
if (error)
kfree(*id);
return error;
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
......@@ -1175,7 +1209,8 @@ int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return nvme_submit_admin_cmd(dev, &c, result);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
result, 0);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
......@@ -1189,7 +1224,30 @@ int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return nvme_submit_admin_cmd(dev, &c, result);
return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
result, 0);
}
int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
{
struct nvme_command c = {
.common.opcode = nvme_admin_get_log_page,
.common.nsid = cpu_to_le32(0xFFFFFFFF),
.common.cdw10[0] = cpu_to_le32(
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
NVME_LOG_SMART),
};
int error;
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
if (!*log)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
sizeof(struct nvme_smart_log));
if (error)
kfree(*log);
return error;
}
/**
......@@ -1214,8 +1272,7 @@ static void nvme_abort_req(struct request *req)
if (work_busy(&dev->reset_work))
goto out;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
"I/O %d QID %d timeout, reset controller\n",
dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
......@@ -1254,8 +1311,7 @@ static void nvme_abort_req(struct request *req)
}
}
static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
struct request *req, void *data, bool reserved)
static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
{
struct nvme_queue *nvmeq = data;
void *ctx;
......@@ -1352,11 +1408,9 @@ static int nvme_suspend_queue(struct nvme_queue *nvmeq)
static void nvme_clear_queue(struct nvme_queue *nvmeq)
{
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
spin_lock_irq(&nvmeq->q_lock);
if (hctx && hctx->tags)
blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
if (nvmeq->tags && *nvmeq->tags)
blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
......@@ -1384,22 +1438,21 @@ static void nvme_disable_queue(struct nvme_dev *dev, int qid)
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth)
{
struct device *dmadev = &dev->pci_dev->dev;
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
goto free_cqdma;
nvmeq->q_dmadev = dmadev;
nvmeq->q_dmadev = dev->dev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->instance, qid);
......@@ -1409,13 +1462,16 @@ static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
dev->queue_count++;
dev->queues[qid] = nvmeq;
/* make sure queue descriptor is set before queue count, for kthread */
mb();
dev->queue_count++;
return nvmeq;
free_cqdma:
dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
......@@ -1487,7 +1543,7 @@ static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
dev_err(dev->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
......@@ -1537,7 +1593,7 @@ static int nvme_shutdown_ctrl(struct nvme_dev *dev)
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
dev_err(dev->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
......@@ -1547,10 +1603,9 @@ static int nvme_shutdown_ctrl(struct nvme_dev *dev)
}
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_admin_queue_rq,
.queue_rq = nvme_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_exit_hctx,
.init_request = nvme_admin_init_request,
.timeout = nvme_timeout,
};
......@@ -1559,7 +1614,6 @@ static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.exit_hctx = nvme_exit_hctx,
.init_request = nvme_init_request,
.timeout = nvme_timeout,
};
......@@ -1580,7 +1634,7 @@ static int nvme_alloc_admin_tags(struct nvme_dev *dev)
dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
dev->admin_tagset.reserved_tags = 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->admin_tagset.numa_node = dev_to_node(dev->dev);
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
dev->admin_tagset.driver_data = dev;
......@@ -1613,14 +1667,14 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
if (page_shift < dev_page_min) {
dev_err(&dev->pci_dev->dev,
dev_err(dev->dev,
"Minimum device page size (%u) too large for "
"host (%u)\n", 1 << dev_page_min,
1 << page_shift);
return -ENODEV;
}
if (page_shift > dev_page_max) {
dev_info(&dev->pci_dev->dev,
dev_info(dev->dev,
"Device maximum page size (%u) smaller than "
"host (%u); enabling work-around\n",
1 << dev_page_max, 1 << page_shift);
......@@ -1668,126 +1722,43 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
return result;
}
struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
unsigned long addr, unsigned length)
{
int i, err, count, nents, offset;
struct scatterlist *sg;
struct page **pages;
struct nvme_iod *iod;
if (addr & 3)
return ERR_PTR(-EINVAL);
if (!length || length > INT_MAX - PAGE_SIZE)
return ERR_PTR(-EINVAL);
offset = offset_in_page(addr);
count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
err = get_user_pages_fast(addr, count, 1, pages);
if (err < count) {
count = err;
err = -EFAULT;
goto put_pages;
}
err = -ENOMEM;
iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
if (!iod)
goto put_pages;
sg = iod->sg;
sg_init_table(sg, count);
for (i = 0; i < count; i++) {
sg_set_page(&sg[i], pages[i],
min_t(unsigned, length, PAGE_SIZE - offset),
offset);
length -= (PAGE_SIZE - offset);
offset = 0;
}
sg_mark_end(&sg[i - 1]);
iod->nents = count;
nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!nents)
goto free_iod;
kfree(pages);
return iod;
free_iod:
kfree(iod);
put_pages:
for (i = 0; i < count; i++)
put_page(pages[i]);
kfree(pages);
return ERR_PTR(err);
}
void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
struct nvme_iod *iod)
{
int i;
dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
for (i = 0; i < iod->nents; i++)
put_page(sg_page(&iod->sg[i]));
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_dev *dev = ns->dev;
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len, prp_len;
unsigned length, meta_len;
int status, write;
struct nvme_iod *iod;
dma_addr_t meta_dma = 0;
void *meta = NULL;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
return -EINVAL;
else if (meta_len && ns->ext) {
length += meta_len;
meta_len = 0;
}
metadata = (void __user *)(unsigned long)io.metadata;
write = io.opcode & 1;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
iod = nvme_map_user_pages(dev, write, io.addr, length);
break;
default:
return -EINVAL;
}
if (IS_ERR(iod))
return PTR_ERR(iod);
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
metadata = (void __user *)(unsigned long)io.metadata;
write = io.opcode & 1;
prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
if (length != prp_len) {
status = -ENOMEM;
goto unmap;
if (ns->ext) {
length += meta_len;
meta_len = 0;
}
if (meta_len) {
meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
if (((io.metadata & 3) || !io.metadata) && !ns->ext)
return -EINVAL;
meta = dma_alloc_coherent(dev->dev, meta_len,
&meta_dma, GFP_KERNEL);
if (!meta) {
......@@ -1813,19 +1784,17 @@ static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.rw.prp2 = cpu_to_le64(iod->first_dma);
c.rw.metadata = cpu_to_le64(meta_dma);
status = nvme_submit_io_cmd(dev, ns, &c, NULL);
status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
(void __user *)io.addr, length, NULL, 0);
unmap:
nvme_unmap_user_pages(dev, write, iod);
nvme_free_iod(dev, iod);
if (meta) {
if (status == NVME_SC_SUCCESS && !write) {
if (copy_to_user(metadata, meta, meta_len))
status = -EFAULT;
}
dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
}
return status;
}
......@@ -1835,9 +1804,8 @@ static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
int status, length;
struct nvme_iod *uninitialized_var(iod);
unsigned timeout;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
......@@ -1857,46 +1825,17 @@ static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
length = cmd.data_len;
if (cmd.data_len) {
iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
length);
if (IS_ERR(iod))
return PTR_ERR(iod);
length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.common.prp2 = cpu_to_le64(iod->first_dma);
}
timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
ADMIN_TIMEOUT;
if (length != cmd.data_len)
status = -ENOMEM;
else if (ns) {
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE,
(GFP_KERNEL|__GFP_WAIT), false);
if (IS_ERR(req))
status = PTR_ERR(req);
else {
status = nvme_submit_sync_cmd(req, &c, &cmd.result,
timeout);
blk_mq_free_request(req);
}
} else
status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
if (cmd.data_len) {
nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
nvme_free_iod(dev, iod);
status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
NULL, (void __user *)cmd.addr, cmd.data_len,
&cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
sizeof(cmd.result)))
status = -EFAULT;
return status;
}
......@@ -1988,23 +1927,18 @@ static int nvme_revalidate_disk(struct gendisk *disk)
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id;
dma_addr_t dma_addr;
u8 lbaf, pi_type;
u16 old_ms;
unsigned short bs;
id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
GFP_KERNEL);
if (!id) {
dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
__func__);
return 0;
if (nvme_identify_ns(dev, ns->ns_id, &id)) {
dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
dev->instance, ns->ns_id);
return -ENODEV;
}
if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
dev_warn(&dev->pci_dev->dev,
"identify failed ns:%d, setting capacity to 0\n",
ns->ns_id);
memset(id, 0, sizeof(*id));
if (id->ncap == 0) {
kfree(id);
return -ENODEV;
}
old_ms = ns->ms;
......@@ -2038,7 +1972,7 @@ static int nvme_revalidate_disk(struct gendisk *disk)
!ns->ext)
nvme_init_integrity(ns);
if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
if (ns->ms && !blk_get_integrity(disk))
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
......@@ -2046,7 +1980,7 @@ static int nvme_revalidate_disk(struct gendisk *disk)
if (dev->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
kfree(id);
return 0;
}
......@@ -2073,7 +2007,7 @@ static int nvme_kthread(void *data)
if (work_busy(&dev->reset_work))
continue;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
dev_warn(dev->dev,
"Failed status: %x, reset controller\n",
readl(&dev->bar->csts));
dev->reset_workfn = nvme_reset_failed_dev;
......@@ -2105,7 +2039,7 @@ static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
{
struct nvme_ns *ns;
struct gendisk *disk;
int node = dev_to_node(&dev->pci_dev->dev);
int node = dev_to_node(dev->dev);
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
......@@ -2153,11 +2087,16 @@ static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
* requires it.
*/
set_capacity(disk, 0);
nvme_revalidate_disk(ns->disk);
if (nvme_revalidate_disk(ns->disk))
goto out_free_disk;
add_disk(ns->disk);
if (ns->ms)
revalidate_disk(ns->disk);
return;
out_free_disk:
kfree(disk);
list_del(&ns->list);
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
......@@ -2188,8 +2127,7 @@ static int set_queue_count(struct nvme_dev *dev, int count)
if (status < 0)
return status;
if (status > 0) {
dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
status);
dev_err(dev->dev, "Could not set queue count (%d)\n", status);
return 0;
}
return min(result & 0xffff, result >> 16) + 1;
......@@ -2203,7 +2141,7 @@ static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
struct nvme_queue *adminq = dev->queues[0];
struct pci_dev *pdev = dev->pci_dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_possible_cpus();
......@@ -2275,6 +2213,99 @@ static int nvme_setup_io_queues(struct nvme_dev *dev)
return result;
}
static void nvme_free_namespace(struct nvme_ns *ns)
{
list_del(&ns->list);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
put_disk(ns->disk);
kfree(ns);
}
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
return nsa->ns_id - nsb->ns_id;
}
static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
if (ns->ns_id == nsid)
return ns;
if (ns->ns_id > nsid)
break;
}
return NULL;
}
static inline bool nvme_io_incapable(struct nvme_dev *dev)
{
return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
dev->online_queues < 2);
}
static void nvme_ns_remove(struct nvme_ns *ns)
{
bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
if (kill)
blk_set_queue_dying(ns->queue);
if (ns->disk->flags & GENHD_FL_UP) {
if (blk_get_integrity(ns->disk))
blk_integrity_unregister(ns->disk);
del_gendisk(ns->disk);
}
if (kill || !blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
}
static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
{
struct nvme_ns *ns, *next;
unsigned i;
for (i = 1; i <= nn; i++) {
ns = nvme_find_ns(dev, i);
if (ns) {
if (revalidate_disk(ns->disk)) {
nvme_ns_remove(ns);
nvme_free_namespace(ns);
}
} else
nvme_alloc_ns(dev, i);
}
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
if (ns->ns_id > nn) {
nvme_ns_remove(ns);
nvme_free_namespace(ns);
}
}
list_sort(NULL, &dev->namespaces, ns_cmp);
}
static void nvme_dev_scan(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
struct nvme_id_ctrl *ctrl;
if (!dev->tagset.tags)
return;
if (nvme_identify_ctrl(dev, &ctrl))
return;
nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
kfree(ctrl);
}
/*
* Return: error value if an error occurred setting up the queues or calling
* Identify Device. 0 if these succeeded, even if adding some of the
......@@ -2283,26 +2314,18 @@ static int nvme_setup_io_queues(struct nvme_dev *dev)
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
struct pci_dev *pdev = dev->pci_dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
int res;
unsigned nn, i;
unsigned nn;
struct nvme_id_ctrl *ctrl;
void *mem;
dma_addr_t dma_addr;
int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
if (!mem)
return -ENOMEM;
res = nvme_identify(dev, 0, 1, dma_addr);
res = nvme_identify_ctrl(dev, &ctrl);
if (res) {
dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
return -EIO;
}
ctrl = mem;
nn = le32_to_cpup(&ctrl->nn);
dev->oncs = le16_to_cpup(&ctrl->oncs);
dev->abort_limit = ctrl->acl + 1;
......@@ -2324,12 +2347,12 @@ static int nvme_dev_add(struct nvme_dev *dev)
} else
dev->max_hw_sectors = max_hw_sectors;
}
dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
kfree(ctrl);
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->tagset.numa_node = dev_to_node(dev->dev);
dev->tagset.queue_depth =
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
dev->tagset.cmd_size = nvme_cmd_size(dev);
......@@ -2339,9 +2362,7 @@ static int nvme_dev_add(struct nvme_dev *dev)
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
for (i = 1; i <= nn; i++)
nvme_alloc_ns(dev, i);
schedule_work(&dev->scan_work);
return 0;
}
......@@ -2349,7 +2370,7 @@ static int nvme_dev_map(struct nvme_dev *dev)
{
u64 cap;
int bars, result = -ENOMEM;
struct pci_dev *pdev = dev->pci_dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_enable_device_mem(pdev))
return result;
......@@ -2363,8 +2384,8 @@ static int nvme_dev_map(struct nvme_dev *dev)
if (pci_request_selected_regions(pdev, bars, "nvme"))
goto disable_pci;
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
goto disable;
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
......@@ -2405,19 +2426,21 @@ static int nvme_dev_map(struct nvme_dev *dev)
static void nvme_dev_unmap(struct nvme_dev *dev)
{
if (dev->pci_dev->msi_enabled)
pci_disable_msi(dev->pci_dev);
else if (dev->pci_dev->msix_enabled)
pci_disable_msix(dev->pci_dev);
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pdev->msi_enabled)
pci_disable_msi(pdev);
else if (pdev->msix_enabled)
pci_disable_msix(pdev);
if (dev->bar) {
iounmap(dev->bar);
dev->bar = NULL;
pci_release_regions(dev->pci_dev);
pci_release_regions(pdev);
}
if (pci_is_enabled(dev->pci_dev))
pci_disable_device(dev->pci_dev);
if (pci_is_enabled(pdev))
pci_disable_device(pdev);
}
struct nvme_delq_ctx {
......@@ -2536,7 +2559,7 @@ static void nvme_disable_io_queues(struct nvme_dev *dev)
&worker, "nvme%d", dev->instance);
if (IS_ERR(kworker_task)) {
dev_err(&dev->pci_dev->dev,
dev_err(dev->dev,
"Failed to create queue del task\n");
for (i = dev->queue_count - 1; i > 0; i--)
nvme_disable_queue(dev, i);
......@@ -2587,9 +2610,9 @@ static void nvme_freeze_queues(struct nvme_dev *dev)
list_for_each_entry(ns, &dev->namespaces, list) {
blk_mq_freeze_queue_start(ns->queue);
spin_lock(ns->queue->queue_lock);
spin_lock_irq(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock(ns->queue->queue_lock);
spin_unlock_irq(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
......@@ -2639,29 +2662,19 @@ static void nvme_dev_remove(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
if (ns->disk->flags & GENHD_FL_UP) {
if (blk_get_integrity(ns->disk))
blk_integrity_unregister(ns->disk);
del_gendisk(ns->disk);
}
if (!blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
}
list_for_each_entry(ns, &dev->namespaces, list)
nvme_ns_remove(ns);
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
{
struct device *dmadev = &dev->pci_dev->dev;
dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!dev->prp_page_pool)
return -ENOMEM;
/* Optimisation for I/Os between 4k and 128k */
dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
256, 256, 0);
if (!dev->prp_small_pool) {
dma_pool_destroy(dev->prp_page_pool);
......@@ -2709,23 +2722,15 @@ static void nvme_free_namespaces(struct nvme_dev *dev)
{
struct nvme_ns *ns, *next;
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
list_del(&ns->list);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
put_disk(ns->disk);
kfree(ns);
}
list_for_each_entry_safe(ns, next, &dev->namespaces, list)
nvme_free_namespace(ns);
}
static void nvme_free_dev(struct kref *kref)
{
struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
pci_dev_put(dev->pci_dev);
put_device(dev->dev);
put_device(dev->device);
nvme_free_namespaces(dev);
nvme_release_instance(dev);
......@@ -2781,6 +2786,9 @@ static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
return -ENOTTY;
ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
return nvme_user_cmd(dev, ns, (void __user *)arg);
case NVME_IOCTL_RESET:
dev_warn(dev->dev, "resetting controller\n");
return nvme_reset(dev);
default:
return -ENOTTY;
}
......@@ -2802,11 +2810,11 @@ static void nvme_set_irq_hints(struct nvme_dev *dev)
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
if (!nvmeq->hctx)
if (!nvmeq->tags || !(*nvmeq->tags))
continue;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
nvmeq->hctx->cpumask);
blk_mq_tags_cpumask(*nvmeq->tags));
}
}
......@@ -2869,7 +2877,7 @@ static int nvme_dev_start(struct nvme_dev *dev)
static int nvme_remove_dead_ctrl(void *arg)
{
struct nvme_dev *dev = (struct nvme_dev *)arg;
struct pci_dev *pdev = dev->pci_dev;
struct pci_dev *pdev = to_pci_dev(dev->dev);
if (pci_get_drvdata(pdev))
pci_stop_and_remove_bus_device_locked(pdev);
......@@ -2899,6 +2907,7 @@ static int nvme_dev_resume(struct nvme_dev *dev)
spin_unlock(&dev_list_lock);
} else {
nvme_unfreeze_queues(dev);
schedule_work(&dev->scan_work);
nvme_set_irq_hints(dev);
}
return 0;
......@@ -2908,11 +2917,11 @@ static void nvme_dev_reset(struct nvme_dev *dev)
{
nvme_dev_shutdown(dev);
if (nvme_dev_resume(dev)) {
dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
dev_warn(dev->dev, "Device failed to resume\n");
kref_get(&dev->kref);
if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
dev->instance))) {
dev_err(&dev->pci_dev->dev,
dev_err(dev->dev,
"Failed to start controller remove task\n");
kref_put(&dev->kref, nvme_free_dev);
}
......@@ -2931,6 +2940,44 @@ static void nvme_reset_workfn(struct work_struct *work)
dev->reset_workfn(work);
}
static int nvme_reset(struct nvme_dev *dev)
{
int ret = -EBUSY;
if (!dev->admin_q || blk_queue_dying(dev->admin_q))
return -ENODEV;
spin_lock(&dev_list_lock);
if (!work_pending(&dev->reset_work)) {
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
ret = 0;
}
spin_unlock(&dev_list_lock);
if (!ret) {
flush_work(&dev->reset_work);
return 0;
}
return ret;
}
static ssize_t nvme_sysfs_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_dev *ndev = dev_get_drvdata(dev);
int ret;
ret = nvme_reset(ndev);
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static void nvme_async_probe(struct work_struct *work);
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
......@@ -2956,7 +3003,7 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
INIT_LIST_HEAD(&dev->namespaces);
dev->reset_workfn = nvme_reset_failed_dev;
INIT_WORK(&dev->reset_work, nvme_reset_workfn);
dev->pci_dev = pci_dev_get(pdev);
dev->dev = get_device(&pdev->dev);
pci_set_drvdata(pdev, dev);
result = nvme_set_instance(dev);
if (result)
......@@ -2975,18 +3022,27 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
goto release_pools;
}
get_device(dev->device);
dev_set_drvdata(dev->device, dev);
result = device_create_file(dev->device, &dev_attr_reset_controller);
if (result)
goto put_dev;
INIT_LIST_HEAD(&dev->node);
INIT_WORK(&dev->scan_work, nvme_dev_scan);
INIT_WORK(&dev->probe_work, nvme_async_probe);
schedule_work(&dev->probe_work);
return 0;
put_dev:
device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
put_device(dev->device);
release_pools:
nvme_release_prp_pools(dev);
release:
nvme_release_instance(dev);
put_pci:
pci_dev_put(dev->pci_dev);
put_device(dev->dev);
free:
kfree(dev->queues);
kfree(dev->entry);
......@@ -3011,10 +3067,12 @@ static void nvme_async_probe(struct work_struct *work)
nvme_set_irq_hints(dev);
return;
reset:
spin_lock(&dev_list_lock);
if (!work_busy(&dev->reset_work)) {
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
}
spin_unlock(&dev_list_lock);
}
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
......@@ -3044,6 +3102,8 @@ static void nvme_remove(struct pci_dev *pdev)
pci_set_drvdata(pdev, NULL);
flush_work(&dev->probe_work);
flush_work(&dev->reset_work);
flush_work(&dev->scan_work);
device_remove_file(dev->device, &dev_attr_reset_controller);
nvme_dev_shutdown(dev);
nvme_dev_remove(dev);
nvme_dev_remove_admin(dev);
......
......@@ -41,15 +41,13 @@
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#include <scsi/sg.h>
#include <scsi/scsi.h>
static int sg_version_num = 30534; /* 2 digits for each component */
#define SNTI_TRANSLATION_SUCCESS 0
#define SNTI_INTERNAL_ERROR 1
/* VPD Page Codes */
#define VPD_SUPPORTED_PAGES 0x00
#define VPD_SERIAL_NUMBER 0x80
......@@ -58,49 +56,14 @@ static int sg_version_num = 30534; /* 2 digits for each component */
#define VPD_BLOCK_LIMITS 0xB0
#define VPD_BLOCK_DEV_CHARACTERISTICS 0xB1
/* CDB offsets */
#define REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET 6
#define REPORT_LUNS_SR_OFFSET 2
#define READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET 10
#define REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET 4
#define REQUEST_SENSE_DESC_OFFSET 1
#define REQUEST_SENSE_DESC_MASK 0x01
#define DESCRIPTOR_FORMAT_SENSE_DATA_TYPE 1
#define INQUIRY_EVPD_BYTE_OFFSET 1
#define INQUIRY_PAGE_CODE_BYTE_OFFSET 2
#define INQUIRY_EVPD_BIT_MASK 1
#define INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET 3
#define START_STOP_UNIT_CDB_IMMED_OFFSET 1
#define START_STOP_UNIT_CDB_IMMED_MASK 0x1
#define START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET 3
#define START_STOP_UNIT_CDB_POWER_COND_MOD_MASK 0xF
#define START_STOP_UNIT_CDB_POWER_COND_OFFSET 4
#define START_STOP_UNIT_CDB_POWER_COND_MASK 0xF0
#define START_STOP_UNIT_CDB_NO_FLUSH_OFFSET 4
#define START_STOP_UNIT_CDB_NO_FLUSH_MASK 0x4
#define START_STOP_UNIT_CDB_START_OFFSET 4
#define START_STOP_UNIT_CDB_START_MASK 0x1
#define WRITE_BUFFER_CDB_MODE_OFFSET 1
#define WRITE_BUFFER_CDB_MODE_MASK 0x1F
#define WRITE_BUFFER_CDB_BUFFER_ID_OFFSET 2
#define WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET 3
#define WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET 6
#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET 1
#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK 0xC0
#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT 6
#define FORMAT_UNIT_CDB_LONG_LIST_OFFSET 1
#define FORMAT_UNIT_CDB_LONG_LIST_MASK 0x20
#define FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET 1
#define FORMAT_UNIT_CDB_FORMAT_DATA_MASK 0x10
/* format unit paramter list offsets */
#define FORMAT_UNIT_SHORT_PARM_LIST_LEN 4
#define FORMAT_UNIT_LONG_PARM_LIST_LEN 8
#define FORMAT_UNIT_PROT_INT_OFFSET 3
#define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET 0
#define FORMAT_UNIT_PROT_FIELD_USAGE_MASK 0x07
#define UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET 7
/* Misc. defines */
#define NIBBLE_SHIFT 4
#define FIXED_SENSE_DATA 0x70
#define DESC_FORMAT_SENSE_DATA 0x72
#define FIXED_SENSE_DATA_ADD_LENGTH 10
......@@ -144,27 +107,6 @@ static int sg_version_num = 30534; /* 2 digits for each component */
#define EXTENDED_INQUIRY_DATA_PAGE_LENGTH 0x3C
#define RESERVED_FIELD 0
/* SCSI READ/WRITE Defines */
#define IO_CDB_WP_MASK 0xE0
#define IO_CDB_WP_SHIFT 5
#define IO_CDB_FUA_MASK 0x8
#define IO_6_CDB_LBA_OFFSET 0
#define IO_6_CDB_LBA_MASK 0x001FFFFF
#define IO_6_CDB_TX_LEN_OFFSET 4
#define IO_6_DEFAULT_TX_LEN 256
#define IO_10_CDB_LBA_OFFSET 2
#define IO_10_CDB_TX_LEN_OFFSET 7
#define IO_10_CDB_WP_OFFSET 1
#define IO_10_CDB_FUA_OFFSET 1
#define IO_12_CDB_LBA_OFFSET 2
#define IO_12_CDB_TX_LEN_OFFSET 6
#define IO_12_CDB_WP_OFFSET 1
#define IO_12_CDB_FUA_OFFSET 1
#define IO_16_CDB_FUA_OFFSET 1
#define IO_16_CDB_WP_OFFSET 1
#define IO_16_CDB_LBA_OFFSET 2
#define IO_16_CDB_TX_LEN_OFFSET 10
/* Mode Sense/Select defines */
#define MODE_PAGE_INFO_EXCEP 0x1C
#define MODE_PAGE_CACHING 0x08
......@@ -179,23 +121,14 @@ static int sg_version_num = 30534; /* 2 digits for each component */
#define MODE_PAGE_INF_EXC_LEN 0x0C
#define MODE_PAGE_ALL_LEN 0x54
#define MODE_SENSE6_MPH_SIZE 4
#define MODE_SENSE6_ALLOC_LEN_OFFSET 4
#define MODE_SENSE_PAGE_CONTROL_OFFSET 2
#define MODE_SENSE_PAGE_CONTROL_MASK 0xC0
#define MODE_SENSE_PAGE_CODE_OFFSET 2
#define MODE_SENSE_PAGE_CODE_MASK 0x3F
#define MODE_SENSE_LLBAA_OFFSET 1
#define MODE_SENSE_LLBAA_MASK 0x10
#define MODE_SENSE_LLBAA_SHIFT 4
#define MODE_SENSE_DBD_OFFSET 1
#define MODE_SENSE_DBD_MASK 8
#define MODE_SENSE_DBD_SHIFT 3
#define MODE_SENSE10_MPH_SIZE 8
#define MODE_SENSE10_ALLOC_LEN_OFFSET 7
#define MODE_SELECT_CDB_PAGE_FORMAT_OFFSET 1
#define MODE_SELECT_CDB_SAVE_PAGES_OFFSET 1
#define MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET 4
#define MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET 7
#define MODE_SELECT_CDB_PAGE_FORMAT_MASK 0x10
#define MODE_SELECT_CDB_SAVE_PAGES_MASK 0x1
#define MODE_SELECT_6_BD_OFFSET 3
......@@ -221,14 +154,11 @@ static int sg_version_num = 30534; /* 2 digits for each component */
#define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH 0x07
#define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE 0x2F
#define LOG_PAGE_TEMPERATURE_PAGE 0x0D
#define LOG_SENSE_CDB_SP_OFFSET 1
#define LOG_SENSE_CDB_SP_NOT_ENABLED 0
#define LOG_SENSE_CDB_PC_OFFSET 2
#define LOG_SENSE_CDB_PC_MASK 0xC0
#define LOG_SENSE_CDB_PC_SHIFT 6
#define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES 1
#define LOG_SENSE_CDB_PAGE_CODE_MASK 0x3F
#define LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET 7
#define REMAINING_INFO_EXCP_PAGE_LENGTH 0x8
#define LOG_INFO_EXCP_PAGE_LENGTH 0xC
#define REMAINING_TEMP_PAGE_LENGTH 0xC
......@@ -278,77 +208,11 @@ static int sg_version_num = 30534; /* 2 digits for each component */
#define SCSI_ASCQ_POWER_LOSS_EXPECTED 0x08
#define SCSI_ASCQ_INVALID_LUN_ID 0x09
/**
* DEVICE_SPECIFIC_PARAMETER in mode parameter header (see sbc2r16) to
* enable DPOFUA support type 0x10 value.
*/
#define DEVICE_SPECIFIC_PARAMETER 0
#define VPD_ID_DESCRIPTOR_LENGTH sizeof(VPD_IDENTIFICATION_DESCRIPTOR)
/* MACROs to extract information from CDBs */
#define GET_OPCODE(cdb) cdb[0]
#define GET_U8_FROM_CDB(cdb, index) (cdb[index] << 0)
#define GET_U16_FROM_CDB(cdb, index) ((cdb[index] << 8) | (cdb[index + 1] << 0))
#define GET_U24_FROM_CDB(cdb, index) ((cdb[index] << 16) | \
(cdb[index + 1] << 8) | \
(cdb[index + 2] << 0))
#define GET_U32_FROM_CDB(cdb, index) ((cdb[index] << 24) | \
(cdb[index + 1] << 16) | \
(cdb[index + 2] << 8) | \
(cdb[index + 3] << 0))
#define GET_U64_FROM_CDB(cdb, index) ((((u64)cdb[index]) << 56) | \
(((u64)cdb[index + 1]) << 48) | \
(((u64)cdb[index + 2]) << 40) | \
(((u64)cdb[index + 3]) << 32) | \
(((u64)cdb[index + 4]) << 24) | \
(((u64)cdb[index + 5]) << 16) | \
(((u64)cdb[index + 6]) << 8) | \
(((u64)cdb[index + 7]) << 0))
/* Inquiry Helper Macros */
#define GET_INQ_EVPD_BIT(cdb) \
((GET_U8_FROM_CDB(cdb, INQUIRY_EVPD_BYTE_OFFSET) & \
INQUIRY_EVPD_BIT_MASK) ? 1 : 0)
#define GET_INQ_PAGE_CODE(cdb) \
(GET_U8_FROM_CDB(cdb, INQUIRY_PAGE_CODE_BYTE_OFFSET))
#define GET_INQ_ALLOC_LENGTH(cdb) \
(GET_U16_FROM_CDB(cdb, INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET))
/* Report LUNs Helper Macros */
#define GET_REPORT_LUNS_ALLOC_LENGTH(cdb) \
(GET_U32_FROM_CDB(cdb, REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET))
/* Read Capacity Helper Macros */
#define GET_READ_CAP_16_ALLOC_LENGTH(cdb) \
(GET_U32_FROM_CDB(cdb, READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET))
#define IS_READ_CAP_16(cdb) \
((cdb[0] == SERVICE_ACTION_IN_16 && cdb[1] == SAI_READ_CAPACITY_16) ? 1 : 0)
/* Request Sense Helper Macros */
#define GET_REQUEST_SENSE_ALLOC_LENGTH(cdb) \
(GET_U8_FROM_CDB(cdb, REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET))
/* Mode Sense Helper Macros */
#define GET_MODE_SENSE_DBD(cdb) \
((GET_U8_FROM_CDB(cdb, MODE_SENSE_DBD_OFFSET) & MODE_SENSE_DBD_MASK) >> \
MODE_SENSE_DBD_SHIFT)
#define GET_MODE_SENSE_LLBAA(cdb) \
((GET_U8_FROM_CDB(cdb, MODE_SENSE_LLBAA_OFFSET) & \
MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT)
#define GET_MODE_SENSE_MPH_SIZE(cdb10) \
(cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE)
/* copied from drivers/usb/gadget/function/storage_common.h */
static inline u32 get_unaligned_be24(u8 *buf)
{
return 0xffffff & (u32) get_unaligned_be32(buf - 1);
}
/* Struct to gather data that needs to be extracted from a SCSI CDB.
Not conforming to any particular CDB variant, but compatible with all. */
......@@ -369,8 +233,6 @@ struct nvme_trans_io_cdb {
static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
unsigned long n)
{
int res = SNTI_TRANSLATION_SUCCESS;
unsigned long not_copied;
int i;
void *index = from;
size_t remaining = n;
......@@ -380,29 +242,25 @@ static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
struct sg_iovec sgl;
for (i = 0; i < hdr->iovec_count; i++) {
not_copied = copy_from_user(&sgl, hdr->dxferp +
if (copy_from_user(&sgl, hdr->dxferp +
i * sizeof(struct sg_iovec),
sizeof(struct sg_iovec));
if (not_copied)
sizeof(struct sg_iovec)))
return -EFAULT;
xfer_len = min(remaining, sgl.iov_len);
not_copied = copy_to_user(sgl.iov_base, index,
xfer_len);
if (not_copied) {
res = -EFAULT;
break;
}
if (copy_to_user(sgl.iov_base, index, xfer_len))
return -EFAULT;
index += xfer_len;
remaining -= xfer_len;
if (remaining == 0)
break;
}
return res;
return 0;
}
not_copied = copy_to_user(hdr->dxferp, from, n);
if (not_copied)
res = -EFAULT;
return res;
if (copy_to_user(hdr->dxferp, from, n))
return -EFAULT;
return 0;
}
/* Copy data from userspace memory */
......@@ -410,8 +268,6 @@ static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
unsigned long n)
{
int res = SNTI_TRANSLATION_SUCCESS;
unsigned long not_copied;
int i;
void *index = to;
size_t remaining = n;
......@@ -421,30 +277,24 @@ static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
struct sg_iovec sgl;
for (i = 0; i < hdr->iovec_count; i++) {
not_copied = copy_from_user(&sgl, hdr->dxferp +
if (copy_from_user(&sgl, hdr->dxferp +
i * sizeof(struct sg_iovec),
sizeof(struct sg_iovec));
if (not_copied)
sizeof(struct sg_iovec)))
return -EFAULT;
xfer_len = min(remaining, sgl.iov_len);
not_copied = copy_from_user(index, sgl.iov_base,
xfer_len);
if (not_copied) {
res = -EFAULT;
break;
}
if (copy_from_user(index, sgl.iov_base, xfer_len))
return -EFAULT;
index += xfer_len;
remaining -= xfer_len;
if (remaining == 0)
break;
}
return res;
return 0;
}
not_copied = copy_from_user(to, hdr->dxferp, n);
if (not_copied)
res = -EFAULT;
return res;
if (copy_from_user(to, hdr->dxferp, n))
return -EFAULT;
return 0;
}
/* Status/Sense Buffer Writeback */
......@@ -452,7 +302,6 @@ static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
u8 asc, u8 ascq)
{
int res = SNTI_TRANSLATION_SUCCESS;
u8 xfer_len;
u8 resp[DESC_FMT_SENSE_DATA_SIZE];
......@@ -477,25 +326,29 @@ static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
hdr->sb_len_wr = xfer_len;
if (copy_to_user(hdr->sbp, resp, xfer_len) > 0)
res = -EFAULT;
return -EFAULT;
}
return res;
return 0;
}
/*
* Take a status code from a lowlevel routine, and if it was a positive NVMe
* error code update the sense data based on it. In either case the passed
* in value is returned again, unless an -EFAULT from copy_to_user overrides
* it.
*/
static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
{
u8 status, sense_key, asc, ascq;
int res = SNTI_TRANSLATION_SUCCESS;
int res;
/* For non-nvme (Linux) errors, simply return the error code */
if (nvme_sc < 0)
return nvme_sc;
/* Mask DNR, More, and reserved fields */
nvme_sc &= 0x7FF;
switch (nvme_sc) {
switch (nvme_sc & 0x7FF) {
/* Generic Command Status */
case NVME_SC_SUCCESS:
status = SAM_STAT_GOOD;
......@@ -662,8 +515,7 @@ static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
}
res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
return res;
return res ? res : nvme_sc;
}
/* INQUIRY Helper Functions */
......@@ -673,10 +525,8 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
int alloc_len)
{
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ns *id_ns;
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
int xfer_len;
u8 resp_data_format = 0x02;
......@@ -684,31 +534,17 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
u8 cmdque = 0x01 << 1;
u8 fw_offset = sizeof(dev->firmware_rev);
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out_dma;
}
/* nvme ns identify - use DPS value for PROTECT field */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
/*
* If nvme_sc was -ve, res will be -ve here.
* If nvme_sc was +ve, the status would bace been translated, and res
* can only be 0 or -ve.
* - If 0 && nvme_sc > 0, then go into next if where res gets nvme_sc
* - If -ve, return because its a Linux error.
*/
if (res)
goto out_free;
if (nvme_sc) {
res = nvme_sc;
goto out_free;
}
id_ns = mem;
(id_ns->dps) ? (protect = 0x01) : (protect = 0);
return res;
if (id_ns->dps)
protect = 0x01;
else
protect = 0;
kfree(id_ns);
memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
inq_response[2] = VERSION_SPC_4;
......@@ -725,20 +561,13 @@ static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
strncpy(&inq_response[32], dev->firmware_rev + fw_offset, 4);
xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
out_free:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out_dma:
return res;
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
}
static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *inq_response,
int alloc_len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int xfer_len;
memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
......@@ -752,9 +581,7 @@ static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
inq_response[9] = INQ_BDEV_LIMITS_PAGE;
xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
return res;
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
}
static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
......@@ -762,7 +589,6 @@ static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
int alloc_len)
{
struct nvme_dev *dev = ns->dev;
int res = SNTI_TRANSLATION_SUCCESS;
int xfer_len;
memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
......@@ -771,53 +597,42 @@ static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
return res;
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
}
static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *inq_response, int alloc_len)
{
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
int xfer_len;
__be32 tmp_id = cpu_to_be32(ns->ns_id);
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out_dma;
}
memset(inq_response, 0, alloc_len);
inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */
if (readl(&dev->bar->vs) >= NVME_VS(1, 1)) {
struct nvme_id_ns *id_ns = mem;
void *eui = id_ns->eui64;
int len = sizeof(id_ns->eui64);
struct nvme_id_ns *id_ns;
void *eui;
int len;
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_free;
if (nvme_sc) {
res = nvme_sc;
goto out_free;
}
return res;
eui = id_ns->eui64;
len = sizeof(id_ns->eui64);
if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) {
if (bitmap_empty(eui, len * 8)) {
eui = id_ns->nguid;
len = sizeof(id_ns->nguid);
}
}
if (bitmap_empty(eui, len * 8))
if (bitmap_empty(eui, len * 8)) {
kfree(id_ns);
goto scsi_string;
}
inq_response[3] = 4 + len; /* Page Length */
/* Designation Descriptor start */
......@@ -826,14 +641,14 @@ static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
inq_response[6] = 0x00; /* Rsvd */
inq_response[7] = len; /* Designator Length */
memcpy(&inq_response[8], eui, len);
kfree(id_ns);
} else {
scsi_string:
if (alloc_len < 72) {
res = nvme_trans_completion(hdr,
return nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out_free;
}
inq_response[3] = 0x48; /* Page Length */
/* Designation Descriptor start */
......@@ -842,30 +657,22 @@ static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
inq_response[6] = 0x00; /* Rsvd */
inq_response[7] = 0x44; /* Designator Length */
sprintf(&inq_response[8], "%04x", dev->pci_dev->vendor);
sprintf(&inq_response[8], "%04x", to_pci_dev(dev->dev)->vendor);
memcpy(&inq_response[12], dev->model, sizeof(dev->model));
sprintf(&inq_response[52], "%04x", tmp_id);
memcpy(&inq_response[56], dev->serial, sizeof(dev->serial));
}
xfer_len = alloc_len;
res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
out_free:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out_dma:
return res;
return nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
}
static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int alloc_len)
{
u8 *inq_response;
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ctrl *id_ctrl;
struct nvme_id_ns *id_ns;
int xfer_len;
......@@ -878,45 +685,32 @@ static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 luiclr = 0x01;
inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
if (inq_response == NULL) {
res = -ENOMEM;
goto out_mem;
}
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out_dma;
}
if (inq_response == NULL)
return -ENOMEM;
/* nvme ns identify */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_free;
if (nvme_sc) {
res = nvme_sc;
goto out_free;
}
id_ns = mem;
spt = spt_lut[(id_ns->dpc) & 0x07] << 3;
(id_ns->dps) ? (protect = 0x01) : (protect = 0);
goto out_free_inq;
spt = spt_lut[id_ns->dpc & 0x07] << 3;
if (id_ns->dps)
protect = 0x01;
else
protect = 0;
kfree(id_ns);
grd_chk = protect << 2;
app_chk = protect << 1;
ref_chk = protect;
/* nvme controller identify */
nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_free;
if (nvme_sc) {
res = nvme_sc;
goto out_free;
}
id_ctrl = mem;
goto out_free_inq;
v_sup = id_ctrl->vwc;
kfree(id_ctrl);
memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE; /* Page Code */
......@@ -932,12 +726,8 @@ static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
out_free:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out_dma:
out_free_inq:
kfree(inq_response);
out_mem:
return res;
}
......@@ -965,7 +755,7 @@ static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int alloc_len)
{
u8 *inq_response;
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int xfer_len;
inq_response = kzalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
......@@ -994,7 +784,7 @@ static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int alloc_len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int xfer_len;
u8 *log_response;
......@@ -1022,47 +812,30 @@ static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
struct sg_io_hdr *hdr, int alloc_len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int xfer_len;
u8 *log_response;
struct nvme_command c;
struct nvme_dev *dev = ns->dev;
struct nvme_smart_log *smart_log;
dma_addr_t dma_addr;
void *mem;
u8 temp_c;
u16 temp_k;
log_response = kzalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
if (log_response == NULL) {
res = -ENOMEM;
goto out_mem;
}
if (log_response == NULL)
return -ENOMEM;
mem = dma_alloc_coherent(&dev->pci_dev->dev,
sizeof(struct nvme_smart_log),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out_dma;
}
res = nvme_get_log_page(dev, &smart_log);
if (res < 0)
goto out_free_response;
/* Get SMART Log Page */
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_get_log_page;
c.common.nsid = cpu_to_le32(0xFFFFFFFF);
c.common.prp1 = cpu_to_le64(dma_addr);
c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) /
BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART);
res = nvme_submit_admin_cmd(dev, &c, NULL);
if (res != NVME_SC_SUCCESS) {
temp_c = LOG_TEMP_UNKNOWN;
} else {
smart_log = mem;
temp_k = (smart_log->temperature[1] << 8) +
(smart_log->temperature[0]);
temp_c = temp_k - KELVIN_TEMP_FACTOR;
}
kfree(smart_log);
log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
/* Subpage=0x00, Page Length MSB=0 */
......@@ -1078,59 +851,39 @@ static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
mem, dma_addr);
out_dma:
out_free_response:
kfree(log_response);
out_mem:
return res;
}
static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
int alloc_len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int xfer_len;
u8 *log_response;
struct nvme_command c;
struct nvme_dev *dev = ns->dev;
struct nvme_smart_log *smart_log;
dma_addr_t dma_addr;
void *mem;
u32 feature_resp;
u8 temp_c_cur, temp_c_thresh;
u16 temp_k;
log_response = kzalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
if (log_response == NULL) {
res = -ENOMEM;
goto out_mem;
}
if (log_response == NULL)
return -ENOMEM;
mem = dma_alloc_coherent(&dev->pci_dev->dev,
sizeof(struct nvme_smart_log),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out_dma;
}
res = nvme_get_log_page(dev, &smart_log);
if (res < 0)
goto out_free_response;
/* Get SMART Log Page */
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_get_log_page;
c.common.nsid = cpu_to_le32(0xFFFFFFFF);
c.common.prp1 = cpu_to_le64(dma_addr);
c.common.cdw10[0] = cpu_to_le32((((sizeof(struct nvme_smart_log) /
BYTES_TO_DWORDS) - 1) << 16) | NVME_LOG_SMART);
res = nvme_submit_admin_cmd(dev, &c, NULL);
if (res != NVME_SC_SUCCESS) {
temp_c_cur = LOG_TEMP_UNKNOWN;
} else {
smart_log = mem;
temp_k = (smart_log->temperature[1] << 8) +
(smart_log->temperature[0]);
temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
}
kfree(smart_log);
/* Get Features for Temp Threshold */
res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
......@@ -1159,11 +912,8 @@ static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
mem, dma_addr);
out_dma:
out_free_response:
kfree(log_response);
out_mem:
return res;
}
......@@ -1174,59 +924,45 @@ static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
{
/* Quick check to make sure I don't stomp on my own memory... */
if ((cdb10 && len < 8) || (!cdb10 && len < 4))
return SNTI_INTERNAL_ERROR;
return -EINVAL;
if (cdb10) {
resp[0] = (mode_data_length & 0xFF00) >> 8;
resp[1] = (mode_data_length & 0x00FF);
/* resp[2] and [3] are zero */
resp[3] = 0x10 /* DPOFUA */;
resp[4] = llbaa;
resp[5] = RESERVED_FIELD;
resp[6] = (blk_desc_len & 0xFF00) >> 8;
resp[7] = (blk_desc_len & 0x00FF);
} else {
resp[0] = (mode_data_length & 0x00FF);
/* resp[1] and [2] are zero */
resp[2] = 0x10 /* DPOFUA */;
resp[3] = (blk_desc_len & 0x00FF);
}
return SNTI_TRANSLATION_SUCCESS;
return 0;
}
static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *resp, int len, u8 llbaa)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ns *id_ns;
u8 flbas;
u32 lba_length;
if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
return SNTI_INTERNAL_ERROR;
return -EINVAL;
else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
return SNTI_INTERNAL_ERROR;
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
return -EINVAL;
/* nvme ns identify */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ns = mem;
return res;
flbas = (id_ns->flbas) & 0x0F;
lba_length = (1 << (id_ns->lbaf[flbas].ds));
......@@ -1246,10 +982,7 @@ static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
memcpy(&resp[12], &tmp_len, sizeof(u32));
}
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out:
kfree(id_ns);
return res;
}
......@@ -1258,7 +991,7 @@ static int nvme_trans_fill_control_page(struct nvme_ns *ns,
int len)
{
if (len < MODE_PAGE_CONTROL_LEN)
return SNTI_INTERNAL_ERROR;
return -EINVAL;
resp[0] = MODE_PAGE_CONTROL;
resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
......@@ -1272,78 +1005,69 @@ static int nvme_trans_fill_control_page(struct nvme_ns *ns,
resp[9] = 0xFF;
/* Bytes 10,11: Extended selftest completion time = 0x0000 */
return SNTI_TRANSLATION_SUCCESS;
return 0;
}
static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
struct sg_io_hdr *hdr,
u8 *resp, int len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
u32 feature_resp;
u8 vwc;
if (len < MODE_PAGE_CACHING_LEN)
return SNTI_INTERNAL_ERROR;
return -EINVAL;
nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
&feature_resp);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out;
if (nvme_sc) {
res = nvme_sc;
goto out;
}
return res;
vwc = feature_resp & 0x00000001;
resp[0] = MODE_PAGE_CACHING;
resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
resp[2] = vwc << 2;
out:
return res;
return 0;
}
static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *resp,
int len)
{
int res = SNTI_TRANSLATION_SUCCESS;
if (len < MODE_PAGE_POW_CND_LEN)
return SNTI_INTERNAL_ERROR;
return -EINVAL;
resp[0] = MODE_PAGE_POWER_CONDITION;
resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
/* All other bytes are zero */
return res;
return 0;
}
static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *resp,
int len)
{
int res = SNTI_TRANSLATION_SUCCESS;
if (len < MODE_PAGE_INF_EXC_LEN)
return SNTI_INTERNAL_ERROR;
return -EINVAL;
resp[0] = MODE_PAGE_INFO_EXCEP;
resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
resp[2] = 0x88;
/* All other bytes are zero */
return res;
return 0;
}
static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *resp, int len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u16 mode_pages_offset_1 = 0;
u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
......@@ -1353,23 +1077,18 @@ static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
MODE_PAGE_CACHING_LEN);
if (res != SNTI_TRANSLATION_SUCCESS)
goto out;
if (res)
return res;
res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
MODE_PAGE_CONTROL_LEN);
if (res != SNTI_TRANSLATION_SUCCESS)
goto out;
if (res)
return res;
res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
MODE_PAGE_POW_CND_LEN);
if (res != SNTI_TRANSLATION_SUCCESS)
goto out;
res = nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
if (res)
return res;
return nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
MODE_PAGE_INF_EXC_LEN);
if (res != SNTI_TRANSLATION_SUCCESS)
goto out;
out:
return res;
}
static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
......@@ -1390,7 +1109,7 @@ static int nvme_trans_mode_page_create(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *, int),
u16 mode_pages_tot_len)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int xfer_len;
u8 *response;
u8 dbd, llbaa;
......@@ -1399,9 +1118,10 @@ static int nvme_trans_mode_page_create(struct nvme_ns *ns,
u16 mode_pages_offset_1;
u16 blk_desc_len, blk_desc_offset, mode_data_length;
dbd = GET_MODE_SENSE_DBD(cmd);
llbaa = GET_MODE_SENSE_LLBAA(cmd);
mph_size = GET_MODE_SENSE_MPH_SIZE(cdb10);
dbd = (cmd[1] & MODE_SENSE_DBD_MASK) >> MODE_SENSE_DBD_SHIFT;
llbaa = (cmd[1] & MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT;
mph_size = cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE;
blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
......@@ -1419,18 +1139,18 @@ static int nvme_trans_mode_page_create(struct nvme_ns *ns,
res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
llbaa, mode_data_length, blk_desc_len);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out_free;
if (blk_desc_len > 0) {
res = nvme_trans_fill_blk_desc(ns, hdr,
&response[blk_desc_offset],
blk_desc_len, llbaa);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out_free;
}
res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
mode_pages_tot_len);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out_free;
xfer_len = min(alloc_len, resp_size);
......@@ -1485,33 +1205,20 @@ static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 pc, u8 pcmod, u8 start)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ctrl *id_ctrl;
int lowest_pow_st; /* max npss = lowest power consumption */
unsigned ps_desired = 0;
/* NVMe Controller Identify */
mem = dma_alloc_coherent(&dev->pci_dev->dev,
sizeof(struct nvme_id_ctrl),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ctrl = mem;
return res;
lowest_pow_st = max(POWER_STATE_0, (int)(id_ctrl->npss - 1));
kfree(id_ctrl);
switch (pc) {
case NVME_POWER_STATE_START_VALID:
......@@ -1551,79 +1258,48 @@ static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
}
nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc)
res = nvme_sc;
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
dma_addr);
out:
return res;
return nvme_trans_status_code(hdr, nvme_sc);
}
/* Write Buffer Helper Functions */
/* Also using this for Format Unit with hdr passed as NULL, and buffer_id, 0 */
static int nvme_trans_send_activate_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 buffer_id)
{
struct nvme_command c;
int nvme_sc;
static int nvme_trans_send_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_activate_fw;
c.common.cdw10[0] = cpu_to_le32(buffer_id | NVME_FWACT_REPL_ACTV);
nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, NULL, 0);
return nvme_trans_status_code(hdr, nvme_sc);
}
static int nvme_trans_send_download_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 opcode, u32 tot_len, u32 offset,
u8 buffer_id)
{
int res = SNTI_TRANSLATION_SUCCESS;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
struct nvme_command c;
struct nvme_iod *iod = NULL;
unsigned length;
memset(&c, 0, sizeof(c));
c.common.opcode = opcode;
if (opcode == nvme_admin_download_fw) {
if (hdr->iovec_count > 0) {
/* Assuming SGL is not allowed for this command */
res = nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST,
SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
iod = nvme_map_user_pages(dev, DMA_TO_DEVICE,
(unsigned long)hdr->dxferp, tot_len);
if (IS_ERR(iod)) {
res = PTR_ERR(iod);
goto out;
}
length = nvme_setup_prps(dev, iod, tot_len, GFP_KERNEL);
if (length != tot_len) {
res = -ENOMEM;
goto out_unmap;
}
c.dlfw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.dlfw.prp2 = cpu_to_le64(iod->first_dma);
c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
} else if (opcode == nvme_admin_activate_fw) {
u32 cdw10 = buffer_id | NVME_FWACT_REPL_ACTV;
c.common.cdw10[0] = cpu_to_le32(cdw10);
if (hdr->iovec_count > 0) {
/* Assuming SGL is not allowed for this command */
return nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST,
SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
}
nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_unmap;
if (nvme_sc)
res = nvme_sc;
out_unmap:
if (opcode == nvme_admin_download_fw) {
nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod);
nvme_free_iod(dev, iod);
}
out:
return res;
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_download_fw;
c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
nvme_sc = __nvme_submit_sync_cmd(dev->admin_q, &c, NULL,
hdr->dxferp, tot_len, NULL, 0);
return nvme_trans_status_code(hdr, nvme_sc);
}
/* Mode Select Helper Functions */
......@@ -1686,7 +1362,7 @@ static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *mode_page, u8 page_code)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
unsigned dword11;
......@@ -1697,12 +1373,6 @@ static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
0, NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
break;
if (nvme_sc) {
res = nvme_sc;
break;
}
break;
case MODE_PAGE_CONTROL:
break;
......@@ -1714,8 +1384,6 @@ static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
ILLEGAL_REQUEST,
SCSI_ASC_INVALID_PARAMETER,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
if (!res)
res = SNTI_INTERNAL_ERROR;
break;
}
break;
......@@ -1723,8 +1391,6 @@ static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
if (!res)
res = SNTI_INTERNAL_ERROR;
break;
}
......@@ -1735,7 +1401,7 @@ static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd, u16 parm_list_len, u8 pf,
u8 sp, u8 cdb10)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u8 *parm_list;
u16 bd_len;
u8 llbaa = 0;
......@@ -1751,7 +1417,7 @@ static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
}
res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out_mem;
nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
......@@ -1789,7 +1455,7 @@ static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
mp_size = parm_list[index + 1] + 2;
res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
page_code);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
break;
index += mp_size;
} while (index < parm_list_len);
......@@ -1805,12 +1471,9 @@ static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
struct sg_io_hdr *hdr)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ns *id_ns;
u8 flbas;
/*
......@@ -1821,22 +1484,12 @@ static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
*/
if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
mem = dma_alloc_coherent(&dev->pci_dev->dev,
sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
/* nvme ns identify */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
struct nvme_id_ns *id_ns;
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ns = mem;
return res;
if (ns->mode_select_num_blocks == 0)
ns->mode_select_num_blocks = le64_to_cpu(id_ns->ncap);
......@@ -1845,18 +1498,17 @@ static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
ns->mode_select_block_len =
(1 << (id_ns->lbaf[flbas].ds));
}
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
mem, dma_addr);
kfree(id_ns);
}
out:
return res;
return 0;
}
static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
u8 format_prot_info, u8 *nvme_pf_code)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u8 *parm_list;
u8 pf_usage, pf_code;
......@@ -1866,7 +1518,7 @@ static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
goto out;
}
res = nvme_trans_copy_from_user(hdr, parm_list, len);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out_mem;
if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
......@@ -1916,11 +1568,9 @@ static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 prot_info)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ns *id_ns;
u8 i;
u8 flbas, nlbaf;
......@@ -1929,22 +1579,11 @@ static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
struct nvme_command c;
/* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
/* nvme ns identify */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ns = mem;
return res;
flbas = (id_ns->flbas) & 0x0F;
nlbaf = id_ns->nlbaf;
......@@ -1972,69 +1611,13 @@ static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
c.format.nsid = cpu_to_le32(ns->ns_id);
c.format.cdw10 = cpu_to_le32(cdw10);
nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
nvme_sc = nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc)
res = nvme_sc;
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out:
kfree(id_ns);
return res;
}
/* Read/Write Helper Functions */
static inline void nvme_trans_get_io_cdb6(u8 *cmd,
struct nvme_trans_io_cdb *cdb_info)
{
cdb_info->fua = 0;
cdb_info->prot_info = 0;
cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_6_CDB_LBA_OFFSET) &
IO_6_CDB_LBA_MASK;
cdb_info->xfer_len = GET_U8_FROM_CDB(cmd, IO_6_CDB_TX_LEN_OFFSET);
/* sbc3r27 sec 5.32 - TRANSFER LEN of 0 implies a 256 Block transfer */
if (cdb_info->xfer_len == 0)
cdb_info->xfer_len = IO_6_DEFAULT_TX_LEN;
}
static inline void nvme_trans_get_io_cdb10(u8 *cmd,
struct nvme_trans_io_cdb *cdb_info)
{
cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_10_CDB_FUA_OFFSET) &
IO_CDB_FUA_MASK;
cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_10_CDB_WP_OFFSET) &
IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_10_CDB_LBA_OFFSET);
cdb_info->xfer_len = GET_U16_FROM_CDB(cmd, IO_10_CDB_TX_LEN_OFFSET);
}
static inline void nvme_trans_get_io_cdb12(u8 *cmd,
struct nvme_trans_io_cdb *cdb_info)
{
cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_12_CDB_FUA_OFFSET) &
IO_CDB_FUA_MASK;
cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_12_CDB_WP_OFFSET) &
IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_12_CDB_LBA_OFFSET);
cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_12_CDB_TX_LEN_OFFSET);
}
static inline void nvme_trans_get_io_cdb16(u8 *cmd,
struct nvme_trans_io_cdb *cdb_info)
{
cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_16_CDB_FUA_OFFSET) &
IO_CDB_FUA_MASK;
cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_16_CDB_WP_OFFSET) &
IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
cdb_info->lba = GET_U64_FROM_CDB(cmd, IO_16_CDB_LBA_OFFSET);
cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_16_CDB_TX_LEN_OFFSET);
}
static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
struct nvme_trans_io_cdb *cdb_info,
u32 max_blocks)
......@@ -2064,11 +1647,8 @@ static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
struct nvme_trans_io_cdb *cdb_info, u8 is_write)
{
int res = SNTI_TRANSLATION_SUCCESS;
int nvme_sc;
struct nvme_dev *dev = ns->dev;
int nvme_sc = NVME_SC_SUCCESS;
u32 num_cmds;
struct nvme_iod *iod;
u64 unit_len;
u64 unit_num_blocks; /* Number of blocks to xfer in each nvme cmd */
u32 retcode;
......@@ -2119,45 +1699,20 @@ static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
control = nvme_trans_io_get_control(ns, cdb_info);
c.rw.control = cpu_to_le16(control);
iod = nvme_map_user_pages(dev,
(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
(unsigned long)next_mapping_addr, unit_len);
if (IS_ERR(iod)) {
res = PTR_ERR(iod);
goto out;
}
retcode = nvme_setup_prps(dev, iod, unit_len, GFP_KERNEL);
if (retcode != unit_len) {
nvme_unmap_user_pages(dev,
(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
iod);
nvme_free_iod(dev, iod);
res = -ENOMEM;
goto out;
if (get_capacity(ns->disk) - unit_num_blocks <
cdb_info->lba + nvme_offset) {
nvme_sc = NVME_SC_LBA_RANGE;
break;
}
c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.rw.prp2 = cpu_to_le64(iod->first_dma);
nvme_sc = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
next_mapping_addr, unit_len, NULL, 0);
if (nvme_sc)
break;
nvme_offset += unit_num_blocks;
nvme_sc = nvme_submit_io_cmd(dev, ns, &c, NULL);
if (nvme_sc != NVME_SC_SUCCESS) {
nvme_unmap_user_pages(dev,
(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
iod);
nvme_free_iod(dev, iod);
res = nvme_trans_status_code(hdr, nvme_sc);
goto out;
}
nvme_unmap_user_pages(dev,
(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
iod);
nvme_free_iod(dev, iod);
}
res = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
out:
return res;
return nvme_trans_status_code(hdr, nvme_sc);
}
......@@ -2166,8 +1721,8 @@ static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
struct nvme_trans_io_cdb cdb_info;
int res = 0;
struct nvme_trans_io_cdb cdb_info = { 0, };
u8 opcode = cmd[0];
u64 xfer_bytes;
u64 sum_iov_len = 0;
......@@ -2175,27 +1730,52 @@ static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
int i;
size_t not_copied;
/* Extract Fields from CDB */
/*
* The FUA and WPROTECT fields are not supported in 6-byte CDBs,
* but always in the same place for all others.
*/
switch (opcode) {
case WRITE_6:
case READ_6:
break;
default:
cdb_info.fua = cmd[1] & 0x8;
cdb_info.prot_info = (cmd[1] & 0xe0) >> 5;
if (cdb_info.prot_info && !ns->pi_type) {
return nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST,
SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
}
}
switch (opcode) {
case WRITE_6:
case READ_6:
nvme_trans_get_io_cdb6(cmd, &cdb_info);
cdb_info.lba = get_unaligned_be24(&cmd[1]);
cdb_info.xfer_len = cmd[4];
if (cdb_info.xfer_len == 0)
cdb_info.xfer_len = 256;
break;
case WRITE_10:
case READ_10:
nvme_trans_get_io_cdb10(cmd, &cdb_info);
cdb_info.lba = get_unaligned_be32(&cmd[2]);
cdb_info.xfer_len = get_unaligned_be16(&cmd[7]);
break;
case WRITE_12:
case READ_12:
nvme_trans_get_io_cdb12(cmd, &cdb_info);
cdb_info.lba = get_unaligned_be32(&cmd[2]);
cdb_info.xfer_len = get_unaligned_be32(&cmd[6]);
break;
case WRITE_16:
case READ_16:
nvme_trans_get_io_cdb16(cmd, &cdb_info);
cdb_info.lba = get_unaligned_be64(&cmd[2]);
cdb_info.xfer_len = get_unaligned_be32(&cmd[10]);
break;
default:
/* Will never really reach here */
res = SNTI_INTERNAL_ERROR;
res = -EIO;
goto out;
}
......@@ -2237,7 +1817,7 @@ static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
/* Send NVMe IO Command(s) */
res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out;
out:
......@@ -2247,15 +1827,15 @@ static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
u8 evpd;
u8 page_code;
int alloc_len;
u8 *inq_response;
evpd = GET_INQ_EVPD_BIT(cmd);
page_code = GET_INQ_PAGE_CODE(cmd);
alloc_len = GET_INQ_ALLOC_LENGTH(cmd);
evpd = cmd[1] & 0x01;
page_code = cmd[2];
alloc_len = get_unaligned_be16(&cmd[3]);
inq_response = kmalloc(max(alloc_len, STANDARD_INQUIRY_LENGTH),
GFP_KERNEL);
......@@ -2316,29 +1896,27 @@ static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u16 alloc_len;
u8 sp;
u8 pc;
u8 page_code;
sp = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_SP_OFFSET);
if (sp != LOG_SENSE_CDB_SP_NOT_ENABLED) {
if (cmd[1] != LOG_SENSE_CDB_SP_NOT_ENABLED) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
pc = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_PC_OFFSET);
page_code = pc & LOG_SENSE_CDB_PAGE_CODE_MASK;
pc = (pc & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
page_code = cmd[2] & LOG_SENSE_CDB_PAGE_CODE_MASK;
pc = (cmd[2] & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
alloc_len = GET_U16_FROM_CDB(cmd, LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET);
alloc_len = get_unaligned_be16(&cmd[7]);
switch (page_code) {
case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
......@@ -2363,24 +1941,18 @@ static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
u8 cdb10 = 0;
u16 parm_list_len;
u8 page_format;
u8 save_pages;
page_format = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_PAGE_FORMAT_OFFSET);
page_format &= MODE_SELECT_CDB_PAGE_FORMAT_MASK;
page_format = cmd[1] & MODE_SELECT_CDB_PAGE_FORMAT_MASK;
save_pages = cmd[1] & MODE_SELECT_CDB_SAVE_PAGES_MASK;
save_pages = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_SAVE_PAGES_OFFSET);
save_pages &= MODE_SELECT_CDB_SAVE_PAGES_MASK;
if (GET_OPCODE(cmd) == MODE_SELECT) {
parm_list_len = GET_U8_FROM_CDB(cmd,
MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET);
if (cmd[0] == MODE_SELECT) {
parm_list_len = cmd[4];
} else {
parm_list_len = GET_U16_FROM_CDB(cmd,
MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET);
parm_list_len = cmd[7];
cdb10 = 1;
}
......@@ -2389,42 +1961,36 @@ static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
* According to SPC-4 r24, a paramter list length field of 0
* shall not be considered an error
*/
res = nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
return nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
page_format, save_pages, cdb10);
}
return res;
return 0;
}
static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
u16 alloc_len;
u8 cdb10 = 0;
u8 page_code;
u8 pc;
if (GET_OPCODE(cmd) == MODE_SENSE) {
alloc_len = GET_U8_FROM_CDB(cmd, MODE_SENSE6_ALLOC_LEN_OFFSET);
if (cmd[0] == MODE_SENSE) {
alloc_len = cmd[4];
} else {
alloc_len = GET_U16_FROM_CDB(cmd,
MODE_SENSE10_ALLOC_LEN_OFFSET);
alloc_len = get_unaligned_be16(&cmd[7]);
cdb10 = 1;
}
pc = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CONTROL_OFFSET) &
MODE_SENSE_PAGE_CONTROL_MASK;
if (pc != MODE_SENSE_PC_CURRENT_VALUES) {
if ((cmd[2] & MODE_SENSE_PAGE_CONTROL_MASK) !=
MODE_SENSE_PC_CURRENT_VALUES) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
page_code = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CODE_OFFSET) &
MODE_SENSE_PAGE_CODE_MASK;
switch (page_code) {
switch (cmd[2] & MODE_SENSE_PAGE_CODE_MASK) {
case MODE_PAGE_CACHING:
res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
cdb10,
......@@ -2467,47 +2033,34 @@ static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
}
static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
u8 *cmd, u8 cdb16)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
u32 alloc_len = READ_CAP_10_RESP_SIZE;
u32 resp_size = READ_CAP_10_RESP_SIZE;
u32 alloc_len;
u32 resp_size;
u32 xfer_len;
u8 cdb16;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ns *id_ns;
u8 *response;
cdb16 = IS_READ_CAP_16(cmd);
if (cdb16) {
alloc_len = GET_READ_CAP_16_ALLOC_LENGTH(cmd);
alloc_len = get_unaligned_be32(&cmd[10]);
resp_size = READ_CAP_16_RESP_SIZE;
} else {
alloc_len = READ_CAP_10_RESP_SIZE;
resp_size = READ_CAP_10_RESP_SIZE;
}
mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
/* nvme ns identify */
nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
nvme_sc = nvme_identify_ns(dev, ns->ns_id, &id_ns);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ns = mem;
return res;
response = kzalloc(resp_size, GFP_KERNEL);
if (response == NULL) {
res = -ENOMEM;
goto out_dma;
goto out_free_id;
}
nvme_trans_fill_read_cap(response, id_ns, cdb16);
......@@ -2515,72 +2068,53 @@ static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
res = nvme_trans_copy_to_user(hdr, response, xfer_len);
kfree(response);
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
dma_addr);
out:
out_free_id:
kfree(id_ns);
return res;
}
static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
int nvme_sc;
u32 alloc_len, xfer_len, resp_size;
u8 select_report;
u8 *response;
struct nvme_dev *dev = ns->dev;
dma_addr_t dma_addr;
void *mem;
struct nvme_id_ctrl *id_ctrl;
u32 ll_length, lun_id;
u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
__be32 tmp_len;
alloc_len = GET_REPORT_LUNS_ALLOC_LENGTH(cmd);
select_report = GET_U8_FROM_CDB(cmd, REPORT_LUNS_SR_OFFSET);
if ((select_report != ALL_LUNS_RETURNED) &&
(select_report != ALL_WELL_KNOWN_LUNS_RETURNED) &&
(select_report != RESTRICTED_LUNS_RETURNED)) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
switch (cmd[2]) {
default:
return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
} else {
/* NVMe Controller Identify */
mem = dma_alloc_coherent(&dev->pci_dev->dev,
sizeof(struct nvme_id_ctrl),
&dma_addr, GFP_KERNEL);
if (mem == NULL) {
res = -ENOMEM;
goto out;
}
nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
case ALL_LUNS_RETURNED:
case ALL_WELL_KNOWN_LUNS_RETURNED:
case RESTRICTED_LUNS_RETURNED:
nvme_sc = nvme_identify_ctrl(dev, &id_ctrl);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out_dma;
if (nvme_sc) {
res = nvme_sc;
goto out_dma;
}
id_ctrl = mem;
return res;
ll_length = le32_to_cpu(id_ctrl->nn) * LUN_ENTRY_SIZE;
resp_size = ll_length + LUN_DATA_HEADER_SIZE;
alloc_len = get_unaligned_be32(&cmd[6]);
if (alloc_len < resp_size) {
res = nvme_trans_completion(hdr,
SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out_dma;
goto out_free_id;
}
response = kzalloc(resp_size, GFP_KERNEL);
if (response == NULL) {
res = -ENOMEM;
goto out_dma;
goto out_free_id;
}
/* The first LUN ID will always be 0 per the SAM spec */
......@@ -2601,24 +2135,21 @@ static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
res = nvme_trans_copy_to_user(hdr, response, xfer_len);
kfree(response);
out_dma:
dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
dma_addr);
out:
out_free_id:
kfree(id_ctrl);
return res;
}
static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u8 alloc_len, xfer_len, resp_size;
u8 desc_format;
u8 *response;
alloc_len = GET_REQUEST_SENSE_ALLOC_LENGTH(cmd);
desc_format = GET_U8_FROM_CDB(cmd, REQUEST_SENSE_DESC_OFFSET);
desc_format &= REQUEST_SENSE_DESC_MASK;
desc_format = cmd[1] & 0x01;
alloc_len = cmd[4];
resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
(FIXED_FMT_SENSE_DATA_SIZE));
......@@ -2628,7 +2159,7 @@ static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
goto out;
}
if (desc_format == DESCRIPTOR_FORMAT_SENSE_DATA_TYPE) {
if (desc_format) {
/* Descriptor Format Sense Data */
response[0] = DESC_FORMAT_SENSE_DATA;
response[1] = NO_SENSE;
......@@ -2667,95 +2198,58 @@ static int nvme_trans_security_protocol(struct nvme_ns *ns,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
}
static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
struct sg_io_hdr *hdr)
{
int res = SNTI_TRANSLATION_SUCCESS;
int nvme_sc;
struct nvme_command c;
u8 immed, pcmod, pc, no_flush, start;
immed = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_IMMED_OFFSET);
pcmod = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET);
pc = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_OFFSET);
no_flush = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_NO_FLUSH_OFFSET);
start = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_START_OFFSET);
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_cmd_flush;
c.common.nsid = cpu_to_le32(ns->ns_id);
immed &= START_STOP_UNIT_CDB_IMMED_MASK;
pcmod &= START_STOP_UNIT_CDB_POWER_COND_MOD_MASK;
pc = (pc & START_STOP_UNIT_CDB_POWER_COND_MASK) >> NIBBLE_SHIFT;
no_flush &= START_STOP_UNIT_CDB_NO_FLUSH_MASK;
start &= START_STOP_UNIT_CDB_START_MASK;
nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, NULL, 0);
return nvme_trans_status_code(hdr, nvme_sc);
}
static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
u8 immed, pcmod, pc, no_flush, start;
immed = cmd[1] & 0x01;
pcmod = cmd[3] & 0x0f;
pc = (cmd[4] & 0xf0) >> 4;
no_flush = cmd[4] & 0x04;
start = cmd[4] & 0x01;
if (immed != 0) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
} else {
if (no_flush == 0) {
/* Issue NVME FLUSH command prior to START STOP UNIT */
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_cmd_flush;
c.common.nsid = cpu_to_le32(ns->ns_id);
nvme_sc = nvme_submit_io_cmd(ns->dev, ns, &c, NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
int res = nvme_trans_synchronize_cache(ns, hdr);
if (res)
goto out;
if (nvme_sc) {
res = nvme_sc;
goto out;
}
return res;
}
/* Setup the expected power state transition */
res = nvme_trans_power_state(ns, hdr, pc, pcmod, start);
return nvme_trans_power_state(ns, hdr, pc, pcmod, start);
}
out:
return res;
}
static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
struct sg_io_hdr *hdr, u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int nvme_sc;
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_cmd_flush;
c.common.nsid = cpu_to_le32(ns->ns_id);
nvme_sc = nvme_submit_io_cmd(ns->dev, ns, &c, NULL);
res = nvme_trans_status_code(hdr, nvme_sc);
if (res)
goto out;
if (nvme_sc)
res = nvme_sc;
out:
return res;
}
static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res;
u8 parm_hdr_len = 0;
u8 nvme_pf_code = 0;
u8 format_prot_info, long_list, format_data;
format_prot_info = GET_U8_FROM_CDB(cmd,
FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET);
long_list = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_LONG_LIST_OFFSET);
format_data = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET);
format_prot_info = (format_prot_info &
FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK) >>
FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT;
long_list &= FORMAT_UNIT_CDB_LONG_LIST_MASK;
format_data &= FORMAT_UNIT_CDB_FORMAT_DATA_MASK;
format_prot_info = (cmd[1] & 0xc0) >> 6;
long_list = cmd[1] & 0x20;
format_data = cmd[1] & 0x10;
if (format_data != 0) {
if (format_prot_info != 0) {
......@@ -2779,16 +2273,16 @@ static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
if (parm_hdr_len > 0) {
res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
format_prot_info, &nvme_pf_code);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out;
}
/* Attempt to activate any previously downloaded firmware image */
res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, 0, 0, 0);
res = nvme_trans_send_activate_fw_cmd(ns, hdr, 0);
/* Determine Block size and count and send format command */
res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out;
res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
......@@ -2801,28 +2295,24 @@ static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
struct nvme_dev *dev = ns->dev;
if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
NOT_READY, SCSI_ASC_LUN_NOT_READY,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
else
res = nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
return res;
return nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
}
static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
int res = SNTI_TRANSLATION_SUCCESS;
int res = 0;
u32 buffer_offset, parm_list_length;
u8 buffer_id, mode;
parm_list_length =
GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET);
parm_list_length = get_unaligned_be24(&cmd[6]);
if (parm_list_length % BYTES_TO_DWORDS != 0) {
/* NVMe expects Firmware file to be a whole number of DWORDS */
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
......@@ -2830,38 +2320,32 @@ static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
buffer_id = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_ID_OFFSET);
buffer_id = cmd[2];
if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
goto out;
}
mode = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_MODE_OFFSET) &
WRITE_BUFFER_CDB_MODE_MASK;
buffer_offset =
GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET);
mode = cmd[1] & 0x1f;
buffer_offset = get_unaligned_be24(&cmd[3]);
switch (mode) {
case DOWNLOAD_SAVE_ACTIVATE:
res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
parm_list_length, buffer_offset,
buffer_id);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out;
res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
parm_list_length, buffer_offset,
buffer_id);
res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
break;
case DOWNLOAD_SAVE_DEFER_ACTIVATE:
res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
res = nvme_trans_send_download_fw_cmd(ns, hdr, nvme_admin_download_fw,
parm_list_length, buffer_offset,
buffer_id);
break;
case ACTIVATE_DEFERRED_MICROCODE:
res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
parm_list_length, buffer_offset,
buffer_id);
res = nvme_trans_send_activate_fw_cmd(ns, hdr, buffer_id);
break;
default:
res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
......@@ -2890,15 +2374,13 @@ struct scsi_unmap_parm_list {
static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
u8 *cmd)
{
struct nvme_dev *dev = ns->dev;
struct scsi_unmap_parm_list *plist;
struct nvme_dsm_range *range;
struct nvme_command c;
int i, nvme_sc, res = -ENOMEM;
int i, nvme_sc, res;
u16 ndesc, list_len;
dma_addr_t dma_addr;
list_len = GET_U16_FROM_CDB(cmd, UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET);
list_len = get_unaligned_be16(&cmd[7]);
if (!list_len)
return -EINVAL;
......@@ -2907,7 +2389,7 @@ static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
return -ENOMEM;
res = nvme_trans_copy_from_user(hdr, plist, list_len);
if (res != SNTI_TRANSLATION_SUCCESS)
if (res)
goto out;
ndesc = be16_to_cpu(plist->unmap_blk_desc_data_len) >> 4;
......@@ -2916,10 +2398,11 @@ static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
goto out;
}
range = dma_alloc_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range),
&dma_addr, GFP_KERNEL);
if (!range)
range = kcalloc(ndesc, sizeof(*range), GFP_KERNEL);
if (!range) {
res = -ENOMEM;
goto out;
}
for (i = 0; i < ndesc; i++) {
range[i].nlb = cpu_to_le32(be32_to_cpu(plist->desc[i].nlb));
......@@ -2930,15 +2413,14 @@ static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
memset(&c, 0, sizeof(c));
c.dsm.opcode = nvme_cmd_dsm;
c.dsm.nsid = cpu_to_le32(ns->ns_id);
c.dsm.prp1 = cpu_to_le64(dma_addr);
c.dsm.nr = cpu_to_le32(ndesc - 1);
c.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
nvme_sc = nvme_submit_io_cmd(dev, ns, &c, NULL);
nvme_sc = nvme_submit_sync_cmd(ns->queue, &c, range,
ndesc * sizeof(*range));
res = nvme_trans_status_code(hdr, nvme_sc);
dma_free_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range),
range, dma_addr);
kfree(range);
out:
kfree(plist);
return res;
......@@ -2993,13 +2475,16 @@ static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
retcode = nvme_trans_mode_sense(ns, hdr, cmd);
break;
case READ_CAPACITY:
retcode = nvme_trans_read_capacity(ns, hdr, cmd);
retcode = nvme_trans_read_capacity(ns, hdr, cmd, 0);
break;
case SERVICE_ACTION_IN_16:
if (IS_READ_CAP_16(cmd))
retcode = nvme_trans_read_capacity(ns, hdr, cmd);
else
switch (cmd[1]) {
case SAI_READ_CAPACITY_16:
retcode = nvme_trans_read_capacity(ns, hdr, cmd, 1);
break;
default:
goto out;
}
break;
case REPORT_LUNS:
retcode = nvme_trans_report_luns(ns, hdr, cmd);
......@@ -3015,7 +2500,7 @@ static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
retcode = nvme_trans_start_stop(ns, hdr, cmd);
break;
case SYNCHRONIZE_CACHE:
retcode = nvme_trans_synchronize_cache(ns, hdr, cmd);
retcode = nvme_trans_synchronize_cache(ns, hdr);
break;
case FORMAT_UNIT:
retcode = nvme_trans_format_unit(ns, hdr, cmd);
......@@ -3053,15 +2538,16 @@ int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
if (hdr.cmd_len > BLK_MAX_CDB)
return -EINVAL;
/*
* A positive return code means a NVMe status, which has been
* translated to sense data.
*/
retcode = nvme_scsi_translate(ns, &hdr);
if (retcode < 0)
return retcode;
if (retcode > 0)
retcode = SNTI_TRANSLATION_SUCCESS;
if (copy_to_user(u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
return -EFAULT;
return retcode;
return 0;
}
int nvme_sg_get_version_num(int __user *ip)
......
/*
* ps3vram - Use extra PS3 video ram as MTD block device.
* ps3vram - Use extra PS3 video ram as block device.
*
* Copyright 2009 Sony Corporation
*
......@@ -73,8 +73,8 @@ struct ps3vram_priv {
u64 memory_handle;
u64 context_handle;
u32 *ctrl;
void *reports;
u32 __iomem *ctrl;
void __iomem *reports;
u8 *xdr_buf;
u32 *fifo_base;
......@@ -104,7 +104,7 @@ static char *size = "256M";
module_param(size, charp, 0);
MODULE_PARM_DESC(size, "memory size");
static u32 *ps3vram_get_notifier(void *reports, int notifier)
static u32 __iomem *ps3vram_get_notifier(void __iomem *reports, int notifier)
{
return reports + DMA_NOTIFIER_OFFSET_BASE +
DMA_NOTIFIER_SIZE * notifier;
......@@ -113,22 +113,22 @@ static u32 *ps3vram_get_notifier(void *reports, int notifier)
static void ps3vram_notifier_reset(struct ps3_system_bus_device *dev)
{
struct ps3vram_priv *priv = ps3_system_bus_get_drvdata(dev);
u32 *notify = ps3vram_get_notifier(priv->reports, NOTIFIER);
u32 __iomem *notify = ps3vram_get_notifier(priv->reports, NOTIFIER);
int i;
for (i = 0; i < 4; i++)
notify[i] = 0xffffffff;
iowrite32be(0xffffffff, notify + i);
}
static int ps3vram_notifier_wait(struct ps3_system_bus_device *dev,
unsigned int timeout_ms)
{
struct ps3vram_priv *priv = ps3_system_bus_get_drvdata(dev);
u32 *notify = ps3vram_get_notifier(priv->reports, NOTIFIER);
u32 __iomem *notify = ps3vram_get_notifier(priv->reports, NOTIFIER);
unsigned long timeout;
for (timeout = 20; timeout; timeout--) {
if (!notify[3])
if (!ioread32be(notify + 3))
return 0;
udelay(10);
}
......@@ -136,7 +136,7 @@ static int ps3vram_notifier_wait(struct ps3_system_bus_device *dev,
timeout = jiffies + msecs_to_jiffies(timeout_ms);
do {
if (!notify[3])
if (!ioread32be(notify + 3))
return 0;
msleep(1);
} while (time_before(jiffies, timeout));
......@@ -148,8 +148,8 @@ static void ps3vram_init_ring(struct ps3_system_bus_device *dev)
{
struct ps3vram_priv *priv = ps3_system_bus_get_drvdata(dev);
priv->ctrl[CTRL_PUT] = FIFO_BASE + FIFO_OFFSET;
priv->ctrl[CTRL_GET] = FIFO_BASE + FIFO_OFFSET;
iowrite32be(FIFO_BASE + FIFO_OFFSET, priv->ctrl + CTRL_PUT);
iowrite32be(FIFO_BASE + FIFO_OFFSET, priv->ctrl + CTRL_GET);
}
static int ps3vram_wait_ring(struct ps3_system_bus_device *dev,
......@@ -159,14 +159,14 @@ static int ps3vram_wait_ring(struct ps3_system_bus_device *dev,
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
do {
if (priv->ctrl[CTRL_PUT] == priv->ctrl[CTRL_GET])
if (ioread32be(priv->ctrl + CTRL_PUT) == ioread32be(priv->ctrl + CTRL_GET))
return 0;
msleep(1);
} while (time_before(jiffies, timeout));
dev_warn(&dev->core, "FIFO timeout (%08x/%08x/%08x)\n",
priv->ctrl[CTRL_PUT], priv->ctrl[CTRL_GET],
priv->ctrl[CTRL_TOP]);
ioread32be(priv->ctrl + CTRL_PUT), ioread32be(priv->ctrl + CTRL_GET),
ioread32be(priv->ctrl + CTRL_TOP));
return -ETIMEDOUT;
}
......@@ -189,7 +189,7 @@ static void ps3vram_rewind_ring(struct ps3_system_bus_device *dev)
ps3vram_out_ring(priv, 0x20000000 | (FIFO_BASE + FIFO_OFFSET));
priv->ctrl[CTRL_PUT] = FIFO_BASE + FIFO_OFFSET;
iowrite32be(FIFO_BASE + FIFO_OFFSET, priv->ctrl + CTRL_PUT);
/* asking the HV for a blit will kick the FIFO */
status = lv1_gpu_fb_blit(priv->context_handle, 0, 0, 0, 0);
......@@ -207,8 +207,8 @@ static void ps3vram_fire_ring(struct ps3_system_bus_device *dev)
mutex_lock(&ps3_gpu_mutex);
priv->ctrl[CTRL_PUT] = FIFO_BASE + FIFO_OFFSET +
(priv->fifo_ptr - priv->fifo_base) * sizeof(u32);
iowrite32be(FIFO_BASE + FIFO_OFFSET + (priv->fifo_ptr - priv->fifo_base)
* sizeof(u32), priv->ctrl + CTRL_PUT);
/* asking the HV for a blit will kick the FIFO */
status = lv1_gpu_fb_blit(priv->context_handle, 0, 0, 0, 0);
......
......@@ -99,9 +99,8 @@ void dasd_gendisk_free(struct dasd_block *block)
int dasd_scan_partitions(struct dasd_block *block)
{
struct block_device *bdev;
int retry, rc;
int rc;
retry = 5;
bdev = bdget_disk(block->gdp, 0);
if (!bdev) {
DBF_DEV_EVENT(DBF_ERR, block->base, "%s",
......@@ -116,19 +115,11 @@ int dasd_scan_partitions(struct dasd_block *block)
rc);
return -ENODEV;
}
/*
* See fs/partition/check.c:register_disk,rescan_partitions
* Can't call rescan_partitions directly. Use ioctl.
*/
rc = ioctl_by_bdev(bdev, BLKRRPART, 0);
while (rc == -EBUSY && retry > 0) {
schedule();
rc = ioctl_by_bdev(bdev, BLKRRPART, 0);
retry--;
rc = blkdev_reread_part(bdev);
if (rc)
DBF_DEV_EVENT(DBF_ERR, block->base,
"scan partitions error, retry %d rc %d",
retry, rc);
}
"scan partitions error, rc %d", rc);
/*
* Since the matching blkdev_put call to the blkdev_get in
......
......@@ -74,7 +74,7 @@ struct nvme_dev {
struct blk_mq_tag_set tagset;
struct blk_mq_tag_set admin_tagset;
u32 __iomem *dbs;
struct pci_dev *pci_dev;
struct device *dev;
struct dma_pool *prp_page_pool;
struct dma_pool *prp_small_pool;
int instance;
......@@ -92,6 +92,7 @@ struct nvme_dev {
work_func_t reset_workfn;
struct work_struct reset_work;
struct work_struct probe_work;
struct work_struct scan_work;
char name[12];
char serial[20];
char model[40];
......@@ -146,25 +147,15 @@ static inline u64 nvme_block_nr(struct nvme_ns *ns, sector_t sector)
return (sector >> (ns->lba_shift - 9));
}
/**
* nvme_free_iod - frees an nvme_iod
* @dev: The device that the I/O was submitted to
* @iod: The memory to free
*/
void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod);
int nvme_setup_prps(struct nvme_dev *, struct nvme_iod *, int, gfp_t);
struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
unsigned long addr, unsigned length);
void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
struct nvme_iod *iod);
int nvme_submit_io_cmd(struct nvme_dev *, struct nvme_ns *,
struct nvme_command *, u32 *);
int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns);
int nvme_submit_admin_cmd(struct nvme_dev *, struct nvme_command *,
u32 *result);
int nvme_identify(struct nvme_dev *, unsigned nsid, unsigned cns,
dma_addr_t dma_addr);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, void __user *ubuffer, unsigned bufflen,
u32 *result, unsigned timeout);
int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id);
int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
struct nvme_id_ns **id);
int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log);
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result);
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
......
......@@ -179,6 +179,10 @@ enum {
NVME_SMART_CRIT_VOLATILE_MEMORY = 1 << 4,
};
enum {
NVME_AER_NOTICE_NS_CHANGED = 0x0002,
};
struct nvme_lba_range_type {
__u8 type;
__u8 attributes;
......@@ -579,5 +583,6 @@ struct nvme_passthru_cmd {
#define NVME_IOCTL_ADMIN_CMD _IOWR('N', 0x41, struct nvme_admin_cmd)
#define NVME_IOCTL_SUBMIT_IO _IOW('N', 0x42, struct nvme_user_io)
#define NVME_IOCTL_IO_CMD _IOWR('N', 0x43, struct nvme_passthru_cmd)
#define NVME_IOCTL_RESET _IO('N', 0x44)
#endif /* _UAPI_LINUX_NVME_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment