Commit 6aab341e authored by Linus Torvalds's avatar Linus Torvalds

mm: re-architect the VM_UNPAGED logic

This replaces the (in my opinion horrible) VM_UNMAPPED logic with very
explicit support for a "remapped page range" aka VM_PFNMAP.  It allows a
VM area to contain an arbitrary range of page table entries that the VM
never touches, and never considers to be normal pages.

Any user of "remap_pfn_range()" automatically gets this new
functionality, and doesn't even have to mark the pages reserved or
indeed mark them any other way.  It just works.  As a side effect, doing
mmap() on /dev/mem works for arbitrary ranges.

Sparc update from David in the next commit.
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 458af543
...@@ -145,8 +145,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma) ...@@ -145,8 +145,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma)
struct page *pg = virt_to_page(vdso32_kbase + struct page *pg = virt_to_page(vdso32_kbase +
i*PAGE_SIZE); i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ? struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start + follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
i*PAGE_SIZE, 0)
: NULL; : NULL;
dump_one_vdso_page(pg, upg); dump_one_vdso_page(pg, upg);
} }
...@@ -157,8 +156,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma) ...@@ -157,8 +156,7 @@ static void dump_vdso_pages(struct vm_area_struct * vma)
struct page *pg = virt_to_page(vdso64_kbase + struct page *pg = virt_to_page(vdso64_kbase +
i*PAGE_SIZE); i*PAGE_SIZE);
struct page *upg = (vma && vma->vm_mm) ? struct page *upg = (vma && vma->vm_mm) ?
follow_page(vma->vm_mm, vma->vm_start + follow_page(vma, vma->vm_start + i*PAGE_SIZE, 0)
i*PAGE_SIZE, 0)
: NULL; : NULL;
dump_one_vdso_page(pg, upg); dump_one_vdso_page(pg, upg);
} }
......
...@@ -591,7 +591,7 @@ static inline size_t read_zero_pagealigned(char __user * buf, size_t size) ...@@ -591,7 +591,7 @@ static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0) if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
goto out_up; goto out_up;
if (vma->vm_flags & (VM_SHARED | VM_HUGETLB | VM_UNPAGED)) if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
break; break;
count = vma->vm_end - addr; count = vma->vm_end - addr;
if (count > size) if (count > size)
......
...@@ -402,12 +402,11 @@ struct numa_maps { ...@@ -402,12 +402,11 @@ struct numa_maps {
/* /*
* Calculate numa node maps for a vma * Calculate numa node maps for a vma
*/ */
static struct numa_maps *get_numa_maps(const struct vm_area_struct *vma) static struct numa_maps *get_numa_maps(struct vm_area_struct *vma)
{ {
int i;
struct page *page; struct page *page;
unsigned long vaddr; unsigned long vaddr;
struct mm_struct *mm = vma->vm_mm;
int i;
struct numa_maps *md = kmalloc(sizeof(struct numa_maps), GFP_KERNEL); struct numa_maps *md = kmalloc(sizeof(struct numa_maps), GFP_KERNEL);
if (!md) if (!md)
...@@ -420,7 +419,7 @@ static struct numa_maps *get_numa_maps(const struct vm_area_struct *vma) ...@@ -420,7 +419,7 @@ static struct numa_maps *get_numa_maps(const struct vm_area_struct *vma)
md->node[i] =0; md->node[i] =0;
for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) { for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
page = follow_page(mm, vaddr, 0); page = follow_page(vma, vaddr, 0);
if (page) { if (page) {
int count = page_mapcount(page); int count = page_mapcount(page);
......
...@@ -145,7 +145,7 @@ extern unsigned int kobjsize(const void *objp); ...@@ -145,7 +145,7 @@ extern unsigned int kobjsize(const void *objp);
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#define VM_GROWSUP 0x00000200 #define VM_GROWSUP 0x00000200
#define VM_SHM 0x00000000 /* Means nothing: delete it later */ #define VM_SHM 0x00000000 /* Means nothing: delete it later */
#define VM_UNPAGED 0x00000400 /* Pages managed without map count */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_EXECUTABLE 0x00001000 #define VM_EXECUTABLE 0x00001000
...@@ -664,6 +664,7 @@ struct zap_details { ...@@ -664,6 +664,7 @@ struct zap_details {
unsigned long truncate_count; /* Compare vm_truncate_count */ unsigned long truncate_count; /* Compare vm_truncate_count */
}; };
struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *); unsigned long size, struct zap_details *);
unsigned long unmap_vmas(struct mmu_gather **tlb, unsigned long unmap_vmas(struct mmu_gather **tlb,
...@@ -953,7 +954,7 @@ unsigned long vmalloc_to_pfn(void *addr); ...@@ -953,7 +954,7 @@ unsigned long vmalloc_to_pfn(void *addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr, int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t); unsigned long pfn, unsigned long size, pgprot_t);
struct page *follow_page(struct mm_struct *, unsigned long address, struct page *follow_page(struct vm_area_struct *, unsigned long address,
unsigned int foll_flags); unsigned int foll_flags);
#define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_WRITE 0x01 /* check pte is writable */
#define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_TOUCH 0x02 /* mark page accessed */
......
...@@ -27,24 +27,20 @@ static int zap_pte(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -27,24 +27,20 @@ static int zap_pte(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page = NULL; struct page *page = NULL;
if (pte_present(pte)) { if (pte_present(pte)) {
unsigned long pfn = pte_pfn(pte); flush_cache_page(vma, addr, pte_pfn(pte));
flush_cache_page(vma, addr, pfn);
pte = ptep_clear_flush(vma, addr, ptep); pte = ptep_clear_flush(vma, addr, ptep);
if (unlikely(!pfn_valid(pfn))) { page = vm_normal_page(vma, addr, pte);
print_bad_pte(vma, pte, addr); if (page) {
goto out; if (pte_dirty(pte))
set_page_dirty(page);
page_remove_rmap(page);
page_cache_release(page);
} }
page = pfn_to_page(pfn);
if (pte_dirty(pte))
set_page_dirty(page);
page_remove_rmap(page);
page_cache_release(page);
} else { } else {
if (!pte_file(pte)) if (!pte_file(pte))
free_swap_and_cache(pte_to_swp_entry(pte)); free_swap_and_cache(pte_to_swp_entry(pte));
pte_clear(mm, addr, ptep); pte_clear(mm, addr, ptep);
} }
out:
return !!page; return !!page;
} }
...@@ -65,8 +61,6 @@ int install_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -65,8 +61,6 @@ int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
pte_t pte_val; pte_t pte_val;
spinlock_t *ptl; spinlock_t *ptl;
BUG_ON(vma->vm_flags & VM_UNPAGED);
pgd = pgd_offset(mm, addr); pgd = pgd_offset(mm, addr);
pud = pud_alloc(mm, pgd, addr); pud = pud_alloc(mm, pgd, addr);
if (!pud) if (!pud)
...@@ -122,8 +116,6 @@ int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -122,8 +116,6 @@ int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,
pte_t pte_val; pte_t pte_val;
spinlock_t *ptl; spinlock_t *ptl;
BUG_ON(vma->vm_flags & VM_UNPAGED);
pgd = pgd_offset(mm, addr); pgd = pgd_offset(mm, addr);
pud = pud_alloc(mm, pgd, addr); pud = pud_alloc(mm, pgd, addr);
if (!pud) if (!pud)
......
...@@ -126,7 +126,7 @@ static long madvise_dontneed(struct vm_area_struct * vma, ...@@ -126,7 +126,7 @@ static long madvise_dontneed(struct vm_area_struct * vma,
unsigned long start, unsigned long end) unsigned long start, unsigned long end)
{ {
*prev = vma; *prev = vma;
if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_UNPAGED)) if (vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP))
return -EINVAL; return -EINVAL;
if (unlikely(vma->vm_flags & VM_NONLINEAR)) { if (unlikely(vma->vm_flags & VM_NONLINEAR)) {
......
...@@ -333,9 +333,9 @@ static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) ...@@ -333,9 +333,9 @@ static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
} }
/* /*
* This function is called to print an error when a pte in a * This function is called to print an error when a bad pte
* !VM_UNPAGED region is found pointing to an invalid pfn (which * is found. For example, we might have a PFN-mapped pte in
* is an error. * a region that doesn't allow it.
* *
* The calling function must still handle the error. * The calling function must still handle the error.
*/ */
...@@ -350,19 +350,56 @@ void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) ...@@ -350,19 +350,56 @@ void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
} }
/* /*
* page_is_anon applies strict checks for an anonymous page belonging to * This function gets the "struct page" associated with a pte.
* this vma at this address. It is used on VM_UNPAGED vmas, which are *
* usually populated with shared originals (which must not be counted), * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
* but occasionally contain private COWed copies (when !VM_SHARED, or * will have each page table entry just pointing to a raw page frame
* perhaps via ptrace when VM_SHARED). An mmap of /dev/mem might window * number, and as far as the VM layer is concerned, those do not have
* free pages, pages from other processes, or from other parts of this: * pages associated with them - even if the PFN might point to memory
* it's tricky, but try not to be deceived by foreign anonymous pages. * that otherwise is perfectly fine and has a "struct page".
*
* The way we recognize those mappings is through the rules set up
* by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
* and the vm_pgoff will point to the first PFN mapped: thus every
* page that is a raw mapping will always honor the rule
*
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
*
* and if that isn't true, the page has been COW'ed (in which case it
* _does_ have a "struct page" associated with it even if it is in a
* VM_PFNMAP range).
*/ */
static inline int page_is_anon(struct page *page, struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
struct vm_area_struct *vma, unsigned long addr)
{ {
return page && PageAnon(page) && page_mapped(page) && unsigned long pfn = pte_pfn(pte);
page_address_in_vma(page, vma) == addr;
if (vma->vm_flags & VM_PFNMAP) {
unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
if (pfn == vma->vm_pgoff + off)
return NULL;
}
/*
* Add some anal sanity checks for now. Eventually,
* we should just do "return pfn_to_page(pfn)", but
* in the meantime we check that we get a valid pfn,
* and that the resulting page looks ok.
*
* Remove this test eventually!
*/
if (unlikely(!pfn_valid(pfn))) {
print_bad_pte(vma, pte, addr);
return NULL;
}
/*
* NOTE! We still have PageReserved() pages in the page
* tables.
*
* The PAGE_ZERO() pages and various VDSO mappings can
* cause them to exist.
*/
return pfn_to_page(pfn);
} }
/* /*
...@@ -379,7 +416,6 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, ...@@ -379,7 +416,6 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
unsigned long vm_flags = vma->vm_flags; unsigned long vm_flags = vma->vm_flags;
pte_t pte = *src_pte; pte_t pte = *src_pte;
struct page *page; struct page *page;
unsigned long pfn;
/* pte contains position in swap or file, so copy. */ /* pte contains position in swap or file, so copy. */
if (unlikely(!pte_present(pte))) { if (unlikely(!pte_present(pte))) {
...@@ -397,22 +433,6 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, ...@@ -397,22 +433,6 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
goto out_set_pte; goto out_set_pte;
} }
pfn = pte_pfn(pte);
page = pfn_valid(pfn)? pfn_to_page(pfn): NULL;
if (unlikely(vm_flags & VM_UNPAGED))
if (!page_is_anon(page, vma, addr))
goto out_set_pte;
/*
* If the pte points outside of valid memory but
* the region is not VM_UNPAGED, we have a problem.
*/
if (unlikely(!page)) {
print_bad_pte(vma, pte, addr);
goto out_set_pte; /* try to do something sane */
}
/* /*
* If it's a COW mapping, write protect it both * If it's a COW mapping, write protect it both
* in the parent and the child * in the parent and the child
...@@ -429,9 +449,13 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, ...@@ -429,9 +449,13 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
if (vm_flags & VM_SHARED) if (vm_flags & VM_SHARED)
pte = pte_mkclean(pte); pte = pte_mkclean(pte);
pte = pte_mkold(pte); pte = pte_mkold(pte);
get_page(page);
page_dup_rmap(page); page = vm_normal_page(vma, addr, pte);
rss[!!PageAnon(page)]++; if (page) {
get_page(page);
page_dup_rmap(page);
rss[!!PageAnon(page)]++;
}
out_set_pte: out_set_pte:
set_pte_at(dst_mm, addr, dst_pte, pte); set_pte_at(dst_mm, addr, dst_pte, pte);
...@@ -543,7 +567,7 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, ...@@ -543,7 +567,7 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
* readonly mappings. The tradeoff is that copy_page_range is more * readonly mappings. The tradeoff is that copy_page_range is more
* efficient than faulting. * efficient than faulting.
*/ */
if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_UNPAGED))) { if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
if (!vma->anon_vma) if (!vma->anon_vma)
return 0; return 0;
} }
...@@ -584,19 +608,10 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb, ...@@ -584,19 +608,10 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
} }
if (pte_present(ptent)) { if (pte_present(ptent)) {
struct page *page; struct page *page;
unsigned long pfn;
(*zap_work) -= PAGE_SIZE; (*zap_work) -= PAGE_SIZE;
pfn = pte_pfn(ptent); page = vm_normal_page(vma, addr, ptent);
page = pfn_valid(pfn)? pfn_to_page(pfn): NULL;
if (unlikely(vma->vm_flags & VM_UNPAGED)) {
if (!page_is_anon(page, vma, addr))
page = NULL;
} else if (unlikely(!page))
print_bad_pte(vma, ptent, addr);
if (unlikely(details) && page) { if (unlikely(details) && page) {
/* /*
* unmap_shared_mapping_pages() wants to * unmap_shared_mapping_pages() wants to
...@@ -852,7 +867,7 @@ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, ...@@ -852,7 +867,7 @@ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
/* /*
* Do a quick page-table lookup for a single page. * Do a quick page-table lookup for a single page.
*/ */
struct page *follow_page(struct mm_struct *mm, unsigned long address, struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int flags) unsigned int flags)
{ {
pgd_t *pgd; pgd_t *pgd;
...@@ -860,8 +875,8 @@ struct page *follow_page(struct mm_struct *mm, unsigned long address, ...@@ -860,8 +875,8 @@ struct page *follow_page(struct mm_struct *mm, unsigned long address,
pmd_t *pmd; pmd_t *pmd;
pte_t *ptep, pte; pte_t *ptep, pte;
spinlock_t *ptl; spinlock_t *ptl;
unsigned long pfn;
struct page *page; struct page *page;
struct mm_struct *mm = vma->vm_mm;
page = follow_huge_addr(mm, address, flags & FOLL_WRITE); page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) { if (!IS_ERR(page)) {
...@@ -897,11 +912,10 @@ struct page *follow_page(struct mm_struct *mm, unsigned long address, ...@@ -897,11 +912,10 @@ struct page *follow_page(struct mm_struct *mm, unsigned long address,
goto unlock; goto unlock;
if ((flags & FOLL_WRITE) && !pte_write(pte)) if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock; goto unlock;
pfn = pte_pfn(pte); page = vm_normal_page(vma, address, pte);
if (!pfn_valid(pfn)) if (unlikely(!page))
goto unlock; goto unlock;
page = pfn_to_page(pfn);
if (flags & FOLL_GET) if (flags & FOLL_GET)
get_page(page); get_page(page);
if (flags & FOLL_TOUCH) { if (flags & FOLL_TOUCH) {
...@@ -974,8 +988,10 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, ...@@ -974,8 +988,10 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
return i ? : -EFAULT; return i ? : -EFAULT;
} }
if (pages) { if (pages) {
pages[i] = pte_page(*pte); struct page *page = vm_normal_page(vma, start, *pte);
get_page(pages[i]); pages[i] = page;
if (page)
get_page(page);
} }
pte_unmap(pte); pte_unmap(pte);
if (vmas) if (vmas)
...@@ -1010,7 +1026,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, ...@@ -1010,7 +1026,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
foll_flags |= FOLL_WRITE; foll_flags |= FOLL_WRITE;
cond_resched(); cond_resched();
while (!(page = follow_page(mm, start, foll_flags))) { while (!(page = follow_page(vma, start, foll_flags))) {
int ret; int ret;
ret = __handle_mm_fault(mm, vma, start, ret = __handle_mm_fault(mm, vma, start,
foll_flags & FOLL_WRITE); foll_flags & FOLL_WRITE);
...@@ -1214,11 +1230,12 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, ...@@ -1214,11 +1230,12 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
* in 2.6 the LRU scan won't even find its pages, so this * in 2.6 the LRU scan won't even find its pages, so this
* flag means no more than count its pages in reserved_vm, * flag means no more than count its pages in reserved_vm,
* and omit it from core dump, even when VM_IO turned off. * and omit it from core dump, even when VM_IO turned off.
* VM_UNPAGED tells the core MM not to "manage" these pages * VM_PFNMAP tells the core MM that the base pages are just
* (e.g. refcount, mapcount, try to swap them out): in * raw PFN mappings, and do not have a "struct page" associated
* particular, zap_pte_range does not try to free them. * with them.
*/ */
vma->vm_flags |= VM_IO | VM_RESERVED | VM_UNPAGED; vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
vma->vm_pgoff = pfn;
BUG_ON(addr >= end); BUG_ON(addr >= end);
pfn -= addr >> PAGE_SHIFT; pfn -= addr >> PAGE_SHIFT;
...@@ -1273,6 +1290,26 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) ...@@ -1273,6 +1290,26 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
return pte; return pte;
} }
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
{
/*
* If the source page was a PFN mapping, we don't have
* a "struct page" for it. We do a best-effort copy by
* just copying from the original user address. If that
* fails, we just zero-fill it. Live with it.
*/
if (unlikely(!src)) {
void *kaddr = kmap_atomic(dst, KM_USER0);
unsigned long left = __copy_from_user_inatomic(kaddr, (void __user *)va, PAGE_SIZE);
if (left)
memset(kaddr, 0, PAGE_SIZE);
kunmap_atomic(kaddr, KM_USER0);
return;
}
copy_user_highpage(dst, src, va);
}
/* /*
* This routine handles present pages, when users try to write * This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address * to a shared page. It is done by copying the page to a new address
...@@ -1296,28 +1333,13 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -1296,28 +1333,13 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
spinlock_t *ptl, pte_t orig_pte) spinlock_t *ptl, pte_t orig_pte)
{ {
struct page *old_page, *src_page, *new_page; struct page *old_page, *src_page, *new_page;
unsigned long pfn = pte_pfn(orig_pte);
pte_t entry; pte_t entry;
int ret = VM_FAULT_MINOR; int ret = VM_FAULT_MINOR;
if (unlikely(!pfn_valid(pfn))) { old_page = vm_normal_page(vma, address, orig_pte);
/*
* Page table corrupted: show pte and kill process.
* Or it's an attempt to COW an out-of-map VM_UNPAGED
* entry, which copy_user_highpage does not support.
*/
print_bad_pte(vma, orig_pte, address);
ret = VM_FAULT_OOM;
goto unlock;
}
old_page = pfn_to_page(pfn);
src_page = old_page; src_page = old_page;
if (!old_page)
if (unlikely(vma->vm_flags & VM_UNPAGED)) goto gotten;
if (!page_is_anon(old_page, vma, address)) {
old_page = NULL;
goto gotten;
}
if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
int reuse = can_share_swap_page(old_page); int reuse = can_share_swap_page(old_page);
...@@ -1351,7 +1373,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -1351,7 +1373,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
if (!new_page) if (!new_page)
goto oom; goto oom;
copy_user_highpage(new_page, src_page, address); cow_user_page(new_page, src_page, address);
} }
/* /*
...@@ -1812,16 +1834,7 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -1812,16 +1834,7 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
spinlock_t *ptl; spinlock_t *ptl;
pte_t entry; pte_t entry;
/* if (write_access) {
* A VM_UNPAGED vma will normally be filled with present ptes
* by remap_pfn_range, and never arrive here; but it might have
* holes, or if !VM_DONTEXPAND, mremap might have expanded it.
* It's weird enough handling anon pages in unpaged vmas, we do
* not want to worry about ZERO_PAGEs too (it may or may not
* matter if their counts wrap): just give them anon pages.
*/
if (write_access || (vma->vm_flags & VM_UNPAGED)) {
/* Allocate our own private page. */ /* Allocate our own private page. */
pte_unmap(page_table); pte_unmap(page_table);
...@@ -1896,8 +1909,6 @@ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -1896,8 +1909,6 @@ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
int anon = 0; int anon = 0;
pte_unmap(page_table); pte_unmap(page_table);
BUG_ON(vma->vm_flags & VM_UNPAGED);
if (vma->vm_file) { if (vma->vm_file) {
mapping = vma->vm_file->f_mapping; mapping = vma->vm_file->f_mapping;
sequence = mapping->truncate_count; sequence = mapping->truncate_count;
...@@ -1930,7 +1941,7 @@ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -1930,7 +1941,7 @@ static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
page = alloc_page_vma(GFP_HIGHUSER, vma, address); page = alloc_page_vma(GFP_HIGHUSER, vma, address);
if (!page) if (!page)
goto oom; goto oom;
copy_user_highpage(page, new_page, address); cow_user_page(page, new_page, address);
page_cache_release(new_page); page_cache_release(new_page);
new_page = page; new_page = page;
anon = 1; anon = 1;
......
...@@ -189,17 +189,15 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, ...@@ -189,17 +189,15 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
do { do {
unsigned long pfn; struct page *page;
unsigned int nid; unsigned int nid;
if (!pte_present(*pte)) if (!pte_present(*pte))
continue; continue;
pfn = pte_pfn(*pte); page = vm_normal_page(vma, addr, *pte);
if (!pfn_valid(pfn)) { if (!page)
print_bad_pte(vma, *pte, addr);
continue; continue;
} nid = page_to_nid(page);
nid = pfn_to_nid(pfn);
if (!node_isset(nid, *nodes)) if (!node_isset(nid, *nodes))
break; break;
} while (pte++, addr += PAGE_SIZE, addr != end); } while (pte++, addr += PAGE_SIZE, addr != end);
...@@ -269,8 +267,6 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, ...@@ -269,8 +267,6 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
first = find_vma(mm, start); first = find_vma(mm, start);
if (!first) if (!first)
return ERR_PTR(-EFAULT); return ERR_PTR(-EFAULT);
if (first->vm_flags & VM_UNPAGED)
return ERR_PTR(-EACCES);
prev = NULL; prev = NULL;
for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
if (!vma->vm_next && vma->vm_end < end) if (!vma->vm_next && vma->vm_end < end)
......
...@@ -27,7 +27,6 @@ static void msync_pte_range(struct vm_area_struct *vma, pmd_t *pmd, ...@@ -27,7 +27,6 @@ static void msync_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
again: again:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
do { do {
unsigned long pfn;
struct page *page; struct page *page;
if (progress >= 64) { if (progress >= 64) {
...@@ -40,13 +39,9 @@ static void msync_pte_range(struct vm_area_struct *vma, pmd_t *pmd, ...@@ -40,13 +39,9 @@ static void msync_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
continue; continue;
if (!pte_maybe_dirty(*pte)) if (!pte_maybe_dirty(*pte))
continue; continue;
pfn = pte_pfn(*pte); page = vm_normal_page(vma, addr, *pte);
if (unlikely(!pfn_valid(pfn))) { if (!page)
print_bad_pte(vma, *pte, addr);
continue; continue;
}
page = pfn_to_page(pfn);
if (ptep_clear_flush_dirty(vma, addr, pte) || if (ptep_clear_flush_dirty(vma, addr, pte) ||
page_test_and_clear_dirty(page)) page_test_and_clear_dirty(page))
set_page_dirty(page); set_page_dirty(page);
...@@ -97,9 +92,8 @@ static void msync_page_range(struct vm_area_struct *vma, ...@@ -97,9 +92,8 @@ static void msync_page_range(struct vm_area_struct *vma,
/* For hugepages we can't go walking the page table normally, /* For hugepages we can't go walking the page table normally,
* but that's ok, hugetlbfs is memory based, so we don't need * but that's ok, hugetlbfs is memory based, so we don't need
* to do anything more on an msync(). * to do anything more on an msync().
* Can't do anything with VM_UNPAGED regions either.
*/ */
if (vma->vm_flags & (VM_HUGETLB|VM_UNPAGED)) if (vma->vm_flags & VM_HUGETLB)
return; return;
BUG_ON(addr >= end); BUG_ON(addr >= end);
......
...@@ -1045,7 +1045,7 @@ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) ...@@ -1045,7 +1045,7 @@ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
EXPORT_SYMBOL(find_vma); EXPORT_SYMBOL(find_vma);
struct page *follow_page(struct mm_struct *mm, unsigned long address, struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags) unsigned int foll_flags)
{ {
return NULL; return NULL;
......
...@@ -226,8 +226,6 @@ vma_address(struct page *page, struct vm_area_struct *vma) ...@@ -226,8 +226,6 @@ vma_address(struct page *page, struct vm_area_struct *vma)
/* /*
* At what user virtual address is page expected in vma? checking that the * At what user virtual address is page expected in vma? checking that the
* page matches the vma: currently only used on anon pages, by unuse_vma; * page matches the vma: currently only used on anon pages, by unuse_vma;
* and by extraordinary checks on anon pages in VM_UNPAGED vmas, taking
* care that an mmap of /dev/mem might window free and foreign pages.
*/ */
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{ {
...@@ -614,7 +612,6 @@ static void try_to_unmap_cluster(unsigned long cursor, ...@@ -614,7 +612,6 @@ static void try_to_unmap_cluster(unsigned long cursor,
struct page *page; struct page *page;
unsigned long address; unsigned long address;
unsigned long end; unsigned long end;
unsigned long pfn;
address = (vma->vm_start + cursor) & CLUSTER_MASK; address = (vma->vm_start + cursor) & CLUSTER_MASK;
end = address + CLUSTER_SIZE; end = address + CLUSTER_SIZE;
...@@ -643,15 +640,8 @@ static void try_to_unmap_cluster(unsigned long cursor, ...@@ -643,15 +640,8 @@ static void try_to_unmap_cluster(unsigned long cursor,
for (; address < end; pte++, address += PAGE_SIZE) { for (; address < end; pte++, address += PAGE_SIZE) {
if (!pte_present(*pte)) if (!pte_present(*pte))
continue; continue;
page = vm_normal_page(vma, address, *pte);
pfn = pte_pfn(*pte); BUG_ON(!page || PageAnon(page));
if (unlikely(!pfn_valid(pfn))) {
print_bad_pte(vma, *pte, address);
continue;
}
page = pfn_to_page(pfn);
BUG_ON(PageAnon(page));
if (ptep_clear_flush_young(vma, address, pte)) if (ptep_clear_flush_young(vma, address, pte))
continue; continue;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment