Commit 6bd08127 authored by Javier Martin's avatar Javier Martin Committed by Vinod Koul

dmaengine: imx-dma: merge old dma-v1.c with imx-dma.c

It is mainly a simple merge changing the prefix of some
functions to fit the imx-dma namings.

As there are no users of the old dma-v1.c api we can safely
remove this file.
Signed-off-by: default avatarJavier Martin <javier.martin@vista-silicon.com>
Acked-by: default avatarSascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: default avatarVinod Koul <vinod.koul@linux.intel.com>
parent beeaa103
config IMX_HAVE_DMA_V1
bool
config HAVE_IMX_GPC config HAVE_IMX_GPC
bool bool
...@@ -26,7 +23,6 @@ config SOC_IMX1 ...@@ -26,7 +23,6 @@ config SOC_IMX1
bool bool
select ARCH_MX1 select ARCH_MX1
select CPU_ARM920T select CPU_ARM920T
select IMX_HAVE_DMA_V1
select IMX_HAVE_IOMUX_V1 select IMX_HAVE_IOMUX_V1
select MXC_AVIC select MXC_AVIC
...@@ -35,7 +31,6 @@ config SOC_IMX21 ...@@ -35,7 +31,6 @@ config SOC_IMX21
select MACH_MX21 select MACH_MX21
select CPU_ARM926T select CPU_ARM926T
select ARCH_MXC_AUDMUX_V1 select ARCH_MXC_AUDMUX_V1
select IMX_HAVE_DMA_V1
select IMX_HAVE_IOMUX_V1 select IMX_HAVE_IOMUX_V1
select MXC_AVIC select MXC_AVIC
...@@ -52,7 +47,6 @@ config SOC_IMX27 ...@@ -52,7 +47,6 @@ config SOC_IMX27
select MACH_MX27 select MACH_MX27
select CPU_ARM926T select CPU_ARM926T
select ARCH_MXC_AUDMUX_V1 select ARCH_MXC_AUDMUX_V1
select IMX_HAVE_DMA_V1
select IMX_HAVE_IOMUX_V1 select IMX_HAVE_IOMUX_V1
select MXC_AVIC select MXC_AVIC
......
obj-$(CONFIG_IMX_HAVE_DMA_V1) += dma-v1.o
obj-$(CONFIG_SOC_IMX1) += clock-imx1.o mm-imx1.o obj-$(CONFIG_SOC_IMX1) += clock-imx1.o mm-imx1.o
obj-$(CONFIG_SOC_IMX21) += clock-imx21.o mm-imx21.o obj-$(CONFIG_SOC_IMX21) += clock-imx21.o mm-imx21.o
......
/*
* linux/arch/arm/plat-mxc/dma-v1.c
*
* i.MX DMA registration and IRQ dispatching
*
* Copyright 2006 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* Copyright 2008 Juergen Beisert, <kernel@pengutronix.de>
* Copyright 2008 Sascha Hauer, <s.hauer@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/io.h>
#include <asm/system.h>
#include <asm/irq.h>
#include <mach/hardware.h>
#include <mach/dma-v1.h>
#define DMA_DCR 0x00 /* Control Register */
#define DMA_DISR 0x04 /* Interrupt status Register */
#define DMA_DIMR 0x08 /* Interrupt mask Register */
#define DMA_DBTOSR 0x0c /* Burst timeout status Register */
#define DMA_DRTOSR 0x10 /* Request timeout Register */
#define DMA_DSESR 0x14 /* Transfer Error Status Register */
#define DMA_DBOSR 0x18 /* Buffer overflow status Register */
#define DMA_DBTOCR 0x1c /* Burst timeout control Register */
#define DMA_WSRA 0x40 /* W-Size Register A */
#define DMA_XSRA 0x44 /* X-Size Register A */
#define DMA_YSRA 0x48 /* Y-Size Register A */
#define DMA_WSRB 0x4c /* W-Size Register B */
#define DMA_XSRB 0x50 /* X-Size Register B */
#define DMA_YSRB 0x54 /* Y-Size Register B */
#define DMA_SAR(x) (0x80 + ((x) << 6)) /* Source Address Registers */
#define DMA_DAR(x) (0x84 + ((x) << 6)) /* Destination Address Registers */
#define DMA_CNTR(x) (0x88 + ((x) << 6)) /* Count Registers */
#define DMA_CCR(x) (0x8c + ((x) << 6)) /* Control Registers */
#define DMA_RSSR(x) (0x90 + ((x) << 6)) /* Request source select Registers */
#define DMA_BLR(x) (0x94 + ((x) << 6)) /* Burst length Registers */
#define DMA_RTOR(x) (0x98 + ((x) << 6)) /* Request timeout Registers */
#define DMA_BUCR(x) (0x98 + ((x) << 6)) /* Bus Utilization Registers */
#define DMA_CCNR(x) (0x9C + ((x) << 6)) /* Channel counter Registers */
#define DCR_DRST (1<<1)
#define DCR_DEN (1<<0)
#define DBTOCR_EN (1<<15)
#define DBTOCR_CNT(x) ((x) & 0x7fff)
#define CNTR_CNT(x) ((x) & 0xffffff)
#define CCR_ACRPT (1<<14)
#define CCR_DMOD_LINEAR (0x0 << 12)
#define CCR_DMOD_2D (0x1 << 12)
#define CCR_DMOD_FIFO (0x2 << 12)
#define CCR_DMOD_EOBFIFO (0x3 << 12)
#define CCR_SMOD_LINEAR (0x0 << 10)
#define CCR_SMOD_2D (0x1 << 10)
#define CCR_SMOD_FIFO (0x2 << 10)
#define CCR_SMOD_EOBFIFO (0x3 << 10)
#define CCR_MDIR_DEC (1<<9)
#define CCR_MSEL_B (1<<8)
#define CCR_DSIZ_32 (0x0 << 6)
#define CCR_DSIZ_8 (0x1 << 6)
#define CCR_DSIZ_16 (0x2 << 6)
#define CCR_SSIZ_32 (0x0 << 4)
#define CCR_SSIZ_8 (0x1 << 4)
#define CCR_SSIZ_16 (0x2 << 4)
#define CCR_REN (1<<3)
#define CCR_RPT (1<<2)
#define CCR_FRC (1<<1)
#define CCR_CEN (1<<0)
#define RTOR_EN (1<<15)
#define RTOR_CLK (1<<14)
#define RTOR_PSC (1<<13)
/*
* struct imx_dma_channel - i.MX specific DMA extension
* @name: name specified by DMA client
* @irq_handler: client callback for end of transfer
* @err_handler: client callback for error condition
* @data: clients context data for callbacks
* @dma_mode: direction of the transfer %DMA_MODE_READ or %DMA_MODE_WRITE
* @sg: pointer to the actual read/written chunk for scatter-gather emulation
* @resbytes: total residual number of bytes to transfer
* (it can be lower or same as sum of SG mapped chunk sizes)
* @sgcount: number of chunks to be read/written
*
* Structure is used for IMX DMA processing. It would be probably good
* @struct dma_struct in the future for external interfacing and use
* @struct imx_dma_channel only as extension to it.
*/
struct imx_dma_channel {
const char *name;
void (*irq_handler) (int, void *);
void (*err_handler) (int, void *, int errcode);
void (*prog_handler) (int, void *, struct scatterlist *);
void *data;
unsigned int dma_mode;
struct scatterlist *sg;
unsigned int resbytes;
int dma_num;
int in_use;
u32 ccr_from_device;
u32 ccr_to_device;
struct timer_list watchdog;
int hw_chaining;
};
static void __iomem *imx_dmav1_baseaddr;
static void imx_dmav1_writel(unsigned val, unsigned offset)
{
__raw_writel(val, imx_dmav1_baseaddr + offset);
}
static unsigned imx_dmav1_readl(unsigned offset)
{
return __raw_readl(imx_dmav1_baseaddr + offset);
}
static struct imx_dma_channel imx_dma_channels[IMX_DMA_CHANNELS];
static struct clk *dma_clk;
static int imx_dma_hw_chain(struct imx_dma_channel *imxdma)
{
if (cpu_is_mx27())
return imxdma->hw_chaining;
else
return 0;
}
/*
* imx_dma_sg_next - prepare next chunk for scatter-gather DMA emulation
*/
static inline int imx_dma_sg_next(int channel, struct scatterlist *sg)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long now;
if (!imxdma->name) {
printk(KERN_CRIT "%s: called for not allocated channel %d\n",
__func__, channel);
return 0;
}
now = min(imxdma->resbytes, sg->length);
if (imxdma->resbytes != IMX_DMA_LENGTH_LOOP)
imxdma->resbytes -= now;
if ((imxdma->dma_mode & DMA_MODE_MASK) == DMA_MODE_READ)
imx_dmav1_writel(sg->dma_address, DMA_DAR(channel));
else
imx_dmav1_writel(sg->dma_address, DMA_SAR(channel));
imx_dmav1_writel(now, DMA_CNTR(channel));
pr_debug("imxdma%d: next sg chunk dst 0x%08x, src 0x%08x, "
"size 0x%08x\n", channel,
imx_dmav1_readl(DMA_DAR(channel)),
imx_dmav1_readl(DMA_SAR(channel)),
imx_dmav1_readl(DMA_CNTR(channel)));
return now;
}
/**
* imx_dma_setup_single - setup i.MX DMA channel for linear memory to/from
* device transfer
*
* @channel: i.MX DMA channel number
* @dma_address: the DMA/physical memory address of the linear data block
* to transfer
* @dma_length: length of the data block in bytes
* @dev_addr: physical device port address
* @dmamode: DMA transfer mode, %DMA_MODE_READ from the device to the memory
* or %DMA_MODE_WRITE from memory to the device
*
* Return value: if incorrect parameters are provided -%EINVAL.
* Zero indicates success.
*/
int
imx_dma_setup_single(int channel, dma_addr_t dma_address,
unsigned int dma_length, unsigned int dev_addr,
unsigned int dmamode)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
imxdma->sg = NULL;
imxdma->dma_mode = dmamode;
if (!dma_address) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single null address\n",
channel);
return -EINVAL;
}
if (!dma_length) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single zero length\n",
channel);
return -EINVAL;
}
if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
pr_debug("imxdma%d: %s dma_addressg=0x%08x dma_length=%d "
"dev_addr=0x%08x for read\n",
channel, __func__, (unsigned int)dma_address,
dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_SAR(channel));
imx_dmav1_writel(dma_address, DMA_DAR(channel));
imx_dmav1_writel(imxdma->ccr_from_device, DMA_CCR(channel));
} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
pr_debug("imxdma%d: %s dma_addressg=0x%08x dma_length=%d "
"dev_addr=0x%08x for write\n",
channel, __func__, (unsigned int)dma_address,
dma_length, dev_addr);
imx_dmav1_writel(dma_address, DMA_SAR(channel));
imx_dmav1_writel(dev_addr, DMA_DAR(channel));
imx_dmav1_writel(imxdma->ccr_to_device,
DMA_CCR(channel));
} else {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single bad dmamode\n",
channel);
return -EINVAL;
}
imx_dmav1_writel(dma_length, DMA_CNTR(channel));
return 0;
}
EXPORT_SYMBOL(imx_dma_setup_single);
/**
* imx_dma_setup_sg - setup i.MX DMA channel SG list to/from device transfer
* @channel: i.MX DMA channel number
* @sg: pointer to the scatter-gather list/vector
* @sgcount: scatter-gather list hungs count
* @dma_length: total length of the transfer request in bytes
* @dev_addr: physical device port address
* @dmamode: DMA transfer mode, %DMA_MODE_READ from the device to the memory
* or %DMA_MODE_WRITE from memory to the device
*
* The function sets up DMA channel state and registers to be ready for
* transfer specified by provided parameters. The scatter-gather emulation
* is set up according to the parameters.
*
* The full preparation of the transfer requires setup of more register
* by the caller before imx_dma_enable() can be called.
*
* %BLR(channel) holds transfer burst length in bytes, 0 means 64 bytes
*
* %RSSR(channel) has to be set to the DMA request line source %DMA_REQ_xxx
*
* %CCR(channel) has to specify transfer parameters, the next settings is
* typical for linear or simple scatter-gather transfers if %DMA_MODE_READ is
* specified
*
* %CCR_DMOD_LINEAR | %CCR_DSIZ_32 | %CCR_SMOD_FIFO | %CCR_SSIZ_x
*
* The typical setup for %DMA_MODE_WRITE is specified by next options
* combination
*
* %CCR_SMOD_LINEAR | %CCR_SSIZ_32 | %CCR_DMOD_FIFO | %CCR_DSIZ_x
*
* Be careful here and do not mistakenly mix source and target device
* port sizes constants, they are really different:
* %CCR_SSIZ_8, %CCR_SSIZ_16, %CCR_SSIZ_32,
* %CCR_DSIZ_8, %CCR_DSIZ_16, %CCR_DSIZ_32
*
* Return value: if incorrect parameters are provided -%EINVAL.
* Zero indicates success.
*/
int
imx_dma_setup_sg(int channel,
struct scatterlist *sg, unsigned int sgcount,
unsigned int dma_length, unsigned int dev_addr,
unsigned int dmamode)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
if (imxdma->in_use)
return -EBUSY;
imxdma->sg = sg;
imxdma->dma_mode = dmamode;
imxdma->resbytes = dma_length;
if (!sg || !sgcount) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg empty sg list\n",
channel);
return -EINVAL;
}
if (!sg->length) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg zero length\n",
channel);
return -EINVAL;
}
if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
pr_debug("imxdma%d: %s sg=%p sgcount=%d total length=%d "
"dev_addr=0x%08x for read\n",
channel, __func__, sg, sgcount, dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_SAR(channel));
imx_dmav1_writel(imxdma->ccr_from_device, DMA_CCR(channel));
} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
pr_debug("imxdma%d: %s sg=%p sgcount=%d total length=%d "
"dev_addr=0x%08x for write\n",
channel, __func__, sg, sgcount, dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_DAR(channel));
imx_dmav1_writel(imxdma->ccr_to_device, DMA_CCR(channel));
} else {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg bad dmamode\n",
channel);
return -EINVAL;
}
imx_dma_sg_next(channel, sg);
return 0;
}
EXPORT_SYMBOL(imx_dma_setup_sg);
int
imx_dma_config_channel(int channel, unsigned int config_port,
unsigned int config_mem, unsigned int dmareq, int hw_chaining)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
u32 dreq = 0;
imxdma->hw_chaining = 0;
if (hw_chaining) {
imxdma->hw_chaining = 1;
if (!imx_dma_hw_chain(imxdma))
return -EINVAL;
}
if (dmareq)
dreq = CCR_REN;
imxdma->ccr_from_device = config_port | (config_mem << 2) | dreq;
imxdma->ccr_to_device = config_mem | (config_port << 2) | dreq;
imx_dmav1_writel(dmareq, DMA_RSSR(channel));
return 0;
}
EXPORT_SYMBOL(imx_dma_config_channel);
void imx_dma_config_burstlen(int channel, unsigned int burstlen)
{
imx_dmav1_writel(burstlen, DMA_BLR(channel));
}
EXPORT_SYMBOL(imx_dma_config_burstlen);
/**
* imx_dma_setup_handlers - setup i.MX DMA channel end and error notification
* handlers
* @channel: i.MX DMA channel number
* @irq_handler: the pointer to the function called if the transfer
* ends successfully
* @err_handler: the pointer to the function called if the premature
* end caused by error occurs
* @data: user specified value to be passed to the handlers
*/
int
imx_dma_setup_handlers(int channel,
void (*irq_handler) (int, void *),
void (*err_handler) (int, void *, int),
void *data)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long flags;
if (!imxdma->name) {
printk(KERN_CRIT "%s: called for not allocated channel %d\n",
__func__, channel);
return -ENODEV;
}
local_irq_save(flags);
imx_dmav1_writel(1 << channel, DMA_DISR);
imxdma->irq_handler = irq_handler;
imxdma->err_handler = err_handler;
imxdma->data = data;
local_irq_restore(flags);
return 0;
}
EXPORT_SYMBOL(imx_dma_setup_handlers);
/**
* imx_dma_setup_progression_handler - setup i.MX DMA channel progression
* handlers
* @channel: i.MX DMA channel number
* @prog_handler: the pointer to the function called if the transfer progresses
*/
int
imx_dma_setup_progression_handler(int channel,
void (*prog_handler) (int, void*, struct scatterlist*))
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long flags;
if (!imxdma->name) {
printk(KERN_CRIT "%s: called for not allocated channel %d\n",
__func__, channel);
return -ENODEV;
}
local_irq_save(flags);
imxdma->prog_handler = prog_handler;
local_irq_restore(flags);
return 0;
}
EXPORT_SYMBOL(imx_dma_setup_progression_handler);
/**
* imx_dma_enable - function to start i.MX DMA channel operation
* @channel: i.MX DMA channel number
*
* The channel has to be allocated by driver through imx_dma_request()
* or imx_dma_request_by_prio() function.
* The transfer parameters has to be set to the channel registers through
* call of the imx_dma_setup_single() or imx_dma_setup_sg() function
* and registers %BLR(channel), %RSSR(channel) and %CCR(channel) has to
* be set prior this function call by the channel user.
*/
void imx_dma_enable(int channel)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long flags;
pr_debug("imxdma%d: imx_dma_enable\n", channel);
if (!imxdma->name) {
printk(KERN_CRIT "%s: called for not allocated channel %d\n",
__func__, channel);
return;
}
if (imxdma->in_use)
return;
local_irq_save(flags);
imx_dmav1_writel(1 << channel, DMA_DISR);
imx_dmav1_writel(imx_dmav1_readl(DMA_DIMR) & ~(1 << channel), DMA_DIMR);
imx_dmav1_writel(imx_dmav1_readl(DMA_CCR(channel)) | CCR_CEN |
CCR_ACRPT, DMA_CCR(channel));
if ((cpu_is_mx21() || cpu_is_mx27()) &&
imxdma->sg && imx_dma_hw_chain(imxdma)) {
imxdma->sg = sg_next(imxdma->sg);
if (imxdma->sg) {
u32 tmp;
imx_dma_sg_next(channel, imxdma->sg);
tmp = imx_dmav1_readl(DMA_CCR(channel));
imx_dmav1_writel(tmp | CCR_RPT | CCR_ACRPT,
DMA_CCR(channel));
}
}
imxdma->in_use = 1;
local_irq_restore(flags);
}
EXPORT_SYMBOL(imx_dma_enable);
/**
* imx_dma_disable - stop, finish i.MX DMA channel operatin
* @channel: i.MX DMA channel number
*/
void imx_dma_disable(int channel)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long flags;
pr_debug("imxdma%d: imx_dma_disable\n", channel);
if (imx_dma_hw_chain(imxdma))
del_timer(&imxdma->watchdog);
local_irq_save(flags);
imx_dmav1_writel(imx_dmav1_readl(DMA_DIMR) | (1 << channel), DMA_DIMR);
imx_dmav1_writel(imx_dmav1_readl(DMA_CCR(channel)) & ~CCR_CEN,
DMA_CCR(channel));
imx_dmav1_writel(1 << channel, DMA_DISR);
imxdma->in_use = 0;
local_irq_restore(flags);
}
EXPORT_SYMBOL(imx_dma_disable);
static void imx_dma_watchdog(unsigned long chno)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[chno];
imx_dmav1_writel(0, DMA_CCR(chno));
imxdma->in_use = 0;
imxdma->sg = NULL;
if (imxdma->err_handler)
imxdma->err_handler(chno, imxdma->data, IMX_DMA_ERR_TIMEOUT);
}
static irqreturn_t dma_err_handler(int irq, void *dev_id)
{
int i, disr;
struct imx_dma_channel *imxdma;
unsigned int err_mask;
int errcode;
disr = imx_dmav1_readl(DMA_DISR);
err_mask = imx_dmav1_readl(DMA_DBTOSR) |
imx_dmav1_readl(DMA_DRTOSR) |
imx_dmav1_readl(DMA_DSESR) |
imx_dmav1_readl(DMA_DBOSR);
if (!err_mask)
return IRQ_HANDLED;
imx_dmav1_writel(disr & err_mask, DMA_DISR);
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
if (!(err_mask & (1 << i)))
continue;
imxdma = &imx_dma_channels[i];
errcode = 0;
if (imx_dmav1_readl(DMA_DBTOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DBTOSR);
errcode |= IMX_DMA_ERR_BURST;
}
if (imx_dmav1_readl(DMA_DRTOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DRTOSR);
errcode |= IMX_DMA_ERR_REQUEST;
}
if (imx_dmav1_readl(DMA_DSESR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DSESR);
errcode |= IMX_DMA_ERR_TRANSFER;
}
if (imx_dmav1_readl(DMA_DBOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DBOSR);
errcode |= IMX_DMA_ERR_BUFFER;
}
if (imxdma->name && imxdma->err_handler) {
imxdma->err_handler(i, imxdma->data, errcode);
continue;
}
imx_dma_channels[i].sg = NULL;
printk(KERN_WARNING
"DMA timeout on channel %d (%s) -%s%s%s%s\n",
i, imxdma->name,
errcode & IMX_DMA_ERR_BURST ? " burst" : "",
errcode & IMX_DMA_ERR_REQUEST ? " request" : "",
errcode & IMX_DMA_ERR_TRANSFER ? " transfer" : "",
errcode & IMX_DMA_ERR_BUFFER ? " buffer" : "");
}
return IRQ_HANDLED;
}
static void dma_irq_handle_channel(int chno)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[chno];
if (!imxdma->name) {
/*
* IRQ for an unregistered DMA channel:
* let's clear the interrupts and disable it.
*/
printk(KERN_WARNING
"spurious IRQ for DMA channel %d\n", chno);
return;
}
if (imxdma->sg) {
u32 tmp;
struct scatterlist *current_sg = imxdma->sg;
imxdma->sg = sg_next(imxdma->sg);
if (imxdma->sg) {
imx_dma_sg_next(chno, imxdma->sg);
tmp = imx_dmav1_readl(DMA_CCR(chno));
if (imx_dma_hw_chain(imxdma)) {
/* FIXME: The timeout should probably be
* configurable
*/
mod_timer(&imxdma->watchdog,
jiffies + msecs_to_jiffies(500));
tmp |= CCR_CEN | CCR_RPT | CCR_ACRPT;
imx_dmav1_writel(tmp, DMA_CCR(chno));
} else {
imx_dmav1_writel(tmp & ~CCR_CEN, DMA_CCR(chno));
tmp |= CCR_CEN;
}
imx_dmav1_writel(tmp, DMA_CCR(chno));
if (imxdma->prog_handler)
imxdma->prog_handler(chno, imxdma->data,
current_sg);
return;
}
if (imx_dma_hw_chain(imxdma)) {
del_timer(&imxdma->watchdog);
return;
}
}
imx_dmav1_writel(0, DMA_CCR(chno));
imxdma->in_use = 0;
if (imxdma->irq_handler)
imxdma->irq_handler(chno, imxdma->data);
}
static irqreturn_t dma_irq_handler(int irq, void *dev_id)
{
int i, disr;
if (cpu_is_mx21() || cpu_is_mx27())
dma_err_handler(irq, dev_id);
disr = imx_dmav1_readl(DMA_DISR);
pr_debug("imxdma: dma_irq_handler called, disr=0x%08x\n",
disr);
imx_dmav1_writel(disr, DMA_DISR);
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
if (disr & (1 << i))
dma_irq_handle_channel(i);
}
return IRQ_HANDLED;
}
/**
* imx_dma_request - request/allocate specified channel number
* @channel: i.MX DMA channel number
* @name: the driver/caller own non-%NULL identification
*/
int imx_dma_request(int channel, const char *name)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
unsigned long flags;
int ret = 0;
/* basic sanity checks */
if (!name)
return -EINVAL;
if (channel >= IMX_DMA_CHANNELS) {
printk(KERN_CRIT "%s: called for non-existed channel %d\n",
__func__, channel);
return -EINVAL;
}
local_irq_save(flags);
if (imxdma->name) {
local_irq_restore(flags);
return -EBUSY;
}
memset(imxdma, 0, sizeof(*imxdma));
imxdma->name = name;
local_irq_restore(flags); /* request_irq() can block */
if (cpu_is_mx21() || cpu_is_mx27()) {
ret = request_irq(MX2x_INT_DMACH0 + channel,
dma_irq_handler, 0, "DMA", NULL);
if (ret) {
imxdma->name = NULL;
pr_crit("Can't register IRQ %d for DMA channel %d\n",
MX2x_INT_DMACH0 + channel, channel);
return ret;
}
init_timer(&imxdma->watchdog);
imxdma->watchdog.function = &imx_dma_watchdog;
imxdma->watchdog.data = channel;
}
return ret;
}
EXPORT_SYMBOL(imx_dma_request);
/**
* imx_dma_free - release previously acquired channel
* @channel: i.MX DMA channel number
*/
void imx_dma_free(int channel)
{
unsigned long flags;
struct imx_dma_channel *imxdma = &imx_dma_channels[channel];
if (!imxdma->name) {
printk(KERN_CRIT
"%s: trying to free free channel %d\n",
__func__, channel);
return;
}
local_irq_save(flags);
/* Disable interrupts */
imx_dma_disable(channel);
imxdma->name = NULL;
if (cpu_is_mx21() || cpu_is_mx27())
free_irq(MX2x_INT_DMACH0 + channel, NULL);
local_irq_restore(flags);
}
EXPORT_SYMBOL(imx_dma_free);
/**
* imx_dma_request_by_prio - find and request some of free channels best
* suiting requested priority
* @channel: i.MX DMA channel number
* @name: the driver/caller own non-%NULL identification
*
* This function tries to find a free channel in the specified priority group
* if the priority cannot be achieved it tries to look for free channel
* in the higher and then even lower priority groups.
*
* Return value: If there is no free channel to allocate, -%ENODEV is returned.
* On successful allocation channel is returned.
*/
int imx_dma_request_by_prio(const char *name, enum imx_dma_prio prio)
{
int i;
int best;
switch (prio) {
case (DMA_PRIO_HIGH):
best = 8;
break;
case (DMA_PRIO_MEDIUM):
best = 4;
break;
case (DMA_PRIO_LOW):
default:
best = 0;
break;
}
for (i = best; i < IMX_DMA_CHANNELS; i++)
if (!imx_dma_request(i, name))
return i;
for (i = best - 1; i >= 0; i--)
if (!imx_dma_request(i, name))
return i;
printk(KERN_ERR "%s: no free DMA channel found\n", __func__);
return -ENODEV;
}
EXPORT_SYMBOL(imx_dma_request_by_prio);
static int __init imx_dma_init(void)
{
int ret = 0;
int i;
if (cpu_is_mx1())
imx_dmav1_baseaddr = MX1_IO_ADDRESS(MX1_DMA_BASE_ADDR);
else if (cpu_is_mx21())
imx_dmav1_baseaddr = MX21_IO_ADDRESS(MX21_DMA_BASE_ADDR);
else if (cpu_is_mx27())
imx_dmav1_baseaddr = MX27_IO_ADDRESS(MX27_DMA_BASE_ADDR);
else
return 0;
dma_clk = clk_get(NULL, "dma");
if (IS_ERR(dma_clk))
return PTR_ERR(dma_clk);
clk_enable(dma_clk);
/* reset DMA module */
imx_dmav1_writel(DCR_DRST, DMA_DCR);
if (cpu_is_mx1()) {
ret = request_irq(MX1_DMA_INT, dma_irq_handler, 0, "DMA", NULL);
if (ret) {
pr_crit("Wow! Can't register IRQ for DMA\n");
return ret;
}
ret = request_irq(MX1_DMA_ERR, dma_err_handler, 0, "DMA", NULL);
if (ret) {
pr_crit("Wow! Can't register ERRIRQ for DMA\n");
free_irq(MX1_DMA_INT, NULL);
return ret;
}
}
/* enable DMA module */
imx_dmav1_writel(DCR_DEN, DMA_DCR);
/* clear all interrupts */
imx_dmav1_writel((1 << IMX_DMA_CHANNELS) - 1, DMA_DISR);
/* disable interrupts */
imx_dmav1_writel((1 << IMX_DMA_CHANNELS) - 1, DMA_DIMR);
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
imx_dma_channels[i].sg = NULL;
imx_dma_channels[i].dma_num = i;
}
return ret;
}
arch_initcall(imx_dma_init);
/*
* linux/arch/arm/mach-imx/include/mach/dma-v1.h
*
* i.MX DMA registration and IRQ dispatching
*
* Copyright 2006 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* Copyright 2008 Juergen Beisert, <kernel@pengutronix.de>
* Copyright 2008 Sascha Hauer, <s.hauer@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#ifndef __MACH_DMA_V1_H__
#define __MACH_DMA_V1_H__
#define imx_has_dma_v1() (cpu_is_mx1() || cpu_is_mx21() || cpu_is_mx27())
#include <mach/dma.h>
#define IMX_DMA_CHANNELS 16
#define DMA_MODE_READ 0
#define DMA_MODE_WRITE 1
#define DMA_MODE_MASK 1
#define MX1_DMA_REG(offset) MX1_IO_ADDRESS(MX1_DMA_BASE_ADDR + (offset))
/* DMA Interrupt Mask Register */
#define MX1_DMA_DIMR MX1_DMA_REG(0x08)
/* Channel Control Register */
#define MX1_DMA_CCR(x) MX1_DMA_REG(0x8c + ((x) << 6))
#define IMX_DMA_MEMSIZE_32 (0 << 4)
#define IMX_DMA_MEMSIZE_8 (1 << 4)
#define IMX_DMA_MEMSIZE_16 (2 << 4)
#define IMX_DMA_TYPE_LINEAR (0 << 10)
#define IMX_DMA_TYPE_2D (1 << 10)
#define IMX_DMA_TYPE_FIFO (2 << 10)
#define IMX_DMA_ERR_BURST (1 << 0)
#define IMX_DMA_ERR_REQUEST (1 << 1)
#define IMX_DMA_ERR_TRANSFER (1 << 2)
#define IMX_DMA_ERR_BUFFER (1 << 3)
#define IMX_DMA_ERR_TIMEOUT (1 << 4)
int
imx_dma_config_channel(int channel, unsigned int config_port,
unsigned int config_mem, unsigned int dmareq, int hw_chaining);
void
imx_dma_config_burstlen(int channel, unsigned int burstlen);
int
imx_dma_setup_single(int channel, dma_addr_t dma_address,
unsigned int dma_length, unsigned int dev_addr,
unsigned int dmamode);
/*
* Use this flag as the dma_length argument to imx_dma_setup_sg()
* to create an endless running dma loop. The end of the scatterlist
* must be linked to the beginning for this to work.
*/
#define IMX_DMA_LENGTH_LOOP ((unsigned int)-1)
int
imx_dma_setup_sg(int channel, struct scatterlist *sg,
unsigned int sgcount, unsigned int dma_length,
unsigned int dev_addr, unsigned int dmamode);
int
imx_dma_setup_handlers(int channel,
void (*irq_handler) (int, void *),
void (*err_handler) (int, void *, int), void *data);
int
imx_dma_setup_progression_handler(int channel,
void (*prog_handler) (int, void*, struct scatterlist*));
void imx_dma_enable(int channel);
void imx_dma_disable(int channel);
int imx_dma_request(int channel, const char *name);
void imx_dma_free(int channel);
int imx_dma_request_by_prio(const char *name, enum imx_dma_prio prio);
#endif /* __MACH_DMA_V1_H__ */
...@@ -230,7 +230,6 @@ config IMX_SDMA ...@@ -230,7 +230,6 @@ config IMX_SDMA
config IMX_DMA config IMX_DMA
tristate "i.MX DMA support" tristate "i.MX DMA support"
depends on IMX_HAVE_DMA_V1
select DMA_ENGINE select DMA_ENGINE
help help
Support the i.MX DMA engine. This engine is integrated into Support the i.MX DMA engine. This engine is integrated into
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
* http://www.opensource.org/licenses/gpl-license.html * http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html * http://www.gnu.org/copyleft/gpl.html
*/ */
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/types.h> #include <linux/types.h>
...@@ -25,15 +24,89 @@ ...@@ -25,15 +24,89 @@
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/dmaengine.h> #include <linux/dmaengine.h>
#include <linux/module.h> #include <linux/module.h>
#include <asm/irq.h> #include <asm/irq.h>
#include <mach/dma-v1.h> #include <mach/dma.h>
#include <mach/hardware.h> #include <mach/hardware.h>
#include "dmaengine.h" #include "dmaengine.h"
#define IMXDMA_MAX_CHAN_DESCRIPTORS 16 #define IMXDMA_MAX_CHAN_DESCRIPTORS 16
#define IMX_DMA_CHANNELS 16
#define DMA_MODE_READ 0
#define DMA_MODE_WRITE 1
#define DMA_MODE_MASK 1
#define IMX_DMA_LENGTH_LOOP ((unsigned int)-1)
#define IMX_DMA_MEMSIZE_32 (0 << 4)
#define IMX_DMA_MEMSIZE_8 (1 << 4)
#define IMX_DMA_MEMSIZE_16 (2 << 4)
#define IMX_DMA_TYPE_LINEAR (0 << 10)
#define IMX_DMA_TYPE_2D (1 << 10)
#define IMX_DMA_TYPE_FIFO (2 << 10)
#define IMX_DMA_ERR_BURST (1 << 0)
#define IMX_DMA_ERR_REQUEST (1 << 1)
#define IMX_DMA_ERR_TRANSFER (1 << 2)
#define IMX_DMA_ERR_BUFFER (1 << 3)
#define IMX_DMA_ERR_TIMEOUT (1 << 4)
#define DMA_DCR 0x00 /* Control Register */
#define DMA_DISR 0x04 /* Interrupt status Register */
#define DMA_DIMR 0x08 /* Interrupt mask Register */
#define DMA_DBTOSR 0x0c /* Burst timeout status Register */
#define DMA_DRTOSR 0x10 /* Request timeout Register */
#define DMA_DSESR 0x14 /* Transfer Error Status Register */
#define DMA_DBOSR 0x18 /* Buffer overflow status Register */
#define DMA_DBTOCR 0x1c /* Burst timeout control Register */
#define DMA_WSRA 0x40 /* W-Size Register A */
#define DMA_XSRA 0x44 /* X-Size Register A */
#define DMA_YSRA 0x48 /* Y-Size Register A */
#define DMA_WSRB 0x4c /* W-Size Register B */
#define DMA_XSRB 0x50 /* X-Size Register B */
#define DMA_YSRB 0x54 /* Y-Size Register B */
#define DMA_SAR(x) (0x80 + ((x) << 6)) /* Source Address Registers */
#define DMA_DAR(x) (0x84 + ((x) << 6)) /* Destination Address Registers */
#define DMA_CNTR(x) (0x88 + ((x) << 6)) /* Count Registers */
#define DMA_CCR(x) (0x8c + ((x) << 6)) /* Control Registers */
#define DMA_RSSR(x) (0x90 + ((x) << 6)) /* Request source select Registers */
#define DMA_BLR(x) (0x94 + ((x) << 6)) /* Burst length Registers */
#define DMA_RTOR(x) (0x98 + ((x) << 6)) /* Request timeout Registers */
#define DMA_BUCR(x) (0x98 + ((x) << 6)) /* Bus Utilization Registers */
#define DMA_CCNR(x) (0x9C + ((x) << 6)) /* Channel counter Registers */
#define DCR_DRST (1<<1)
#define DCR_DEN (1<<0)
#define DBTOCR_EN (1<<15)
#define DBTOCR_CNT(x) ((x) & 0x7fff)
#define CNTR_CNT(x) ((x) & 0xffffff)
#define CCR_ACRPT (1<<14)
#define CCR_DMOD_LINEAR (0x0 << 12)
#define CCR_DMOD_2D (0x1 << 12)
#define CCR_DMOD_FIFO (0x2 << 12)
#define CCR_DMOD_EOBFIFO (0x3 << 12)
#define CCR_SMOD_LINEAR (0x0 << 10)
#define CCR_SMOD_2D (0x1 << 10)
#define CCR_SMOD_FIFO (0x2 << 10)
#define CCR_SMOD_EOBFIFO (0x3 << 10)
#define CCR_MDIR_DEC (1<<9)
#define CCR_MSEL_B (1<<8)
#define CCR_DSIZ_32 (0x0 << 6)
#define CCR_DSIZ_8 (0x1 << 6)
#define CCR_DSIZ_16 (0x2 << 6)
#define CCR_SSIZ_32 (0x0 << 4)
#define CCR_SSIZ_8 (0x1 << 4)
#define CCR_SSIZ_16 (0x2 << 4)
#define CCR_REN (1<<3)
#define CCR_RPT (1<<2)
#define CCR_FRC (1<<1)
#define CCR_CEN (1<<0)
#define RTOR_EN (1<<15)
#define RTOR_CLK (1<<14)
#define RTOR_PSC (1<<13)
enum imxdma_prep_type { enum imxdma_prep_type {
IMXDMA_DESC_MEMCPY, IMXDMA_DESC_MEMCPY,
...@@ -42,6 +115,39 @@ enum imxdma_prep_type { ...@@ -42,6 +115,39 @@ enum imxdma_prep_type {
IMXDMA_DESC_CYCLIC, IMXDMA_DESC_CYCLIC,
}; };
/*
* struct imxdma_channel_internal - i.MX specific DMA extension
* @name: name specified by DMA client
* @irq_handler: client callback for end of transfer
* @err_handler: client callback for error condition
* @data: clients context data for callbacks
* @dma_mode: direction of the transfer %DMA_MODE_READ or %DMA_MODE_WRITE
* @sg: pointer to the actual read/written chunk for scatter-gather emulation
* @resbytes: total residual number of bytes to transfer
* (it can be lower or same as sum of SG mapped chunk sizes)
* @sgcount: number of chunks to be read/written
*
* Structure is used for IMX DMA processing. It would be probably good
* @struct dma_struct in the future for external interfacing and use
* @struct imxdma_channel_internal only as extension to it.
*/
struct imxdma_channel_internal {
void *data;
unsigned int dma_mode;
struct scatterlist *sg;
unsigned int resbytes;
int in_use;
u32 ccr_from_device;
u32 ccr_to_device;
struct timer_list watchdog;
int hw_chaining;
};
struct imxdma_desc { struct imxdma_desc {
struct list_head node; struct list_head node;
struct dma_async_tx_descriptor desc; struct dma_async_tx_descriptor desc;
...@@ -64,9 +170,9 @@ struct imxdma_desc { ...@@ -64,9 +170,9 @@ struct imxdma_desc {
}; };
struct imxdma_channel { struct imxdma_channel {
struct imxdma_channel_internal internal;
struct imxdma_engine *imxdma; struct imxdma_engine *imxdma;
unsigned int channel; unsigned int channel;
unsigned int imxdma_channel;
struct tasklet_struct dma_tasklet; struct tasklet_struct dma_tasklet;
struct list_head ld_free; struct list_head ld_free;
...@@ -84,13 +190,11 @@ struct imxdma_channel { ...@@ -84,13 +190,11 @@ struct imxdma_channel {
struct scatterlist *sg_list; struct scatterlist *sg_list;
}; };
#define MAX_DMA_CHANNELS 8
struct imxdma_engine { struct imxdma_engine {
struct device *dev; struct device *dev;
struct device_dma_parameters dma_parms; struct device_dma_parameters dma_parms;
struct dma_device dma_device; struct dma_device dma_device;
struct imxdma_channel channel[MAX_DMA_CHANNELS]; struct imxdma_channel channel[IMX_DMA_CHANNELS];
}; };
static struct imxdma_channel *to_imxdma_chan(struct dma_chan *chan) static struct imxdma_channel *to_imxdma_chan(struct dma_chan *chan)
...@@ -111,28 +215,381 @@ static inline bool imxdma_chan_is_doing_cyclic(struct imxdma_channel *imxdmac) ...@@ -111,28 +215,381 @@ static inline bool imxdma_chan_is_doing_cyclic(struct imxdma_channel *imxdmac)
return false; return false;
} }
static void imxdma_irq_handler(int channel, void *data) /* TODO: put this inside any struct */
static void __iomem *imx_dmav1_baseaddr;
static struct clk *dma_clk;
static void imx_dmav1_writel(unsigned val, unsigned offset)
{
__raw_writel(val, imx_dmav1_baseaddr + offset);
}
static unsigned imx_dmav1_readl(unsigned offset)
{ {
struct imxdma_channel *imxdmac = data; return __raw_readl(imx_dmav1_baseaddr + offset);
}
tasklet_schedule(&imxdmac->dma_tasklet); static int imxdma_hw_chain(struct imxdma_channel_internal *imxdma)
{
if (cpu_is_mx27())
return imxdma->hw_chaining;
else
return 0;
}
/*
* imxdma_sg_next - prepare next chunk for scatter-gather DMA emulation
*/
static inline int imxdma_sg_next(struct imxdma_channel *imxdmac, struct scatterlist *sg)
{
struct imxdma_channel_internal *imxdma = &imxdmac->internal;
unsigned long now;
now = min(imxdma->resbytes, sg->length);
if (imxdma->resbytes != IMX_DMA_LENGTH_LOOP)
imxdma->resbytes -= now;
if ((imxdma->dma_mode & DMA_MODE_MASK) == DMA_MODE_READ)
imx_dmav1_writel(sg->dma_address, DMA_DAR(imxdmac->channel));
else
imx_dmav1_writel(sg->dma_address, DMA_SAR(imxdmac->channel));
imx_dmav1_writel(now, DMA_CNTR(imxdmac->channel));
pr_debug("imxdma%d: next sg chunk dst 0x%08x, src 0x%08x, "
"size 0x%08x\n", imxdmac->channel,
imx_dmav1_readl(DMA_DAR(imxdmac->channel)),
imx_dmav1_readl(DMA_SAR(imxdmac->channel)),
imx_dmav1_readl(DMA_CNTR(imxdmac->channel)));
return now;
}
static int
imxdma_setup_single_hw(struct imxdma_channel *imxdmac, dma_addr_t dma_address,
unsigned int dma_length, unsigned int dev_addr,
unsigned int dmamode)
{
int channel = imxdmac->channel;
imxdmac->internal.sg = NULL;
imxdmac->internal.dma_mode = dmamode;
if (!dma_address) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single null address\n",
channel);
return -EINVAL;
}
if (!dma_length) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single zero length\n",
channel);
return -EINVAL;
}
if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
pr_debug("imxdma%d: %s dma_addressg=0x%08x dma_length=%d "
"dev_addr=0x%08x for read\n",
channel, __func__, (unsigned int)dma_address,
dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_SAR(channel));
imx_dmav1_writel(dma_address, DMA_DAR(channel));
imx_dmav1_writel(imxdmac->internal.ccr_from_device, DMA_CCR(channel));
} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
pr_debug("imxdma%d: %s dma_addressg=0x%08x dma_length=%d "
"dev_addr=0x%08x for write\n",
channel, __func__, (unsigned int)dma_address,
dma_length, dev_addr);
imx_dmav1_writel(dma_address, DMA_SAR(channel));
imx_dmav1_writel(dev_addr, DMA_DAR(channel));
imx_dmav1_writel(imxdmac->internal.ccr_to_device,
DMA_CCR(channel));
} else {
printk(KERN_ERR "imxdma%d: imx_dma_setup_single bad dmamode\n",
channel);
return -EINVAL;
}
imx_dmav1_writel(dma_length, DMA_CNTR(channel));
return 0;
}
static void imxdma_enable_hw(struct imxdma_channel *imxdmac)
{
int channel = imxdmac->channel;
unsigned long flags;
pr_debug("imxdma%d: imx_dma_enable\n", channel);
if (imxdmac->internal.in_use)
return;
local_irq_save(flags);
imx_dmav1_writel(1 << channel, DMA_DISR);
imx_dmav1_writel(imx_dmav1_readl(DMA_DIMR) & ~(1 << channel), DMA_DIMR);
imx_dmav1_writel(imx_dmav1_readl(DMA_CCR(channel)) | CCR_CEN |
CCR_ACRPT, DMA_CCR(channel));
if ((cpu_is_mx21() || cpu_is_mx27()) &&
imxdmac->internal.sg && imxdma_hw_chain(&imxdmac->internal)) {
imxdmac->internal.sg = sg_next(imxdmac->internal.sg);
if (imxdmac->internal.sg) {
u32 tmp;
imxdma_sg_next(imxdmac, imxdmac->internal.sg);
tmp = imx_dmav1_readl(DMA_CCR(channel));
imx_dmav1_writel(tmp | CCR_RPT | CCR_ACRPT,
DMA_CCR(channel));
}
}
imxdmac->internal.in_use = 1;
local_irq_restore(flags);
}
static void imxdma_disable_hw(struct imxdma_channel *imxdmac)
{
int channel = imxdmac->channel;
unsigned long flags;
pr_debug("imxdma%d: imx_dma_disable\n", channel);
if (imxdma_hw_chain(&imxdmac->internal))
del_timer(&imxdmac->internal.watchdog);
local_irq_save(flags);
imx_dmav1_writel(imx_dmav1_readl(DMA_DIMR) | (1 << channel), DMA_DIMR);
imx_dmav1_writel(imx_dmav1_readl(DMA_CCR(channel)) & ~CCR_CEN,
DMA_CCR(channel));
imx_dmav1_writel(1 << channel, DMA_DISR);
imxdmac->internal.in_use = 0;
local_irq_restore(flags);
}
static int
imxdma_config_channel_hw(struct imxdma_channel *imxdmac, unsigned int config_port,
unsigned int config_mem, unsigned int dmareq, int hw_chaining)
{
int channel = imxdmac->channel;
u32 dreq = 0;
imxdmac->internal.hw_chaining = 0;
if (hw_chaining) {
imxdmac->internal.hw_chaining = 1;
if (!imxdma_hw_chain(&imxdmac->internal))
return -EINVAL;
}
if (dmareq)
dreq = CCR_REN;
imxdmac->internal.ccr_from_device = config_port | (config_mem << 2) | dreq;
imxdmac->internal.ccr_to_device = config_mem | (config_port << 2) | dreq;
imx_dmav1_writel(dmareq, DMA_RSSR(channel));
return 0;
}
static int
imxdma_setup_sg_hw(struct imxdma_channel *imxdmac,
struct scatterlist *sg, unsigned int sgcount,
unsigned int dma_length, unsigned int dev_addr,
unsigned int dmamode)
{
int channel = imxdmac->channel;
if (imxdmac->internal.in_use)
return -EBUSY;
imxdmac->internal.sg = sg;
imxdmac->internal.dma_mode = dmamode;
imxdmac->internal.resbytes = dma_length;
if (!sg || !sgcount) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg empty sg list\n",
channel);
return -EINVAL;
}
if (!sg->length) {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg zero length\n",
channel);
return -EINVAL;
}
if ((dmamode & DMA_MODE_MASK) == DMA_MODE_READ) {
pr_debug("imxdma%d: %s sg=%p sgcount=%d total length=%d "
"dev_addr=0x%08x for read\n",
channel, __func__, sg, sgcount, dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_SAR(channel));
imx_dmav1_writel(imxdmac->internal.ccr_from_device, DMA_CCR(channel));
} else if ((dmamode & DMA_MODE_MASK) == DMA_MODE_WRITE) {
pr_debug("imxdma%d: %s sg=%p sgcount=%d total length=%d "
"dev_addr=0x%08x for write\n",
channel, __func__, sg, sgcount, dma_length, dev_addr);
imx_dmav1_writel(dev_addr, DMA_DAR(channel));
imx_dmav1_writel(imxdmac->internal.ccr_to_device, DMA_CCR(channel));
} else {
printk(KERN_ERR "imxdma%d: imx_dma_setup_sg bad dmamode\n",
channel);
return -EINVAL;
}
imxdma_sg_next(imxdmac, sg);
return 0;
} }
static void imxdma_err_handler(int channel, void *data, int error) static void imxdma_watchdog(unsigned long data)
{ {
struct imxdma_channel *imxdmac = data; struct imxdma_channel *imxdmac = (struct imxdma_channel *)data;
int channel = imxdmac->channel;
imx_dmav1_writel(0, DMA_CCR(channel));
imxdmac->internal.in_use = 0;
imxdmac->internal.sg = NULL;
/* Tasklet watchdog error handler */
tasklet_schedule(&imxdmac->dma_tasklet); tasklet_schedule(&imxdmac->dma_tasklet);
pr_debug("imxdma%d: watchdog timeout!\n", imxdmac->channel);
}
static irqreturn_t imxdma_err_handler(int irq, void *dev_id)
{
struct imxdma_engine *imxdma = dev_id;
struct imxdma_channel_internal *internal;
unsigned int err_mask;
int i, disr;
int errcode;
disr = imx_dmav1_readl(DMA_DISR);
err_mask = imx_dmav1_readl(DMA_DBTOSR) |
imx_dmav1_readl(DMA_DRTOSR) |
imx_dmav1_readl(DMA_DSESR) |
imx_dmav1_readl(DMA_DBOSR);
if (!err_mask)
return IRQ_HANDLED;
imx_dmav1_writel(disr & err_mask, DMA_DISR);
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
if (!(err_mask & (1 << i)))
continue;
internal = &imxdma->channel[i].internal;
errcode = 0;
if (imx_dmav1_readl(DMA_DBTOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DBTOSR);
errcode |= IMX_DMA_ERR_BURST;
}
if (imx_dmav1_readl(DMA_DRTOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DRTOSR);
errcode |= IMX_DMA_ERR_REQUEST;
}
if (imx_dmav1_readl(DMA_DSESR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DSESR);
errcode |= IMX_DMA_ERR_TRANSFER;
}
if (imx_dmav1_readl(DMA_DBOSR) & (1 << i)) {
imx_dmav1_writel(1 << i, DMA_DBOSR);
errcode |= IMX_DMA_ERR_BUFFER;
}
/* Tasklet error handler */
tasklet_schedule(&imxdma->channel[i].dma_tasklet);
printk(KERN_WARNING
"DMA timeout on channel %d -%s%s%s%s\n", i,
errcode & IMX_DMA_ERR_BURST ? " burst" : "",
errcode & IMX_DMA_ERR_REQUEST ? " request" : "",
errcode & IMX_DMA_ERR_TRANSFER ? " transfer" : "",
errcode & IMX_DMA_ERR_BUFFER ? " buffer" : "");
}
return IRQ_HANDLED;
} }
static void imxdma_progression(int channel, void *data, static void dma_irq_handle_channel(struct imxdma_channel *imxdmac)
struct scatterlist *sg)
{ {
struct imxdma_channel *imxdmac = data; struct imxdma_channel_internal *imxdma = &imxdmac->internal;
int chno = imxdmac->channel;
if (imxdma->sg) {
u32 tmp;
imxdma->sg = sg_next(imxdma->sg);
if (imxdma->sg) {
imxdma_sg_next(imxdmac, imxdma->sg);
tmp = imx_dmav1_readl(DMA_CCR(chno));
if (imxdma_hw_chain(imxdma)) {
/* FIXME: The timeout should probably be
* configurable
*/
mod_timer(&imxdma->watchdog,
jiffies + msecs_to_jiffies(500));
tmp |= CCR_CEN | CCR_RPT | CCR_ACRPT;
imx_dmav1_writel(tmp, DMA_CCR(chno));
} else {
imx_dmav1_writel(tmp & ~CCR_CEN, DMA_CCR(chno));
tmp |= CCR_CEN;
}
imx_dmav1_writel(tmp, DMA_CCR(chno));
if (imxdma_chan_is_doing_cyclic(imxdmac))
/* Tasklet progression */
tasklet_schedule(&imxdmac->dma_tasklet);
return;
}
if (imxdma_hw_chain(imxdma)) {
del_timer(&imxdma->watchdog);
return;
}
}
imx_dmav1_writel(0, DMA_CCR(chno));
imxdma->in_use = 0;
/* Tasklet irq */
tasklet_schedule(&imxdmac->dma_tasklet); tasklet_schedule(&imxdmac->dma_tasklet);
} }
static irqreturn_t dma_irq_handler(int irq, void *dev_id)
{
struct imxdma_engine *imxdma = dev_id;
struct imxdma_channel_internal *internal;
int i, disr;
if (cpu_is_mx21() || cpu_is_mx27())
imxdma_err_handler(irq, dev_id);
disr = imx_dmav1_readl(DMA_DISR);
pr_debug("imxdma: dma_irq_handler called, disr=0x%08x\n",
disr);
imx_dmav1_writel(disr, DMA_DISR);
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
if (disr & (1 << i)) {
internal = &imxdma->channel[i].internal;
dma_irq_handle_channel(&imxdma->channel[i]);
}
}
return IRQ_HANDLED;
}
static int imxdma_xfer_desc(struct imxdma_desc *d) static int imxdma_xfer_desc(struct imxdma_desc *d)
{ {
struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan); struct imxdma_channel *imxdmac = to_imxdma_chan(d->desc.chan);
...@@ -141,31 +598,24 @@ static int imxdma_xfer_desc(struct imxdma_desc *d) ...@@ -141,31 +598,24 @@ static int imxdma_xfer_desc(struct imxdma_desc *d)
/* Configure and enable */ /* Configure and enable */
switch (d->type) { switch (d->type) {
case IMXDMA_DESC_MEMCPY: case IMXDMA_DESC_MEMCPY:
ret = imx_dma_config_channel(imxdmac->imxdma_channel, ret = imxdma_config_channel_hw(imxdmac,
d->config_port, d->config_mem, 0, 0); d->config_port, d->config_mem, 0, 0);
if (ret < 0) if (ret < 0)
return ret; return ret;
ret = imx_dma_setup_single(imxdmac->imxdma_channel, d->src, ret = imxdma_setup_single_hw(imxdmac, d->src,
d->len, d->dest, d->dmamode); d->len, d->dest, d->dmamode);
if (ret < 0) if (ret < 0)
return ret; return ret;
break; break;
/* Cyclic transfer is the same as slave_sg with special sg configuration. */
case IMXDMA_DESC_CYCLIC: case IMXDMA_DESC_CYCLIC:
ret = imx_dma_setup_progression_handler(imxdmac->imxdma_channel,
imxdma_progression);
if (ret < 0)
return ret;
/*
* We fall through here since cyclic transfer is the same as
* slave_sg adding a progression handler and a specific sg
* configuration which is done in 'imxdma_prep_dma_cyclic'.
*/
case IMXDMA_DESC_SLAVE_SG: case IMXDMA_DESC_SLAVE_SG:
if (d->dmamode == DMA_MODE_READ) if (d->dmamode == DMA_MODE_READ)
ret = imx_dma_setup_sg(imxdmac->imxdma_channel, d->sg, ret = imxdma_setup_sg_hw(imxdmac, d->sg,
d->sgcount, d->len, d->src, d->dmamode); d->sgcount, d->len, d->src, d->dmamode);
else else
ret = imx_dma_setup_sg(imxdmac->imxdma_channel, d->sg, ret = imxdma_setup_sg_hw(imxdmac, d->sg,
d->sgcount, d->len, d->dest, d->dmamode); d->sgcount, d->len, d->dest, d->dmamode);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -173,7 +623,7 @@ static int imxdma_xfer_desc(struct imxdma_desc *d) ...@@ -173,7 +623,7 @@ static int imxdma_xfer_desc(struct imxdma_desc *d)
default: default:
return -EINVAL; return -EINVAL;
} }
imx_dma_enable(imxdmac->imxdma_channel); imxdma_enable_hw(imxdmac);
return 0; return 0;
} }
...@@ -225,7 +675,7 @@ static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -225,7 +675,7 @@ static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
switch (cmd) { switch (cmd) {
case DMA_TERMINATE_ALL: case DMA_TERMINATE_ALL:
imx_dma_disable(imxdmac->imxdma_channel); imxdma_disable_hw(imxdmac);
spin_lock_irqsave(&imxdmac->lock, flags); spin_lock_irqsave(&imxdmac->lock, flags);
list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free); list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free);
...@@ -255,16 +705,16 @@ static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, ...@@ -255,16 +705,16 @@ static int imxdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
mode = IMX_DMA_MEMSIZE_32; mode = IMX_DMA_MEMSIZE_32;
break; break;
} }
ret = imx_dma_config_channel(imxdmac->imxdma_channel, ret = imxdma_config_channel_hw(imxdmac,
mode | IMX_DMA_TYPE_FIFO, mode | IMX_DMA_TYPE_FIFO,
IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR, IMX_DMA_MEMSIZE_32 | IMX_DMA_TYPE_LINEAR,
imxdmac->dma_request, 1); imxdmac->dma_request, 1);
if (ret) if (ret)
return ret; return ret;
/* Set burst length */
imx_dma_config_burstlen(imxdmac->imxdma_channel, imx_dmav1_writel(imxdmac->watermark_level * imxdmac->word_size,
imxdmac->watermark_level * imxdmac->word_size); DMA_BLR(imxdmac->channel));
return 0; return 0;
default: default:
...@@ -333,7 +783,7 @@ static void imxdma_free_chan_resources(struct dma_chan *chan) ...@@ -333,7 +783,7 @@ static void imxdma_free_chan_resources(struct dma_chan *chan)
spin_lock_irqsave(&imxdmac->lock, flags); spin_lock_irqsave(&imxdmac->lock, flags);
imx_dma_disable(imxdmac->imxdma_channel); imxdma_disable_hw(imxdmac);
list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free); list_splice_tail_init(&imxdmac->ld_active, &imxdmac->ld_free);
list_splice_tail_init(&imxdmac->ld_queue, &imxdmac->ld_free); list_splice_tail_init(&imxdmac->ld_queue, &imxdmac->ld_free);
...@@ -520,10 +970,51 @@ static void imxdma_issue_pending(struct dma_chan *chan) ...@@ -520,10 +970,51 @@ static void imxdma_issue_pending(struct dma_chan *chan)
} }
static int __init imxdma_probe(struct platform_device *pdev) static int __init imxdma_probe(struct platform_device *pdev)
{ {
struct imxdma_engine *imxdma; struct imxdma_engine *imxdma;
int ret, i; int ret, i;
if (cpu_is_mx1())
imx_dmav1_baseaddr = MX1_IO_ADDRESS(MX1_DMA_BASE_ADDR);
else if (cpu_is_mx21())
imx_dmav1_baseaddr = MX21_IO_ADDRESS(MX21_DMA_BASE_ADDR);
else if (cpu_is_mx27())
imx_dmav1_baseaddr = MX27_IO_ADDRESS(MX27_DMA_BASE_ADDR);
else
return 0;
dma_clk = clk_get(NULL, "dma");
if (IS_ERR(dma_clk))
return PTR_ERR(dma_clk);
clk_enable(dma_clk);
/* reset DMA module */
imx_dmav1_writel(DCR_DRST, DMA_DCR);
if (cpu_is_mx1()) {
ret = request_irq(MX1_DMA_INT, dma_irq_handler, 0, "DMA", imxdma);
if (ret) {
pr_crit("Can't register IRQ for DMA\n");
return ret;
}
ret = request_irq(MX1_DMA_ERR, imxdma_err_handler, 0, "DMA", imxdma);
if (ret) {
pr_crit("Can't register ERRIRQ for DMA\n");
free_irq(MX1_DMA_INT, NULL);
return ret;
}
}
/* enable DMA module */
imx_dmav1_writel(DCR_DEN, DMA_DCR);
/* clear all interrupts */
imx_dmav1_writel((1 << IMX_DMA_CHANNELS) - 1, DMA_DISR);
/* disable interrupts */
imx_dmav1_writel((1 << IMX_DMA_CHANNELS) - 1, DMA_DIMR);
imxdma = kzalloc(sizeof(*imxdma), GFP_KERNEL); imxdma = kzalloc(sizeof(*imxdma), GFP_KERNEL);
if (!imxdma) if (!imxdma)
return -ENOMEM; return -ENOMEM;
...@@ -535,19 +1026,22 @@ static int __init imxdma_probe(struct platform_device *pdev) ...@@ -535,19 +1026,22 @@ static int __init imxdma_probe(struct platform_device *pdev)
dma_cap_set(DMA_MEMCPY, imxdma->dma_device.cap_mask); dma_cap_set(DMA_MEMCPY, imxdma->dma_device.cap_mask);
/* Initialize channel parameters */ /* Initialize channel parameters */
for (i = 0; i < MAX_DMA_CHANNELS; i++) { for (i = 0; i < IMX_DMA_CHANNELS; i++) {
struct imxdma_channel *imxdmac = &imxdma->channel[i]; struct imxdma_channel *imxdmac = &imxdma->channel[i];
memset(&imxdmac->internal, 0, sizeof(imxdmac->internal));
imxdmac->imxdma_channel = imx_dma_request_by_prio("dmaengine", if (cpu_is_mx21() || cpu_is_mx27()) {
DMA_PRIO_MEDIUM); ret = request_irq(MX2x_INT_DMACH0 + i,
if ((int)imxdmac->channel < 0) { dma_irq_handler, 0, "DMA", imxdma);
ret = -ENODEV; if (ret) {
goto err_init; pr_crit("Can't register IRQ %d for DMA channel %d\n",
MX2x_INT_DMACH0 + i, i);
goto err_init;
}
init_timer(&imxdmac->internal.watchdog);
imxdmac->internal.watchdog.function = &imxdma_watchdog;
imxdmac->internal.watchdog.data = (unsigned long)imxdmac;
} }
imx_dma_setup_handlers(imxdmac->imxdma_channel,
imxdma_irq_handler, imxdma_err_handler, imxdmac);
imxdmac->imxdma = imxdma; imxdmac->imxdma = imxdma;
spin_lock_init(&imxdmac->lock); spin_lock_init(&imxdmac->lock);
...@@ -593,9 +1087,13 @@ static int __init imxdma_probe(struct platform_device *pdev) ...@@ -593,9 +1087,13 @@ static int __init imxdma_probe(struct platform_device *pdev)
return 0; return 0;
err_init: err_init:
while (--i >= 0) {
struct imxdma_channel *imxdmac = &imxdma->channel[i]; if (cpu_is_mx21() || cpu_is_mx27()) {
imx_dma_free(imxdmac->imxdma_channel); while (--i >= 0)
free_irq(MX2x_INT_DMACH0 + i, NULL);
} else if cpu_is_mx1() {
free_irq(MX1_DMA_INT, NULL);
free_irq(MX1_DMA_ERR, NULL);
} }
kfree(imxdma); kfree(imxdma);
...@@ -609,10 +1107,12 @@ static int __exit imxdma_remove(struct platform_device *pdev) ...@@ -609,10 +1107,12 @@ static int __exit imxdma_remove(struct platform_device *pdev)
dma_async_device_unregister(&imxdma->dma_device); dma_async_device_unregister(&imxdma->dma_device);
for (i = 0; i < MAX_DMA_CHANNELS; i++) { if (cpu_is_mx21() || cpu_is_mx27()) {
struct imxdma_channel *imxdmac = &imxdma->channel[i]; for (i = 0; i < IMX_DMA_CHANNELS; i++)
free_irq(MX2x_INT_DMACH0 + i, NULL);
imx_dma_free(imxdmac->imxdma_channel); } else if cpu_is_mx1() {
free_irq(MX1_DMA_INT, NULL);
free_irq(MX1_DMA_ERR, NULL);
} }
kfree(imxdma); kfree(imxdma);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment