Commit 73228c7e authored by Patricia Alfonso's avatar Patricia Alfonso Committed by Linus Torvalds

KASAN: port KASAN Tests to KUnit

Transfer all previous tests for KASAN to KUnit so they can be run more
easily.  Using kunit_tool, developers can run these tests with their other
KUnit tests and see "pass" or "fail" with the appropriate KASAN report
instead of needing to parse each KASAN report to test KASAN
functionalities.  All KASAN reports are still printed to dmesg.

Stack tests do not work properly when KASAN_STACK is enabled so those
tests use a check for "if IS_ENABLED(CONFIG_KASAN_STACK)" so they only run
if stack instrumentation is enabled.  If KASAN_STACK is not enabled, KUnit
will print a statement to let the user know this test was not run with
KASAN_STACK enabled.

copy_user_test and kasan_rcu_uaf cannot be run in KUnit so there is a
separate test file for those tests, which can be run as before as a
module.

[trishalfonso@google.com: v14]
  Link: https://lkml.kernel.org/r/20200915035828.570483-4-davidgow@google.comSigned-off-by: default avatarPatricia Alfonso <trishalfonso@google.com>
Signed-off-by: default avatarDavid Gow <davidgow@google.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Tested-by: default avatarAndrey Konovalov <andreyknvl@google.com>
Reviewed-by: default avatarBrendan Higgins <brendanhiggins@google.com>
Reviewed-by: default avatarAndrey Konovalov <andreyknvl@google.com>
Reviewed-by: default avatarDmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20200910070331.3358048-4-davidgow@google.comSigned-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 83c4e7a0
...@@ -166,12 +166,24 @@ config KASAN_VMALLOC ...@@ -166,12 +166,24 @@ config KASAN_VMALLOC
for KASAN to detect more sorts of errors (and to support vmapped for KASAN to detect more sorts of errors (and to support vmapped
stacks), but at the cost of higher memory usage. stacks), but at the cost of higher memory usage.
config TEST_KASAN config KASAN_KUNIT_TEST
tristate "Module for testing KASAN for bug detection" tristate "KUnit-compatible tests of KASAN bug detection capabilities" if !KUNIT_ALL_TESTS
depends on m depends on KASAN && KUNIT
default KUNIT_ALL_TESTS
help help
This is a test module doing various nasty things like This is a KUnit test suite doing various nasty things like
out of bounds accesses, use after free. It is useful for testing out of bounds and use after free accesses. It is useful for testing
kernel debugging features like KASAN. kernel debugging features like KASAN.
For more information on KUnit and unit tests in general, please refer
to the KUnit documentation in Documentation/dev-tools/kunit
config TEST_KASAN_MODULE
tristate "KUnit-incompatible tests of KASAN bug detection capabilities"
depends on m && KASAN
help
This is a part of the KASAN test suite that is incompatible with
KUnit. Currently includes tests that do bad copy_from/to_user
accesses.
endif # KASAN endif # KASAN
...@@ -65,9 +65,11 @@ CFLAGS_test_bitops.o += -Werror ...@@ -65,9 +65,11 @@ CFLAGS_test_bitops.o += -Werror
obj-$(CONFIG_TEST_SYSCTL) += test_sysctl.o obj-$(CONFIG_TEST_SYSCTL) += test_sysctl.o
obj-$(CONFIG_TEST_HASH) += test_hash.o test_siphash.o obj-$(CONFIG_TEST_HASH) += test_hash.o test_siphash.o
obj-$(CONFIG_TEST_IDA) += test_ida.o obj-$(CONFIG_TEST_IDA) += test_ida.o
obj-$(CONFIG_TEST_KASAN) += test_kasan.o obj-$(CONFIG_KASAN_KUNIT_TEST) += test_kasan.o
CFLAGS_test_kasan.o += -fno-builtin CFLAGS_test_kasan.o += -fno-builtin
CFLAGS_test_kasan.o += $(call cc-disable-warning, vla) CFLAGS_test_kasan.o += $(call cc-disable-warning, vla)
obj-$(CONFIG_TEST_KASAN_MODULE) += test_kasan_module.o
CFLAGS_test_kasan_module.o += -fno-builtin
obj-$(CONFIG_TEST_UBSAN) += test_ubsan.o obj-$(CONFIG_TEST_UBSAN) += test_ubsan.o
CFLAGS_test_ubsan.o += $(call cc-disable-warning, vla) CFLAGS_test_ubsan.o += $(call cc-disable-warning, vla)
UBSAN_SANITIZE_test_ubsan.o := y UBSAN_SANITIZE_test_ubsan.o := y
......
...@@ -5,8 +5,6 @@ ...@@ -5,8 +5,6 @@
* Author: Andrey Ryabinin <a.ryabinin@samsung.com> * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
*/ */
#define pr_fmt(fmt) "kasan test: %s " fmt, __func__
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/kasan.h> #include <linux/kasan.h>
...@@ -77,416 +75,327 @@ static void kasan_test_exit(struct kunit *test) ...@@ -77,416 +75,327 @@ static void kasan_test_exit(struct kunit *test)
fail_data.report_found); \ fail_data.report_found); \
} while (0) } while (0)
static void kmalloc_oob_right(struct kunit *test)
/*
* Note: test functions are marked noinline so that their names appear in
* reports.
*/
static noinline void __init kmalloc_oob_right(void)
{ {
char *ptr; char *ptr;
size_t size = 123; size_t size = 123;
pr_info("out-of-bounds to right\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
ptr[size + OOB_TAG_OFF] = 'x';
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 'x');
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_left(void) static void kmalloc_oob_left(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 15; size_t size = 15;
pr_info("out-of-bounds to left\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
*ptr = *(ptr - 1); KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_node_oob_right(void) static void kmalloc_node_oob_right(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 4096; size_t size = 4096;
pr_info("kmalloc_node(): out-of-bounds to right\n");
ptr = kmalloc_node(size, GFP_KERNEL, 0); ptr = kmalloc_node(size, GFP_KERNEL, 0);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
ptr[size] = 0; KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
kfree(ptr); kfree(ptr);
} }
#ifdef CONFIG_SLUB static void kmalloc_pagealloc_oob_right(struct kunit *test)
static noinline void __init kmalloc_pagealloc_oob_right(void)
{ {
char *ptr; char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE + 10; size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
if (!IS_ENABLED(CONFIG_SLUB)) {
kunit_info(test, "CONFIG_SLUB is not enabled.");
return;
}
/* Allocate a chunk that does not fit into a SLUB cache to trigger /* Allocate a chunk that does not fit into a SLUB cache to trigger
* the page allocator fallback. * the page allocator fallback.
*/ */
pr_info("kmalloc pagealloc allocation: out-of-bounds to right\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
ptr[size + OOB_TAG_OFF] = 0;
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_pagealloc_uaf(void) static void kmalloc_pagealloc_uaf(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE + 10; size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
pr_info("kmalloc pagealloc allocation: use-after-free\n"); if (!IS_ENABLED(CONFIG_SLUB)) {
ptr = kmalloc(size, GFP_KERNEL); kunit_info(test, "CONFIG_SLUB is not enabled.");
if (!ptr) {
pr_err("Allocation failed\n");
return; return;
} }
ptr = kmalloc(size, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
kfree(ptr); kfree(ptr);
ptr[0] = 0; KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = 0);
} }
static noinline void __init kmalloc_pagealloc_invalid_free(void) static void kmalloc_pagealloc_invalid_free(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE + 10; size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
pr_info("kmalloc pagealloc allocation: invalid-free\n"); if (!IS_ENABLED(CONFIG_SLUB)) {
ptr = kmalloc(size, GFP_KERNEL); kunit_info(test, "CONFIG_SLUB is not enabled.");
if (!ptr) {
pr_err("Allocation failed\n");
return; return;
} }
kfree(ptr + 1); ptr = kmalloc(size, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
} }
#endif
static noinline void __init kmalloc_large_oob_right(void) static void kmalloc_large_oob_right(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = KMALLOC_MAX_CACHE_SIZE - 256; size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
/* Allocate a chunk that is large enough, but still fits into a slab /* Allocate a chunk that is large enough, but still fits into a slab
* and does not trigger the page allocator fallback in SLUB. * and does not trigger the page allocator fallback in SLUB.
*/ */
pr_info("kmalloc large allocation: out-of-bounds to right\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
ptr[size] = 0; KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_krealloc_more(void) static void kmalloc_oob_krealloc_more(struct kunit *test)
{ {
char *ptr1, *ptr2; char *ptr1, *ptr2;
size_t size1 = 17; size_t size1 = 17;
size_t size2 = 19; size_t size2 = 19;
pr_info("out-of-bounds after krealloc more\n");
ptr1 = kmalloc(size1, GFP_KERNEL); ptr1 = kmalloc(size1, GFP_KERNEL);
ptr2 = krealloc(ptr1, size2, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
if (!ptr1 || !ptr2) {
pr_err("Allocation failed\n");
kfree(ptr1);
kfree(ptr2);
return;
}
ptr2[size2 + OOB_TAG_OFF] = 'x'; ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2 + OOB_TAG_OFF] = 'x');
kfree(ptr2); kfree(ptr2);
} }
static noinline void __init kmalloc_oob_krealloc_less(void) static void kmalloc_oob_krealloc_less(struct kunit *test)
{ {
char *ptr1, *ptr2; char *ptr1, *ptr2;
size_t size1 = 17; size_t size1 = 17;
size_t size2 = 15; size_t size2 = 15;
pr_info("out-of-bounds after krealloc less\n");
ptr1 = kmalloc(size1, GFP_KERNEL); ptr1 = kmalloc(size1, GFP_KERNEL);
ptr2 = krealloc(ptr1, size2, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
if (!ptr1 || !ptr2) {
pr_err("Allocation failed\n");
kfree(ptr1);
return;
}
ptr2[size2 + OOB_TAG_OFF] = 'x'; ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2 + OOB_TAG_OFF] = 'x');
kfree(ptr2); kfree(ptr2);
} }
static noinline void __init kmalloc_oob_16(void) static void kmalloc_oob_16(struct kunit *test)
{ {
struct { struct {
u64 words[2]; u64 words[2];
} *ptr1, *ptr2; } *ptr1, *ptr2;
pr_info("kmalloc out-of-bounds for 16-bytes access\n");
ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL); ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL); ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
if (!ptr1 || !ptr2) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
pr_err("Allocation failed\n");
kfree(ptr1); KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
kfree(ptr2);
return;
}
*ptr1 = *ptr2;
kfree(ptr1); kfree(ptr1);
kfree(ptr2); kfree(ptr2);
} }
static noinline void __init kmalloc_oob_memset_2(void) static void kmalloc_oob_memset_2(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 8; size_t size = 8;
pr_info("out-of-bounds in memset2\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset(ptr + 7 + OOB_TAG_OFF, 0, 2);
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 7 + OOB_TAG_OFF, 0, 2));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_memset_4(void) static void kmalloc_oob_memset_4(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 8; size_t size = 8;
pr_info("out-of-bounds in memset4\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset(ptr + 5 + OOB_TAG_OFF, 0, 4);
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 5 + OOB_TAG_OFF, 0, 4));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_memset_8(void) static void kmalloc_oob_memset_8(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 8; size_t size = 8;
pr_info("out-of-bounds in memset8\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset(ptr + 1 + OOB_TAG_OFF, 0, 8);
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 8));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_memset_16(void) static void kmalloc_oob_memset_16(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 16; size_t size = 16;
pr_info("out-of-bounds in memset16\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset(ptr + 1 + OOB_TAG_OFF, 0, 16);
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + 1 + OOB_TAG_OFF, 0, 16));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_oob_in_memset(void) static void kmalloc_oob_in_memset(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 666; size_t size = 666;
pr_info("out-of-bounds in memset\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset(ptr, 0, size + 5 + OOB_TAG_OFF);
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size + 5 + OOB_TAG_OFF));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_memmove_invalid_size(void) static void kmalloc_memmove_invalid_size(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 64; size_t size = 64;
volatile size_t invalid_size = -2; volatile size_t invalid_size = -2;
pr_info("invalid size in memmove\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
memset((char *)ptr, 0, 64); memset((char *)ptr, 0, 64);
memmove((char *)ptr, (char *)ptr + 4, invalid_size);
KUNIT_EXPECT_KASAN_FAIL(test,
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kmalloc_uaf(void) static void kmalloc_uaf(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 10; size_t size = 10;
pr_info("use-after-free\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
kfree(ptr); kfree(ptr);
*(ptr + 8) = 'x'; KUNIT_EXPECT_KASAN_FAIL(test, *(ptr + 8) = 'x');
} }
static noinline void __init kmalloc_uaf_memset(void) static void kmalloc_uaf_memset(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 33; size_t size = 33;
pr_info("use-after-free in memset\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
kfree(ptr); kfree(ptr);
memset(ptr, 0, size); KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
} }
static noinline void __init kmalloc_uaf2(void) static void kmalloc_uaf2(struct kunit *test)
{ {
char *ptr1, *ptr2; char *ptr1, *ptr2;
size_t size = 43; size_t size = 43;
pr_info("use-after-free after another kmalloc\n");
ptr1 = kmalloc(size, GFP_KERNEL); ptr1 = kmalloc(size, GFP_KERNEL);
if (!ptr1) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
pr_err("Allocation failed\n");
return;
}
kfree(ptr1); kfree(ptr1);
ptr2 = kmalloc(size, GFP_KERNEL); ptr2 = kmalloc(size, GFP_KERNEL);
if (!ptr2) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
pr_err("Allocation failed\n");
return; KUNIT_EXPECT_KASAN_FAIL(test, ptr1[40] = 'x');
} KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
ptr1[40] = 'x';
if (ptr1 == ptr2)
pr_err("Could not detect use-after-free: ptr1 == ptr2\n");
kfree(ptr2); kfree(ptr2);
} }
static noinline void __init kfree_via_page(void) static void kfree_via_page(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 8; size_t size = 8;
struct page *page; struct page *page;
unsigned long offset; unsigned long offset;
pr_info("invalid-free false positive (via page)\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
page = virt_to_page(ptr); page = virt_to_page(ptr);
offset = offset_in_page(ptr); offset = offset_in_page(ptr);
kfree(page_address(page) + offset); kfree(page_address(page) + offset);
} }
static noinline void __init kfree_via_phys(void) static void kfree_via_phys(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 8; size_t size = 8;
phys_addr_t phys; phys_addr_t phys;
pr_info("invalid-free false positive (via phys)\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
phys = virt_to_phys(ptr); phys = virt_to_phys(ptr);
kfree(phys_to_virt(phys)); kfree(phys_to_virt(phys));
} }
static noinline void __init kmem_cache_oob(void) static void kmem_cache_oob(struct kunit *test)
{ {
char *p; char *p;
size_t size = 200; size_t size = 200;
struct kmem_cache *cache = kmem_cache_create("test_cache", struct kmem_cache *cache = kmem_cache_create("test_cache",
size, 0, size, 0,
0, NULL); 0, NULL);
if (!cache) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
pr_err("Cache allocation failed\n");
return;
}
pr_info("out-of-bounds in kmem_cache_alloc\n");
p = kmem_cache_alloc(cache, GFP_KERNEL); p = kmem_cache_alloc(cache, GFP_KERNEL);
if (!p) { if (!p) {
pr_err("Allocation failed\n"); kunit_err(test, "Allocation failed: %s\n", __func__);
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
return; return;
} }
*p = p[size + OOB_TAG_OFF]; KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
kmem_cache_free(cache, p); kmem_cache_free(cache, p);
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
} }
static noinline void __init memcg_accounted_kmem_cache(void) static void memcg_accounted_kmem_cache(struct kunit *test)
{ {
int i; int i;
char *p; char *p;
...@@ -494,12 +403,8 @@ static noinline void __init memcg_accounted_kmem_cache(void) ...@@ -494,12 +403,8 @@ static noinline void __init memcg_accounted_kmem_cache(void)
struct kmem_cache *cache; struct kmem_cache *cache;
cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL); cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
if (!cache) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
pr_err("Cache allocation failed\n");
return;
}
pr_info("allocate memcg accounted object\n");
/* /*
* Several allocations with a delay to allow for lazy per memcg kmem * Several allocations with a delay to allow for lazy per memcg kmem
* cache creation. * cache creation.
...@@ -519,134 +424,93 @@ static noinline void __init memcg_accounted_kmem_cache(void) ...@@ -519,134 +424,93 @@ static noinline void __init memcg_accounted_kmem_cache(void)
static char global_array[10]; static char global_array[10];
static noinline void __init kasan_global_oob(void) static void kasan_global_oob(struct kunit *test)
{ {
volatile int i = 3; volatile int i = 3;
char *p = &global_array[ARRAY_SIZE(global_array) + i]; char *p = &global_array[ARRAY_SIZE(global_array) + i];
pr_info("out-of-bounds global variable\n"); KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
*(volatile char *)p;
}
static noinline void __init kasan_stack_oob(void)
{
char stack_array[10];
volatile int i = OOB_TAG_OFF;
char *p = &stack_array[ARRAY_SIZE(stack_array) + i];
pr_info("out-of-bounds on stack\n");
*(volatile char *)p;
} }
static noinline void __init ksize_unpoisons_memory(void) static void ksize_unpoisons_memory(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 123, real_size; size_t size = 123, real_size;
pr_info("ksize() unpoisons the whole allocated chunk\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
real_size = ksize(ptr); real_size = ksize(ptr);
/* This access doesn't trigger an error. */ /* This access doesn't trigger an error. */
ptr[size] = 'x'; ptr[size] = 'x';
/* This one does. */ /* This one does. */
ptr[real_size] = 'y'; KUNIT_EXPECT_KASAN_FAIL(test, ptr[real_size] = 'y');
kfree(ptr); kfree(ptr);
} }
static noinline void __init copy_user_test(void) static void kasan_stack_oob(struct kunit *test)
{ {
char *kmem; char stack_array[10];
char __user *usermem; volatile int i = OOB_TAG_OFF;
size_t size = 10; char *p = &stack_array[ARRAY_SIZE(stack_array) + i];
int unused;
kmem = kmalloc(size, GFP_KERNEL);
if (!kmem)
return;
usermem = (char __user *)vm_mmap(NULL, 0, PAGE_SIZE, if (!IS_ENABLED(CONFIG_KASAN_STACK)) {
PROT_READ | PROT_WRITE | PROT_EXEC, kunit_info(test, "CONFIG_KASAN_STACK is not enabled");
MAP_ANONYMOUS | MAP_PRIVATE, 0);
if (IS_ERR(usermem)) {
pr_err("Failed to allocate user memory\n");
kfree(kmem);
return; return;
} }
pr_info("out-of-bounds in copy_from_user()\n"); KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
unused = copy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in copy_to_user()\n");
unused = copy_to_user(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_from_user()\n");
unused = __copy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_to_user()\n");
unused = __copy_to_user(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_from_user_inatomic()\n");
unused = __copy_from_user_inatomic(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_to_user_inatomic()\n");
unused = __copy_to_user_inatomic(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in strncpy_from_user()\n");
unused = strncpy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
vm_munmap((unsigned long)usermem, PAGE_SIZE);
kfree(kmem);
} }
static noinline void __init kasan_alloca_oob_left(void) static void kasan_alloca_oob_left(struct kunit *test)
{ {
volatile int i = 10; volatile int i = 10;
char alloca_array[i]; char alloca_array[i];
char *p = alloca_array - 1; char *p = alloca_array - 1;
pr_info("out-of-bounds to left on alloca\n"); if (!IS_ENABLED(CONFIG_KASAN_STACK)) {
*(volatile char *)p; kunit_info(test, "CONFIG_KASAN_STACK is not enabled");
return;
}
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
} }
static noinline void __init kasan_alloca_oob_right(void) static void kasan_alloca_oob_right(struct kunit *test)
{ {
volatile int i = 10; volatile int i = 10;
char alloca_array[i]; char alloca_array[i];
char *p = alloca_array + i; char *p = alloca_array + i;
pr_info("out-of-bounds to right on alloca\n"); if (!IS_ENABLED(CONFIG_KASAN_STACK)) {
*(volatile char *)p; kunit_info(test, "CONFIG_KASAN_STACK is not enabled");
return;
}
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
} }
static noinline void __init kmem_cache_double_free(void) static void kmem_cache_double_free(struct kunit *test)
{ {
char *p; char *p;
size_t size = 200; size_t size = 200;
struct kmem_cache *cache; struct kmem_cache *cache;
cache = kmem_cache_create("test_cache", size, 0, 0, NULL); cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
if (!cache) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
pr_err("Cache allocation failed\n");
return;
}
pr_info("double-free on heap object\n");
p = kmem_cache_alloc(cache, GFP_KERNEL); p = kmem_cache_alloc(cache, GFP_KERNEL);
if (!p) { if (!p) {
pr_err("Allocation failed\n"); kunit_err(test, "Allocation failed: %s\n", __func__);
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
return; return;
} }
kmem_cache_free(cache, p); kmem_cache_free(cache, p);
kmem_cache_free(cache, p); KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
} }
static noinline void __init kmem_cache_invalid_free(void) static void kmem_cache_invalid_free(struct kunit *test)
{ {
char *p; char *p;
size_t size = 200; size_t size = 200;
...@@ -654,20 +518,17 @@ static noinline void __init kmem_cache_invalid_free(void) ...@@ -654,20 +518,17 @@ static noinline void __init kmem_cache_invalid_free(void)
cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU, cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
NULL); NULL);
if (!cache) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
pr_err("Cache allocation failed\n");
return;
}
pr_info("invalid-free of heap object\n");
p = kmem_cache_alloc(cache, GFP_KERNEL); p = kmem_cache_alloc(cache, GFP_KERNEL);
if (!p) { if (!p) {
pr_err("Allocation failed\n"); kunit_err(test, "Allocation failed: %s\n", __func__);
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
return; return;
} }
/* Trigger invalid free, the object doesn't get freed */ /* Trigger invalid free, the object doesn't get freed */
kmem_cache_free(cache, p + 1); KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
/* /*
* Properly free the object to prevent the "Objects remaining in * Properly free the object to prevent the "Objects remaining in
...@@ -678,45 +539,63 @@ static noinline void __init kmem_cache_invalid_free(void) ...@@ -678,45 +539,63 @@ static noinline void __init kmem_cache_invalid_free(void)
kmem_cache_destroy(cache); kmem_cache_destroy(cache);
} }
static noinline void __init kasan_memchr(void) static void kasan_memchr(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 24; size_t size = 24;
pr_info("out-of-bounds in memchr\n"); /* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 */
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
if (!ptr) kunit_info(test,
"str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT");
return; return;
}
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
KUNIT_EXPECT_KASAN_FAIL(test,
kasan_ptr_result = memchr(ptr, '1', size + 1));
kasan_ptr_result = memchr(ptr, '1', size + 1);
kfree(ptr); kfree(ptr);
} }
static noinline void __init kasan_memcmp(void) static void kasan_memcmp(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 24; size_t size = 24;
int arr[9]; int arr[9];
pr_info("out-of-bounds in memcmp\n"); /* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 */
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
if (!ptr) kunit_info(test,
"str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT");
return; return;
}
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
memset(arr, 0, sizeof(arr)); memset(arr, 0, sizeof(arr));
kasan_int_result = memcmp(ptr, arr, size + 1);
KUNIT_EXPECT_KASAN_FAIL(test,
kasan_int_result = memcmp(ptr, arr, size+1));
kfree(ptr); kfree(ptr);
} }
static noinline void __init kasan_strings(void) static void kasan_strings(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 24; size_t size = 24;
pr_info("use-after-free in strchr\n"); /* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 */
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
if (!ptr) kunit_info(test,
"str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT");
return; return;
}
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
kfree(ptr); kfree(ptr);
...@@ -727,220 +606,164 @@ static noinline void __init kasan_strings(void) ...@@ -727,220 +606,164 @@ static noinline void __init kasan_strings(void)
* will likely point to zeroed byte. * will likely point to zeroed byte.
*/ */
ptr += 16; ptr += 16;
kasan_ptr_result = strchr(ptr, '1'); KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
pr_info("use-after-free in strrchr\n"); KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
kasan_ptr_result = strrchr(ptr, '1');
pr_info("use-after-free in strcmp\n"); KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
kasan_int_result = strcmp(ptr, "2");
pr_info("use-after-free in strncmp\n"); KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
kasan_int_result = strncmp(ptr, "2", 1);
pr_info("use-after-free in strlen\n"); KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
kasan_int_result = strlen(ptr);
pr_info("use-after-free in strnlen\n"); KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
kasan_int_result = strnlen(ptr, 1);
} }
static noinline void __init kasan_bitops(void) static void kasan_bitops(struct kunit *test)
{ {
/* /*
* Allocate 1 more byte, which causes kzalloc to round up to 16-bytes; * Allocate 1 more byte, which causes kzalloc to round up to 16-bytes;
* this way we do not actually corrupt other memory. * this way we do not actually corrupt other memory.
*/ */
long *bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL); long *bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
if (!bits) KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
return;
/* /*
* Below calls try to access bit within allocated memory; however, the * Below calls try to access bit within allocated memory; however, the
* below accesses are still out-of-bounds, since bitops are defined to * below accesses are still out-of-bounds, since bitops are defined to
* operate on the whole long the bit is in. * operate on the whole long the bit is in.
*/ */
pr_info("out-of-bounds in set_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, set_bit(BITS_PER_LONG, bits));
set_bit(BITS_PER_LONG, bits);
pr_info("out-of-bounds in __set_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(BITS_PER_LONG, bits));
__set_bit(BITS_PER_LONG, bits);
pr_info("out-of-bounds in clear_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(BITS_PER_LONG, bits));
clear_bit(BITS_PER_LONG, bits);
pr_info("out-of-bounds in __clear_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(BITS_PER_LONG, bits));
__clear_bit(BITS_PER_LONG, bits);
pr_info("out-of-bounds in clear_bit_unlock\n"); KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(BITS_PER_LONG, bits));
clear_bit_unlock(BITS_PER_LONG, bits);
pr_info("out-of-bounds in __clear_bit_unlock\n"); KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(BITS_PER_LONG, bits));
__clear_bit_unlock(BITS_PER_LONG, bits);
pr_info("out-of-bounds in change_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, change_bit(BITS_PER_LONG, bits));
change_bit(BITS_PER_LONG, bits);
pr_info("out-of-bounds in __change_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(BITS_PER_LONG, bits));
__change_bit(BITS_PER_LONG, bits);
/* /*
* Below calls try to access bit beyond allocated memory. * Below calls try to access bit beyond allocated memory.
*/ */
pr_info("out-of-bounds in test_and_set_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in __test_and_set_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
__test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); __test_and_set_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in test_and_set_bit_lock\n"); KUNIT_EXPECT_KASAN_FAIL(test,
test_and_set_bit_lock(BITS_PER_LONG + BITS_PER_BYTE, bits); test_and_set_bit_lock(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in test_and_clear_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in __test_and_clear_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
__test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); __test_and_clear_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in test_and_change_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in __test_and_change_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
__test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); __test_and_change_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
pr_info("out-of-bounds in test_bit\n"); KUNIT_EXPECT_KASAN_FAIL(test,
kasan_int_result = test_bit(BITS_PER_LONG + BITS_PER_BYTE, bits); kasan_int_result =
test_bit(BITS_PER_LONG + BITS_PER_BYTE, bits));
#if defined(clear_bit_unlock_is_negative_byte) #if defined(clear_bit_unlock_is_negative_byte)
pr_info("out-of-bounds in clear_bit_unlock_is_negative_byte\n"); KUNIT_EXPECT_KASAN_FAIL(test,
kasan_int_result = clear_bit_unlock_is_negative_byte(BITS_PER_LONG + kasan_int_result = clear_bit_unlock_is_negative_byte(
BITS_PER_BYTE, bits); BITS_PER_LONG + BITS_PER_BYTE, bits));
#endif #endif
kfree(bits); kfree(bits);
} }
static noinline void __init kmalloc_double_kzfree(void) static void kmalloc_double_kzfree(struct kunit *test)
{ {
char *ptr; char *ptr;
size_t size = 16; size_t size = 16;
pr_info("double-free (kfree_sensitive)\n");
ptr = kmalloc(size, GFP_KERNEL); ptr = kmalloc(size, GFP_KERNEL);
if (!ptr) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
pr_err("Allocation failed\n");
return;
}
kfree_sensitive(ptr); kfree_sensitive(ptr);
kfree_sensitive(ptr); KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
} }
#ifdef CONFIG_KASAN_VMALLOC static void vmalloc_oob(struct kunit *test)
static noinline void __init vmalloc_oob(void)
{ {
void *area; void *area;
pr_info("vmalloc out-of-bounds\n"); if (!IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
kunit_info(test, "CONFIG_KASAN_VMALLOC is not enabled.");
return;
}
/* /*
* We have to be careful not to hit the guard page. * We have to be careful not to hit the guard page.
* The MMU will catch that and crash us. * The MMU will catch that and crash us.
*/ */
area = vmalloc(3000); area = vmalloc(3000);
if (!area) { KUNIT_ASSERT_NOT_ERR_OR_NULL(test, area);
pr_err("Allocation failed\n");
return;
}
((volatile char *)area)[3100]; KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)area)[3100]);
vfree(area); vfree(area);
} }
#else
static void __init vmalloc_oob(void) {}
#endif
static struct kasan_rcu_info {
int i;
struct rcu_head rcu;
} *global_rcu_ptr;
static noinline void __init kasan_rcu_reclaim(struct rcu_head *rp)
{
struct kasan_rcu_info *fp = container_of(rp,
struct kasan_rcu_info, rcu);
kfree(fp);
fp->i = 1;
}
static noinline void __init kasan_rcu_uaf(void)
{
struct kasan_rcu_info *ptr;
pr_info("use-after-free in kasan_rcu_reclaim\n"); static struct kunit_case kasan_kunit_test_cases[] = {
ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL); KUNIT_CASE(kmalloc_oob_right),
if (!ptr) { KUNIT_CASE(kmalloc_oob_left),
pr_err("Allocation failed\n"); KUNIT_CASE(kmalloc_node_oob_right),
return; KUNIT_CASE(kmalloc_pagealloc_oob_right),
} KUNIT_CASE(kmalloc_pagealloc_uaf),
KUNIT_CASE(kmalloc_pagealloc_invalid_free),
global_rcu_ptr = rcu_dereference_protected(ptr, NULL); KUNIT_CASE(kmalloc_large_oob_right),
call_rcu(&global_rcu_ptr->rcu, kasan_rcu_reclaim); KUNIT_CASE(kmalloc_oob_krealloc_more),
} KUNIT_CASE(kmalloc_oob_krealloc_less),
KUNIT_CASE(kmalloc_oob_16),
static int __init kmalloc_tests_init(void) KUNIT_CASE(kmalloc_oob_in_memset),
{ KUNIT_CASE(kmalloc_oob_memset_2),
/* KUNIT_CASE(kmalloc_oob_memset_4),
* Temporarily enable multi-shot mode. Otherwise, we'd only get a KUNIT_CASE(kmalloc_oob_memset_8),
* report for the first case. KUNIT_CASE(kmalloc_oob_memset_16),
*/ KUNIT_CASE(kmalloc_memmove_invalid_size),
bool multishot = kasan_save_enable_multi_shot(); KUNIT_CASE(kmalloc_uaf),
KUNIT_CASE(kmalloc_uaf_memset),
kmalloc_oob_right(); KUNIT_CASE(kmalloc_uaf2),
kmalloc_oob_left(); KUNIT_CASE(kfree_via_page),
kmalloc_node_oob_right(); KUNIT_CASE(kfree_via_phys),
#ifdef CONFIG_SLUB KUNIT_CASE(kmem_cache_oob),
kmalloc_pagealloc_oob_right(); KUNIT_CASE(memcg_accounted_kmem_cache),
kmalloc_pagealloc_uaf(); KUNIT_CASE(kasan_global_oob),
kmalloc_pagealloc_invalid_free(); KUNIT_CASE(kasan_stack_oob),
#endif KUNIT_CASE(kasan_alloca_oob_left),
kmalloc_large_oob_right(); KUNIT_CASE(kasan_alloca_oob_right),
kmalloc_oob_krealloc_more(); KUNIT_CASE(ksize_unpoisons_memory),
kmalloc_oob_krealloc_less(); KUNIT_CASE(kmem_cache_double_free),
kmalloc_oob_16(); KUNIT_CASE(kmem_cache_invalid_free),
kmalloc_oob_in_memset(); KUNIT_CASE(kasan_memchr),
kmalloc_oob_memset_2(); KUNIT_CASE(kasan_memcmp),
kmalloc_oob_memset_4(); KUNIT_CASE(kasan_strings),
kmalloc_oob_memset_8(); KUNIT_CASE(kasan_bitops),
kmalloc_oob_memset_16(); KUNIT_CASE(kmalloc_double_kzfree),
kmalloc_memmove_invalid_size(); KUNIT_CASE(vmalloc_oob),
kmalloc_uaf(); {}
kmalloc_uaf_memset(); };
kmalloc_uaf2();
kfree_via_page(); static struct kunit_suite kasan_kunit_test_suite = {
kfree_via_phys(); .name = "kasan",
kmem_cache_oob(); .init = kasan_test_init,
memcg_accounted_kmem_cache(); .test_cases = kasan_kunit_test_cases,
kasan_stack_oob(); .exit = kasan_test_exit,
kasan_global_oob(); };
kasan_alloca_oob_left();
kasan_alloca_oob_right(); kunit_test_suite(kasan_kunit_test_suite);
ksize_unpoisons_memory();
copy_user_test();
kmem_cache_double_free();
kmem_cache_invalid_free();
kasan_memchr();
kasan_memcmp();
kasan_strings();
kasan_bitops();
kmalloc_double_kzfree();
vmalloc_oob();
kasan_rcu_uaf();
kasan_restore_multi_shot(multishot);
return -EAGAIN;
}
module_init(kmalloc_tests_init);
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
*/
#define pr_fmt(fmt) "kasan test: %s " fmt, __func__
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include "../mm/kasan/kasan.h"
#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_SHADOW_SCALE_SIZE)
static noinline void __init copy_user_test(void)
{
char *kmem;
char __user *usermem;
size_t size = 10;
int unused;
kmem = kmalloc(size, GFP_KERNEL);
if (!kmem)
return;
usermem = (char __user *)vm_mmap(NULL, 0, PAGE_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_ANONYMOUS | MAP_PRIVATE, 0);
if (IS_ERR(usermem)) {
pr_err("Failed to allocate user memory\n");
kfree(kmem);
return;
}
pr_info("out-of-bounds in copy_from_user()\n");
unused = copy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in copy_to_user()\n");
unused = copy_to_user(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_from_user()\n");
unused = __copy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_to_user()\n");
unused = __copy_to_user(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_from_user_inatomic()\n");
unused = __copy_from_user_inatomic(kmem, usermem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in __copy_to_user_inatomic()\n");
unused = __copy_to_user_inatomic(usermem, kmem, size + 1 + OOB_TAG_OFF);
pr_info("out-of-bounds in strncpy_from_user()\n");
unused = strncpy_from_user(kmem, usermem, size + 1 + OOB_TAG_OFF);
vm_munmap((unsigned long)usermem, PAGE_SIZE);
kfree(kmem);
}
static struct kasan_rcu_info {
int i;
struct rcu_head rcu;
} *global_rcu_ptr;
static noinline void __init kasan_rcu_reclaim(struct rcu_head *rp)
{
struct kasan_rcu_info *fp = container_of(rp,
struct kasan_rcu_info, rcu);
kfree(fp);
fp->i = 1;
}
static noinline void __init kasan_rcu_uaf(void)
{
struct kasan_rcu_info *ptr;
pr_info("use-after-free in kasan_rcu_reclaim\n");
ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
if (!ptr) {
pr_err("Allocation failed\n");
return;
}
global_rcu_ptr = rcu_dereference_protected(ptr, NULL);
call_rcu(&global_rcu_ptr->rcu, kasan_rcu_reclaim);
}
static int __init test_kasan_module_init(void)
{
/*
* Temporarily enable multi-shot mode. Otherwise, we'd only get a
* report for the first case.
*/
bool multishot = kasan_save_enable_multi_shot();
copy_user_test();
kasan_rcu_uaf();
kasan_restore_multi_shot(multishot);
return -EAGAIN;
}
module_init(test_kasan_module_init);
MODULE_LICENSE("GPL");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment