Commit 77c32bbb authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma

Pull slave-dmaengine updates from Vinod Koul:
 - new Xilixn VDMA driver from Srikanth
 - bunch of updates for edma driver by Thomas, Joel and Peter
 - fixes and updates on dw, ste_dma, freescale, mpc512x, sudmac etc

* 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma: (45 commits)
  dmaengine: sh: don't use dynamic static allocation
  dmaengine: sh: fix print specifier warnings
  dmaengine: sh: make shdma_prep_dma_cyclic static
  dmaengine: Kconfig: Update MXS_DMA help text to include MX6Q/MX6DL
  of: dma: Grammar s/requests/request/, s/used required/required/
  dmaengine: shdma: Enable driver compilation with COMPILE_TEST
  dmaengine: rcar-hpbdma: Include linux/err.h
  dmaengine: sudmac: Include linux/err.h
  dmaengine: sudmac: Keep #include sorted alphabetically
  dmaengine: shdmac: Include linux/err.h
  dmaengine: shdmac: Keep #include sorted alphabetically
  dmaengine: s3c24xx-dma: Add cyclic transfer support
  dmaengine: s3c24xx-dma: Process whole SG chain
  dmaengine: imx: correct sdmac->status for cyclic dma tx
  dmaengine: pch: fix compilation for alpha target
  dmaengine: dw: check return code of dma_async_device_register()
  dmaengine: dw: fix regression in dw_probe() function
  dmaengine: dw: enable clock before access
  dma: pch_dma: Fix Kconfig dependencies
  dmaengine: mpc512x: add support for peripheral transfers
  ...
parents fad0701e 06822788
* MARVELL MMP DMA controller
Marvell Peripheral DMA Controller
Used platfroms: pxa688, pxa910, pxa3xx, etc
Used platforms: pxa688, pxa910, pxa3xx, etc
Required properties:
- compatible: Should be "marvell,pdma-1.0"
- reg: Should contain DMA registers location and length.
- interrupts: Either contain all of the per-channel DMA interrupts
or one irq for pdma device
- #dma-channels: Number of DMA channels supported by the controller.
Optional properties:
- #dma-channels: Number of DMA channels supported by the controller (defaults
to 32 when not specified)
"marvell,pdma-1.0"
Used platfroms: pxa25x, pxa27x, pxa3xx, pxa93x, pxa168, pxa910, pxa688.
Used platforms: pxa25x, pxa27x, pxa3xx, pxa93x, pxa168, pxa910, pxa688.
Examples:
......@@ -45,7 +48,7 @@ pdma: dma-controller@d4000000 {
Marvell Two Channel DMA Controller used specifically for audio
Used platfroms: pxa688, pxa910
Used platforms: pxa688, pxa910
Required properties:
- compatible: Should be "marvell,adma-1.0" or "marvell,pxa910-squ"
......
Xilinx AXI VDMA engine, it does transfers between memory and video devices.
It can be configured to have one channel or two channels. If configured
as two channels, one is to transmit to the video device and another is
to receive from the video device.
Required properties:
- compatible: Should be "xlnx,axi-vdma-1.00.a"
- #dma-cells: Should be <1>, see "dmas" property below
- reg: Should contain VDMA registers location and length.
- xlnx,num-fstores: Should be the number of framebuffers as configured in h/w.
- dma-channel child node: Should have at least one channel and can have up to
two channels per device. This node specifies the properties of each
DMA channel (see child node properties below).
Optional properties:
- xlnx,include-sg: Tells configured for Scatter-mode in
the hardware.
- xlnx,flush-fsync: Tells which channel to Flush on Frame sync.
It takes following values:
{1}, flush both channels
{2}, flush mm2s channel
{3}, flush s2mm channel
Required child node properties:
- compatible: It should be either "xlnx,axi-vdma-mm2s-channel" or
"xlnx,axi-vdma-s2mm-channel".
- interrupts: Should contain per channel VDMA interrupts.
- xlnx,data-width: Should contain the stream data width, take values
{32,64...1024}.
Optional child node properties:
- xlnx,include-dre: Tells hardware is configured for Data
Realignment Engine.
- xlnx,genlock-mode: Tells Genlock synchronization is
enabled/disabled in hardware.
Example:
++++++++
axi_vdma_0: axivdma@40030000 {
compatible = "xlnx,axi-vdma-1.00.a";
#dma_cells = <1>;
reg = < 0x40030000 0x10000 >;
xlnx,num-fstores = <0x8>;
xlnx,flush-fsync = <0x1>;
dma-channel@40030000 {
compatible = "xlnx,axi-vdma-mm2s-channel";
interrupts = < 0 54 4 >;
xlnx,datawidth = <0x40>;
} ;
dma-channel@40030030 {
compatible = "xlnx,axi-vdma-s2mm-channel";
interrupts = < 0 53 4 >;
xlnx,datawidth = <0x40>;
} ;
} ;
* DMA client
Required properties:
- dmas: a list of <[Video DMA device phandle] [Channel ID]> pairs,
where Channel ID is '0' for write/tx and '1' for read/rx
channel.
- dma-names: a list of DMA channel names, one per "dmas" entry
Example:
++++++++
vdmatest_0: vdmatest@0 {
compatible ="xlnx,axi-vdma-test-1.00.a";
dmas = <&axi_vdma_0 0
&axi_vdma_0 1>;
dma-names = "vdma0", "vdma1";
} ;
......@@ -296,7 +296,7 @@ ipic-msi@7c0 {
};
dma@2c000 {
compatible = "fsl,mpc8308-dma", "fsl,mpc5121-dma";
compatible = "fsl,mpc8308-dma";
reg = <0x2c000 0x1800>;
interrupts = <3 0x8
94 0x8>;
......
......@@ -265,7 +265,7 @@ ipic-msi@7c0 {
};
dma@2c000 {
compatible = "fsl,mpc8308-dma", "fsl,mpc5121-dma";
compatible = "fsl,mpc8308-dma";
reg = <0x2c000 0x1800>;
interrupts = <3 0x8
94 0x8>;
......
......@@ -234,7 +234,7 @@ config PL330_DMA
config PCH_DMA
tristate "Intel EG20T PCH / LAPIS Semicon IOH(ML7213/ML7223/ML7831) DMA"
depends on PCI && X86
depends on PCI && (X86_32 || COMPILE_TEST)
select DMA_ENGINE
help
Enable support for Intel EG20T PCH DMA engine.
......@@ -269,7 +269,7 @@ config MXS_DMA
select DMA_ENGINE
help
Support the MXS DMA engine. This engine including APBH-DMA
and APBX-DMA is integrated into Freescale i.MX23/28 chips.
and APBX-DMA is integrated into Freescale i.MX23/28/MX6Q/MX6DL chips.
config EP93XX_DMA
bool "Cirrus Logic EP93xx DMA support"
......@@ -361,6 +361,20 @@ config FSL_EDMA
multiplexing capability for DMA request sources(slot).
This module can be found on Freescale Vybrid and LS-1 SoCs.
config XILINX_VDMA
tristate "Xilinx AXI VDMA Engine"
depends on (ARCH_ZYNQ || MICROBLAZE)
select DMA_ENGINE
help
Enable support for Xilinx AXI VDMA Soft IP.
This engine provides high-bandwidth direct memory access
between memory and AXI4-Stream video type target
peripherals including peripherals which support AXI4-
Stream Video Protocol. It has two stream interfaces/
channels, Memory Mapped to Stream (MM2S) and Stream to
Memory Mapped (S2MM) for the data transfers.
config DMA_ENGINE
bool
......
......@@ -46,3 +46,4 @@ obj-$(CONFIG_K3_DMA) += k3dma.o
obj-$(CONFIG_MOXART_DMA) += moxart-dma.o
obj-$(CONFIG_FSL_EDMA) += fsl-edma.o
obj-$(CONFIG_QCOM_BAM_DMA) += qcom_bam_dma.o
obj-y += xilinx/
......@@ -1493,6 +1493,13 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
dw->regs = chip->regs;
chip->dw = dw;
dw->clk = devm_clk_get(chip->dev, "hclk");
if (IS_ERR(dw->clk))
return PTR_ERR(dw->clk);
err = clk_prepare_enable(dw->clk);
if (err)
return err;
dw_params = dma_read_byaddr(chip->regs, DW_PARAMS);
autocfg = dw_params >> DW_PARAMS_EN & 0x1;
......@@ -1500,15 +1507,19 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
if (!pdata && autocfg) {
pdata = devm_kzalloc(chip->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
if (!pdata) {
err = -ENOMEM;
goto err_pdata;
}
/* Fill platform data with the default values */
pdata->is_private = true;
pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING;
pdata->chan_priority = CHAN_PRIORITY_ASCENDING;
} else if (!pdata || pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS)
return -EINVAL;
} else if (!pdata || pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) {
err = -EINVAL;
goto err_pdata;
}
if (autocfg)
nr_channels = (dw_params >> DW_PARAMS_NR_CHAN & 0x7) + 1;
......@@ -1517,13 +1528,10 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
dw->chan = devm_kcalloc(chip->dev, nr_channels, sizeof(*dw->chan),
GFP_KERNEL);
if (!dw->chan)
return -ENOMEM;
dw->clk = devm_clk_get(chip->dev, "hclk");
if (IS_ERR(dw->clk))
return PTR_ERR(dw->clk);
clk_prepare_enable(dw->clk);
if (!dw->chan) {
err = -ENOMEM;
goto err_pdata;
}
/* Get hardware configuration parameters */
if (autocfg) {
......@@ -1553,7 +1561,8 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
sizeof(struct dw_desc), 4, 0);
if (!dw->desc_pool) {
dev_err(chip->dev, "No memory for descriptors dma pool\n");
return -ENOMEM;
err = -ENOMEM;
goto err_pdata;
}
tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
......@@ -1561,7 +1570,7 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
err = request_irq(chip->irq, dw_dma_interrupt, IRQF_SHARED,
"dw_dmac", dw);
if (err)
return err;
goto err_pdata;
INIT_LIST_HEAD(&dw->dma.channels);
for (i = 0; i < nr_channels; i++) {
......@@ -1650,12 +1659,20 @@ int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
dma_writel(dw, CFG, DW_CFG_DMA_EN);
err = dma_async_device_register(&dw->dma);
if (err)
goto err_dma_register;
dev_info(chip->dev, "DesignWare DMA Controller, %d channels\n",
nr_channels);
dma_async_device_register(&dw->dma);
return 0;
err_dma_register:
free_irq(chip->irq, dw);
err_pdata:
clk_disable_unprepare(dw->clk);
return err;
}
EXPORT_SYMBOL_GPL(dw_dma_probe);
......@@ -1676,6 +1693,8 @@ int dw_dma_remove(struct dw_dma_chip *chip)
channel_clear_bit(dw, CH_EN, dwc->mask);
}
clk_disable_unprepare(dw->clk);
return 0;
}
EXPORT_SYMBOL_GPL(dw_dma_remove);
......
......@@ -93,19 +93,13 @@ static int dw_pci_resume_early(struct device *dev)
return dw_dma_resume(chip);
};
#else /* !CONFIG_PM_SLEEP */
#define dw_pci_suspend_late NULL
#define dw_pci_resume_early NULL
#endif /* !CONFIG_PM_SLEEP */
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops dw_pci_dev_pm_ops = {
.suspend_late = dw_pci_suspend_late,
.resume_early = dw_pci_resume_early,
SET_LATE_SYSTEM_SLEEP_PM_OPS(dw_pci_suspend_late, dw_pci_resume_early)
};
static DEFINE_PCI_DEVICE_TABLE(dw_pci_id_table) = {
static const struct pci_device_id dw_pci_id_table[] = {
/* Medfield */
{ PCI_VDEVICE(INTEL, 0x0827), (kernel_ulong_t)&dw_pci_pdata },
{ PCI_VDEVICE(INTEL, 0x0830), (kernel_ulong_t)&dw_pci_pdata },
......
......@@ -256,7 +256,7 @@ MODULE_DEVICE_TABLE(acpi, dw_dma_acpi_id_table);
#ifdef CONFIG_PM_SLEEP
static int dw_suspend_noirq(struct device *dev)
static int dw_suspend_late(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct dw_dma_chip *chip = platform_get_drvdata(pdev);
......@@ -264,7 +264,7 @@ static int dw_suspend_noirq(struct device *dev)
return dw_dma_suspend(chip);
}
static int dw_resume_noirq(struct device *dev)
static int dw_resume_early(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct dw_dma_chip *chip = platform_get_drvdata(pdev);
......@@ -272,20 +272,10 @@ static int dw_resume_noirq(struct device *dev)
return dw_dma_resume(chip);
}
#else /* !CONFIG_PM_SLEEP */
#define dw_suspend_noirq NULL
#define dw_resume_noirq NULL
#endif /* !CONFIG_PM_SLEEP */
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops dw_dev_pm_ops = {
.suspend_noirq = dw_suspend_noirq,
.resume_noirq = dw_resume_noirq,
.freeze_noirq = dw_suspend_noirq,
.thaw_noirq = dw_resume_noirq,
.restore_noirq = dw_resume_noirq,
.poweroff_noirq = dw_suspend_noirq,
SET_LATE_SYSTEM_SLEEP_PM_OPS(dw_suspend_late, dw_resume_early)
};
static struct platform_driver dw_driver = {
......
......@@ -61,6 +61,16 @@ static u32 get_sr(struct fsldma_chan *chan)
return DMA_IN(chan, &chan->regs->sr, 32);
}
static void set_mr(struct fsldma_chan *chan, u32 val)
{
DMA_OUT(chan, &chan->regs->mr, val, 32);
}
static u32 get_mr(struct fsldma_chan *chan)
{
return DMA_IN(chan, &chan->regs->mr, 32);
}
static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
{
DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
......@@ -71,6 +81,11 @@ static dma_addr_t get_cdar(struct fsldma_chan *chan)
return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
}
static void set_bcr(struct fsldma_chan *chan, u32 val)
{
DMA_OUT(chan, &chan->regs->bcr, val, 32);
}
static u32 get_bcr(struct fsldma_chan *chan)
{
return DMA_IN(chan, &chan->regs->bcr, 32);
......@@ -135,7 +150,7 @@ static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
static void dma_init(struct fsldma_chan *chan)
{
/* Reset the channel */
DMA_OUT(chan, &chan->regs->mr, 0, 32);
set_mr(chan, 0);
switch (chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
......@@ -144,16 +159,15 @@ static void dma_init(struct fsldma_chan *chan)
* EOLNIE - End of links interrupt enable
* BWC - Bandwidth sharing among channels
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE);
break;
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
* PRC_RM - PCI read multiple
*/
DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM, 32);
set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
break;
}
}
......@@ -175,10 +189,10 @@ static void dma_start(struct fsldma_chan *chan)
{
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode = get_mr(chan);
if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(chan, &chan->regs->bcr, 0, 32);
set_bcr(chan, 0);
mode |= FSL_DMA_MR_EMP_EN;
} else {
mode &= ~FSL_DMA_MR_EMP_EN;
......@@ -191,7 +205,7 @@ static void dma_start(struct fsldma_chan *chan)
mode |= FSL_DMA_MR_CS;
}
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
}
static void dma_halt(struct fsldma_chan *chan)
......@@ -200,7 +214,7 @@ static void dma_halt(struct fsldma_chan *chan)
int i;
/* read the mode register */
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode = get_mr(chan);
/*
* The 85xx controller supports channel abort, which will stop
......@@ -209,14 +223,14 @@ static void dma_halt(struct fsldma_chan *chan)
*/
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
mode |= FSL_DMA_MR_CA;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
mode &= ~FSL_DMA_MR_CA;
}
/* stop the DMA controller */
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
/* wait for the DMA controller to become idle */
for (i = 0; i < 100; i++) {
......@@ -245,7 +259,7 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
{
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode = get_mr(chan);
switch (size) {
case 0:
......@@ -259,7 +273,7 @@ static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
break;
}
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
}
/**
......@@ -277,7 +291,7 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
{
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode = get_mr(chan);
switch (size) {
case 0:
......@@ -291,7 +305,7 @@ static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
break;
}
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
}
/**
......@@ -312,10 +326,10 @@ static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
BUG_ON(size > 1024);
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode = get_mr(chan);
mode |= (__ilog2(size) << 24) & 0x0f000000;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
set_mr(chan, mode);
}
/**
......@@ -403,6 +417,19 @@ static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
return cookie;
}
/**
* fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
* @chan : Freescale DMA channel
* @desc: descriptor to be freed
*/
static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
struct fsl_desc_sw *desc)
{
list_del(&desc->node);
chan_dbg(chan, "LD %p free\n", desc);
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
}
/**
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
* @chan : Freescale DMA channel
......@@ -426,13 +453,106 @@ static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
desc->async_tx.tx_submit = fsl_dma_tx_submit;
desc->async_tx.phys = pdesc;
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p allocated\n", desc);
#endif
return desc;
}
/**
* fsl_chan_xfer_ld_queue - transfer any pending transactions
* @chan : Freescale DMA channel
*
* HARDWARE STATE: idle
* LOCKING: must hold chan->desc_lock
*/
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
{
struct fsl_desc_sw *desc;
/*
* If the list of pending descriptors is empty, then we
* don't need to do any work at all
*/
if (list_empty(&chan->ld_pending)) {
chan_dbg(chan, "no pending LDs\n");
return;
}
/*
* The DMA controller is not idle, which means that the interrupt
* handler will start any queued transactions when it runs after
* this transaction finishes
*/
if (!chan->idle) {
chan_dbg(chan, "DMA controller still busy\n");
return;
}
/*
* If there are some link descriptors which have not been
* transferred, we need to start the controller
*/
/*
* Move all elements from the queue of pending transactions
* onto the list of running transactions
*/
chan_dbg(chan, "idle, starting controller\n");
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
/*
* The 85xx DMA controller doesn't clear the channel start bit
* automatically at the end of a transfer. Therefore we must clear
* it in software before starting the transfer.
*/
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
u32 mode;
mode = get_mr(chan);
mode &= ~FSL_DMA_MR_CS;
set_mr(chan, mode);
}
/*
* Program the descriptor's address into the DMA controller,
* then start the DMA transaction
*/
set_cdar(chan, desc->async_tx.phys);
get_cdar(chan);
dma_start(chan);
chan->idle = false;
}
/**
* fsldma_cleanup_descriptor - cleanup and free a single link descriptor
* @chan: Freescale DMA channel
* @desc: descriptor to cleanup and free
*
* This function is used on a descriptor which has been executed by the DMA
* controller. It will run any callbacks, submit any dependencies, and then
* free the descriptor.
*/
static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
struct fsl_desc_sw *desc)
{
struct dma_async_tx_descriptor *txd = &desc->async_tx;
/* Run the link descriptor callback function */
if (txd->callback) {
chan_dbg(chan, "LD %p callback\n", desc);
txd->callback(txd->callback_param);
}
/* Run any dependencies */
dma_run_dependencies(txd);
dma_descriptor_unmap(txd);
chan_dbg(chan, "LD %p free\n", desc);
dma_pool_free(chan->desc_pool, desc, txd->phys);
}
/**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
* @chan : Freescale DMA channel
......@@ -477,13 +597,8 @@ static void fsldma_free_desc_list(struct fsldma_chan *chan,
{
struct fsl_desc_sw *desc, *_desc;
list_for_each_entry_safe(desc, _desc, list, node) {
list_del(&desc->node);
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
}
list_for_each_entry_safe(desc, _desc, list, node)
fsl_dma_free_descriptor(chan, desc);
}
static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
......@@ -491,13 +606,8 @@ static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
{
struct fsl_desc_sw *desc, *_desc;
list_for_each_entry_safe_reverse(desc, _desc, list, node) {
list_del(&desc->node);
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
}
list_for_each_entry_safe_reverse(desc, _desc, list, node)
fsl_dma_free_descriptor(chan, desc);
}
/**
......@@ -519,35 +629,6 @@ static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
chan->desc_pool = NULL;
}
static struct dma_async_tx_descriptor *
fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
{
struct fsldma_chan *chan;
struct fsl_desc_sw *new;
if (!dchan)
return NULL;
chan = to_fsl_chan(dchan);
new = fsl_dma_alloc_descriptor(chan);
if (!new) {
chan_err(chan, "%s\n", msg_ld_oom);
return NULL;
}
new->async_tx.cookie = -EBUSY;
new->async_tx.flags = flags;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &new->tx_list);
/* Set End-of-link to the last link descriptor of new list */
set_ld_eol(chan, new);
return &new->async_tx;
}
static struct dma_async_tx_descriptor *
fsl_dma_prep_memcpy(struct dma_chan *dchan,
dma_addr_t dma_dst, dma_addr_t dma_src,
......@@ -816,105 +897,6 @@ static int fsl_dma_device_control(struct dma_chan *dchan,
return 0;
}
/**
* fsldma_cleanup_descriptor - cleanup and free a single link descriptor
* @chan: Freescale DMA channel
* @desc: descriptor to cleanup and free
*
* This function is used on a descriptor which has been executed by the DMA
* controller. It will run any callbacks, submit any dependencies, and then
* free the descriptor.
*/
static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
struct fsl_desc_sw *desc)
{
struct dma_async_tx_descriptor *txd = &desc->async_tx;
/* Run the link descriptor callback function */
if (txd->callback) {
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p callback\n", desc);
#endif
txd->callback(txd->callback_param);
}
/* Run any dependencies */
dma_run_dependencies(txd);
dma_descriptor_unmap(txd);
#ifdef FSL_DMA_LD_DEBUG
chan_dbg(chan, "LD %p free\n", desc);
#endif
dma_pool_free(chan->desc_pool, desc, txd->phys);
}
/**
* fsl_chan_xfer_ld_queue - transfer any pending transactions
* @chan : Freescale DMA channel
*
* HARDWARE STATE: idle
* LOCKING: must hold chan->desc_lock
*/
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
{
struct fsl_desc_sw *desc;
/*
* If the list of pending descriptors is empty, then we
* don't need to do any work at all
*/
if (list_empty(&chan->ld_pending)) {
chan_dbg(chan, "no pending LDs\n");
return;
}
/*
* The DMA controller is not idle, which means that the interrupt
* handler will start any queued transactions when it runs after
* this transaction finishes
*/
if (!chan->idle) {
chan_dbg(chan, "DMA controller still busy\n");
return;
}
/*
* If there are some link descriptors which have not been
* transferred, we need to start the controller
*/
/*
* Move all elements from the queue of pending transactions
* onto the list of running transactions
*/
chan_dbg(chan, "idle, starting controller\n");
desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
/*
* The 85xx DMA controller doesn't clear the channel start bit
* automatically at the end of a transfer. Therefore we must clear
* it in software before starting the transfer.
*/
if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
u32 mode;
mode = DMA_IN(chan, &chan->regs->mr, 32);
mode &= ~FSL_DMA_MR_CS;
DMA_OUT(chan, &chan->regs->mr, mode, 32);
}
/*
* Program the descriptor's address into the DMA controller,
* then start the DMA transaction
*/
set_cdar(chan, desc->async_tx.phys);
get_cdar(chan);
dma_start(chan);
chan->idle = false;
}
/**
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
* @chan : Freescale DMA channel
......@@ -1304,12 +1286,10 @@ static int fsldma_of_probe(struct platform_device *op)
fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
dma_cap_set(DMA_SG, fdev->common.cap_mask);
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
fdev->common.device_tx_status = fsl_tx_status;
......
......@@ -607,8 +607,6 @@ static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
if (bd->mode.status & BD_RROR)
sdmac->status = DMA_ERROR;
else
sdmac->status = DMA_IN_PROGRESS;
bd->mode.status |= BD_DONE;
sdmac->buf_tail++;
......
......@@ -29,8 +29,8 @@
#define DALGN 0x00a0
#define DINT 0x00f0
#define DDADR 0x0200
#define DSADR 0x0204
#define DTADR 0x0208
#define DSADR(n) (0x0204 + ((n) << 4))
#define DTADR(n) (0x0208 + ((n) << 4))
#define DCMD 0x020c
#define DCSR_RUN BIT(31) /* Run Bit (read / write) */
......@@ -277,7 +277,7 @@ static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
return;
/* clear the channel mapping in DRCMR */
reg = DRCMR(pchan->phy->vchan->drcmr);
reg = DRCMR(pchan->drcmr);
writel(0, pchan->phy->base + reg);
spin_lock_irqsave(&pdev->phy_lock, flags);
......@@ -748,11 +748,92 @@ static int mmp_pdma_control(struct dma_chan *dchan, enum dma_ctrl_cmd cmd,
return 0;
}
static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
dma_cookie_t cookie)
{
struct mmp_pdma_desc_sw *sw;
u32 curr, residue = 0;
bool passed = false;
bool cyclic = chan->cyclic_first != NULL;
/*
* If the channel does not have a phy pointer anymore, it has already
* been completed. Therefore, its residue is 0.
*/
if (!chan->phy)
return 0;
if (chan->dir == DMA_DEV_TO_MEM)
curr = readl(chan->phy->base + DTADR(chan->phy->idx));
else
curr = readl(chan->phy->base + DSADR(chan->phy->idx));
list_for_each_entry(sw, &chan->chain_running, node) {
u32 start, end, len;
if (chan->dir == DMA_DEV_TO_MEM)
start = sw->desc.dtadr;
else
start = sw->desc.dsadr;
len = sw->desc.dcmd & DCMD_LENGTH;
end = start + len;
/*
* 'passed' will be latched once we found the descriptor which
* lies inside the boundaries of the curr pointer. All
* descriptors that occur in the list _after_ we found that
* partially handled descriptor are still to be processed and
* are hence added to the residual bytes counter.
*/
if (passed) {
residue += len;
} else if (curr >= start && curr <= end) {
residue += end - curr;
passed = true;
}
/*
* Descriptors that have the ENDIRQEN bit set mark the end of a
* transaction chain, and the cookie assigned with it has been
* returned previously from mmp_pdma_tx_submit().
*
* In case we have multiple transactions in the running chain,
* and the cookie does not match the one the user asked us
* about, reset the state variables and start over.
*
* This logic does not apply to cyclic transactions, where all
* descriptors have the ENDIRQEN bit set, and for which we
* can't have multiple transactions on one channel anyway.
*/
if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
continue;
if (sw->async_tx.cookie == cookie) {
return residue;
} else {
residue = 0;
passed = false;
}
}
/* We should only get here in case of cyclic transactions */
return residue;
}
static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
return dma_cookie_status(dchan, cookie, txstate);
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
enum dma_status ret;
ret = dma_cookie_status(dchan, cookie, txstate);
if (likely(ret != DMA_ERROR))
dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
return ret;
}
/**
......@@ -858,8 +939,7 @@ static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
struct mmp_pdma_chan *chan;
int ret;
chan = devm_kzalloc(pdev->dev, sizeof(struct mmp_pdma_chan),
GFP_KERNEL);
chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
if (chan == NULL)
return -ENOMEM;
......@@ -946,8 +1026,7 @@ static int mmp_pdma_probe(struct platform_device *op)
irq_num++;
}
pdev->phy = devm_kcalloc(pdev->dev,
dma_channels, sizeof(struct mmp_pdma_chan),
pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
GFP_KERNEL);
if (pdev->phy == NULL)
return -ENOMEM;
......
......@@ -2,6 +2,7 @@
* Copyright (C) Freescale Semicondutor, Inc. 2007, 2008.
* Copyright (C) Semihalf 2009
* Copyright (C) Ilya Yanok, Emcraft Systems 2010
* Copyright (C) Alexander Popov, Promcontroller 2014
*
* Written by Piotr Ziecik <kosmo@semihalf.com>. Hardware description
* (defines, structures and comments) was taken from MPC5121 DMA driver
......@@ -29,8 +30,18 @@
*/
/*
* This is initial version of MPC5121 DMA driver. Only memory to memory
* transfers are supported (tested using dmatest module).
* MPC512x and MPC8308 DMA driver. It supports
* memory to memory data transfers (tested using dmatest module) and
* data transfers between memory and peripheral I/O memory
* by means of slave scatter/gather with these limitations:
* - chunked transfers (described by s/g lists with more than one item)
* are refused as long as proper support for scatter/gather is missing;
* - transfers on MPC8308 always start from software as this SoC appears
* not to have external request lines for peripheral flow control;
* - only peripheral devices with 4-byte FIFO access register are supported;
* - minimal memory <-> I/O memory transfer chunk is 4 bytes and consequently
* source and destination addresses must be 4-byte aligned
* and transfer size must be aligned on (4 * maxburst) boundary;
*/
#include <linux/module.h>
......@@ -52,9 +63,17 @@
#define MPC_DMA_DESCRIPTORS 64
/* Macro definitions */
#define MPC_DMA_CHANNELS 64
#define MPC_DMA_TCD_OFFSET 0x1000
/*
* Maximum channel counts for individual hardware variants
* and the maximum channel count over all supported controllers,
* used for data structure size
*/
#define MPC8308_DMACHAN_MAX 16
#define MPC512x_DMACHAN_MAX 64
#define MPC_DMA_CHANNELS 64
/* Arbitration mode of group and channel */
#define MPC_DMA_DMACR_EDCG (1 << 31)
#define MPC_DMA_DMACR_ERGA (1 << 3)
......@@ -181,6 +200,7 @@ struct mpc_dma_desc {
dma_addr_t tcd_paddr;
int error;
struct list_head node;
int will_access_peripheral;
};
struct mpc_dma_chan {
......@@ -193,6 +213,12 @@ struct mpc_dma_chan {
struct mpc_dma_tcd *tcd;
dma_addr_t tcd_paddr;
/* Settings for access to peripheral FIFO */
dma_addr_t src_per_paddr;
u32 src_tcd_nunits;
dma_addr_t dst_per_paddr;
u32 dst_tcd_nunits;
/* Lock for this structure */
spinlock_t lock;
};
......@@ -243,8 +269,23 @@ static void mpc_dma_execute(struct mpc_dma_chan *mchan)
struct mpc_dma_desc *mdesc;
int cid = mchan->chan.chan_id;
/* Move all queued descriptors to active list */
list_splice_tail_init(&mchan->queued, &mchan->active);
while (!list_empty(&mchan->queued)) {
mdesc = list_first_entry(&mchan->queued,
struct mpc_dma_desc, node);
/*
* Grab either several mem-to-mem transfer descriptors
* or one peripheral transfer descriptor,
* don't mix mem-to-mem and peripheral transfer descriptors
* within the same 'active' list.
*/
if (mdesc->will_access_peripheral) {
if (list_empty(&mchan->active))
list_move_tail(&mdesc->node, &mchan->active);
break;
} else {
list_move_tail(&mdesc->node, &mchan->active);
}
}
/* Chain descriptors into one transaction */
list_for_each_entry(mdesc, &mchan->active, node) {
......@@ -270,7 +311,17 @@ static void mpc_dma_execute(struct mpc_dma_chan *mchan)
if (first != prev)
mdma->tcd[cid].e_sg = 1;
if (mdma->is_mpc8308) {
/* MPC8308, no request lines, software initiated start */
out_8(&mdma->regs->dmassrt, cid);
} else if (first->will_access_peripheral) {
/* Peripherals involved, start by external request signal */
out_8(&mdma->regs->dmaserq, cid);
} else {
/* Memory to memory transfer, software initiated start */
out_8(&mdma->regs->dmassrt, cid);
}
}
/* Handle interrupt on one half of DMA controller (32 channels) */
......@@ -588,6 +639,7 @@ mpc_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
}
mdesc->error = 0;
mdesc->will_access_peripheral = 0;
tcd = mdesc->tcd;
/* Prepare Transfer Control Descriptor for this transaction */
......@@ -635,6 +687,193 @@ mpc_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
return &mdesc->desc;
}
static struct dma_async_tx_descriptor *
mpc_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
struct mpc_dma_desc *mdesc = NULL;
dma_addr_t per_paddr;
u32 tcd_nunits;
struct mpc_dma_tcd *tcd;
unsigned long iflags;
struct scatterlist *sg;
size_t len;
int iter, i;
/* Currently there is no proper support for scatter/gather */
if (sg_len != 1)
return NULL;
if (!is_slave_direction(direction))
return NULL;
for_each_sg(sgl, sg, sg_len, i) {
spin_lock_irqsave(&mchan->lock, iflags);
mdesc = list_first_entry(&mchan->free,
struct mpc_dma_desc, node);
if (!mdesc) {
spin_unlock_irqrestore(&mchan->lock, iflags);
/* Try to free completed descriptors */
mpc_dma_process_completed(mdma);
return NULL;
}
list_del(&mdesc->node);
if (direction == DMA_DEV_TO_MEM) {
per_paddr = mchan->src_per_paddr;
tcd_nunits = mchan->src_tcd_nunits;
} else {
per_paddr = mchan->dst_per_paddr;
tcd_nunits = mchan->dst_tcd_nunits;
}
spin_unlock_irqrestore(&mchan->lock, iflags);
if (per_paddr == 0 || tcd_nunits == 0)
goto err_prep;
mdesc->error = 0;
mdesc->will_access_peripheral = 1;
/* Prepare Transfer Control Descriptor for this transaction */
tcd = mdesc->tcd;
memset(tcd, 0, sizeof(struct mpc_dma_tcd));
if (!IS_ALIGNED(sg_dma_address(sg), 4))
goto err_prep;
if (direction == DMA_DEV_TO_MEM) {
tcd->saddr = per_paddr;
tcd->daddr = sg_dma_address(sg);
tcd->soff = 0;
tcd->doff = 4;
} else {
tcd->saddr = sg_dma_address(sg);
tcd->daddr = per_paddr;
tcd->soff = 4;
tcd->doff = 0;
}
tcd->ssize = MPC_DMA_TSIZE_4;
tcd->dsize = MPC_DMA_TSIZE_4;
len = sg_dma_len(sg);
tcd->nbytes = tcd_nunits * 4;
if (!IS_ALIGNED(len, tcd->nbytes))
goto err_prep;
iter = len / tcd->nbytes;
if (iter >= 1 << 15) {
/* len is too big */
goto err_prep;
}
/* citer_linkch contains the high bits of iter */
tcd->biter = iter & 0x1ff;
tcd->biter_linkch = iter >> 9;
tcd->citer = tcd->biter;
tcd->citer_linkch = tcd->biter_linkch;
tcd->e_sg = 0;
tcd->d_req = 1;
/* Place descriptor in prepared list */
spin_lock_irqsave(&mchan->lock, iflags);
list_add_tail(&mdesc->node, &mchan->prepared);
spin_unlock_irqrestore(&mchan->lock, iflags);
}
return &mdesc->desc;
err_prep:
/* Put the descriptor back */
spin_lock_irqsave(&mchan->lock, iflags);
list_add_tail(&mdesc->node, &mchan->free);
spin_unlock_irqrestore(&mchan->lock, iflags);
return NULL;
}
static int mpc_dma_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct mpc_dma_chan *mchan;
struct mpc_dma *mdma;
struct dma_slave_config *cfg;
unsigned long flags;
mchan = dma_chan_to_mpc_dma_chan(chan);
switch (cmd) {
case DMA_TERMINATE_ALL:
/* Disable channel requests */
mdma = dma_chan_to_mpc_dma(chan);
spin_lock_irqsave(&mchan->lock, flags);
out_8(&mdma->regs->dmacerq, chan->chan_id);
list_splice_tail_init(&mchan->prepared, &mchan->free);
list_splice_tail_init(&mchan->queued, &mchan->free);
list_splice_tail_init(&mchan->active, &mchan->free);
spin_unlock_irqrestore(&mchan->lock, flags);
return 0;
case DMA_SLAVE_CONFIG:
/*
* Software constraints:
* - only transfers between a peripheral device and
* memory are supported;
* - only peripheral devices with 4-byte FIFO access register
* are supported;
* - minimal transfer chunk is 4 bytes and consequently
* source and destination addresses must be 4-byte aligned
* and transfer size must be aligned on (4 * maxburst)
* boundary;
* - during the transfer RAM address is being incremented by
* the size of minimal transfer chunk;
* - peripheral port's address is constant during the transfer.
*/
cfg = (void *)arg;
if (cfg->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES ||
cfg->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES ||
!IS_ALIGNED(cfg->src_addr, 4) ||
!IS_ALIGNED(cfg->dst_addr, 4)) {
return -EINVAL;
}
spin_lock_irqsave(&mchan->lock, flags);
mchan->src_per_paddr = cfg->src_addr;
mchan->src_tcd_nunits = cfg->src_maxburst;
mchan->dst_per_paddr = cfg->dst_addr;
mchan->dst_tcd_nunits = cfg->dst_maxburst;
/* Apply defaults */
if (mchan->src_tcd_nunits == 0)
mchan->src_tcd_nunits = 1;
if (mchan->dst_tcd_nunits == 0)
mchan->dst_tcd_nunits = 1;
spin_unlock_irqrestore(&mchan->lock, flags);
return 0;
default:
/* Unknown command */
break;
}
return -ENXIO;
}
static int mpc_dma_probe(struct platform_device *op)
{
struct device_node *dn = op->dev.of_node;
......@@ -649,13 +888,15 @@ static int mpc_dma_probe(struct platform_device *op)
mdma = devm_kzalloc(dev, sizeof(struct mpc_dma), GFP_KERNEL);
if (!mdma) {
dev_err(dev, "Memory exhausted!\n");
return -ENOMEM;
retval = -ENOMEM;
goto err;
}
mdma->irq = irq_of_parse_and_map(dn, 0);
if (mdma->irq == NO_IRQ) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
retval = -EINVAL;
goto err;
}
if (of_device_is_compatible(dn, "fsl,mpc8308-dma")) {
......@@ -663,14 +904,15 @@ static int mpc_dma_probe(struct platform_device *op)
mdma->irq2 = irq_of_parse_and_map(dn, 1);
if (mdma->irq2 == NO_IRQ) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
retval = -EINVAL;
goto err_dispose1;
}
}
retval = of_address_to_resource(dn, 0, &res);
if (retval) {
dev_err(dev, "Error parsing memory region!\n");
return retval;
goto err_dispose2;
}
regs_start = res.start;
......@@ -678,31 +920,34 @@ static int mpc_dma_probe(struct platform_device *op)
if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) {
dev_err(dev, "Error requesting memory region!\n");
return -EBUSY;
retval = -EBUSY;
goto err_dispose2;
}
mdma->regs = devm_ioremap(dev, regs_start, regs_size);
if (!mdma->regs) {
dev_err(dev, "Error mapping memory region!\n");
return -ENOMEM;
retval = -ENOMEM;
goto err_dispose2;
}
mdma->tcd = (struct mpc_dma_tcd *)((u8 *)(mdma->regs)
+ MPC_DMA_TCD_OFFSET);
retval = devm_request_irq(dev, mdma->irq, &mpc_dma_irq, 0, DRV_NAME,
mdma);
retval = request_irq(mdma->irq, &mpc_dma_irq, 0, DRV_NAME, mdma);
if (retval) {
dev_err(dev, "Error requesting IRQ!\n");
return -EINVAL;
retval = -EINVAL;
goto err_dispose2;
}
if (mdma->is_mpc8308) {
retval = devm_request_irq(dev, mdma->irq2, &mpc_dma_irq, 0,
retval = request_irq(mdma->irq2, &mpc_dma_irq, 0,
DRV_NAME, mdma);
if (retval) {
dev_err(dev, "Error requesting IRQ2!\n");
return -EINVAL;
retval = -EINVAL;
goto err_free1;
}
}
......@@ -710,18 +955,21 @@ static int mpc_dma_probe(struct platform_device *op)
dma = &mdma->dma;
dma->dev = dev;
if (!mdma->is_mpc8308)
dma->chancnt = MPC_DMA_CHANNELS;
if (mdma->is_mpc8308)
dma->chancnt = MPC8308_DMACHAN_MAX;
else
dma->chancnt = 16; /* MPC8308 DMA has only 16 channels */
dma->chancnt = MPC512x_DMACHAN_MAX;
dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources;
dma->device_free_chan_resources = mpc_dma_free_chan_resources;
dma->device_issue_pending = mpc_dma_issue_pending;
dma->device_tx_status = mpc_dma_tx_status;
dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy;
dma->device_prep_slave_sg = mpc_dma_prep_slave_sg;
dma->device_control = mpc_dma_device_control;
INIT_LIST_HEAD(&dma->channels);
dma_cap_set(DMA_MEMCPY, dma->cap_mask);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
for (i = 0; i < dma->chancnt; i++) {
mchan = &mdma->channels[i];
......@@ -747,7 +995,19 @@ static int mpc_dma_probe(struct platform_device *op)
* - Round-robin group arbitration,
* - Round-robin channel arbitration.
*/
if (!mdma->is_mpc8308) {
if (mdma->is_mpc8308) {
/* MPC8308 has 16 channels and lacks some registers */
out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_ERCA);
/* enable snooping */
out_be32(&mdma->regs->dmagpor, MPC_DMA_DMAGPOR_SNOOP_ENABLE);
/* Disable error interrupts */
out_be32(&mdma->regs->dmaeeil, 0);
/* Clear interrupts status */
out_be32(&mdma->regs->dmaintl, 0xFFFF);
out_be32(&mdma->regs->dmaerrl, 0xFFFF);
} else {
out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_EDCG |
MPC_DMA_DMACR_ERGA | MPC_DMA_DMACR_ERCA);
......@@ -768,29 +1028,28 @@ static int mpc_dma_probe(struct platform_device *op)
/* Route interrupts to IPIC */
out_be32(&mdma->regs->dmaihsa, 0);
out_be32(&mdma->regs->dmailsa, 0);
} else {
/* MPC8308 has 16 channels and lacks some registers */
out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_ERCA);
/* enable snooping */
out_be32(&mdma->regs->dmagpor, MPC_DMA_DMAGPOR_SNOOP_ENABLE);
/* Disable error interrupts */
out_be32(&mdma->regs->dmaeeil, 0);
/* Clear interrupts status */
out_be32(&mdma->regs->dmaintl, 0xFFFF);
out_be32(&mdma->regs->dmaerrl, 0xFFFF);
}
/* Register DMA engine */
dev_set_drvdata(dev, mdma);
retval = dma_async_device_register(dma);
if (retval) {
devm_free_irq(dev, mdma->irq, mdma);
irq_dispose_mapping(mdma->irq);
}
if (retval)
goto err_free2;
return retval;
err_free2:
if (mdma->is_mpc8308)
free_irq(mdma->irq2, mdma);
err_free1:
free_irq(mdma->irq, mdma);
err_dispose2:
if (mdma->is_mpc8308)
irq_dispose_mapping(mdma->irq2);
err_dispose1:
irq_dispose_mapping(mdma->irq);
err:
return retval;
}
static int mpc_dma_remove(struct platform_device *op)
......@@ -799,7 +1058,11 @@ static int mpc_dma_remove(struct platform_device *op)
struct mpc_dma *mdma = dev_get_drvdata(dev);
dma_async_device_unregister(&mdma->dma);
devm_free_irq(dev, mdma->irq, mdma);
if (mdma->is_mpc8308) {
free_irq(mdma->irq2, mdma);
irq_dispose_mapping(mdma->irq2);
}
free_irq(mdma->irq, mdma);
irq_dispose_mapping(mdma->irq);
return 0;
......@@ -807,6 +1070,7 @@ static int mpc_dma_remove(struct platform_device *op)
static struct of_device_id mpc_dma_match[] = {
{ .compatible = "fsl,mpc5121-dma", },
{ .compatible = "fsl,mpc8308-dma", },
{},
};
......
......@@ -21,6 +21,7 @@
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pch_dma.h>
......@@ -996,7 +997,7 @@ static void pch_dma_remove(struct pci_dev *pdev)
#define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
#define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
const struct pci_device_id pch_dma_id_table[] = {
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
......
......@@ -164,6 +164,7 @@ struct s3c24xx_sg {
* @disrcc: value for source control register
* @didstc: value for destination control register
* @dcon: base value for dcon register
* @cyclic: indicate cyclic transfer
*/
struct s3c24xx_txd {
struct virt_dma_desc vd;
......@@ -173,6 +174,7 @@ struct s3c24xx_txd {
u32 disrcc;
u32 didstc;
u32 dcon;
bool cyclic;
};
struct s3c24xx_dma_chan;
......@@ -669,8 +671,10 @@ static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
/* when more sg's are in this txd, start the next one */
if (!list_is_last(txd->at, &txd->dsg_list)) {
txd->at = txd->at->next;
if (txd->cyclic)
vchan_cyclic_callback(&txd->vd);
s3c24xx_dma_start_next_sg(s3cchan, txd);
} else {
} else if (!txd->cyclic) {
s3cchan->at = NULL;
vchan_cookie_complete(&txd->vd);
......@@ -682,6 +686,12 @@ static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
s3c24xx_dma_start_next_txd(s3cchan);
else
s3c24xx_dma_phy_free(s3cchan);
} else {
vchan_cyclic_callback(&txd->vd);
/* Cyclic: reset at beginning */
txd->at = txd->dsg_list.next;
s3c24xx_dma_start_next_sg(s3cchan, txd);
}
}
spin_unlock(&s3cchan->vc.lock);
......@@ -877,6 +887,104 @@ static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
}
static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
enum dma_transfer_direction direction, unsigned long flags,
void *context)
{
struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
struct s3c24xx_txd *txd;
struct s3c24xx_sg *dsg;
unsigned sg_len;
dma_addr_t slave_addr;
u32 hwcfg = 0;
int i;
dev_dbg(&s3cdma->pdev->dev,
"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
size, period, s3cchan->name);
if (!is_slave_direction(direction)) {
dev_err(&s3cdma->pdev->dev,
"direction %d unsupported\n", direction);
return NULL;
}
txd = s3c24xx_dma_get_txd();
if (!txd)
return NULL;
txd->cyclic = 1;
if (cdata->handshake)
txd->dcon |= S3C24XX_DCON_HANDSHAKE;
switch (cdata->bus) {
case S3C24XX_DMA_APB:
txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
hwcfg |= S3C24XX_DISRCC_LOC_APB;
break;
case S3C24XX_DMA_AHB:
txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
hwcfg |= S3C24XX_DISRCC_LOC_AHB;
break;
}
/*
* Always assume our peripheral desintation is a fixed
* address in memory.
*/
hwcfg |= S3C24XX_DISRCC_INC_FIXED;
/*
* Individual dma operations are requested by the slave,
* so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
*/
txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
if (direction == DMA_MEM_TO_DEV) {
txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
S3C24XX_DISRCC_INC_INCREMENT;
txd->didstc = hwcfg;
slave_addr = s3cchan->cfg.dst_addr;
txd->width = s3cchan->cfg.dst_addr_width;
} else {
txd->disrcc = hwcfg;
txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
S3C24XX_DIDSTC_INC_INCREMENT;
slave_addr = s3cchan->cfg.src_addr;
txd->width = s3cchan->cfg.src_addr_width;
}
sg_len = size / period;
for (i = 0; i < sg_len; i++) {
dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
if (!dsg) {
s3c24xx_dma_free_txd(txd);
return NULL;
}
list_add_tail(&dsg->node, &txd->dsg_list);
dsg->len = period;
/* Check last period length */
if (i == sg_len - 1)
dsg->len = size - period * i;
if (direction == DMA_MEM_TO_DEV) {
dsg->src_addr = addr + period * i;
dsg->dst_addr = slave_addr;
} else { /* DMA_DEV_TO_MEM */
dsg->src_addr = slave_addr;
dsg->dst_addr = addr + period * i;
}
}
return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
}
static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
......@@ -961,7 +1069,6 @@ static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
dsg->src_addr = slave_addr;
dsg->dst_addr = sg_dma_address(sg);
}
break;
}
return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
......@@ -1198,6 +1305,7 @@ static int s3c24xx_dma_probe(struct platform_device *pdev)
/* Initialize slave engine for SoC internal dedicated peripherals */
dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
s3cdma->slave.dev = &pdev->dev;
s3cdma->slave.device_alloc_chan_resources =
......@@ -1207,6 +1315,7 @@ static int s3c24xx_dma_probe(struct platform_device *pdev)
s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
s3cdma->slave.device_control = s3c24xx_dma_control;
/* Register as many memcpy channels as there are physical channels */
......
......@@ -4,7 +4,7 @@
config SH_DMAE_BASE
bool "Renesas SuperH DMA Engine support"
depends on (SUPERH && SH_DMA) || (ARM && ARCH_SHMOBILE)
depends on (SUPERH && SH_DMA) || ARCH_SHMOBILE || COMPILE_TEST
depends on !SH_DMA_API
default y
select DMA_ENGINE
......
......@@ -18,6 +18,7 @@
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
......
......@@ -73,8 +73,7 @@ static void shdma_chan_xfer_ld_queue(struct shdma_chan *schan)
static dma_cookie_t shdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct shdma_desc *chunk, *c, *desc =
container_of(tx, struct shdma_desc, async_tx),
*last = desc;
container_of(tx, struct shdma_desc, async_tx);
struct shdma_chan *schan = to_shdma_chan(tx->chan);
dma_async_tx_callback callback = tx->callback;
dma_cookie_t cookie;
......@@ -98,19 +97,20 @@ static dma_cookie_t shdma_tx_submit(struct dma_async_tx_descriptor *tx)
&chunk->node == &schan->ld_free))
break;
chunk->mark = DESC_SUBMITTED;
if (chunk->chunks == 1) {
chunk->async_tx.callback = callback;
chunk->async_tx.callback_param = tx->callback_param;
} else {
/* Callback goes to the last chunk */
chunk->async_tx.callback = NULL;
}
chunk->cookie = cookie;
list_move_tail(&chunk->node, &schan->ld_queue);
last = chunk;
dev_dbg(schan->dev, "submit #%d@%p on %d\n",
tx->cookie, &last->async_tx, schan->id);
tx->cookie, &chunk->async_tx, schan->id);
}
last->async_tx.callback = callback;
last->async_tx.callback_param = tx->callback_param;
if (power_up) {
int ret;
schan->pm_state = SHDMA_PM_BUSY;
......@@ -304,6 +304,7 @@ static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all)
dma_async_tx_callback callback = NULL;
void *param = NULL;
unsigned long flags;
LIST_HEAD(cyclic_list);
spin_lock_irqsave(&schan->chan_lock, flags);
list_for_each_entry_safe(desc, _desc, &schan->ld_queue, node) {
......@@ -369,10 +370,16 @@ static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all)
if (((desc->mark == DESC_COMPLETED ||
desc->mark == DESC_WAITING) &&
async_tx_test_ack(&desc->async_tx)) || all) {
if (all || !desc->cyclic) {
/* Remove from ld_queue list */
desc->mark = DESC_IDLE;
list_move(&desc->node, &schan->ld_free);
} else {
/* reuse as cyclic */
desc->mark = DESC_SUBMITTED;
list_move_tail(&desc->node, &cyclic_list);
}
if (list_empty(&schan->ld_queue)) {
dev_dbg(schan->dev, "Bring down channel %d\n", schan->id);
......@@ -389,6 +396,8 @@ static dma_async_tx_callback __ld_cleanup(struct shdma_chan *schan, bool all)
*/
schan->dma_chan.completed_cookie = schan->dma_chan.cookie;
list_splice_tail(&cyclic_list, &schan->ld_queue);
spin_unlock_irqrestore(&schan->chan_lock, flags);
if (callback)
......@@ -521,7 +530,7 @@ static struct shdma_desc *shdma_add_desc(struct shdma_chan *schan,
*/
static struct dma_async_tx_descriptor *shdma_prep_sg(struct shdma_chan *schan,
struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
enum dma_transfer_direction direction, unsigned long flags)
enum dma_transfer_direction direction, unsigned long flags, bool cyclic)
{
struct scatterlist *sg;
struct shdma_desc *first = NULL, *new = NULL /* compiler... */;
......@@ -569,6 +578,10 @@ static struct dma_async_tx_descriptor *shdma_prep_sg(struct shdma_chan *schan,
if (!new)
goto err_get_desc;
new->cyclic = cyclic;
if (cyclic)
new->chunks = 1;
else
new->chunks = chunks--;
list_add_tail(&new->node, &tx_list);
} while (len);
......@@ -612,7 +625,8 @@ static struct dma_async_tx_descriptor *shdma_prep_memcpy(
sg_dma_address(&sg) = dma_src;
sg_dma_len(&sg) = len;
return shdma_prep_sg(schan, &sg, 1, &dma_dest, DMA_MEM_TO_MEM, flags);
return shdma_prep_sg(schan, &sg, 1, &dma_dest, DMA_MEM_TO_MEM,
flags, false);
}
static struct dma_async_tx_descriptor *shdma_prep_slave_sg(
......@@ -640,7 +654,58 @@ static struct dma_async_tx_descriptor *shdma_prep_slave_sg(
slave_addr = ops->slave_addr(schan);
return shdma_prep_sg(schan, sgl, sg_len, &slave_addr,
direction, flags);
direction, flags, false);
}
#define SHDMA_MAX_SG_LEN 32
static struct dma_async_tx_descriptor *shdma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct shdma_chan *schan = to_shdma_chan(chan);
struct shdma_dev *sdev = to_shdma_dev(schan->dma_chan.device);
const struct shdma_ops *ops = sdev->ops;
unsigned int sg_len = buf_len / period_len;
int slave_id = schan->slave_id;
dma_addr_t slave_addr;
struct scatterlist sgl[SHDMA_MAX_SG_LEN];
int i;
if (!chan)
return NULL;
BUG_ON(!schan->desc_num);
if (sg_len > SHDMA_MAX_SG_LEN) {
dev_err(schan->dev, "sg length %d exceds limit %d",
sg_len, SHDMA_MAX_SG_LEN);
return NULL;
}
/* Someone calling slave DMA on a generic channel? */
if (slave_id < 0 || (buf_len < period_len)) {
dev_warn(schan->dev,
"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
__func__, buf_len, period_len, slave_id);
return NULL;
}
slave_addr = ops->slave_addr(schan);
sg_init_table(sgl, sg_len);
for (i = 0; i < sg_len; i++) {
dma_addr_t src = buf_addr + (period_len * i);
sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
offset_in_page(src));
sg_dma_address(&sgl[i]) = src;
sg_dma_len(&sgl[i]) = period_len;
}
return shdma_prep_sg(schan, sgl, sg_len, &slave_addr,
direction, flags, true);
}
static int shdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
......@@ -915,6 +980,7 @@ int shdma_init(struct device *dev, struct shdma_dev *sdev,
/* Compulsory for DMA_SLAVE fields */
dma_dev->device_prep_slave_sg = shdma_prep_slave_sg;
dma_dev->device_prep_dma_cyclic = shdma_prep_dma_cyclic;
dma_dev->device_control = shdma_control;
dma_dev->dev = dev;
......
......@@ -18,21 +18,22 @@
*
*/
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rculist.h>
#include <linux/sh_dma.h>
#include <linux/notifier.h>
#include <linux/kdebug.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/rculist.h>
#include "../dmaengine.h"
#include "shdma.h"
......
......@@ -14,12 +14,13 @@
* published by the Free Software Foundation.
*/
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sudmac.h>
struct sudmac_chan {
......
......@@ -556,7 +556,6 @@ struct d40_gen_dmac {
* later
* @reg_val_backup_chan: Backup data for standard channel parameter registers.
* @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
* @initialized: true if the dma has been initialized
* @gen_dmac: the struct for generic registers values to represent u8500/8540
* DMA controller
*/
......@@ -594,7 +593,6 @@ struct d40_base {
u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
u32 *reg_val_backup_chan;
u16 gcc_pwr_off_mask;
bool initialized;
struct d40_gen_dmac gen_dmac;
};
......@@ -1056,62 +1054,6 @@ static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
return len;
}
#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
u32 *regaddr, int num, bool save)
{
int i;
for (i = 0; i < num; i++) {
void __iomem *addr = baseaddr + regaddr[i];
if (save)
backup[i] = readl_relaxed(addr);
else
writel_relaxed(backup[i], addr);
}
}
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
int i;
/* Save/Restore channel specific registers */
for (i = 0; i < base->num_phy_chans; i++) {
void __iomem *addr;
int idx;
if (base->phy_res[i].reserved)
continue;
addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
idx = i * ARRAY_SIZE(d40_backup_regs_chan);
dma40_backup(addr, &base->reg_val_backup_chan[idx],
d40_backup_regs_chan,
ARRAY_SIZE(d40_backup_regs_chan),
save);
}
/* Save/Restore global registers */
dma40_backup(base->virtbase, base->reg_val_backup,
d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
save);
/* Save/Restore registers only existing on dma40 v3 and later */
if (base->gen_dmac.backup)
dma40_backup(base->virtbase, base->reg_val_backup_v4,
base->gen_dmac.backup,
base->gen_dmac.backup_size,
save);
}
#else
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
}
#endif
static int __d40_execute_command_phy(struct d40_chan *d40c,
enum d40_command command)
{
......@@ -1495,8 +1437,8 @@ static int d40_pause(struct d40_chan *d40c)
if (!d40c->busy)
return 0;
pm_runtime_get_sync(d40c->base->dev);
spin_lock_irqsave(&d40c->lock, flags);
pm_runtime_get_sync(d40c->base->dev);
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
......@@ -2998,18 +2940,88 @@ static int __init d40_dmaengine_init(struct d40_base *base,
}
/* Suspend resume functionality */
#ifdef CONFIG_PM
static int dma40_pm_suspend(struct device *dev)
#ifdef CONFIG_PM_SLEEP
static int dma40_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
int ret = 0;
int ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
return ret;
if (base->lcpa_regulator)
ret = regulator_disable(base->lcpa_regulator);
return ret;
}
static int dma40_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
int ret = 0;
if (base->lcpa_regulator) {
ret = regulator_enable(base->lcpa_regulator);
if (ret)
return ret;
}
return pm_runtime_force_resume(dev);
}
#endif
#ifdef CONFIG_PM
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
u32 *regaddr, int num, bool save)
{
int i;
for (i = 0; i < num; i++) {
void __iomem *addr = baseaddr + regaddr[i];
if (save)
backup[i] = readl_relaxed(addr);
else
writel_relaxed(backup[i], addr);
}
}
static void d40_save_restore_registers(struct d40_base *base, bool save)
{
int i;
/* Save/Restore channel specific registers */
for (i = 0; i < base->num_phy_chans; i++) {
void __iomem *addr;
int idx;
if (base->phy_res[i].reserved)
continue;
addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
idx = i * ARRAY_SIZE(d40_backup_regs_chan);
dma40_backup(addr, &base->reg_val_backup_chan[idx],
d40_backup_regs_chan,
ARRAY_SIZE(d40_backup_regs_chan),
save);
}
/* Save/Restore global registers */
dma40_backup(base->virtbase, base->reg_val_backup,
d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
save);
/* Save/Restore registers only existing on dma40 v3 and later */
if (base->gen_dmac.backup)
dma40_backup(base->virtbase, base->reg_val_backup_v4,
base->gen_dmac.backup,
base->gen_dmac.backup_size,
save);
}
static int dma40_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
......@@ -3030,36 +3042,20 @@ static int dma40_runtime_resume(struct device *dev)
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
if (base->initialized)
d40_save_restore_registers(base, false);
writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
base->virtbase + D40_DREG_GCC);
return 0;
}
static int dma40_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct d40_base *base = platform_get_drvdata(pdev);
int ret = 0;
if (base->lcpa_regulator)
ret = regulator_enable(base->lcpa_regulator);
return ret;
}
#endif
static const struct dev_pm_ops dma40_pm_ops = {
.suspend = dma40_pm_suspend,
.runtime_suspend = dma40_runtime_suspend,
.runtime_resume = dma40_runtime_resume,
.resume = dma40_resume,
SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
SET_PM_RUNTIME_PM_OPS(dma40_runtime_suspend,
dma40_runtime_resume,
NULL)
};
#define DMA40_PM_OPS (&dma40_pm_ops)
#else
#define DMA40_PM_OPS NULL
#endif
/* Initialization functions. */
......@@ -3645,12 +3641,6 @@ static int __init d40_probe(struct platform_device *pdev)
goto failure;
}
pm_runtime_irq_safe(base->dev);
pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(base->dev);
pm_runtime_enable(base->dev);
pm_runtime_resume(base->dev);
if (base->plat_data->use_esram_lcla) {
base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
......@@ -3671,7 +3661,15 @@ static int __init d40_probe(struct platform_device *pdev)
}
}
base->initialized = true;
writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
pm_runtime_irq_safe(base->dev);
pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(base->dev);
pm_runtime_mark_last_busy(base->dev);
pm_runtime_set_active(base->dev);
pm_runtime_enable(base->dev);
ret = d40_dmaengine_init(base, num_reserved_chans);
if (ret)
goto failure;
......@@ -3754,7 +3752,7 @@ static struct platform_driver d40_driver = {
.driver = {
.owner = THIS_MODULE,
.name = D40_NAME,
.pm = DMA40_PM_OPS,
.pm = &dma40_pm_ops,
.of_match_table = d40_match,
},
};
......
obj-$(CONFIG_XILINX_VDMA) += xilinx_vdma.o
/*
* DMA driver for Xilinx Video DMA Engine
*
* Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
*
* Based on the Freescale DMA driver.
*
* Description:
* The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP
* core that provides high-bandwidth direct memory access between memory
* and AXI4-Stream type video target peripherals. The core provides efficient
* two dimensional DMA operations with independent asynchronous read (S2MM)
* and write (MM2S) channel operation. It can be configured to have either
* one channel or two channels. If configured as two channels, one is to
* transmit to the video device (MM2S) and another is to receive from the
* video device (S2MM). Initialization, status, interrupt and management
* registers are accessed through an AXI4-Lite slave interface.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/amba/xilinx_dma.h>
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include "../dmaengine.h"
/* Register/Descriptor Offsets */
#define XILINX_VDMA_MM2S_CTRL_OFFSET 0x0000
#define XILINX_VDMA_S2MM_CTRL_OFFSET 0x0030
#define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050
#define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0
/* Control Registers */
#define XILINX_VDMA_REG_DMACR 0x0000
#define XILINX_VDMA_DMACR_DELAY_MAX 0xff
#define XILINX_VDMA_DMACR_DELAY_SHIFT 24
#define XILINX_VDMA_DMACR_FRAME_COUNT_MAX 0xff
#define XILINX_VDMA_DMACR_FRAME_COUNT_SHIFT 16
#define XILINX_VDMA_DMACR_ERR_IRQ BIT(14)
#define XILINX_VDMA_DMACR_DLY_CNT_IRQ BIT(13)
#define XILINX_VDMA_DMACR_FRM_CNT_IRQ BIT(12)
#define XILINX_VDMA_DMACR_MASTER_SHIFT 8
#define XILINX_VDMA_DMACR_FSYNCSRC_SHIFT 5
#define XILINX_VDMA_DMACR_FRAMECNT_EN BIT(4)
#define XILINX_VDMA_DMACR_GENLOCK_EN BIT(3)
#define XILINX_VDMA_DMACR_RESET BIT(2)
#define XILINX_VDMA_DMACR_CIRC_EN BIT(1)
#define XILINX_VDMA_DMACR_RUNSTOP BIT(0)
#define XILINX_VDMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5)
#define XILINX_VDMA_REG_DMASR 0x0004
#define XILINX_VDMA_DMASR_EOL_LATE_ERR BIT(15)
#define XILINX_VDMA_DMASR_ERR_IRQ BIT(14)
#define XILINX_VDMA_DMASR_DLY_CNT_IRQ BIT(13)
#define XILINX_VDMA_DMASR_FRM_CNT_IRQ BIT(12)
#define XILINX_VDMA_DMASR_SOF_LATE_ERR BIT(11)
#define XILINX_VDMA_DMASR_SG_DEC_ERR BIT(10)
#define XILINX_VDMA_DMASR_SG_SLV_ERR BIT(9)
#define XILINX_VDMA_DMASR_EOF_EARLY_ERR BIT(8)
#define XILINX_VDMA_DMASR_SOF_EARLY_ERR BIT(7)
#define XILINX_VDMA_DMASR_DMA_DEC_ERR BIT(6)
#define XILINX_VDMA_DMASR_DMA_SLAVE_ERR BIT(5)
#define XILINX_VDMA_DMASR_DMA_INT_ERR BIT(4)
#define XILINX_VDMA_DMASR_IDLE BIT(1)
#define XILINX_VDMA_DMASR_HALTED BIT(0)
#define XILINX_VDMA_DMASR_DELAY_MASK GENMASK(31, 24)
#define XILINX_VDMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16)
#define XILINX_VDMA_REG_CURDESC 0x0008
#define XILINX_VDMA_REG_TAILDESC 0x0010
#define XILINX_VDMA_REG_REG_INDEX 0x0014
#define XILINX_VDMA_REG_FRMSTORE 0x0018
#define XILINX_VDMA_REG_THRESHOLD 0x001c
#define XILINX_VDMA_REG_FRMPTR_STS 0x0024
#define XILINX_VDMA_REG_PARK_PTR 0x0028
#define XILINX_VDMA_PARK_PTR_WR_REF_SHIFT 8
#define XILINX_VDMA_PARK_PTR_RD_REF_SHIFT 0
#define XILINX_VDMA_REG_VDMA_VERSION 0x002c
/* Register Direct Mode Registers */
#define XILINX_VDMA_REG_VSIZE 0x0000
#define XILINX_VDMA_REG_HSIZE 0x0004
#define XILINX_VDMA_REG_FRMDLY_STRIDE 0x0008
#define XILINX_VDMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24
#define XILINX_VDMA_FRMDLY_STRIDE_STRIDE_SHIFT 0
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
/* HW specific definitions */
#define XILINX_VDMA_MAX_CHANS_PER_DEVICE 0x2
#define XILINX_VDMA_DMAXR_ALL_IRQ_MASK \
(XILINX_VDMA_DMASR_FRM_CNT_IRQ | \
XILINX_VDMA_DMASR_DLY_CNT_IRQ | \
XILINX_VDMA_DMASR_ERR_IRQ)
#define XILINX_VDMA_DMASR_ALL_ERR_MASK \
(XILINX_VDMA_DMASR_EOL_LATE_ERR | \
XILINX_VDMA_DMASR_SOF_LATE_ERR | \
XILINX_VDMA_DMASR_SG_DEC_ERR | \
XILINX_VDMA_DMASR_SG_SLV_ERR | \
XILINX_VDMA_DMASR_EOF_EARLY_ERR | \
XILINX_VDMA_DMASR_SOF_EARLY_ERR | \
XILINX_VDMA_DMASR_DMA_DEC_ERR | \
XILINX_VDMA_DMASR_DMA_SLAVE_ERR | \
XILINX_VDMA_DMASR_DMA_INT_ERR)
/*
* Recoverable errors are DMA Internal error, SOF Early, EOF Early
* and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
* is enabled in the h/w system.
*/
#define XILINX_VDMA_DMASR_ERR_RECOVER_MASK \
(XILINX_VDMA_DMASR_SOF_LATE_ERR | \
XILINX_VDMA_DMASR_EOF_EARLY_ERR | \
XILINX_VDMA_DMASR_SOF_EARLY_ERR | \
XILINX_VDMA_DMASR_DMA_INT_ERR)
/* Axi VDMA Flush on Fsync bits */
#define XILINX_VDMA_FLUSH_S2MM 3
#define XILINX_VDMA_FLUSH_MM2S 2
#define XILINX_VDMA_FLUSH_BOTH 1
/* Delay loop counter to prevent hardware failure */
#define XILINX_VDMA_LOOP_COUNT 1000000
/**
* struct xilinx_vdma_desc_hw - Hardware Descriptor
* @next_desc: Next Descriptor Pointer @0x00
* @pad1: Reserved @0x04
* @buf_addr: Buffer address @0x08
* @pad2: Reserved @0x0C
* @vsize: Vertical Size @0x10
* @hsize: Horizontal Size @0x14
* @stride: Number of bytes between the first
* pixels of each horizontal line @0x18
*/
struct xilinx_vdma_desc_hw {
u32 next_desc;
u32 pad1;
u32 buf_addr;
u32 pad2;
u32 vsize;
u32 hsize;
u32 stride;
} __aligned(64);
/**
* struct xilinx_vdma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_vdma_tx_segment {
struct xilinx_vdma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_vdma_tx_descriptor - Per Transaction structure
* @async_tx: Async transaction descriptor
* @segments: TX segments list
* @node: Node in the channel descriptors list
*/
struct xilinx_vdma_tx_descriptor {
struct dma_async_tx_descriptor async_tx;
struct list_head segments;
struct list_head node;
};
/**
* struct xilinx_vdma_chan - Driver specific VDMA channel structure
* @xdev: Driver specific device structure
* @ctrl_offset: Control registers offset
* @desc_offset: TX descriptor registers offset
* @lock: Descriptor operation lock
* @pending_list: Descriptors waiting
* @active_desc: Active descriptor
* @allocated_desc: Allocated descriptor
* @done_list: Complete descriptors
* @common: DMA common channel
* @desc_pool: Descriptors pool
* @dev: The dma device
* @irq: Channel IRQ
* @id: Channel ID
* @direction: Transfer direction
* @num_frms: Number of frames
* @has_sg: Support scatter transfers
* @genlock: Support genlock mode
* @err: Channel has errors
* @tasklet: Cleanup work after irq
* @config: Device configuration info
* @flush_on_fsync: Flush on Frame sync
*/
struct xilinx_vdma_chan {
struct xilinx_vdma_device *xdev;
u32 ctrl_offset;
u32 desc_offset;
spinlock_t lock;
struct list_head pending_list;
struct xilinx_vdma_tx_descriptor *active_desc;
struct xilinx_vdma_tx_descriptor *allocated_desc;
struct list_head done_list;
struct dma_chan common;
struct dma_pool *desc_pool;
struct device *dev;
int irq;
int id;
enum dma_transfer_direction direction;
int num_frms;
bool has_sg;
bool genlock;
bool err;
struct tasklet_struct tasklet;
struct xilinx_vdma_config config;
bool flush_on_fsync;
};
/**
* struct xilinx_vdma_device - VDMA device structure
* @regs: I/O mapped base address
* @dev: Device Structure
* @common: DMA device structure
* @chan: Driver specific VDMA channel
* @has_sg: Specifies whether Scatter-Gather is present or not
* @flush_on_fsync: Flush on frame sync
*/
struct xilinx_vdma_device {
void __iomem *regs;
struct device *dev;
struct dma_device common;
struct xilinx_vdma_chan *chan[XILINX_VDMA_MAX_CHANS_PER_DEVICE];
bool has_sg;
u32 flush_on_fsync;
};
/* Macros */
#define to_xilinx_chan(chan) \
container_of(chan, struct xilinx_vdma_chan, common)
#define to_vdma_tx_descriptor(tx) \
container_of(tx, struct xilinx_vdma_tx_descriptor, async_tx)
/* IO accessors */
static inline u32 vdma_read(struct xilinx_vdma_chan *chan, u32 reg)
{
return ioread32(chan->xdev->regs + reg);
}
static inline void vdma_write(struct xilinx_vdma_chan *chan, u32 reg, u32 value)
{
iowrite32(value, chan->xdev->regs + reg);
}
static inline void vdma_desc_write(struct xilinx_vdma_chan *chan, u32 reg,
u32 value)
{
vdma_write(chan, chan->desc_offset + reg, value);
}
static inline u32 vdma_ctrl_read(struct xilinx_vdma_chan *chan, u32 reg)
{
return vdma_read(chan, chan->ctrl_offset + reg);
}
static inline void vdma_ctrl_write(struct xilinx_vdma_chan *chan, u32 reg,
u32 value)
{
vdma_write(chan, chan->ctrl_offset + reg, value);
}
static inline void vdma_ctrl_clr(struct xilinx_vdma_chan *chan, u32 reg,
u32 clr)
{
vdma_ctrl_write(chan, reg, vdma_ctrl_read(chan, reg) & ~clr);
}
static inline void vdma_ctrl_set(struct xilinx_vdma_chan *chan, u32 reg,
u32 set)
{
vdma_ctrl_write(chan, reg, vdma_ctrl_read(chan, reg) | set);
}
/* -----------------------------------------------------------------------------
* Descriptors and segments alloc and free
*/
/**
* xilinx_vdma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific VDMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_vdma_tx_segment *
xilinx_vdma_alloc_tx_segment(struct xilinx_vdma_chan *chan)
{
struct xilinx_vdma_tx_segment *segment;
dma_addr_t phys;
segment = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment)
return NULL;
memset(segment, 0, sizeof(*segment));
segment->phys = phys;
return segment;
}
/**
* xilinx_vdma_free_tx_segment - Free transaction segment
* @chan: Driver specific VDMA channel
* @segment: VDMA transaction segment
*/
static void xilinx_vdma_free_tx_segment(struct xilinx_vdma_chan *chan,
struct xilinx_vdma_tx_segment *segment)
{
dma_pool_free(chan->desc_pool, segment, segment->phys);
}
/**
* xilinx_vdma_tx_descriptor - Allocate transaction descriptor
* @chan: Driver specific VDMA channel
*
* Return: The allocated descriptor on success and NULL on failure.
*/
static struct xilinx_vdma_tx_descriptor *
xilinx_vdma_alloc_tx_descriptor(struct xilinx_vdma_chan *chan)
{
struct xilinx_vdma_tx_descriptor *desc;
unsigned long flags;
if (chan->allocated_desc)
return chan->allocated_desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return NULL;
spin_lock_irqsave(&chan->lock, flags);
chan->allocated_desc = desc;
spin_unlock_irqrestore(&chan->lock, flags);
INIT_LIST_HEAD(&desc->segments);
return desc;
}
/**
* xilinx_vdma_free_tx_descriptor - Free transaction descriptor
* @chan: Driver specific VDMA channel
* @desc: VDMA transaction descriptor
*/
static void
xilinx_vdma_free_tx_descriptor(struct xilinx_vdma_chan *chan,
struct xilinx_vdma_tx_descriptor *desc)
{
struct xilinx_vdma_tx_segment *segment, *next;
if (!desc)
return;
list_for_each_entry_safe(segment, next, &desc->segments, node) {
list_del(&segment->node);
xilinx_vdma_free_tx_segment(chan, segment);
}
kfree(desc);
}
/* Required functions */
/**
* xilinx_vdma_free_desc_list - Free descriptors list
* @chan: Driver specific VDMA channel
* @list: List to parse and delete the descriptor
*/
static void xilinx_vdma_free_desc_list(struct xilinx_vdma_chan *chan,
struct list_head *list)
{
struct xilinx_vdma_tx_descriptor *desc, *next;
list_for_each_entry_safe(desc, next, list, node) {
list_del(&desc->node);
xilinx_vdma_free_tx_descriptor(chan, desc);
}
}
/**
* xilinx_vdma_free_descriptors - Free channel descriptors
* @chan: Driver specific VDMA channel
*/
static void xilinx_vdma_free_descriptors(struct xilinx_vdma_chan *chan)
{
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
xilinx_vdma_free_desc_list(chan, &chan->pending_list);
xilinx_vdma_free_desc_list(chan, &chan->done_list);
xilinx_vdma_free_tx_descriptor(chan, chan->active_desc);
chan->active_desc = NULL;
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_vdma_free_chan_resources - Free channel resources
* @dchan: DMA channel
*/
static void xilinx_vdma_free_chan_resources(struct dma_chan *dchan)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
dev_dbg(chan->dev, "Free all channel resources.\n");
xilinx_vdma_free_descriptors(chan);
dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
}
/**
* xilinx_vdma_chan_desc_cleanup - Clean channel descriptors
* @chan: Driver specific VDMA channel
*/
static void xilinx_vdma_chan_desc_cleanup(struct xilinx_vdma_chan *chan)
{
struct xilinx_vdma_tx_descriptor *desc, *next;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
list_for_each_entry_safe(desc, next, &chan->done_list, node) {
dma_async_tx_callback callback;
void *callback_param;
/* Remove from the list of running transactions */
list_del(&desc->node);
/* Run the link descriptor callback function */
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
if (callback) {
spin_unlock_irqrestore(&chan->lock, flags);
callback(callback_param);
spin_lock_irqsave(&chan->lock, flags);
}
/* Run any dependencies, then free the descriptor */
dma_run_dependencies(&desc->async_tx);
xilinx_vdma_free_tx_descriptor(chan, desc);
}
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_vdma_do_tasklet - Schedule completion tasklet
* @data: Pointer to the Xilinx VDMA channel structure
*/
static void xilinx_vdma_do_tasklet(unsigned long data)
{
struct xilinx_vdma_chan *chan = (struct xilinx_vdma_chan *)data;
xilinx_vdma_chan_desc_cleanup(chan);
}
/**
* xilinx_vdma_alloc_chan_resources - Allocate channel resources
* @dchan: DMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
/* Has this channel already been allocated? */
if (chan->desc_pool)
return 0;
/*
* We need the descriptor to be aligned to 64bytes
* for meeting Xilinx VDMA specification requirement.
*/
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
chan->dev,
sizeof(struct xilinx_vdma_tx_segment),
__alignof__(struct xilinx_vdma_tx_segment), 0);
if (!chan->desc_pool) {
dev_err(chan->dev,
"unable to allocate channel %d descriptor pool\n",
chan->id);
return -ENOMEM;
}
dma_cookie_init(dchan);
return 0;
}
/**
* xilinx_vdma_tx_status - Get VDMA transaction status
* @dchan: DMA channel
* @cookie: Transaction identifier
* @txstate: Transaction state
*
* Return: DMA transaction status
*/
static enum dma_status xilinx_vdma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
return dma_cookie_status(dchan, cookie, txstate);
}
/**
* xilinx_vdma_is_running - Check if VDMA channel is running
* @chan: Driver specific VDMA channel
*
* Return: '1' if running, '0' if not.
*/
static bool xilinx_vdma_is_running(struct xilinx_vdma_chan *chan)
{
return !(vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) &
XILINX_VDMA_DMASR_HALTED) &&
(vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR) &
XILINX_VDMA_DMACR_RUNSTOP);
}
/**
* xilinx_vdma_is_idle - Check if VDMA channel is idle
* @chan: Driver specific VDMA channel
*
* Return: '1' if idle, '0' if not.
*/
static bool xilinx_vdma_is_idle(struct xilinx_vdma_chan *chan)
{
return vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) &
XILINX_VDMA_DMASR_IDLE;
}
/**
* xilinx_vdma_halt - Halt VDMA channel
* @chan: Driver specific VDMA channel
*/
static void xilinx_vdma_halt(struct xilinx_vdma_chan *chan)
{
int loop = XILINX_VDMA_LOOP_COUNT;
vdma_ctrl_clr(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RUNSTOP);
/* Wait for the hardware to halt */
do {
if (vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) &
XILINX_VDMA_DMASR_HALTED)
break;
} while (loop--);
if (!loop) {
dev_err(chan->dev, "Cannot stop channel %p: %x\n",
chan, vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR));
chan->err = true;
}
return;
}
/**
* xilinx_vdma_start - Start VDMA channel
* @chan: Driver specific VDMA channel
*/
static void xilinx_vdma_start(struct xilinx_vdma_chan *chan)
{
int loop = XILINX_VDMA_LOOP_COUNT;
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RUNSTOP);
/* Wait for the hardware to start */
do {
if (!(vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) &
XILINX_VDMA_DMASR_HALTED))
break;
} while (loop--);
if (!loop) {
dev_err(chan->dev, "Cannot start channel %p: %x\n",
chan, vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR));
chan->err = true;
}
return;
}
/**
* xilinx_vdma_start_transfer - Starts VDMA transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
{
struct xilinx_vdma_config *config = &chan->config;
struct xilinx_vdma_tx_descriptor *desc;
unsigned long flags;
u32 reg;
struct xilinx_vdma_tx_segment *head, *tail = NULL;
if (chan->err)
return;
spin_lock_irqsave(&chan->lock, flags);
/* There's already an active descriptor, bail out. */
if (chan->active_desc)
goto out_unlock;
if (list_empty(&chan->pending_list))
goto out_unlock;
desc = list_first_entry(&chan->pending_list,
struct xilinx_vdma_tx_descriptor, node);
/* If it is SG mode and hardware is busy, cannot submit */
if (chan->has_sg && xilinx_vdma_is_running(chan) &&
!xilinx_vdma_is_idle(chan)) {
dev_dbg(chan->dev, "DMA controller still busy\n");
goto out_unlock;
}
/*
* If hardware is idle, then all descriptors on the running lists are
* done, start new transfers
*/
if (chan->has_sg) {
head = list_first_entry(&desc->segments,
struct xilinx_vdma_tx_segment, node);
tail = list_entry(desc->segments.prev,
struct xilinx_vdma_tx_segment, node);
vdma_ctrl_write(chan, XILINX_VDMA_REG_CURDESC, head->phys);
}
/* Configure the hardware using info in the config structure */
reg = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR);
if (config->frm_cnt_en)
reg |= XILINX_VDMA_DMACR_FRAMECNT_EN;
else
reg &= ~XILINX_VDMA_DMACR_FRAMECNT_EN;
/*
* With SG, start with circular mode, so that BDs can be fetched.
* In direct register mode, if not parking, enable circular mode
*/
if (chan->has_sg || !config->park)
reg |= XILINX_VDMA_DMACR_CIRC_EN;
if (config->park)
reg &= ~XILINX_VDMA_DMACR_CIRC_EN;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMACR, reg);
if (config->park && (config->park_frm >= 0) &&
(config->park_frm < chan->num_frms)) {
if (chan->direction == DMA_MEM_TO_DEV)
vdma_write(chan, XILINX_VDMA_REG_PARK_PTR,
config->park_frm <<
XILINX_VDMA_PARK_PTR_RD_REF_SHIFT);
else
vdma_write(chan, XILINX_VDMA_REG_PARK_PTR,
config->park_frm <<
XILINX_VDMA_PARK_PTR_WR_REF_SHIFT);
}
/* Start the hardware */
xilinx_vdma_start(chan);
if (chan->err)
goto out_unlock;
/* Start the transfer */
if (chan->has_sg) {
vdma_ctrl_write(chan, XILINX_VDMA_REG_TAILDESC, tail->phys);
} else {
struct xilinx_vdma_tx_segment *segment, *last = NULL;
int i = 0;
list_for_each_entry(segment, &desc->segments, node) {
vdma_desc_write(chan,
XILINX_VDMA_REG_START_ADDRESS(i++),
segment->hw.buf_addr);
last = segment;
}
if (!last)
goto out_unlock;
/* HW expects these parameters to be same for one transaction */
vdma_desc_write(chan, XILINX_VDMA_REG_HSIZE, last->hw.hsize);
vdma_desc_write(chan, XILINX_VDMA_REG_FRMDLY_STRIDE,
last->hw.stride);
vdma_desc_write(chan, XILINX_VDMA_REG_VSIZE, last->hw.vsize);
}
list_del(&desc->node);
chan->active_desc = desc;
out_unlock:
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_vdma_issue_pending - Issue pending transactions
* @dchan: DMA channel
*/
static void xilinx_vdma_issue_pending(struct dma_chan *dchan)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
xilinx_vdma_start_transfer(chan);
}
/**
* xilinx_vdma_complete_descriptor - Mark the active descriptor as complete
* @chan : xilinx DMA channel
*
* CONTEXT: hardirq
*/
static void xilinx_vdma_complete_descriptor(struct xilinx_vdma_chan *chan)
{
struct xilinx_vdma_tx_descriptor *desc;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
desc = chan->active_desc;
if (!desc) {
dev_dbg(chan->dev, "no running descriptors\n");
goto out_unlock;
}
dma_cookie_complete(&desc->async_tx);
list_add_tail(&desc->node, &chan->done_list);
chan->active_desc = NULL;
out_unlock:
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_vdma_reset - Reset VDMA channel
* @chan: Driver specific VDMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_reset(struct xilinx_vdma_chan *chan)
{
int loop = XILINX_VDMA_LOOP_COUNT;
u32 tmp;
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RESET);
tmp = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR) &
XILINX_VDMA_DMACR_RESET;
/* Wait for the hardware to finish reset */
do {
tmp = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR) &
XILINX_VDMA_DMACR_RESET;
} while (loop-- && tmp);
if (!loop) {
dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR),
vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR));
return -ETIMEDOUT;
}
chan->err = false;
return 0;
}
/**
* xilinx_vdma_chan_reset - Reset VDMA channel and enable interrupts
* @chan: Driver specific VDMA channel
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_chan_reset(struct xilinx_vdma_chan *chan)
{
int err;
/* Reset VDMA */
err = xilinx_vdma_reset(chan);
if (err)
return err;
/* Enable interrupts */
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR,
XILINX_VDMA_DMAXR_ALL_IRQ_MASK);
return 0;
}
/**
* xilinx_vdma_irq_handler - VDMA Interrupt handler
* @irq: IRQ number
* @data: Pointer to the Xilinx VDMA channel structure
*
* Return: IRQ_HANDLED/IRQ_NONE
*/
static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data)
{
struct xilinx_vdma_chan *chan = data;
u32 status;
/* Read the status and ack the interrupts. */
status = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR);
if (!(status & XILINX_VDMA_DMAXR_ALL_IRQ_MASK))
return IRQ_NONE;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMASR,
status & XILINX_VDMA_DMAXR_ALL_IRQ_MASK);
if (status & XILINX_VDMA_DMASR_ERR_IRQ) {
/*
* An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
* error is recoverable, ignore it. Otherwise flag the error.
*
* Only recoverable errors can be cleared in the DMASR register,
* make sure not to write to other error bits to 1.
*/
u32 errors = status & XILINX_VDMA_DMASR_ALL_ERR_MASK;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMASR,
errors & XILINX_VDMA_DMASR_ERR_RECOVER_MASK);
if (!chan->flush_on_fsync ||
(errors & ~XILINX_VDMA_DMASR_ERR_RECOVER_MASK)) {
dev_err(chan->dev,
"Channel %p has errors %x, cdr %x tdr %x\n",
chan, errors,
vdma_ctrl_read(chan, XILINX_VDMA_REG_CURDESC),
vdma_ctrl_read(chan, XILINX_VDMA_REG_TAILDESC));
chan->err = true;
}
}
if (status & XILINX_VDMA_DMASR_DLY_CNT_IRQ) {
/*
* Device takes too long to do the transfer when user requires
* responsiveness.
*/
dev_dbg(chan->dev, "Inter-packet latency too long\n");
}
if (status & XILINX_VDMA_DMASR_FRM_CNT_IRQ) {
xilinx_vdma_complete_descriptor(chan);
xilinx_vdma_start_transfer(chan);
}
tasklet_schedule(&chan->tasklet);
return IRQ_HANDLED;
}
/**
* xilinx_vdma_tx_submit - Submit DMA transaction
* @tx: Async transaction descriptor
*
* Return: cookie value on success and failure value on error
*/
static dma_cookie_t xilinx_vdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct xilinx_vdma_tx_descriptor *desc = to_vdma_tx_descriptor(tx);
struct xilinx_vdma_chan *chan = to_xilinx_chan(tx->chan);
dma_cookie_t cookie;
unsigned long flags;
int err;
if (chan->err) {
/*
* If reset fails, need to hard reset the system.
* Channel is no longer functional
*/
err = xilinx_vdma_chan_reset(chan);
if (err < 0)
return err;
}
spin_lock_irqsave(&chan->lock, flags);
cookie = dma_cookie_assign(tx);
/* Append the transaction to the pending transactions queue. */
list_add_tail(&desc->node, &chan->pending_list);
/* Free the allocated desc */
chan->allocated_desc = NULL;
spin_unlock_irqrestore(&chan->lock, flags);
return cookie;
}
/**
* xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a
* DMA_SLAVE transaction
* @dchan: DMA channel
* @xt: Interleaved template pointer
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
struct dma_interleaved_template *xt,
unsigned long flags)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_vdma_tx_descriptor *desc;
struct xilinx_vdma_tx_segment *segment, *prev = NULL;
struct xilinx_vdma_desc_hw *hw;
if (!is_slave_direction(xt->dir))
return NULL;
if (!xt->numf || !xt->sgl[0].size)
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_vdma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_vdma_tx_submit;
async_tx_ack(&desc->async_tx);
/* Allocate the link descriptor from DMA pool */
segment = xilinx_vdma_alloc_tx_segment(chan);
if (!segment)
goto error;
/* Fill in the hardware descriptor */
hw = &segment->hw;
hw->vsize = xt->numf;
hw->hsize = xt->sgl[0].size;
hw->stride = xt->sgl[0].icg <<
XILINX_VDMA_FRMDLY_STRIDE_STRIDE_SHIFT;
hw->stride |= chan->config.frm_dly <<
XILINX_VDMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
if (xt->dir != DMA_MEM_TO_DEV)
hw->buf_addr = xt->dst_start;
else
hw->buf_addr = xt->src_start;
/* Link the previous next descriptor to current */
prev = list_last_entry(&desc->segments,
struct xilinx_vdma_tx_segment, node);
prev->hw.next_desc = segment->phys;
/* Insert the segment into the descriptor segments list. */
list_add_tail(&segment->node, &desc->segments);
prev = segment;
/* Link the last hardware descriptor with the first. */
segment = list_first_entry(&desc->segments,
struct xilinx_vdma_tx_segment, node);
prev->hw.next_desc = segment->phys;
return &desc->async_tx;
error:
xilinx_vdma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_vdma_terminate_all - Halt the channel and free descriptors
* @chan: Driver specific VDMA Channel pointer
*/
static void xilinx_vdma_terminate_all(struct xilinx_vdma_chan *chan)
{
/* Halt the DMA engine */
xilinx_vdma_halt(chan);
/* Remove and free all of the descriptors in the lists */
xilinx_vdma_free_descriptors(chan);
}
/**
* xilinx_vdma_channel_set_config - Configure VDMA channel
* Run-time configuration for Axi VDMA, supports:
* . halt the channel
* . configure interrupt coalescing and inter-packet delay threshold
* . start/stop parking
* . enable genlock
*
* @dchan: DMA channel
* @cfg: VDMA device configuration pointer
*
* Return: '0' on success and failure value on error
*/
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
u32 dmacr;
if (cfg->reset)
return xilinx_vdma_chan_reset(chan);
dmacr = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR);
chan->config.frm_dly = cfg->frm_dly;
chan->config.park = cfg->park;
/* genlock settings */
chan->config.gen_lock = cfg->gen_lock;
chan->config.master = cfg->master;
if (cfg->gen_lock && chan->genlock) {
dmacr |= XILINX_VDMA_DMACR_GENLOCK_EN;
dmacr |= cfg->master << XILINX_VDMA_DMACR_MASTER_SHIFT;
}
chan->config.frm_cnt_en = cfg->frm_cnt_en;
if (cfg->park)
chan->config.park_frm = cfg->park_frm;
else
chan->config.park_frm = -1;
chan->config.coalesc = cfg->coalesc;
chan->config.delay = cfg->delay;
if (cfg->coalesc <= XILINX_VDMA_DMACR_FRAME_COUNT_MAX) {
dmacr |= cfg->coalesc << XILINX_VDMA_DMACR_FRAME_COUNT_SHIFT;
chan->config.coalesc = cfg->coalesc;
}
if (cfg->delay <= XILINX_VDMA_DMACR_DELAY_MAX) {
dmacr |= cfg->delay << XILINX_VDMA_DMACR_DELAY_SHIFT;
chan->config.delay = cfg->delay;
}
/* FSync Source selection */
dmacr &= ~XILINX_VDMA_DMACR_FSYNCSRC_MASK;
dmacr |= cfg->ext_fsync << XILINX_VDMA_DMACR_FSYNCSRC_SHIFT;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMACR, dmacr);
return 0;
}
EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
/**
* xilinx_vdma_device_control - Configure DMA channel of the device
* @dchan: DMA Channel pointer
* @cmd: DMA control command
* @arg: Channel configuration
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_device_control(struct dma_chan *dchan,
enum dma_ctrl_cmd cmd, unsigned long arg)
{
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan);
if (cmd != DMA_TERMINATE_ALL)
return -ENXIO;
xilinx_vdma_terminate_all(chan);
return 0;
}
/* -----------------------------------------------------------------------------
* Probe and remove
*/
/**
* xilinx_vdma_chan_remove - Per Channel remove function
* @chan: Driver specific VDMA channel
*/
static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan)
{
/* Disable all interrupts */
vdma_ctrl_clr(chan, XILINX_VDMA_REG_DMACR,
XILINX_VDMA_DMAXR_ALL_IRQ_MASK);
if (chan->irq > 0)
free_irq(chan->irq, chan);
tasklet_kill(&chan->tasklet);
list_del(&chan->common.device_node);
}
/**
* xilinx_vdma_chan_probe - Per Channel Probing
* It get channel features from the device tree entry and
* initialize special channel handling routines
*
* @xdev: Driver specific device structure
* @node: Device node
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
struct device_node *node)
{
struct xilinx_vdma_chan *chan;
bool has_dre = false;
u32 value, width;
int err;
/* Allocate and initialize the channel structure */
chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->dev = xdev->dev;
chan->xdev = xdev;
chan->has_sg = xdev->has_sg;
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->pending_list);
INIT_LIST_HEAD(&chan->done_list);
/* Retrieve the channel properties from the device tree */
has_dre = of_property_read_bool(node, "xlnx,include-dre");
chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode");
err = of_property_read_u32(node, "xlnx,datawidth", &value);
if (err) {
dev_err(xdev->dev, "missing xlnx,datawidth property\n");
return err;
}
width = value >> 3; /* Convert bits to bytes */
/* If data width is greater than 8 bytes, DRE is not in hw */
if (width > 8)
has_dre = false;
if (!has_dre)
xdev->common.copy_align = fls(width - 1);
if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel")) {
chan->direction = DMA_MEM_TO_DEV;
chan->id = 0;
chan->ctrl_offset = XILINX_VDMA_MM2S_CTRL_OFFSET;
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
if (xdev->flush_on_fsync == XILINX_VDMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_VDMA_FLUSH_MM2S)
chan->flush_on_fsync = true;
} else if (of_device_is_compatible(node,
"xlnx,axi-vdma-s2mm-channel")) {
chan->direction = DMA_DEV_TO_MEM;
chan->id = 1;
chan->ctrl_offset = XILINX_VDMA_S2MM_CTRL_OFFSET;
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
if (xdev->flush_on_fsync == XILINX_VDMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_VDMA_FLUSH_S2MM)
chan->flush_on_fsync = true;
} else {
dev_err(xdev->dev, "Invalid channel compatible node\n");
return -EINVAL;
}
/* Request the interrupt */
chan->irq = irq_of_parse_and_map(node, 0);
err = request_irq(chan->irq, xilinx_vdma_irq_handler, IRQF_SHARED,
"xilinx-vdma-controller", chan);
if (err) {
dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
return err;
}
/* Initialize the tasklet */
tasklet_init(&chan->tasklet, xilinx_vdma_do_tasklet,
(unsigned long)chan);
/*
* Initialize the DMA channel and add it to the DMA engine channels
* list.
*/
chan->common.device = &xdev->common;
list_add_tail(&chan->common.device_node, &xdev->common.channels);
xdev->chan[chan->id] = chan;
/* Reset the channel */
err = xilinx_vdma_chan_reset(chan);
if (err < 0) {
dev_err(xdev->dev, "Reset channel failed\n");
return err;
}
return 0;
}
/**
* of_dma_xilinx_xlate - Translation function
* @dma_spec: Pointer to DMA specifier as found in the device tree
* @ofdma: Pointer to DMA controller data
*
* Return: DMA channel pointer on success and NULL on error
*/
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct xilinx_vdma_device *xdev = ofdma->of_dma_data;
int chan_id = dma_spec->args[0];
if (chan_id >= XILINX_VDMA_MAX_CHANS_PER_DEVICE)
return NULL;
return dma_get_slave_channel(&xdev->chan[chan_id]->common);
}
/**
* xilinx_vdma_probe - Driver probe function
* @pdev: Pointer to the platform_device structure
*
* Return: '0' on success and failure value on error
*/
static int xilinx_vdma_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct xilinx_vdma_device *xdev;
struct device_node *child;
struct resource *io;
u32 num_frames;
int i, err;
/* Allocate and initialize the DMA engine structure */
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
if (!xdev)
return -ENOMEM;
xdev->dev = &pdev->dev;
/* Request and map I/O memory */
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xdev->regs = devm_ioremap_resource(&pdev->dev, io);
if (IS_ERR(xdev->regs))
return PTR_ERR(xdev->regs);
/* Retrieve the DMA engine properties from the device tree */
xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg");
err = of_property_read_u32(node, "xlnx,num-fstores", &num_frames);
if (err < 0) {
dev_err(xdev->dev, "missing xlnx,num-fstores property\n");
return err;
}
err = of_property_read_u32(node, "xlnx,flush-fsync",
&xdev->flush_on_fsync);
if (err < 0)
dev_warn(xdev->dev, "missing xlnx,flush-fsync property\n");
/* Initialize the DMA engine */
xdev->common.dev = &pdev->dev;
INIT_LIST_HEAD(&xdev->common.channels);
dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
xdev->common.device_alloc_chan_resources =
xilinx_vdma_alloc_chan_resources;
xdev->common.device_free_chan_resources =
xilinx_vdma_free_chan_resources;
xdev->common.device_prep_interleaved_dma =
xilinx_vdma_dma_prep_interleaved;
xdev->common.device_control = xilinx_vdma_device_control;
xdev->common.device_tx_status = xilinx_vdma_tx_status;
xdev->common.device_issue_pending = xilinx_vdma_issue_pending;
platform_set_drvdata(pdev, xdev);
/* Initialize the channels */
for_each_child_of_node(node, child) {
err = xilinx_vdma_chan_probe(xdev, child);
if (err < 0)
goto error;
}
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++)
if (xdev->chan[i])
xdev->chan[i]->num_frms = num_frames;
/* Register the DMA engine with the core */
dma_async_device_register(&xdev->common);
err = of_dma_controller_register(node, of_dma_xilinx_xlate,
xdev);
if (err < 0) {
dev_err(&pdev->dev, "Unable to register DMA to DT\n");
dma_async_device_unregister(&xdev->common);
goto error;
}
dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n");
return 0;
error:
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++)
if (xdev->chan[i])
xilinx_vdma_chan_remove(xdev->chan[i]);
return err;
}
/**
* xilinx_vdma_remove - Driver remove function
* @pdev: Pointer to the platform_device structure
*
* Return: Always '0'
*/
static int xilinx_vdma_remove(struct platform_device *pdev)
{
struct xilinx_vdma_device *xdev = platform_get_drvdata(pdev);
int i;
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&xdev->common);
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++)
if (xdev->chan[i])
xilinx_vdma_chan_remove(xdev->chan[i]);
return 0;
}
static const struct of_device_id xilinx_vdma_of_ids[] = {
{ .compatible = "xlnx,axi-vdma-1.00.a",},
{}
};
static struct platform_driver xilinx_vdma_driver = {
.driver = {
.name = "xilinx-vdma",
.owner = THIS_MODULE,
.of_match_table = xilinx_vdma_of_ids,
},
.probe = xilinx_vdma_probe,
.remove = xilinx_vdma_remove,
};
module_platform_driver(xilinx_vdma_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx VDMA driver");
MODULE_LICENSE("GPL v2");
/*
* Xilinx DMA Engine drivers support header file
*
* Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#ifndef __DMA_XILINX_DMA_H
#define __DMA_XILINX_DMA_H
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
/**
* struct xilinx_vdma_config - VDMA Configuration structure
* @frm_dly: Frame delay
* @gen_lock: Whether in gen-lock mode
* @master: Master that it syncs to
* @frm_cnt_en: Enable frame count enable
* @park: Whether wants to park
* @park_frm: Frame to park on
* @coalesc: Interrupt coalescing threshold
* @delay: Delay counter
* @reset: Reset Channel
* @ext_fsync: External Frame Sync source
*/
struct xilinx_vdma_config {
int frm_dly;
int gen_lock;
int master;
int frm_cnt_en;
int park;
int park_frm;
int coalesc;
int delay;
int reset;
int ext_fsync;
};
int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg);
#endif
......@@ -292,7 +292,7 @@ struct dma_chan_dev {
};
/**
* enum dma_slave_buswidth - defines bus with of the DMA slave
* enum dma_slave_buswidth - defines bus width of the DMA slave
* device, source or target buses
*/
enum dma_slave_buswidth {
......
......@@ -54,6 +54,7 @@ struct shdma_desc {
dma_cookie_t cookie;
int chunks;
int mark;
bool cyclic; /* used as cyclic transfer */
};
struct shdma_chan {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment