Commit 8a02631a authored by Peter Zijlstra's avatar Peter Zijlstra Committed by Ingo Molnar

perf stat: More advanced variance computation

Use the more advanced single pass variance algorithm outlined
on the wikipedia page. This is numerically more stable for
larger sample sets.
Signed-off-by: default avatarPeter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parent 63d40deb
......@@ -79,28 +79,29 @@ static int event_scaled[MAX_COUNTERS];
struct stats
{
double sum;
double sum_sq;
double n, mean, M2;
};
static void update_stats(struct stats *stats, u64 val)
{
double sq = val;
double delta;
stats->sum += val;
stats->sum_sq += sq * sq;
stats->n++;
delta = val - stats->mean;
stats->mean += delta / stats->n;
stats->M2 += delta*(val - stats->mean);
}
static double avg_stats(struct stats *stats)
{
return stats->sum / run_count;
return stats->mean;
}
/*
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*
* (\Sum n_i^2) - ((\Sum n_i)^2)/n
* s^2 -------------------------------
* s^2 = -------------------------------
* n - 1
*
* http://en.wikipedia.org/wiki/Stddev
......@@ -114,9 +115,8 @@ static double avg_stats(struct stats *stats)
*/
static double stddev_stats(struct stats *stats)
{
double avg = stats->sum / run_count;
double variance = (stats->sum_sq - stats->sum*avg)/(run_count - 1);
double variance_mean = variance / run_count;
double variance = stats->M2 / (stats->n - 1);
double variance_mean = variance / stats->n;
return sqrt(variance_mean);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment