Commit 9494a8dd authored by Oded Gabbay's avatar Oded Gabbay Committed by Greg Kroah-Hartman

habanalabs: add h/w queues module

This patch adds the H/W queues module and the code to initialize Goya's
various compute and DMA engines and their queues.

Goya has 5 DMA channels, 8 TPC engines and a single MME engine. For each
channel/engine, there is a H/W queue logic which is used to pass commands
from the user to the H/W. That logic is called QMAN.

There are two types of QMANs: external and internal. The DMA QMANs are
considered external while the TPC and MME QMANs are considered internal.
For each external queue there is a completion queue, which is located on
the Host memory.

The differences between external and internal QMANs are:

1. The location of the queue's memory. External QMANs are located on the
   Host memory while internal QMANs are located on the on-chip memory.

2. The external QMAN write an entry to a completion queue and sends an
   MSI-X interrupt upon completion of a command buffer that was given to
   it. The internal QMAN doesn't do that.
Reviewed-by: default avatarMike Rapoport <rppt@linux.ibm.com>
Signed-off-by: default avatarOded Gabbay <oded.gabbay@gmail.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 839c4803
......@@ -5,7 +5,7 @@
obj-m := habanalabs.o
habanalabs-y := habanalabs_drv.o device.o context.o asid.o habanalabs_ioctl.o \
command_buffer.o
command_buffer.o hw_queue.o irq.o
include $(src)/goya/Makefile
habanalabs-y += $(HL_GOYA_FILES)
......@@ -174,13 +174,23 @@ static int device_early_init(struct hl_device *hdev)
if (rc)
goto early_fini;
hdev->cq_wq = alloc_workqueue("hl-free-jobs", WQ_UNBOUND, 0);
if (hdev->cq_wq == NULL) {
dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
rc = -ENOMEM;
goto asid_fini;
}
hl_cb_mgr_init(&hdev->kernel_cb_mgr);
mutex_init(&hdev->fd_open_cnt_lock);
mutex_init(&hdev->send_cpu_message_lock);
atomic_set(&hdev->fd_open_cnt, 0);
return 0;
asid_fini:
hl_asid_fini(hdev);
early_fini:
if (hdev->asic_funcs->early_fini)
hdev->asic_funcs->early_fini(hdev);
......@@ -196,9 +206,12 @@ static int device_early_init(struct hl_device *hdev)
*/
static void device_early_fini(struct hl_device *hdev)
{
mutex_destroy(&hdev->send_cpu_message_lock);
hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr);
destroy_workqueue(hdev->cq_wq);
hl_asid_fini(hdev);
if (hdev->asic_funcs->early_fini)
......@@ -277,7 +290,7 @@ int hl_device_resume(struct hl_device *hdev)
*/
int hl_device_init(struct hl_device *hdev, struct class *hclass)
{
int rc;
int i, rc, cq_ready_cnt;
/* Create device */
rc = device_setup_cdev(hdev, hclass, hdev->id, &hl_ops);
......@@ -298,11 +311,48 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
if (rc)
goto early_fini;
/*
* Initialize the H/W queues. Must be done before hw_init, because
* there the addresses of the kernel queue are being written to the
* registers of the device
*/
rc = hl_hw_queues_create(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize kernel queues\n");
goto sw_fini;
}
/*
* Initialize the completion queues. Must be done before hw_init,
* because there the addresses of the completion queues are being
* passed as arguments to request_irq
*/
hdev->completion_queue =
kcalloc(hdev->asic_prop.completion_queues_count,
sizeof(*hdev->completion_queue), GFP_KERNEL);
if (!hdev->completion_queue) {
dev_err(hdev->dev, "failed to allocate completion queues\n");
rc = -ENOMEM;
goto hw_queues_destroy;
}
for (i = 0, cq_ready_cnt = 0;
i < hdev->asic_prop.completion_queues_count;
i++, cq_ready_cnt++) {
rc = hl_cq_init(hdev, &hdev->completion_queue[i], i);
if (rc) {
dev_err(hdev->dev,
"failed to initialize completion queue\n");
goto cq_fini;
}
}
/* Allocate the kernel context */
hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
if (!hdev->kernel_ctx) {
rc = -ENOMEM;
goto sw_fini;
goto cq_fini;
}
hdev->user_ctx = NULL;
......@@ -328,6 +378,14 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
hdev->disabled = false;
/* Check that the communication with the device is working */
rc = hdev->asic_funcs->test_queues(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to detect if device is alive\n");
rc = 0;
goto out_disabled;
}
dev_notice(hdev->dev,
"Successfully added device to habanalabs driver\n");
......@@ -339,6 +397,12 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
"kernel ctx is still alive on initialization failure\n");
free_ctx:
kfree(hdev->kernel_ctx);
cq_fini:
for (i = 0 ; i < cq_ready_cnt ; i++)
hl_cq_fini(hdev, &hdev->completion_queue[i]);
kfree(hdev->completion_queue);
hw_queues_destroy:
hl_hw_queues_destroy(hdev);
sw_fini:
hdev->asic_funcs->sw_fini(hdev);
early_fini:
......@@ -368,6 +432,7 @@ int hl_device_init(struct hl_device *hdev, struct class *hclass)
*/
void hl_device_fini(struct hl_device *hdev)
{
int i;
dev_info(hdev->dev, "Removing device\n");
/* Mark device as disabled */
......@@ -382,6 +447,12 @@ void hl_device_fini(struct hl_device *hdev)
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, true);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
hl_cq_fini(hdev, &hdev->completion_queue[i]);
kfree(hdev->completion_queue);
hl_hw_queues_destroy(hdev);
/* Call ASIC S/W finalize function */
hdev->asic_funcs->sw_fini(hdev);
......
......@@ -90,6 +90,26 @@
static void goya_get_fixed_properties(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int i;
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
prop->hw_queues_props[i].kmd_only = 0;
}
for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES ; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
prop->hw_queues_props[i].kmd_only = 1;
}
for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES +
NUMBER_OF_INT_HW_QUEUES; i++) {
prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
prop->hw_queues_props[i].kmd_only = 0;
}
for (; i < HL_MAX_QUEUES; i++)
prop->hw_queues_props[i].type = QUEUE_TYPE_NA;
prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
......@@ -118,6 +138,18 @@ static void goya_get_fixed_properties(struct hl_device *hdev)
prop->high_pll = PLL_HIGH_DEFAULT;
}
int goya_send_pci_access_msg(struct hl_device *hdev, u32 opcode)
{
struct armcp_packet pkt;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = opcode << ARMCP_PKT_CTL_OPCODE_SHIFT;
return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt,
sizeof(pkt), HL_DEVICE_TIMEOUT_USEC, NULL);
}
/*
* goya_pci_bars_map - Map PCI BARS of Goya device
*
......@@ -510,6 +542,8 @@ static int goya_sw_init(struct hl_device *hdev)
if (!goya)
return -ENOMEM;
goya->test_cpu_queue = goya_test_cpu_queue;
/* according to goya_init_iatu */
goya->ddr_bar_cur_addr = DRAM_PHYS_BASE;
hdev->asic_specific = goya;
......@@ -596,6 +630,311 @@ int goya_sw_fini(struct hl_device *hdev)
return 0;
}
static void goya_init_dma_qman(struct hl_device *hdev, int dma_id,
dma_addr_t bus_address)
{
struct goya_device *goya = hdev->asic_specific;
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u32 reg_off = dma_id * (mmDMA_QM_1_PQ_PI - mmDMA_QM_0_PQ_PI);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmDMA_QM_0_PQ_BASE_LO + reg_off, lower_32_bits(bus_address));
WREG32(mmDMA_QM_0_PQ_BASE_HI + reg_off, upper_32_bits(bus_address));
WREG32(mmDMA_QM_0_PQ_SIZE + reg_off, ilog2(HL_QUEUE_LENGTH));
WREG32(mmDMA_QM_0_PQ_PI + reg_off, 0);
WREG32(mmDMA_QM_0_PQ_CI + reg_off, 0);
WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmDMA_QM_0_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_DMA0_QM + dma_id);
/* PQ has buffer of 2 cache lines, while CQ has 8 lines */
WREG32(mmDMA_QM_0_PQ_CFG1 + reg_off, 0x00020002);
WREG32(mmDMA_QM_0_CQ_CFG1 + reg_off, 0x00080008);
if (dma_id == 0)
WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_FULLY_TRUSTED);
else
if (goya->hw_cap_initialized & HW_CAP_MMU)
WREG32(mmDMA_QM_0_GLBL_PROT + reg_off,
QMAN_DMA_PARTLY_TRUSTED);
else
WREG32(mmDMA_QM_0_GLBL_PROT + reg_off,
QMAN_DMA_FULLY_TRUSTED);
WREG32(mmDMA_QM_0_GLBL_ERR_CFG + reg_off, QMAN_DMA_ERR_MSG_EN);
WREG32(mmDMA_QM_0_GLBL_CFG0 + reg_off, QMAN_DMA_ENABLE);
}
static void goya_init_dma_ch(struct hl_device *hdev, int dma_id)
{
u32 gic_base_lo, gic_base_hi;
u64 sob_addr;
u32 reg_off = dma_id * (mmDMA_CH_1_CFG1 - mmDMA_CH_0_CFG1);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmDMA_CH_0_ERRMSG_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmDMA_CH_0_ERRMSG_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmDMA_CH_0_ERRMSG_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_DMA0_CH + dma_id);
if (dma_id) {
sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
(dma_id - 1) * 4;
WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO + reg_off,
lower_32_bits(sob_addr));
WREG32(mmDMA_CH_0_WR_COMP_ADDR_HI + reg_off,
upper_32_bits(sob_addr));
WREG32(mmDMA_CH_0_WR_COMP_WDATA + reg_off, 0x80000001);
}
}
/*
* goya_init_dma_qmans - Initialize QMAN DMA registers
*
* @hdev: pointer to hl_device structure
*
* Initialize the H/W registers of the QMAN DMA channels
*
*/
static void goya_init_dma_qmans(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
struct hl_hw_queue *q;
dma_addr_t bus_address;
int i;
if (goya->hw_cap_initialized & HW_CAP_DMA)
return;
q = &hdev->kernel_queues[0];
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++, q++) {
bus_address = q->bus_address +
hdev->asic_prop.host_phys_base_address;
goya_init_dma_qman(hdev, i, bus_address);
goya_init_dma_ch(hdev, i);
}
goya->hw_cap_initialized |= HW_CAP_DMA;
}
/*
* goya_disable_external_queues - Disable external queues
*
* @hdev: pointer to hl_device structure
*
*/
static void goya_disable_external_queues(struct hl_device *hdev)
{
WREG32(mmDMA_QM_0_GLBL_CFG0, 0);
WREG32(mmDMA_QM_1_GLBL_CFG0, 0);
WREG32(mmDMA_QM_2_GLBL_CFG0, 0);
WREG32(mmDMA_QM_3_GLBL_CFG0, 0);
WREG32(mmDMA_QM_4_GLBL_CFG0, 0);
}
static int goya_stop_queue(struct hl_device *hdev, u32 cfg_reg,
u32 cp_sts_reg, u32 glbl_sts0_reg)
{
int rc;
u32 status;
/* use the values of TPC0 as they are all the same*/
WREG32(cfg_reg, 1 << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
status = RREG32(cp_sts_reg);
if (status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK) {
rc = hl_poll_timeout(
hdev,
cp_sts_reg,
status,
!(status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK),
1000,
QMAN_FENCE_TIMEOUT_USEC);
/* if QMAN is stuck in fence no need to check for stop */
if (rc)
return 0;
}
rc = hl_poll_timeout(
hdev,
glbl_sts0_reg,
status,
(status & TPC0_QM_GLBL_STS0_CP_IS_STOP_MASK),
1000,
QMAN_STOP_TIMEOUT_USEC);
if (rc) {
dev_err(hdev->dev,
"Timeout while waiting for QMAN to stop\n");
return -EINVAL;
}
return 0;
}
/*
* goya_stop_external_queues - Stop external queues
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
static int goya_stop_external_queues(struct hl_device *hdev)
{
int rc, retval = 0;
rc = goya_stop_queue(hdev,
mmDMA_QM_0_GLBL_CFG1,
mmDMA_QM_0_CP_STS,
mmDMA_QM_0_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 0\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_1_GLBL_CFG1,
mmDMA_QM_1_CP_STS,
mmDMA_QM_1_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 1\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_2_GLBL_CFG1,
mmDMA_QM_2_CP_STS,
mmDMA_QM_2_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 2\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_3_GLBL_CFG1,
mmDMA_QM_3_CP_STS,
mmDMA_QM_3_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 3\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmDMA_QM_4_GLBL_CFG1,
mmDMA_QM_4_CP_STS,
mmDMA_QM_4_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop DMA QMAN 4\n");
retval = -EIO;
}
return retval;
}
static void goya_resume_external_queues(struct hl_device *hdev)
{
WREG32(mmDMA_QM_0_GLBL_CFG1, 0);
WREG32(mmDMA_QM_1_GLBL_CFG1, 0);
WREG32(mmDMA_QM_2_GLBL_CFG1, 0);
WREG32(mmDMA_QM_3_GLBL_CFG1, 0);
WREG32(mmDMA_QM_4_GLBL_CFG1, 0);
}
/*
* goya_init_cpu_queues - Initialize PQ/CQ/EQ of CPU
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
int goya_init_cpu_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
dma_addr_t bus_address;
u32 status;
struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ];
int err;
if (!hdev->cpu_queues_enable)
return 0;
if (goya->hw_cap_initialized & HW_CAP_CPU_Q)
return 0;
bus_address = cpu_pq->bus_address +
hdev->asic_prop.host_phys_base_address;
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_0, lower_32_bits(bus_address));
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_1, upper_32_bits(bus_address));
bus_address = hdev->cpu_accessible_dma_address +
hdev->asic_prop.host_phys_base_address;
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_8, lower_32_bits(bus_address));
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_9, upper_32_bits(bus_address));
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_5, HL_QUEUE_SIZE_IN_BYTES);
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_10, CPU_ACCESSIBLE_MEM_SIZE);
/* Used for EQ CI */
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_6, 0);
WREG32(mmCPU_IF_PF_PQ_PI, 0);
WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_7, PQ_INIT_STATUS_READY_FOR_CP);
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_PI_UPDATE);
err = hl_poll_timeout(
hdev,
mmPSOC_GLOBAL_CONF_SCRATCHPAD_7,
status,
(status == PQ_INIT_STATUS_READY_FOR_HOST),
1000,
GOYA_CPU_TIMEOUT_USEC);
if (err) {
dev_err(hdev->dev,
"Failed to communicate with ARM CPU (ArmCP timeout)\n");
return -EIO;
}
goya->hw_cap_initialized |= HW_CAP_CPU_Q;
return 0;
}
static void goya_set_pll_refclk(struct hl_device *hdev)
{
WREG32(mmCPU_PLL_DIV_SEL_0, 0x0);
......@@ -1023,137 +1362,637 @@ static void goya_init_golden_registers(struct hl_device *hdev)
goya->hw_cap_initialized |= HW_CAP_GOLDEN;
}
/*
* goya_push_fw_to_device - Push FW code to device
*
* @hdev: pointer to hl_device structure
*
* Copy fw code from firmware file to device memory.
* Returns 0 on success
*
*/
static int goya_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst)
static void goya_init_mme_qman(struct hl_device *hdev)
{
const struct firmware *fw;
const u64 *fw_data;
size_t fw_size, i;
int rc;
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u64 qman_base_addr;
rc = request_firmware(&fw, fw_name, hdev->dev);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
if (rc) {
dev_err(hdev->dev, "Failed to request %s\n", fw_name);
goto out;
}
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
fw_size = fw->size;
if ((fw_size % 4) != 0) {
dev_err(hdev->dev, "illegal %s firmware size %zu\n",
fw_name, fw_size);
rc = -EINVAL;
goto out;
}
qman_base_addr = hdev->asic_prop.sram_base_address +
MME_QMAN_BASE_OFFSET;
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
WREG32(mmMME_QM_PQ_BASE_LO, lower_32_bits(qman_base_addr));
WREG32(mmMME_QM_PQ_BASE_HI, upper_32_bits(qman_base_addr));
WREG32(mmMME_QM_PQ_SIZE, ilog2(MME_QMAN_LENGTH));
WREG32(mmMME_QM_PQ_PI, 0);
WREG32(mmMME_QM_PQ_CI, 0);
WREG32(mmMME_QM_CP_LDMA_SRC_BASE_LO_OFFSET, 0x10C0);
WREG32(mmMME_QM_CP_LDMA_SRC_BASE_HI_OFFSET, 0x10C4);
WREG32(mmMME_QM_CP_LDMA_TSIZE_OFFSET, 0x10C8);
WREG32(mmMME_QM_CP_LDMA_COMMIT_OFFSET, 0x10CC);
fw_data = (const u64 *) fw->data;
WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_LO, so_base_lo);
WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_HI, so_base_hi);
if ((fw->size % 8) != 0)
fw_size -= 8;
/* QMAN CQ has 8 cache lines */
WREG32(mmMME_QM_CQ_CFG1, 0x00080008);
for (i = 0 ; i < fw_size ; i += 8, fw_data++, dst += 8) {
if (!(i & (0x80000 - 1))) {
dev_dbg(hdev->dev,
"copied so far %zu out of %zu for %s firmware",
i, fw_size, fw_name);
usleep_range(20, 100);
}
WREG32(mmMME_QM_GLBL_ERR_ADDR_LO, gic_base_lo);
WREG32(mmMME_QM_GLBL_ERR_ADDR_HI, gic_base_hi);
writeq(*fw_data, dst);
}
WREG32(mmMME_QM_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_QM);
if ((fw->size % 8) != 0)
writel(*(const u32 *) fw_data, dst);
WREG32(mmMME_QM_GLBL_ERR_CFG, QMAN_MME_ERR_MSG_EN);
out:
release_firmware(fw);
return rc;
WREG32(mmMME_QM_GLBL_PROT, QMAN_MME_ERR_PROT);
WREG32(mmMME_QM_GLBL_CFG0, QMAN_MME_ENABLE);
}
static int goya_pldm_init_cpu(struct hl_device *hdev)
static void goya_init_mme_cmdq(struct hl_device *hdev)
{
char fw_name[200];
void __iomem *dst;
u32 val, unit_rst_val;
int rc;
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u64 qman_base_addr;
/* Must initialize SRAM scrambler before pushing u-boot to SRAM */
goya_init_golden_registers(hdev);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
/* Put ARM cores into reset */
WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL, CPU_RESET_ASSERT);
val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
/* Reset the CA53 MACRO */
unit_rst_val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, CA53_RESET);
val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, unit_rst_val);
val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
qman_base_addr = hdev->asic_prop.sram_base_address +
MME_QMAN_BASE_OFFSET;
snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-u-boot.bin");
dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + UBOOT_FW_OFFSET;
rc = goya_push_fw_to_device(hdev, fw_name, dst);
if (rc)
return rc;
WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_LO, so_base_lo);
WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_HI, so_base_hi);
snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-fit.itb");
dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET;
rc = goya_push_fw_to_device(hdev, fw_name, dst);
if (rc)
return rc;
/* CMDQ CQ has 20 cache lines */
WREG32(mmMME_CMDQ_CQ_CFG1, 0x00140014);
WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_FIT_RDY);
WREG32(mmPSOC_GLOBAL_CONF_WARM_REBOOT, CPU_BOOT_STATUS_NA);
WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_LO, gic_base_lo);
WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_HI, gic_base_hi);
WREG32(mmCPU_CA53_CFG_RST_ADDR_LSB_0,
lower_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
WREG32(mmCPU_CA53_CFG_RST_ADDR_MSB_0,
upper_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
WREG32(mmMME_CMDQ_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_CMDQ);
/* Release ARM core 0 from reset */
WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL,
CPU_RESET_CORE0_DEASSERT);
val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
WREG32(mmMME_CMDQ_GLBL_ERR_CFG, CMDQ_MME_ERR_MSG_EN);
return 0;
WREG32(mmMME_CMDQ_GLBL_PROT, CMDQ_MME_ERR_PROT);
WREG32(mmMME_CMDQ_GLBL_CFG0, CMDQ_MME_ENABLE);
}
/*
* FW component passes an offset from SRAM_BASE_ADDR in SCRATCHPAD_xx.
* The version string should be located by that offset.
*/
static void goya_read_device_fw_version(struct hl_device *hdev,
enum goya_fw_component fwc)
static void goya_init_mme_qmans(struct hl_device *hdev)
{
const char *name;
u32 ver_off;
char *dest;
struct goya_device *goya = hdev->asic_specific;
u32 so_base_lo, so_base_hi;
switch (fwc) {
case FW_COMP_UBOOT:
ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_29);
dest = hdev->asic_prop.uboot_ver;
name = "U-Boot";
break;
case FW_COMP_PREBOOT:
ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_28);
dest = hdev->asic_prop.preboot_ver;
name = "Preboot";
break;
default:
if (goya->hw_cap_initialized & HW_CAP_MME)
return;
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
WREG32(mmMME_SM_BASE_ADDRESS_LOW, so_base_lo);
WREG32(mmMME_SM_BASE_ADDRESS_HIGH, so_base_hi);
goya_init_mme_qman(hdev);
goya_init_mme_cmdq(hdev);
goya->hw_cap_initialized |= HW_CAP_MME;
}
static void goya_init_tpc_qman(struct hl_device *hdev, u32 base_off, int tpc_id)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u64 qman_base_addr;
u32 reg_off = tpc_id * (mmTPC1_QM_PQ_PI - mmTPC0_QM_PQ_PI);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
qman_base_addr = hdev->asic_prop.sram_base_address + base_off;
WREG32(mmTPC0_QM_PQ_BASE_LO + reg_off, lower_32_bits(qman_base_addr));
WREG32(mmTPC0_QM_PQ_BASE_HI + reg_off, upper_32_bits(qman_base_addr));
WREG32(mmTPC0_QM_PQ_SIZE + reg_off, ilog2(TPC_QMAN_LENGTH));
WREG32(mmTPC0_QM_PQ_PI + reg_off, 0);
WREG32(mmTPC0_QM_PQ_CI + reg_off, 0);
WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET + reg_off, 0x10C0);
WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_HI_OFFSET + reg_off, 0x10C4);
WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET + reg_off, 0x10C8);
WREG32(mmTPC0_QM_CP_LDMA_COMMIT_OFFSET + reg_off, 0x10CC);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmTPC0_QM_CQ_CFG1 + reg_off, 0x00080008);
WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmTPC0_QM_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_TPC0_QM + tpc_id);
WREG32(mmTPC0_QM_GLBL_ERR_CFG + reg_off, QMAN_TPC_ERR_MSG_EN);
WREG32(mmTPC0_QM_GLBL_PROT + reg_off, QMAN_TPC_ERR_PROT);
WREG32(mmTPC0_QM_GLBL_CFG0 + reg_off, QMAN_TPC_ENABLE);
}
static void goya_init_tpc_cmdq(struct hl_device *hdev, int tpc_id)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 gic_base_lo, gic_base_hi;
u32 reg_off = tpc_id * (mmTPC1_CMDQ_CQ_CFG1 - mmTPC0_CMDQ_CQ_CFG1);
mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
gic_base_lo =
lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
gic_base_hi =
upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
WREG32(mmTPC0_CMDQ_CQ_CFG1 + reg_off, 0x00140014);
WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
WREG32(mmTPC0_CMDQ_GLBL_ERR_WDATA + reg_off,
GOYA_ASYNC_EVENT_ID_TPC0_CMDQ + tpc_id);
WREG32(mmTPC0_CMDQ_GLBL_ERR_CFG + reg_off, CMDQ_TPC_ERR_MSG_EN);
WREG32(mmTPC0_CMDQ_GLBL_PROT + reg_off, CMDQ_TPC_ERR_PROT);
WREG32(mmTPC0_CMDQ_GLBL_CFG0 + reg_off, CMDQ_TPC_ENABLE);
}
static void goya_init_tpc_qmans(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
u32 so_base_lo, so_base_hi;
u32 cfg_off = mmTPC1_CFG_SM_BASE_ADDRESS_LOW -
mmTPC0_CFG_SM_BASE_ADDRESS_LOW;
int i;
if (goya->hw_cap_initialized & HW_CAP_TPC)
return;
so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
for (i = 0 ; i < TPC_MAX_NUM ; i++) {
WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_LOW + i * cfg_off,
so_base_lo);
WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + i * cfg_off,
so_base_hi);
}
goya_init_tpc_qman(hdev, TPC0_QMAN_BASE_OFFSET, 0);
goya_init_tpc_qman(hdev, TPC1_QMAN_BASE_OFFSET, 1);
goya_init_tpc_qman(hdev, TPC2_QMAN_BASE_OFFSET, 2);
goya_init_tpc_qman(hdev, TPC3_QMAN_BASE_OFFSET, 3);
goya_init_tpc_qman(hdev, TPC4_QMAN_BASE_OFFSET, 4);
goya_init_tpc_qman(hdev, TPC5_QMAN_BASE_OFFSET, 5);
goya_init_tpc_qman(hdev, TPC6_QMAN_BASE_OFFSET, 6);
goya_init_tpc_qman(hdev, TPC7_QMAN_BASE_OFFSET, 7);
for (i = 0 ; i < TPC_MAX_NUM ; i++)
goya_init_tpc_cmdq(hdev, i);
goya->hw_cap_initialized |= HW_CAP_TPC;
}
/*
* goya_disable_internal_queues - Disable internal queues
*
* @hdev: pointer to hl_device structure
*
*/
static void goya_disable_internal_queues(struct hl_device *hdev)
{
WREG32(mmMME_QM_GLBL_CFG0, 0);
WREG32(mmMME_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC0_QM_GLBL_CFG0, 0);
WREG32(mmTPC0_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC1_QM_GLBL_CFG0, 0);
WREG32(mmTPC1_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC2_QM_GLBL_CFG0, 0);
WREG32(mmTPC2_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC3_QM_GLBL_CFG0, 0);
WREG32(mmTPC3_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC4_QM_GLBL_CFG0, 0);
WREG32(mmTPC4_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC5_QM_GLBL_CFG0, 0);
WREG32(mmTPC5_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC6_QM_GLBL_CFG0, 0);
WREG32(mmTPC6_CMDQ_GLBL_CFG0, 0);
WREG32(mmTPC7_QM_GLBL_CFG0, 0);
WREG32(mmTPC7_CMDQ_GLBL_CFG0, 0);
}
/*
* goya_stop_internal_queues - Stop internal queues
*
* @hdev: pointer to hl_device structure
*
* Returns 0 on success
*
*/
static int goya_stop_internal_queues(struct hl_device *hdev)
{
int rc, retval = 0;
/*
* Each queue (QMAN) is a separate H/W logic. That means that each
* QMAN can be stopped independently and failure to stop one does NOT
* mandate we should not try to stop other QMANs
*/
rc = goya_stop_queue(hdev,
mmMME_QM_GLBL_CFG1,
mmMME_QM_CP_STS,
mmMME_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop MME QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmMME_CMDQ_GLBL_CFG1,
mmMME_CMDQ_CP_STS,
mmMME_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop MME CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC0_QM_GLBL_CFG1,
mmTPC0_QM_CP_STS,
mmTPC0_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 0 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC0_CMDQ_GLBL_CFG1,
mmTPC0_CMDQ_CP_STS,
mmTPC0_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 0 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC1_QM_GLBL_CFG1,
mmTPC1_QM_CP_STS,
mmTPC1_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 1 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC1_CMDQ_GLBL_CFG1,
mmTPC1_CMDQ_CP_STS,
mmTPC1_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 1 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC2_QM_GLBL_CFG1,
mmTPC2_QM_CP_STS,
mmTPC2_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 2 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC2_CMDQ_GLBL_CFG1,
mmTPC2_CMDQ_CP_STS,
mmTPC2_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 2 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC3_QM_GLBL_CFG1,
mmTPC3_QM_CP_STS,
mmTPC3_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 3 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC3_CMDQ_GLBL_CFG1,
mmTPC3_CMDQ_CP_STS,
mmTPC3_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 3 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC4_QM_GLBL_CFG1,
mmTPC4_QM_CP_STS,
mmTPC4_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 4 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC4_CMDQ_GLBL_CFG1,
mmTPC4_CMDQ_CP_STS,
mmTPC4_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 4 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC5_QM_GLBL_CFG1,
mmTPC5_QM_CP_STS,
mmTPC5_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 5 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC5_CMDQ_GLBL_CFG1,
mmTPC5_CMDQ_CP_STS,
mmTPC5_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 5 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC6_QM_GLBL_CFG1,
mmTPC6_QM_CP_STS,
mmTPC6_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 6 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC6_CMDQ_GLBL_CFG1,
mmTPC6_CMDQ_CP_STS,
mmTPC6_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 6 CMDQ\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC7_QM_GLBL_CFG1,
mmTPC7_QM_CP_STS,
mmTPC7_QM_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 7 QMAN\n");
retval = -EIO;
}
rc = goya_stop_queue(hdev,
mmTPC7_CMDQ_GLBL_CFG1,
mmTPC7_CMDQ_CP_STS,
mmTPC7_CMDQ_GLBL_STS0);
if (rc) {
dev_err(hdev->dev, "failed to stop TPC 7 CMDQ\n");
retval = -EIO;
}
return retval;
}
static void goya_resume_internal_queues(struct hl_device *hdev)
{
WREG32(mmMME_QM_GLBL_CFG1, 0);
WREG32(mmMME_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC0_QM_GLBL_CFG1, 0);
WREG32(mmTPC0_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC1_QM_GLBL_CFG1, 0);
WREG32(mmTPC1_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC2_QM_GLBL_CFG1, 0);
WREG32(mmTPC2_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC3_QM_GLBL_CFG1, 0);
WREG32(mmTPC3_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC4_QM_GLBL_CFG1, 0);
WREG32(mmTPC4_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC5_QM_GLBL_CFG1, 0);
WREG32(mmTPC5_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC6_QM_GLBL_CFG1, 0);
WREG32(mmTPC6_CMDQ_GLBL_CFG1, 0);
WREG32(mmTPC7_QM_GLBL_CFG1, 0);
WREG32(mmTPC7_CMDQ_GLBL_CFG1, 0);
}
/*
* goya_push_fw_to_device - Push FW code to device
*
* @hdev: pointer to hl_device structure
*
* Copy fw code from firmware file to device memory.
* Returns 0 on success
*
*/
static int goya_push_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst)
{
const struct firmware *fw;
const u64 *fw_data;
size_t fw_size, i;
int rc;
rc = request_firmware(&fw, fw_name, hdev->dev);
if (rc) {
dev_err(hdev->dev, "Failed to request %s\n", fw_name);
goto out;
}
fw_size = fw->size;
if ((fw_size % 4) != 0) {
dev_err(hdev->dev, "illegal %s firmware size %zu\n",
fw_name, fw_size);
rc = -EINVAL;
goto out;
}
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
fw_data = (const u64 *) fw->data;
if ((fw->size % 8) != 0)
fw_size -= 8;
for (i = 0 ; i < fw_size ; i += 8, fw_data++, dst += 8) {
if (!(i & (0x80000 - 1))) {
dev_dbg(hdev->dev,
"copied so far %zu out of %zu for %s firmware",
i, fw_size, fw_name);
usleep_range(20, 100);
}
writeq(*fw_data, dst);
}
if ((fw->size % 8) != 0)
writel(*(const u32 *) fw_data, dst);
out:
release_firmware(fw);
return rc;
}
static int goya_pldm_init_cpu(struct hl_device *hdev)
{
char fw_name[200];
void __iomem *dst;
u32 val, unit_rst_val;
int rc;
/* Must initialize SRAM scrambler before pushing u-boot to SRAM */
goya_init_golden_registers(hdev);
/* Put ARM cores into reset */
WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL, CPU_RESET_ASSERT);
val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
/* Reset the CA53 MACRO */
unit_rst_val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, CA53_RESET);
val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, unit_rst_val);
val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-u-boot.bin");
dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + UBOOT_FW_OFFSET;
rc = goya_push_fw_to_device(hdev, fw_name, dst);
if (rc)
return rc;
snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-fit.itb");
dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET;
rc = goya_push_fw_to_device(hdev, fw_name, dst);
if (rc)
return rc;
WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_FIT_RDY);
WREG32(mmPSOC_GLOBAL_CONF_WARM_REBOOT, CPU_BOOT_STATUS_NA);
WREG32(mmCPU_CA53_CFG_RST_ADDR_LSB_0,
lower_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
WREG32(mmCPU_CA53_CFG_RST_ADDR_MSB_0,
upper_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
/* Release ARM core 0 from reset */
WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL,
CPU_RESET_CORE0_DEASSERT);
val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
return 0;
}
/*
* FW component passes an offset from SRAM_BASE_ADDR in SCRATCHPAD_xx.
* The version string should be located by that offset.
*/
static void goya_read_device_fw_version(struct hl_device *hdev,
enum goya_fw_component fwc)
{
const char *name;
u32 ver_off;
char *dest;
switch (fwc) {
case FW_COMP_UBOOT:
ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_29);
dest = hdev->asic_prop.uboot_ver;
name = "U-Boot";
break;
case FW_COMP_PREBOOT:
ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_28);
dest = hdev->asic_prop.preboot_ver;
name = "Preboot";
break;
default:
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
return;
}
......@@ -1344,6 +2183,19 @@ static int goya_hw_init(struct hl_device *hdev)
goya_init_security(hdev);
goya_init_dma_qmans(hdev);
goya_init_mme_qmans(hdev);
goya_init_tpc_qmans(hdev);
rc = goya_init_cpu_queues(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n",
rc);
goto disable_queues;
}
/* CPU initialization is finished, we can now move to 48 bit DMA mask */
rc = pci_set_dma_mask(hdev->pdev, DMA_BIT_MASK(48));
if (rc) {
......@@ -1352,7 +2204,7 @@ static int goya_hw_init(struct hl_device *hdev)
if (rc) {
dev_err(hdev->dev,
"Unable to set pci dma mask to 32 bits\n");
return rc;
goto disable_pci_access;
}
}
......@@ -1364,7 +2216,7 @@ static int goya_hw_init(struct hl_device *hdev)
if (rc) {
dev_err(hdev->dev,
"Unable to set pci consistent dma mask to 32 bits\n");
return rc;
goto disable_pci_access;
}
}
......@@ -1372,6 +2224,14 @@ static int goya_hw_init(struct hl_device *hdev)
val = RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
return 0;
disable_pci_access:
goya_send_pci_access_msg(hdev, ARMCP_PACKET_DISABLE_PCI_ACCESS);
disable_queues:
goya_disable_internal_queues(hdev);
goya_disable_external_queues(hdev);
return rc;
}
/*
......@@ -1460,12 +2320,40 @@ static void goya_hw_fini(struct hl_device *hdev, bool hard_reset)
int goya_suspend(struct hl_device *hdev)
{
return 0;
int rc;
rc = goya_stop_internal_queues(hdev);
if (rc) {
dev_err(hdev->dev, "failed to stop internal queues\n");
return rc;
}
rc = goya_stop_external_queues(hdev);
if (rc) {
dev_err(hdev->dev, "failed to stop external queues\n");
return rc;
}
rc = goya_send_pci_access_msg(hdev, ARMCP_PACKET_DISABLE_PCI_ACCESS);
if (rc)
dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
return rc;
}
int goya_resume(struct hl_device *hdev)
{
return 0;
int rc;
goya_resume_external_queues(hdev);
goya_resume_internal_queues(hdev);
rc = goya_send_pci_access_msg(hdev, ARMCP_PACKET_ENABLE_PCI_ACCESS);
if (rc)
dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
return rc;
}
int goya_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
......@@ -1489,6 +2377,101 @@ int goya_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
return rc;
}
void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
{
u32 db_reg_offset, db_value;
bool invalid_queue = false;
switch (hw_queue_id) {
case GOYA_QUEUE_ID_DMA_0:
db_reg_offset = mmDMA_QM_0_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_1:
db_reg_offset = mmDMA_QM_1_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_2:
db_reg_offset = mmDMA_QM_2_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_3:
db_reg_offset = mmDMA_QM_3_PQ_PI;
break;
case GOYA_QUEUE_ID_DMA_4:
db_reg_offset = mmDMA_QM_4_PQ_PI;
break;
case GOYA_QUEUE_ID_CPU_PQ:
if (hdev->cpu_queues_enable)
db_reg_offset = mmCPU_IF_PF_PQ_PI;
else
invalid_queue = true;
break;
case GOYA_QUEUE_ID_MME:
db_reg_offset = mmMME_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC0:
db_reg_offset = mmTPC0_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC1:
db_reg_offset = mmTPC1_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC2:
db_reg_offset = mmTPC2_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC3:
db_reg_offset = mmTPC3_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC4:
db_reg_offset = mmTPC4_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC5:
db_reg_offset = mmTPC5_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC6:
db_reg_offset = mmTPC6_QM_PQ_PI;
break;
case GOYA_QUEUE_ID_TPC7:
db_reg_offset = mmTPC7_QM_PQ_PI;
break;
default:
invalid_queue = true;
}
if (invalid_queue) {
/* Should never get here */
dev_err(hdev->dev, "h/w queue %d is invalid. Can't set pi\n",
hw_queue_id);
return;
}
db_value = pi;
/* ring the doorbell */
WREG32(db_reg_offset, db_value);
if (hw_queue_id == GOYA_QUEUE_ID_CPU_PQ)
WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
GOYA_ASYNC_EVENT_ID_PI_UPDATE);
}
void goya_flush_pq_write(struct hl_device *hdev, u64 *pq, u64 exp_val)
{
/* Not needed in Goya */
}
void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{
......@@ -1501,6 +2484,315 @@ void goya_dma_free_coherent(struct hl_device *hdev, size_t size, void *cpu_addr,
dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle);
}
void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len)
{
void *base;
u32 offset;
*dma_handle = hdev->asic_prop.sram_base_address;
base = hdev->pcie_bar[SRAM_CFG_BAR_ID];
switch (queue_id) {
case GOYA_QUEUE_ID_MME:
offset = MME_QMAN_BASE_OFFSET;
*queue_len = MME_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC0:
offset = TPC0_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC1:
offset = TPC1_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC2:
offset = TPC2_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC3:
offset = TPC3_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC4:
offset = TPC4_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC5:
offset = TPC5_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC6:
offset = TPC6_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
case GOYA_QUEUE_ID_TPC7:
offset = TPC7_QMAN_BASE_OFFSET;
*queue_len = TPC_QMAN_LENGTH;
break;
default:
dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
return NULL;
}
base += offset;
*dma_handle += offset;
return base;
}
int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
u32 timeout, long *result)
{
struct goya_device *goya = hdev->asic_specific;
struct armcp_packet *pkt;
dma_addr_t pkt_dma_addr;
u32 tmp;
int rc = 0;
if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) {
if (result)
*result = 0;
return 0;
}
if (len > CPU_CB_SIZE) {
dev_err(hdev->dev, "Invalid CPU message size of %d bytes\n",
len);
return -ENOMEM;
}
pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len,
&pkt_dma_addr);
if (!pkt) {
dev_err(hdev->dev,
"Failed to allocate DMA memory for packet to CPU\n");
return -ENOMEM;
}
memcpy(pkt, msg, len);
mutex_lock(&hdev->send_cpu_message_lock);
if (hdev->disabled)
goto out;
rc = hl_hw_queue_send_cb_no_cmpl(hdev, GOYA_QUEUE_ID_CPU_PQ, len,
pkt_dma_addr);
if (rc) {
dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc);
goto out;
}
rc = hl_poll_timeout_memory(hdev, (u64) (uintptr_t) &pkt->fence,
timeout, &tmp);
hl_hw_queue_inc_ci_kernel(hdev, GOYA_QUEUE_ID_CPU_PQ);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev,
"Timeout while waiting for CPU packet fence\n");
goto out;
}
if (tmp == ARMCP_PACKET_FENCE_VAL) {
rc = (pkt->ctl & ARMCP_PKT_CTL_RC_MASK) >>
ARMCP_PKT_CTL_RC_SHIFT;
if (rc) {
dev_err(hdev->dev,
"F/W ERROR %d for CPU packet %d\n",
rc, (pkt->ctl & ARMCP_PKT_CTL_OPCODE_MASK)
>> ARMCP_PKT_CTL_OPCODE_SHIFT);
rc = -EINVAL;
} else if (result) {
*result = pkt->result;
}
} else {
dev_err(hdev->dev, "CPU packet wrong fence value\n");
rc = -EINVAL;
}
out:
mutex_unlock(&hdev->send_cpu_message_lock);
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt);
return rc;
}
int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id)
{
struct packet_msg_prot *fence_pkt;
dma_addr_t pkt_dma_addr;
u32 fence_val, tmp;
dma_addr_t fence_dma_addr;
u32 *fence_ptr;
int rc;
fence_val = GOYA_QMAN0_FENCE_VAL;
fence_ptr = hdev->asic_funcs->dma_pool_zalloc(hdev, 4, GFP_KERNEL,
&fence_dma_addr);
if (!fence_ptr) {
dev_err(hdev->dev,
"Failed to allocate memory for queue testing\n");
return -ENOMEM;
}
*fence_ptr = 0;
fence_pkt = hdev->asic_funcs->dma_pool_zalloc(hdev,
sizeof(struct packet_msg_prot),
GFP_KERNEL, &pkt_dma_addr);
if (!fence_pkt) {
dev_err(hdev->dev,
"Failed to allocate packet for queue testing\n");
rc = -ENOMEM;
goto free_fence_ptr;
}
fence_pkt->ctl = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
(1 << GOYA_PKT_CTL_EB_SHIFT) |
(1 << GOYA_PKT_CTL_MB_SHIFT);
fence_pkt->value = fence_val;
fence_pkt->addr = fence_dma_addr +
hdev->asic_prop.host_phys_base_address;
rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
sizeof(struct packet_msg_prot),
pkt_dma_addr);
if (rc) {
dev_err(hdev->dev,
"Failed to send fence packet\n");
goto free_pkt;
}
rc = hl_poll_timeout_memory(hdev, (u64) (uintptr_t) fence_ptr,
GOYA_TEST_QUEUE_WAIT_USEC, &tmp);
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
if ((!rc) && (tmp == fence_val)) {
dev_info(hdev->dev,
"queue test on H/W queue %d succeeded\n",
hw_queue_id);
} else {
dev_err(hdev->dev,
"H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
rc = -EINVAL;
}
free_pkt:
hdev->asic_funcs->dma_pool_free(hdev, (void *) fence_pkt,
pkt_dma_addr);
free_fence_ptr:
hdev->asic_funcs->dma_pool_free(hdev, (void *) fence_ptr,
fence_dma_addr);
return rc;
}
int goya_test_cpu_queue(struct hl_device *hdev)
{
struct armcp_packet test_pkt;
long result;
int rc;
/* cpu_queues_enable flag is always checked in send cpu message */
memset(&test_pkt, 0, sizeof(test_pkt));
test_pkt.ctl = ARMCP_PACKET_TEST << ARMCP_PKT_CTL_OPCODE_SHIFT;
test_pkt.value = ARMCP_PACKET_FENCE_VAL;
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
sizeof(test_pkt), HL_DEVICE_TIMEOUT_USEC, &result);
if (!rc)
dev_info(hdev->dev, "queue test on CPU queue succeeded\n");
else
dev_err(hdev->dev, "CPU queue test failed (0x%08lX)\n", result);
return rc;
}
static int goya_test_queues(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
int i, rc, ret_val = 0;
for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
rc = goya_test_queue(hdev, i);
if (rc)
ret_val = -EINVAL;
}
if (hdev->cpu_queues_enable) {
rc = goya->test_cpu_queue(hdev);
if (rc)
ret_val = -EINVAL;
}
return ret_val;
}
void *goya_dma_pool_zalloc(struct hl_device *hdev, size_t size, gfp_t mem_flags,
dma_addr_t *dma_handle)
{
if (size > GOYA_DMA_POOL_BLK_SIZE)
return NULL;
return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
}
void goya_dma_pool_free(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr)
{
dma_pool_free(hdev->dma_pool, vaddr, dma_addr);
}
void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle)
{
u64 kernel_addr;
/* roundup to CPU_PKT_SIZE */
size = (size + (CPU_PKT_SIZE - 1)) & CPU_PKT_MASK;
kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
*dma_handle = hdev->cpu_accessible_dma_address +
(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
return (void *) (uintptr_t) kernel_addr;
}
void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr)
{
/* roundup to CPU_PKT_SIZE */
size = (size + (CPU_PKT_SIZE - 1)) & CPU_PKT_MASK;
gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
size);
}
static void goya_hw_queues_lock(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
spin_lock(&goya->hw_queues_lock);
}
static void goya_hw_queues_unlock(struct hl_device *hdev)
{
struct goya_device *goya = hdev->asic_specific;
spin_unlock(&goya->hw_queues_lock);
}
static const struct hl_asic_funcs goya_funcs = {
.early_init = goya_early_init,
.early_fini = goya_early_fini,
......@@ -1512,8 +2804,19 @@ static const struct hl_asic_funcs goya_funcs = {
.resume = goya_resume,
.mmap = goya_mmap,
.cb_mmap = goya_cb_mmap,
.ring_doorbell = goya_ring_doorbell,
.flush_pq_write = goya_flush_pq_write,
.dma_alloc_coherent = goya_dma_alloc_coherent,
.dma_free_coherent = goya_dma_free_coherent,
.get_int_queue_base = goya_get_int_queue_base,
.test_queues = goya_test_queues,
.dma_pool_zalloc = goya_dma_pool_zalloc,
.dma_pool_free = goya_dma_pool_free,
.cpu_accessible_dma_pool_alloc = goya_cpu_accessible_dma_pool_alloc,
.cpu_accessible_dma_pool_free = goya_cpu_accessible_dma_pool_free,
.hw_queues_lock = goya_hw_queues_lock,
.hw_queues_unlock = goya_hw_queues_unlock,
.send_cpu_message = goya_send_cpu_message
};
/*
......
......@@ -11,7 +11,9 @@
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include "include/hl_boot_if.h"
#include "include/goya/goya_packets.h"
#include "include/goya/goya.h"
#include "include/goya/goya_async_events.h"
#include "include/goya/goya_fw_if.h"
#define NUMBER_OF_CMPLT_QUEUES 5
......@@ -145,12 +147,17 @@ enum goya_fw_component {
};
struct goya_device {
int (*test_cpu_queue)(struct hl_device *hdev);
/* TODO: remove hw_queues_lock after moving to scheduler code */
spinlock_t hw_queues_lock;
u64 ddr_bar_cur_addr;
u32 hw_cap_initialized;
};
int goya_test_cpu_queue(struct hl_device *hdev);
int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
u32 timeout, long *result);
void goya_init_security(struct hl_device *hdev);
#endif /* GOYAP_H_ */
......@@ -9,6 +9,7 @@
#define HABANALABSP_H_
#include "include/armcp_if.h"
#include "include/qman_if.h"
#define pr_fmt(fmt) "habanalabs: " fmt
......@@ -26,9 +27,36 @@
struct hl_device;
struct hl_fpriv;
/**
* enum hl_queue_type - Supported QUEUE types.
* @QUEUE_TYPE_NA: queue is not available.
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
* host.
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
* memories and/or operates the compute engines.
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
*/
enum hl_queue_type {
QUEUE_TYPE_NA,
QUEUE_TYPE_EXT,
QUEUE_TYPE_INT,
QUEUE_TYPE_CPU
};
/**
* struct hw_queue_properties - queue information.
* @type: queue type.
* @kmd_only: true if only KMD is allowed to send a job to this queue, false
* otherwise.
*/
struct hw_queue_properties {
enum hl_queue_type type;
u8 kmd_only;
};
/**
* struct asic_fixed_properties - ASIC specific immutable properties.
* @hw_queues_props: H/W queues properties.
* @uboot_ver: F/W U-boot version.
* @preboot_ver: F/W Preboot version.
* @sram_base_address: SRAM physical start address.
......@@ -59,6 +87,7 @@ struct hl_fpriv;
* @tpc_enabled_mask: which TPCs are enabled.
*/
struct asic_fixed_properties {
struct hw_queue_properties hw_queues_props[HL_MAX_QUEUES];
char uboot_ver[VERSION_MAX_LEN];
char preboot_ver[VERSION_MAX_LEN];
u64 sram_base_address;
......@@ -132,7 +161,89 @@ struct hl_cb {
};
/*
* QUEUES
*/
struct hl_cs_job;
/*
* Currently, there are two limitations on the maximum length of a queue:
*
* 1. The memory footprint of the queue. The current allocated space for the
* queue is PAGE_SIZE. Because each entry in the queue is HL_BD_SIZE,
* the maximum length of the queue can be PAGE_SIZE / HL_BD_SIZE,
* which currently is 4096/16 = 256 entries.
*
* To increase that, we need either to decrease the size of the
* BD (difficult), or allocate more than a single page (easier).
*
* 2. Because the size of the JOB handle field in the BD CTL / completion queue
* is 10-bit, we can have up to 1024 open jobs per hardware queue.
* Therefore, each queue can hold up to 1024 entries.
*
* HL_QUEUE_LENGTH is in units of struct hl_bd.
* HL_QUEUE_LENGTH * sizeof(struct hl_bd) should be <= HL_PAGE_SIZE
*/
#define HL_PAGE_SIZE 4096 /* minimum page size */
/* Must be power of 2 (HL_PAGE_SIZE / HL_BD_SIZE) */
#define HL_QUEUE_LENGTH 256
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
/*
* HL_CQ_LENGTH is in units of struct hl_cq_entry.
* HL_CQ_LENGTH should be <= HL_PAGE_SIZE
*/
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
/**
* struct hl_hw_queue - describes a H/W transport queue.
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
* @queue_type: type of queue.
* @kernel_address: holds the queue's kernel virtual address.
* @bus_address: holds the queue's DMA address.
* @pi: holds the queue's pi value.
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
* @hw_queue_id: the id of the H/W queue.
* @int_queue_len: length of internal queue (number of entries).
* @valid: is the queue valid (we have array of 32 queues, not all of them
* exists).
*/
struct hl_hw_queue {
struct hl_cs_job **shadow_queue;
enum hl_queue_type queue_type;
u64 kernel_address;
dma_addr_t bus_address;
u32 pi;
u32 ci;
u32 hw_queue_id;
u16 int_queue_len;
u8 valid;
};
/**
* struct hl_cq - describes a completion queue
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @hw_queue_id: the id of the matching H/W queue
* @ci: ci inside the queue
* @pi: pi inside the queue
* @free_slots_cnt: counter of free slots in queue
*/
struct hl_cq {
struct hl_device *hdev;
u64 kernel_address;
dma_addr_t bus_address;
u32 hw_queue_id;
u32 ci;
u32 pi;
atomic_t free_slots_cnt;
};
/*
......@@ -164,6 +275,8 @@ enum hl_asic_type {
* @resume: handles IP specific H/W or SW changes for resume.
* @mmap: mmap function, does nothing.
* @cb_mmap: maps a CB.
* @ring_doorbell: increment PI on a given QMAN.
* @flush_pq_write: flush PQ entry write if necessary, WARN if flushing failed.
* @dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because its
* implementation is not trivial when the driver is loaded
......@@ -172,6 +285,16 @@ enum hl_asic_type {
* This is ASIC function because its implementation is not
* trivial when the driver is loaded in simulation mode
* (not upstreamed).
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @hw_queues_lock: acquire H/W queues lock.
* @hw_queues_unlock: release H/W queues lock.
* @send_cpu_message: send buffer to ArmCP.
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
......@@ -185,10 +308,27 @@ struct hl_asic_funcs {
int (*mmap)(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u64 kaddress, phys_addr_t paddress, u32 size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*flush_pq_write)(struct hl_device *hdev, u64 *pq, u64 exp_val);
void* (*dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, long *result);
};
......@@ -224,6 +364,17 @@ struct hl_ctx_mgr {
};
/**
* struct hl_cs_job - command submission job.
* @finish_work: workqueue object to run when job is completed.
* @id: the id of this job inside a CS.
*/
struct hl_cs_job {
struct work_struct finish_work;
u32 id;
};
/*
* FILE PRIVATE STRUCTURE
*/
......@@ -298,7 +449,11 @@ void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
* @dev: realted kernel basic device structure.
* @asic_name: ASIC specific nmae.
* @asic_type: ASIC specific type.
* @completion_queue: array of hl_cq.
* @cq_wq: work queue of completion queues for executing work in process context
* @eq_wq: work queue of event queue for executing work in process context.
* @kernel_ctx: KMD context structure.
* @kernel_queues: array of hl_hw_queue.
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: KMD <-> ArmCP shared memory CPU address.
......@@ -312,6 +467,7 @@ void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
* only a single process at a time. In addition, we need a
* lock here so we can flush user processes which are opening
* the device while we are trying to hard reset it
* @send_cpu_message_lock: enforces only one message in KMD <-> ArmCP queue.
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
......@@ -331,7 +487,10 @@ struct hl_device {
struct device *dev;
char asic_name[16];
enum hl_asic_type asic_type;
struct hl_cq *completion_queue;
struct workqueue_struct *cq_wq;
struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues;
struct hl_cb_mgr kernel_cb_mgr;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
......@@ -341,6 +500,7 @@ struct hl_device {
struct mutex asid_mutex;
/* TODO: remove fd_open_cnt_lock for multiple process support */
struct mutex fd_open_cnt_lock;
struct mutex send_cpu_message_lock;
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
......@@ -358,6 +518,7 @@ struct hl_device {
/* Parameters for bring-up */
u8 cpu_enable;
u8 reset_pcilink;
u8 cpu_queues_enable;
u8 fw_loading;
u8 pldm;
};
......@@ -400,7 +561,18 @@ int hl_poll_timeout_memory(struct hl_device *hdev, u64 addr, u32 timeout_us,
u32 *val);
int hl_poll_timeout_device_memory(struct hl_device *hdev, void __iomem *addr,
u32 timeout_us, u32 *val);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
......
......@@ -169,6 +169,7 @@ int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
/* Parameters for bring-up - set them to defaults */
hdev->cpu_enable = 1;
hdev->reset_pcilink = 0;
hdev->cpu_queues_enable = 1;
hdev->fw_loading = 1;
hdev->pldm = 0;
......@@ -176,6 +177,10 @@ int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
if (!hdev->cpu_enable)
hdev->fw_loading = 0;
/* If we don't load FW, no need to initialize CPU queues */
if (!hdev->fw_loading)
hdev->cpu_queues_enable = 0;
hdev->disabled = true;
hdev->pdev = pdev; /* can be NULL in case of simulator device */
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/slab.h>
/*
* hl_queue_add_ptr - add to pi or ci and checks if it wraps around
*
* @ptr: the current pi/ci value
* @val: the amount to add
*
* Add val to ptr. It can go until twice the queue length.
*/
inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
{
ptr += val;
ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
return ptr;
}
static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
{
int delta = (q->pi - q->ci);
if (delta >= 0)
return (queue_len - delta);
else
return (abs(delta) - queue_len);
}
/*
* ext_queue_submit_bd - Submit a buffer descriptor to an external queue
*
* @hdev: pointer to habanalabs device structure
* @q: pointer to habanalabs queue structure
* @ctl: BD's control word
* @len: BD's length
* @ptr: BD's pointer
*
* This function assumes there is enough space on the queue to submit a new
* BD to it. It initializes the next BD and calls the device specific
* function to set the pi (and doorbell)
*
* This function must be called when the scheduler mutex is taken
*
*/
static void ext_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
u32 ctl, u32 len, u64 ptr)
{
struct hl_bd *bd;
bd = (struct hl_bd *) (uintptr_t) q->kernel_address;
bd += hl_pi_2_offset(q->pi);
bd->ctl = ctl;
bd->len = len;
bd->ptr = ptr + hdev->asic_prop.host_phys_base_address;
q->pi = hl_queue_inc_ptr(q->pi);
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
}
/*
* ext_queue_sanity_checks - perform some sanity checks on external queue
*
* @hdev : pointer to hl_device structure
* @q : pointer to hl_hw_queue structure
* @num_of_entries : how many entries to check for space
* @reserve_cq_entry : whether to reserve an entry in the cq
*
* H/W queues spinlock should be taken before calling this function
*
* Perform the following:
* - Make sure we have enough space in the h/w queue
* - Make sure we have enough space in the completion queue
* - Reserve space in the completion queue (needs to be reversed if there
* is a failure down the road before the actual submission of work). Only
* do this action if reserve_cq_entry is true
*
*/
static int ext_queue_sanity_checks(struct hl_device *hdev,
struct hl_hw_queue *q, int num_of_entries,
bool reserve_cq_entry)
{
atomic_t *free_slots =
&hdev->completion_queue[q->hw_queue_id].free_slots_cnt;
int free_slots_cnt;
/* Check we have enough space in the queue */
free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
if (free_slots_cnt < num_of_entries) {
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
q->hw_queue_id, num_of_entries);
return -EAGAIN;
}
if (reserve_cq_entry) {
/*
* Check we have enough space in the completion queue
* Add -1 to counter (decrement) unless counter was already 0
* In that case, CQ is full so we can't submit a new CB because
* we won't get ack on its completion
* atomic_add_unless will return 0 if counter was already 0
*/
if (atomic_add_negative(num_of_entries * -1, free_slots)) {
dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
num_of_entries, q->hw_queue_id);
atomic_add(num_of_entries, free_slots);
return -EAGAIN;
}
}
return 0;
}
/*
* hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: Queue's type
* @cb_size: size of CB
* @cb_ptr: pointer to CB location
*
* This function sends a single CB, that must NOT generate a completion entry
*
*/
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
int rc;
/*
* The CPU queue is a synchronous queue with an effective depth of
* a single entry (although it is allocated with room for multiple
* entries). Therefore, there is a different lock, called
* send_cpu_message_lock, that serializes accesses to the CPU queue.
* As a result, we don't need to lock the access to the entire H/W
* queues module when submitting a JOB to the CPU queue
*/
if (q->queue_type != QUEUE_TYPE_CPU)
hdev->asic_funcs->hw_queues_lock(hdev);
if (hdev->disabled) {
rc = -EPERM;
goto out;
}
rc = ext_queue_sanity_checks(hdev, q, 1, false);
if (rc)
goto out;
ext_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
out:
if (q->queue_type != QUEUE_TYPE_CPU)
hdev->asic_funcs->hw_queues_unlock(hdev);
return rc;
}
/*
* hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
*
* @hdev: pointer to hl_device structure
* @hw_queue_id: which queue to increment its ci
*/
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
{
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
q->ci = hl_queue_inc_ptr(q->ci);
}
static int ext_and_cpu_hw_queue_init(struct hl_device *hdev,
struct hl_hw_queue *q)
{
void *p;
int rc;
p = hdev->asic_funcs->dma_alloc_coherent(hdev,
HL_QUEUE_SIZE_IN_BYTES,
&q->bus_address, GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->kernel_address = (u64) (uintptr_t) p;
q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
sizeof(*q->shadow_queue),
GFP_KERNEL);
if (!q->shadow_queue) {
dev_err(hdev->dev,
"Failed to allocate shadow queue for H/W queue %d\n",
q->hw_queue_id);
rc = -ENOMEM;
goto free_queue;
}
/* Make sure read/write pointers are initialized to start of queue */
q->ci = 0;
q->pi = 0;
return 0;
free_queue:
hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address, q->bus_address);
return rc;
}
static int int_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
void *p;
p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
&q->bus_address, &q->int_queue_len);
if (!p) {
dev_err(hdev->dev,
"Failed to get base address for internal queue %d\n",
q->hw_queue_id);
return -EFAULT;
}
q->kernel_address = (u64) (uintptr_t) p;
q->pi = 0;
q->ci = 0;
return 0;
}
static int cpu_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_hw_queue_init(hdev, q);
}
static int ext_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
{
return ext_and_cpu_hw_queue_init(hdev, q);
}
/*
* hw_queue_init - main initialization function for H/W queue object
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
* @hw_queue_id: The id of the H/W queue
*
* Allocate dma-able memory for the queue and initialize fields
* Returns 0 on success
*/
static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
u32 hw_queue_id)
{
int rc;
BUILD_BUG_ON(HL_QUEUE_SIZE_IN_BYTES > HL_PAGE_SIZE);
q->hw_queue_id = hw_queue_id;
switch (q->queue_type) {
case QUEUE_TYPE_EXT:
rc = ext_hw_queue_init(hdev, q);
break;
case QUEUE_TYPE_INT:
rc = int_hw_queue_init(hdev, q);
break;
case QUEUE_TYPE_CPU:
rc = cpu_hw_queue_init(hdev, q);
break;
case QUEUE_TYPE_NA:
q->valid = 0;
return 0;
default:
dev_crit(hdev->dev, "wrong queue type %d during init\n",
q->queue_type);
rc = -EINVAL;
break;
}
if (rc)
return rc;
q->valid = 1;
return 0;
}
/*
* hw_queue_fini - destroy queue
*
* @hdev: pointer to hl_device device structure
* @q: pointer to hl_hw_queue queue structure
*
* Free the queue memory
*/
static void hw_queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
{
if (!q->valid)
return;
/*
* If we arrived here, there are no jobs waiting on this queue
* so we can safely remove it.
* This is because this function can only called when:
* 1. Either a context is deleted, which only can occur if all its
* jobs were finished
* 2. A context wasn't able to be created due to failure or timeout,
* which means there are no jobs on the queue yet
*
* The only exception are the queues of the kernel context, but
* if they are being destroyed, it means that the entire module is
* being removed. If the module is removed, it means there is no open
* user context. It also means that if a job was submitted by
* the kernel driver (e.g. context creation), the job itself was
* released by the kernel driver when a timeout occurred on its
* Completion. Thus, we don't need to release it again.
*/
if (q->queue_type == QUEUE_TYPE_INT)
return;
kfree(q->shadow_queue);
hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address, q->bus_address);
}
int hl_hw_queues_create(struct hl_device *hdev)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hl_hw_queue *q;
int i, rc, q_ready_cnt;
hdev->kernel_queues = kcalloc(HL_MAX_QUEUES,
sizeof(*hdev->kernel_queues), GFP_KERNEL);
if (!hdev->kernel_queues) {
dev_err(hdev->dev, "Not enough memory for H/W queues\n");
return -ENOMEM;
}
/* Initialize the H/W queues */
for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
i < HL_MAX_QUEUES ; i++, q_ready_cnt++, q++) {
q->queue_type = asic->hw_queues_props[i].type;
rc = hw_queue_init(hdev, q, i);
if (rc) {
dev_err(hdev->dev,
"failed to initialize queue %d\n", i);
goto release_queues;
}
}
return 0;
release_queues:
for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
hw_queue_fini(hdev, q);
kfree(hdev->kernel_queues);
return rc;
}
void hl_hw_queues_destroy(struct hl_device *hdev)
{
struct hl_hw_queue *q;
int i;
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++)
hw_queue_fini(hdev, q);
kfree(hdev->kernel_queues);
}
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
{
struct hl_hw_queue *q;
int i;
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) {
if ((!q->valid) ||
((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
continue;
q->pi = q->ci = 0;
}
}
......@@ -10,10 +10,302 @@
#include <linux/types.h>
enum pq_init_status {
PQ_INIT_STATUS_NA = 0,
PQ_INIT_STATUS_READY_FOR_CP,
PQ_INIT_STATUS_READY_FOR_HOST
};
/*
* ArmCP Primary Queue Packets
*
* During normal operation, KMD needs to send various messages to ArmCP,
* usually either to SET some value into a H/W periphery or to GET the current
* value of some H/W periphery. For example, SET the frequency of MME/TPC and
* GET the value of the thermal sensor.
*
* These messages can be initiated either by the User application or by KMD
* itself, e.g. power management code. In either case, the communication from
* KMD to ArmCP will *always* be in synchronous mode, meaning that KMD will
* send a single message and poll until the message was acknowledged and the
* results are ready (if results are needed).
*
* This means that only a single message can be sent at a time and KMD must
* wait for its result before sending the next message. Having said that,
* because these are control messages which are sent in a relatively low
* frequency, this limitation seems acceptable. It's important to note that
* in case of multiple devices, messages to different devices *can* be sent
* at the same time.
*
* The message, inputs/outputs (if relevant) and fence object will be located
* on the device DDR at an address that will be determined by KMD. During
* device initialization phase, KMD will pass to ArmCP that address. Most of
* the message types will contain inputs/outputs inside the message itself.
* The common part of each message will contain the opcode of the message (its
* type) and a field representing a fence object.
*
* When KMD wishes to send a message to ArmCP, it will write the message
* contents to the device DDR, clear the fence object and then write the
* value 484 to the mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR register to issue
* the 484 interrupt-id to the ARM core.
*
* Upon receiving the 484 interrupt-id, ArmCP will read the message from the
* DDR. In case the message is a SET operation, ArmCP will first perform the
* operation and then write to the fence object on the device DDR. In case the
* message is a GET operation, ArmCP will first fill the results section on the
* device DDR and then write to the fence object. If an error occurred, ArmCP
* will fill the rc field with the right error code.
*
* In the meantime, KMD will poll on the fence object. Once KMD sees that the
* fence object is signaled, it will read the results from the device DDR
* (if relevant) and resume the code execution in KMD.
*
* To use QMAN packets, the opcode must be the QMAN opcode, shifted by 8
* so the value being put by the KMD matches the value read by ArmCP
*
* Non-QMAN packets should be limited to values 1 through (2^8 - 1)
*
* Detailed description:
*
* ARMCP_PACKET_DISABLE_PCI_ACCESS -
* After receiving this packet the embedded CPU must NOT issue PCI
* transactions (read/write) towards the Host CPU. This also include
* sending MSI-X interrupts.
* This packet is usually sent before the device is moved to D3Hot state.
*
* ARMCP_PACKET_ENABLE_PCI_ACCESS -
* After receiving this packet the embedded CPU is allowed to issue PCI
* transactions towards the Host CPU, including sending MSI-X interrupts.
* This packet is usually send after the device is moved to D0 state.
*
* ARMCP_PACKET_TEMPERATURE_GET -
* Fetch the current temperature / Max / Max Hyst / Critical /
* Critical Hyst of a specified thermal sensor. The packet's
* arguments specify the desired sensor and the field to get.
*
* ARMCP_PACKET_VOLTAGE_GET -
* Fetch the voltage / Max / Min of a specified sensor. The packet's
* arguments specify the sensor and type.
*
* ARMCP_PACKET_CURRENT_GET -
* Fetch the current / Max / Min of a specified sensor. The packet's
* arguments specify the sensor and type.
*
* ARMCP_PACKET_FAN_SPEED_GET -
* Fetch the speed / Max / Min of a specified fan. The packet's
* arguments specify the sensor and type.
*
* ARMCP_PACKET_PWM_GET -
* Fetch the pwm value / mode of a specified pwm. The packet's
* arguments specify the sensor and type.
*
* ARMCP_PACKET_PWM_SET -
* Set the pwm value / mode of a specified pwm. The packet's
* arguments specify the sensor, type and value.
*
* ARMCP_PACKET_FREQUENCY_SET -
* Set the frequency of a specified PLL. The packet's arguments specify
* the PLL and the desired frequency. The actual frequency in the device
* might differ from the requested frequency.
*
* ARMCP_PACKET_FREQUENCY_GET -
* Fetch the frequency of a specified PLL. The packet's arguments specify
* the PLL.
*
* ARMCP_PACKET_LED_SET -
* Set the state of a specified led. The packet's arguments
* specify the led and the desired state.
*
* ARMCP_PACKET_I2C_WR -
* Write 32-bit value to I2C device. The packet's arguments specify the
* I2C bus, address and value.
*
* ARMCP_PACKET_I2C_RD -
* Read 32-bit value from I2C device. The packet's arguments specify the
* I2C bus and address.
*
* ARMCP_PACKET_INFO_GET -
* Fetch information from the device as specified in the packet's
* structure. KMD passes the max size it allows the ArmCP to write to
* the structure, to prevent data corruption in case of mismatched
* KMD/FW versions.
*
* ARMCP_PACKET_FLASH_PROGRAM_REMOVED - this packet was removed
*
* ARMCP_PACKET_UNMASK_RAZWI_IRQ -
* Unmask the given IRQ. The IRQ number is specified in the value field.
* The packet is sent after receiving an interrupt and printing its
* relevant information.
*
* ARMCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY -
* Unmask the given IRQs. The IRQs numbers are specified in an array right
* after the armcp_packet structure, where its first element is the array
* length. The packet is sent after a soft reset was done in order to
* handle any interrupts that were sent during the reset process.
*
* ARMCP_PACKET_TEST -
* Test packet for ArmCP connectivity. The CPU will put the fence value
* in the result field.
*
* ARMCP_PACKET_FREQUENCY_CURR_GET -
* Fetch the current frequency of a specified PLL. The packet's arguments
* specify the PLL.
*
* ARMCP_PACKET_MAX_POWER_GET -
* Fetch the maximal power of the device.
*
* ARMCP_PACKET_MAX_POWER_SET -
* Set the maximal power of the device. The packet's arguments specify
* the power.
*
* ARMCP_PACKET_EEPROM_DATA_GET -
* Get EEPROM data from the ArmCP kernel. The buffer is specified in the
* addr field. The CPU will put the returned data size in the result
* field. In addition, KMD passes the max size it allows the ArmCP to
* write to the structure, to prevent data corruption in case of
* mismatched KMD/FW versions.
*
*/
enum armcp_packet_id {
ARMCP_PACKET_DISABLE_PCI_ACCESS = 1, /* internal */
ARMCP_PACKET_ENABLE_PCI_ACCESS, /* internal */
ARMCP_PACKET_TEMPERATURE_GET, /* sysfs */
ARMCP_PACKET_VOLTAGE_GET, /* sysfs */
ARMCP_PACKET_CURRENT_GET, /* sysfs */
ARMCP_PACKET_FAN_SPEED_GET, /* sysfs */
ARMCP_PACKET_PWM_GET, /* sysfs */
ARMCP_PACKET_PWM_SET, /* sysfs */
ARMCP_PACKET_FREQUENCY_SET, /* sysfs */
ARMCP_PACKET_FREQUENCY_GET, /* sysfs */
ARMCP_PACKET_LED_SET, /* debugfs */
ARMCP_PACKET_I2C_WR, /* debugfs */
ARMCP_PACKET_I2C_RD, /* debugfs */
ARMCP_PACKET_INFO_GET, /* IOCTL */
ARMCP_PACKET_FLASH_PROGRAM_REMOVED,
ARMCP_PACKET_UNMASK_RAZWI_IRQ, /* internal */
ARMCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY, /* internal */
ARMCP_PACKET_TEST, /* internal */
ARMCP_PACKET_FREQUENCY_CURR_GET, /* sysfs */
ARMCP_PACKET_MAX_POWER_GET, /* sysfs */
ARMCP_PACKET_MAX_POWER_SET, /* sysfs */
ARMCP_PACKET_EEPROM_DATA_GET, /* sysfs */
};
#define ARMCP_PACKET_FENCE_VAL 0xFE8CE7A5
#define ARMCP_PKT_CTL_RC_SHIFT 12
#define ARMCP_PKT_CTL_RC_MASK 0x0000F000
#define ARMCP_PKT_CTL_OPCODE_SHIFT 16
#define ARMCP_PKT_CTL_OPCODE_MASK 0x1FFF0000
struct armcp_packet {
union {
__le64 value; /* For SET packets */
__le64 result; /* For GET packets */
__le64 addr; /* For PQ */
};
__le32 ctl;
__le32 fence; /* Signal to KMD that message is completed */
union {
struct {/* For temperature/current/voltage/fan/pwm get/set */
__le16 sensor_index;
__le16 type;
};
struct { /* For I2C read/write */
__u8 i2c_bus;
__u8 i2c_addr;
__u8 i2c_reg;
__u8 pad; /* unused */
};
/* For frequency get/set */
__le32 pll_index;
/* For led set */
__le32 led_index;
/* For get Armcp info/EEPROM data */
__le32 data_max_size;
};
};
struct armcp_unmask_irq_arr_packet {
struct armcp_packet armcp_pkt;
__le32 length;
__le32 irqs[0];
};
enum armcp_packet_rc {
armcp_packet_success,
armcp_packet_invalid,
armcp_packet_fault
};
enum armcp_temp_type {
armcp_temp_input,
armcp_temp_max = 6,
armcp_temp_max_hyst,
armcp_temp_crit,
armcp_temp_crit_hyst
};
enum armcp_in_attributes {
armcp_in_input,
armcp_in_min,
armcp_in_max
};
enum armcp_curr_attributes {
armcp_curr_input,
armcp_curr_min,
armcp_curr_max
};
enum armcp_fan_attributes {
armcp_fan_input,
armcp_fan_min = 2,
armcp_fan_max
};
enum armcp_pwm_attributes {
armcp_pwm_input,
armcp_pwm_enable
};
/* Event Queue Packets */
struct eq_generic_event {
__le64 data[7];
};
/*
* ArmCP info
*/
#define VERSION_MAX_LEN 128
#define ARMCP_MAX_SENSORS 128
struct armcp_sensor {
__le32 type;
__le32 flags;
};
struct armcp_info {
struct armcp_sensor sensors[ARMCP_MAX_SENSORS];
__u8 kernel_version[VERSION_MAX_LEN];
__le32 reserved[3];
__le32 cpld_version;
__le32 infineon_version;
__u8 fuse_version[VERSION_MAX_LEN];
__u8 thermal_version[VERSION_MAX_LEN];
__u8 armcp_version[VERSION_MAX_LEN];
__le64 dram_size;
};
#endif /* ARMCP_IF_H */
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2018 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef __GOYA_ASYNC_EVENTS_H_
#define __GOYA_ASYNC_EVENTS_H_
enum goya_async_event_id {
GOYA_ASYNC_EVENT_ID_PCIE_IF = 33,
GOYA_ASYNC_EVENT_ID_TPC0_ECC = 36,
GOYA_ASYNC_EVENT_ID_TPC1_ECC = 39,
GOYA_ASYNC_EVENT_ID_TPC2_ECC = 42,
GOYA_ASYNC_EVENT_ID_TPC3_ECC = 45,
GOYA_ASYNC_EVENT_ID_TPC4_ECC = 48,
GOYA_ASYNC_EVENT_ID_TPC5_ECC = 51,
GOYA_ASYNC_EVENT_ID_TPC6_ECC = 54,
GOYA_ASYNC_EVENT_ID_TPC7_ECC = 57,
GOYA_ASYNC_EVENT_ID_MME_ECC = 60,
GOYA_ASYNC_EVENT_ID_MME_ECC_EXT = 61,
GOYA_ASYNC_EVENT_ID_MMU_ECC = 63,
GOYA_ASYNC_EVENT_ID_DMA_MACRO = 64,
GOYA_ASYNC_EVENT_ID_DMA_ECC = 66,
GOYA_ASYNC_EVENT_ID_CPU_IF_ECC = 75,
GOYA_ASYNC_EVENT_ID_PSOC_MEM = 78,
GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT = 79,
GOYA_ASYNC_EVENT_ID_SRAM0 = 81,
GOYA_ASYNC_EVENT_ID_SRAM1 = 82,
GOYA_ASYNC_EVENT_ID_SRAM2 = 83,
GOYA_ASYNC_EVENT_ID_SRAM3 = 84,
GOYA_ASYNC_EVENT_ID_SRAM4 = 85,
GOYA_ASYNC_EVENT_ID_SRAM5 = 86,
GOYA_ASYNC_EVENT_ID_SRAM6 = 87,
GOYA_ASYNC_EVENT_ID_SRAM7 = 88,
GOYA_ASYNC_EVENT_ID_SRAM8 = 89,
GOYA_ASYNC_EVENT_ID_SRAM9 = 90,
GOYA_ASYNC_EVENT_ID_SRAM10 = 91,
GOYA_ASYNC_EVENT_ID_SRAM11 = 92,
GOYA_ASYNC_EVENT_ID_SRAM12 = 93,
GOYA_ASYNC_EVENT_ID_SRAM13 = 94,
GOYA_ASYNC_EVENT_ID_SRAM14 = 95,
GOYA_ASYNC_EVENT_ID_SRAM15 = 96,
GOYA_ASYNC_EVENT_ID_SRAM16 = 97,
GOYA_ASYNC_EVENT_ID_SRAM17 = 98,
GOYA_ASYNC_EVENT_ID_SRAM18 = 99,
GOYA_ASYNC_EVENT_ID_SRAM19 = 100,
GOYA_ASYNC_EVENT_ID_SRAM20 = 101,
GOYA_ASYNC_EVENT_ID_SRAM21 = 102,
GOYA_ASYNC_EVENT_ID_SRAM22 = 103,
GOYA_ASYNC_EVENT_ID_SRAM23 = 104,
GOYA_ASYNC_EVENT_ID_SRAM24 = 105,
GOYA_ASYNC_EVENT_ID_SRAM25 = 106,
GOYA_ASYNC_EVENT_ID_SRAM26 = 107,
GOYA_ASYNC_EVENT_ID_SRAM27 = 108,
GOYA_ASYNC_EVENT_ID_SRAM28 = 109,
GOYA_ASYNC_EVENT_ID_SRAM29 = 110,
GOYA_ASYNC_EVENT_ID_GIC500 = 112,
GOYA_ASYNC_EVENT_ID_PCIE_DEC = 115,
GOYA_ASYNC_EVENT_ID_TPC0_DEC = 117,
GOYA_ASYNC_EVENT_ID_TPC1_DEC = 120,
GOYA_ASYNC_EVENT_ID_TPC2_DEC = 123,
GOYA_ASYNC_EVENT_ID_TPC3_DEC = 126,
GOYA_ASYNC_EVENT_ID_TPC4_DEC = 129,
GOYA_ASYNC_EVENT_ID_TPC5_DEC = 132,
GOYA_ASYNC_EVENT_ID_TPC6_DEC = 135,
GOYA_ASYNC_EVENT_ID_TPC7_DEC = 138,
GOYA_ASYNC_EVENT_ID_AXI_ECC = 139,
GOYA_ASYNC_EVENT_ID_L2_RAM_ECC = 140,
GOYA_ASYNC_EVENT_ID_MME_WACS = 141,
GOYA_ASYNC_EVENT_ID_MME_WACSD = 142,
GOYA_ASYNC_EVENT_ID_PLL0 = 143,
GOYA_ASYNC_EVENT_ID_PLL1 = 144,
GOYA_ASYNC_EVENT_ID_PLL3 = 146,
GOYA_ASYNC_EVENT_ID_PLL4 = 147,
GOYA_ASYNC_EVENT_ID_PLL5 = 148,
GOYA_ASYNC_EVENT_ID_PLL6 = 149,
GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER = 155,
GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC = 159,
GOYA_ASYNC_EVENT_ID_PSOC = 160,
GOYA_ASYNC_EVENT_ID_PCIE_FLR = 171,
GOYA_ASYNC_EVENT_ID_PCIE_HOT_RESET = 172,
GOYA_ASYNC_EVENT_ID_PCIE_QID0_ENG0 = 174,
GOYA_ASYNC_EVENT_ID_PCIE_QID0_ENG1 = 175,
GOYA_ASYNC_EVENT_ID_PCIE_QID0_ENG2 = 176,
GOYA_ASYNC_EVENT_ID_PCIE_QID0_ENG3 = 177,
GOYA_ASYNC_EVENT_ID_PCIE_QID1_ENG0 = 178,
GOYA_ASYNC_EVENT_ID_PCIE_QID1_ENG1 = 179,
GOYA_ASYNC_EVENT_ID_PCIE_QID1_ENG2 = 180,
GOYA_ASYNC_EVENT_ID_PCIE_QID1_ENG3 = 181,
GOYA_ASYNC_EVENT_ID_PCIE_APB = 182,
GOYA_ASYNC_EVENT_ID_PCIE_QDB = 183,
GOYA_ASYNC_EVENT_ID_PCIE_BM_D_P_WR = 184,
GOYA_ASYNC_EVENT_ID_PCIE_BM_D_RD = 185,
GOYA_ASYNC_EVENT_ID_PCIE_BM_U_P_WR = 186,
GOYA_ASYNC_EVENT_ID_PCIE_BM_U_RD = 187,
GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU = 190,
GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR = 191,
GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU = 200,
GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR = 201,
GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU = 210,
GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR = 211,
GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU = 220,
GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR = 221,
GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU = 230,
GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR = 231,
GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU = 240,
GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR = 241,
GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU = 250,
GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR = 251,
GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU = 260,
GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR = 261,
GOYA_ASYNC_EVENT_ID_MMU_SBA_SPMU0 = 270,
GOYA_ASYNC_EVENT_ID_MMU_SBA_SPMU1 = 271,
GOYA_ASYNC_EVENT_ID_MME_WACS_UP = 272,
GOYA_ASYNC_EVENT_ID_MME_WACS_DOWN = 273,
GOYA_ASYNC_EVENT_ID_MMU_PAGE_FAULT = 280,
GOYA_ASYNC_EVENT_ID_MMU_WR_PERM = 281,
GOYA_ASYNC_EVENT_ID_MMU_DBG_BM = 282,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 = 290,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH1 = 291,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH2 = 292,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH3 = 293,
GOYA_ASYNC_EVENT_ID_DMA_BM_CH4 = 294,
GOYA_ASYNC_EVENT_ID_DDR0_PHY_DFI = 300,
GOYA_ASYNC_EVENT_ID_DDR0_ECC_SCRUB = 301,
GOYA_ASYNC_EVENT_ID_DDR0_DB_ECC = 302,
GOYA_ASYNC_EVENT_ID_DDR0_SB_ECC = 303,
GOYA_ASYNC_EVENT_ID_DDR0_SB_ECC_MC = 304,
GOYA_ASYNC_EVENT_ID_DDR0_AXI_RD = 305,
GOYA_ASYNC_EVENT_ID_DDR0_AXI_WR = 306,
GOYA_ASYNC_EVENT_ID_DDR1_PHY_DFI = 310,
GOYA_ASYNC_EVENT_ID_DDR1_ECC_SCRUB = 311,
GOYA_ASYNC_EVENT_ID_DDR1_DB_ECC = 312,
GOYA_ASYNC_EVENT_ID_DDR1_SB_ECC = 313,
GOYA_ASYNC_EVENT_ID_DDR1_SB_ECC_MC = 314,
GOYA_ASYNC_EVENT_ID_DDR1_AXI_RD = 315,
GOYA_ASYNC_EVENT_ID_DDR1_AXI_WR = 316,
GOYA_ASYNC_EVENT_ID_CPU_BMON = 320,
GOYA_ASYNC_EVENT_ID_TS_EAST = 322,
GOYA_ASYNC_EVENT_ID_TS_WEST = 323,
GOYA_ASYNC_EVENT_ID_TS_NORTH = 324,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_U16_0 = 330,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_U16_1 = 331,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_U16_2 = 332,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET = 356,
GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT = 361,
GOYA_ASYNC_EVENT_ID_TPC0_CMDQ = 430,
GOYA_ASYNC_EVENT_ID_TPC1_CMDQ = 431,
GOYA_ASYNC_EVENT_ID_TPC2_CMDQ = 432,
GOYA_ASYNC_EVENT_ID_TPC3_CMDQ = 433,
GOYA_ASYNC_EVENT_ID_TPC4_CMDQ = 434,
GOYA_ASYNC_EVENT_ID_TPC5_CMDQ = 435,
GOYA_ASYNC_EVENT_ID_TPC6_CMDQ = 436,
GOYA_ASYNC_EVENT_ID_TPC7_CMDQ = 437,
GOYA_ASYNC_EVENT_ID_TPC0_QM = 438,
GOYA_ASYNC_EVENT_ID_TPC1_QM = 439,
GOYA_ASYNC_EVENT_ID_TPC2_QM = 440,
GOYA_ASYNC_EVENT_ID_TPC3_QM = 441,
GOYA_ASYNC_EVENT_ID_TPC4_QM = 442,
GOYA_ASYNC_EVENT_ID_TPC5_QM = 443,
GOYA_ASYNC_EVENT_ID_TPC6_QM = 444,
GOYA_ASYNC_EVENT_ID_TPC7_QM = 445,
GOYA_ASYNC_EVENT_ID_MME_QM = 447,
GOYA_ASYNC_EVENT_ID_MME_CMDQ = 448,
GOYA_ASYNC_EVENT_ID_DMA0_QM = 449,
GOYA_ASYNC_EVENT_ID_DMA1_QM = 450,
GOYA_ASYNC_EVENT_ID_DMA2_QM = 451,
GOYA_ASYNC_EVENT_ID_DMA3_QM = 452,
GOYA_ASYNC_EVENT_ID_DMA4_QM = 453,
GOYA_ASYNC_EVENT_ID_DMA_ON_HBW = 454,
GOYA_ASYNC_EVENT_ID_DMA0_CH = 455,
GOYA_ASYNC_EVENT_ID_DMA1_CH = 456,
GOYA_ASYNC_EVENT_ID_DMA2_CH = 457,
GOYA_ASYNC_EVENT_ID_DMA3_CH = 458,
GOYA_ASYNC_EVENT_ID_DMA4_CH = 459,
GOYA_ASYNC_EVENT_ID_PI_UPDATE = 484,
GOYA_ASYNC_EVENT_ID_HALT_MACHINE = 485,
GOYA_ASYNC_EVENT_ID_INTS_REGISTER = 486,
GOYA_ASYNC_EVENT_ID_SOFT_RESET = 487,
GOYA_ASYNC_EVENT_ID_LAST_VALID_ID = 1023,
GOYA_ASYNC_EVENT_ID_SIZE
};
#endif /* __GOYA_ASYNC_EVENTS_H_ */
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2017-2018 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef GOYA_PACKETS_H
#define GOYA_PACKETS_H
#include <linux/types.h>
#define PACKET_HEADER_PACKET_ID_SHIFT 56
#define PACKET_HEADER_PACKET_ID_MASK 0x1F00000000000000ull
enum packet_id {
PACKET_WREG_32 = 0x1,
PACKET_WREG_BULK = 0x2,
PACKET_MSG_LONG = 0x3,
PACKET_MSG_SHORT = 0x4,
PACKET_CP_DMA = 0x5,
PACKET_MSG_PROT = 0x7,
PACKET_FENCE = 0x8,
PACKET_LIN_DMA = 0x9,
PACKET_NOP = 0xA,
PACKET_STOP = 0xB,
MAX_PACKET_ID = (PACKET_HEADER_PACKET_ID_MASK >>
PACKET_HEADER_PACKET_ID_SHIFT) + 1
};
enum goya_dma_direction {
DMA_HOST_TO_DRAM,
DMA_HOST_TO_SRAM,
DMA_DRAM_TO_SRAM,
DMA_SRAM_TO_DRAM,
DMA_SRAM_TO_HOST,
DMA_DRAM_TO_HOST,
DMA_DRAM_TO_DRAM,
DMA_SRAM_TO_SRAM,
DMA_ENUM_MAX
};
#define GOYA_PKT_CTL_OPCODE_SHIFT 24
#define GOYA_PKT_CTL_OPCODE_MASK 0x1F000000
#define GOYA_PKT_CTL_EB_SHIFT 29
#define GOYA_PKT_CTL_EB_MASK 0x20000000
#define GOYA_PKT_CTL_RB_SHIFT 30
#define GOYA_PKT_CTL_RB_MASK 0x40000000
#define GOYA_PKT_CTL_MB_SHIFT 31
#define GOYA_PKT_CTL_MB_MASK 0x80000000
struct packet_nop {
__le32 reserved;
__le32 ctl;
};
struct packet_stop {
__le32 reserved;
__le32 ctl;
};
#define GOYA_PKT_WREG32_CTL_REG_OFFSET_SHIFT 0
#define GOYA_PKT_WREG32_CTL_REG_OFFSET_MASK 0x0000FFFF
struct packet_wreg32 {
__le32 value;
__le32 ctl;
};
struct packet_wreg_bulk {
__le32 size64;
__le32 ctl;
__le64 values[0]; /* data starts here */
};
struct packet_msg_long {
__le32 value;
__le32 ctl;
__le64 addr;
};
struct packet_msg_short {
__le32 value;
__le32 ctl;
};
struct packet_msg_prot {
__le32 value;
__le32 ctl;
__le64 addr;
};
struct packet_fence {
__le32 cfg;
__le32 ctl;
};
#define GOYA_PKT_LIN_DMA_CTL_WO_SHIFT 0
#define GOYA_PKT_LIN_DMA_CTL_WO_MASK 0x00000001
#define GOYA_PKT_LIN_DMA_CTL_RDCOMP_SHIFT 1
#define GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK 0x00000002
#define GOYA_PKT_LIN_DMA_CTL_WRCOMP_SHIFT 2
#define GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK 0x00000004
#define GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT 6
#define GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK 0x00000040
#define GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT 20
#define GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK 0x00700000
struct packet_lin_dma {
__le32 tsize;
__le32 ctl;
__le64 src_addr;
__le64 dst_addr;
};
struct packet_cp_dma {
__le32 tsize;
__le32 ctl;
__le64 src_addr;
};
#endif /* GOYA_PACKETS_H */
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2018 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef QMAN_IF_H
#define QMAN_IF_H
#include <linux/types.h>
/*
* PRIMARY QUEUE
*/
struct hl_bd {
__le64 ptr;
__le32 len;
__le32 ctl;
};
#define HL_BD_SIZE sizeof(struct hl_bd)
/*
* BD_CTL_REPEAT_VALID tells the CP whether the repeat field in the BD CTL is
* valid. 1 means the repeat field is valid, 0 means not-valid,
* i.e. repeat == 1
*/
#define BD_CTL_REPEAT_VALID_SHIFT 24
#define BD_CTL_REPEAT_VALID_MASK 0x01000000
#define BD_CTL_SHADOW_INDEX_SHIFT 0
#define BD_CTL_SHADOW_INDEX_MASK 0x00000FFF
/*
* COMPLETION QUEUE
*/
struct hl_cq_entry {
__le32 data;
};
#define HL_CQ_ENTRY_SIZE sizeof(struct hl_cq_entry)
#define CQ_ENTRY_READY_SHIFT 31
#define CQ_ENTRY_READY_MASK 0x80000000
#define CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT 30
#define CQ_ENTRY_SHADOW_INDEX_VALID_MASK 0x40000000
#define CQ_ENTRY_SHADOW_INDEX_SHIFT BD_CTL_SHADOW_INDEX_SHIFT
#define CQ_ENTRY_SHADOW_INDEX_MASK BD_CTL_SHADOW_INDEX_MASK
#endif /* QMAN_IF_H */
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/irqreturn.h>
/*
* hl_cq_inc_ptr - increment ci or pi of cq
*
* @ptr: the current ci or pi value of the completion queue
*
* Increment ptr by 1. If it reaches the number of completion queue
* entries, set it to 0
*/
inline u32 hl_cq_inc_ptr(u32 ptr)
{
ptr++;
if (unlikely(ptr == HL_CQ_LENGTH))
ptr = 0;
return ptr;
}
/*
* hl_irq_handler_cq - irq handler for completion queue
*
* @irq: irq number
* @arg: pointer to completion queue structure
*
*/
irqreturn_t hl_irq_handler_cq(int irq, void *arg)
{
struct hl_cq *cq = arg;
struct hl_device *hdev = cq->hdev;
struct hl_hw_queue *queue;
struct hl_cs_job *job;
bool shadow_index_valid;
u16 shadow_index;
u32 *cq_entry;
u32 *cq_base;
if (hdev->disabled) {
dev_dbg(hdev->dev,
"Device disabled but received IRQ %d for CQ %d\n",
irq, cq->hw_queue_id);
return IRQ_HANDLED;
}
cq_base = (u32 *) (uintptr_t) cq->kernel_address;
while (1) {
bool entry_ready = ((cq_base[cq->ci] & CQ_ENTRY_READY_MASK)
>> CQ_ENTRY_READY_SHIFT);
if (!entry_ready)
break;
cq_entry = (u32 *) &cq_base[cq->ci];
/*
* Make sure we read CQ entry contents after we've
* checked the ownership bit.
*/
dma_rmb();
shadow_index_valid =
((*cq_entry & CQ_ENTRY_SHADOW_INDEX_VALID_MASK)
>> CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT);
shadow_index = (u16)
((*cq_entry & CQ_ENTRY_SHADOW_INDEX_MASK)
>> CQ_ENTRY_SHADOW_INDEX_SHIFT);
queue = &hdev->kernel_queues[cq->hw_queue_id];
if ((shadow_index_valid) && (!hdev->disabled)) {
job = queue->shadow_queue[hl_pi_2_offset(shadow_index)];
queue_work(hdev->cq_wq, &job->finish_work);
}
/*
* Update ci of the context's queue. There is no
* need to protect it with spinlock because this update is
* done only inside IRQ and there is a different IRQ per
* queue
*/
queue->ci = hl_queue_inc_ptr(queue->ci);
/* Clear CQ entry ready bit */
cq_base[cq->ci] &= ~CQ_ENTRY_READY_MASK;
cq->ci = hl_cq_inc_ptr(cq->ci);
/* Increment free slots */
atomic_inc(&cq->free_slots_cnt);
}
return IRQ_HANDLED;
}
/*
* hl_cq_init - main initialization function for an cq object
*
* @hdev: pointer to device structure
* @q: pointer to cq structure
* @hw_queue_id: The H/W queue ID this completion queue belongs to
*
* Allocate dma-able memory for the completion queue and initialize fields
* Returns 0 on success
*/
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
{
void *p;
BUILD_BUG_ON(HL_CQ_SIZE_IN_BYTES > HL_PAGE_SIZE);
p = hdev->asic_funcs->dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES,
&q->bus_address, GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->hdev = hdev;
q->kernel_address = (u64) (uintptr_t) p;
q->hw_queue_id = hw_queue_id;
q->ci = 0;
q->pi = 0;
atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
return 0;
}
/*
* hl_cq_fini - destroy completion queue
*
* @hdev: pointer to device structure
* @q: pointer to cq structure
*
* Free the completion queue memory
*/
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
{
hdev->asic_funcs->dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES,
(void *) (uintptr_t) q->kernel_address, q->bus_address);
}
......@@ -17,6 +17,35 @@
*/
#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
/*
* Queue Numbering
*
* The external queues (DMA channels + CPU) MUST be before the internal queues
* and each group (DMA channels + CPU and internal) must be contiguous inside
* itself but there can be a gap between the two groups (although not
* recommended)
*/
enum goya_queue_id {
GOYA_QUEUE_ID_DMA_0 = 0,
GOYA_QUEUE_ID_DMA_1,
GOYA_QUEUE_ID_DMA_2,
GOYA_QUEUE_ID_DMA_3,
GOYA_QUEUE_ID_DMA_4,
GOYA_QUEUE_ID_CPU_PQ,
GOYA_QUEUE_ID_MME,
GOYA_QUEUE_ID_TPC0,
GOYA_QUEUE_ID_TPC1,
GOYA_QUEUE_ID_TPC2,
GOYA_QUEUE_ID_TPC3,
GOYA_QUEUE_ID_TPC4,
GOYA_QUEUE_ID_TPC5,
GOYA_QUEUE_ID_TPC6,
GOYA_QUEUE_ID_TPC7,
GOYA_QUEUE_ID_SIZE
};
/* Opcode to create a new command buffer */
#define HL_CB_OP_CREATE 0
/* Opcode to destroy previously created command buffer */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment