Commit 955ac624 authored by Shengjiu Wang's avatar Shengjiu Wang Committed by Mark Brown

ASoC: fsl_easrc: Add EASRC ASoC CPU DAI drivers

EASRC (Enhanced Asynchronous Sample Rate Converter) is a new IP module
found on i.MX8MN. It is different with old ASRC module.

The primary features for the EASRC are as follows:
- 4 Contexts - groups of channels with an independent time base
- Fully independent and concurrent context control
- Simultaneous processing of up to 32 audio channels
- Programmable filter charachteristics for each context
- 32, 24, 20, and 16-bit fixed point audio sample support
- 32-bit floating point audio sample support
- 8kHz to 384kHz sample rate
- 1/16 to 8x sample rate conversion ratio
Signed-off-by: default avatarShengjiu Wang <shengjiu.wang@nxp.com>
Signed-off-by: default avatarCosmin-Gabriel Samoila <cosmin.samoila@nxp.com>
Acked-by: default avatarNicolin Chen <nicoleotsuka@gmail.com>
Link: https://lore.kernel.org/r/260d7a9fbddf9fa90760d30095df60a4c25fd0a1.1587038908.git.shengjiu.wang@nxp.comSigned-off-by: default avatarMark Brown <broonie@kernel.org>
parent a960de4d
......@@ -84,6 +84,17 @@ config SND_SOC_FSL_MICFIL
Say Y if you want to add Pulse Density Modulation microphone
interface (MICFIL) support for NXP.
config SND_SOC_FSL_EASRC
tristate "Enhanced Asynchronous Sample Rate Converter (EASRC) module support"
depends on SND_SOC_FSL_ASRC
select REGMAP_MMIO
select SND_SOC_GENERIC_DMAENGINE_PCM
help
Say Y if you want to add Enhanced ASRC support for NXP. The ASRC is
a digital module that converts audio from a source sample rate to a
destination sample rate. It is a new design module compare with the
old ASRC.
config SND_SOC_FSL_UTILS
tristate
......
......@@ -24,6 +24,7 @@ snd-soc-fsl-micfil-objs := fsl_micfil.o
snd-soc-fsl-utils-objs := fsl_utils.o
snd-soc-fsl-dma-objs := fsl_dma.o
snd-soc-fsl-mqs-objs := fsl_mqs.o
snd-soc-fsl-easrc-objs := fsl_easrc.o
obj-$(CONFIG_SND_SOC_FSL_AUDMIX) += snd-soc-fsl-audmix.o
obj-$(CONFIG_SND_SOC_FSL_ASOC_CARD) += snd-soc-fsl-asoc-card.o
......@@ -35,6 +36,7 @@ obj-$(CONFIG_SND_SOC_FSL_ESAI) += snd-soc-fsl-esai.o
obj-$(CONFIG_SND_SOC_FSL_MICFIL) += snd-soc-fsl-micfil.o
obj-$(CONFIG_SND_SOC_FSL_UTILS) += snd-soc-fsl-utils.o
obj-$(CONFIG_SND_SOC_FSL_MQS) += snd-soc-fsl-mqs.o
obj-$(CONFIG_SND_SOC_FSL_EASRC) += snd-soc-fsl-easrc.o
obj-$(CONFIG_SND_SOC_POWERPC_DMA) += snd-soc-fsl-dma.o
# MPC5200 Platform Support
......
// SPDX-License-Identifier: GPL-2.0
// Copyright 2019 NXP
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/kobject.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sched/signal.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/gcd.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include "fsl_easrc.h"
#include "imx-pcm.h"
#define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_U24_LE | \
SNDRV_PCM_FMTBIT_U24_3LE | \
SNDRV_PCM_FMTBIT_S32_LE | \
SNDRV_PCM_FMTBIT_U32_LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_U20_3LE | \
SNDRV_PCM_FMTBIT_FLOAT_LE)
static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regval = ucontrol->value.integer.value[0];
easrc_priv->bps_iec958[mc->regbase] = regval;
return 0;
}
static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
return 0;
}
static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regval;
int ret;
ret = snd_soc_component_read(component, mc->regbase, &regval);
if (ret < 0)
return ret;
ucontrol->value.integer.value[0] = regval;
return 0;
}
static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regval = ucontrol->value.integer.value[0];
int ret;
ret = snd_soc_component_write(component, mc->regbase, regval);
if (ret < 0)
return ret;
return 0;
}
#define SOC_SINGLE_REG_RW(xname, xreg) \
{ .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
.put = fsl_easrc_set_reg, \
.private_value = (unsigned long)&(struct soc_mreg_control) \
{ .regbase = xreg, .regcount = 1, .nbits = 32, \
.invert = 0, .min = 0, .max = 0xffffffff, } }
#define SOC_SINGLE_VAL_RW(xname, xreg) \
{ .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
.put = fsl_easrc_iec958_put_bits, \
.private_value = (unsigned long)&(struct soc_mreg_control) \
{ .regbase = xreg, .regcount = 1, .nbits = 32, \
.invert = 0, .min = 0, .max = 2, } }
static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
};
/*
* fsl_easrc_set_rs_ratio
*
* According to the resample taps, calculate the resample ratio
* ratio = in_rate / out_rate
*/
static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
{
struct fsl_asrc *easrc = ctx->asrc;
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
unsigned int in_rate = ctx_priv->in_params.norm_rate;
unsigned int out_rate = ctx_priv->out_params.norm_rate;
unsigned int int_bits;
unsigned int frac_bits;
u64 val;
u32 *r;
switch (easrc_priv->rs_num_taps) {
case EASRC_RS_32_TAPS:
int_bits = 5;
frac_bits = 39;
break;
case EASRC_RS_64_TAPS:
int_bits = 6;
frac_bits = 38;
break;
case EASRC_RS_128_TAPS:
int_bits = 7;
frac_bits = 37;
break;
default:
return -EINVAL;
}
val = (u64)in_rate << frac_bits;
do_div(val, out_rate);
r = (uint32_t *)&val;
if (r[1] & 0xFFFFF000) {
dev_err(&easrc->pdev->dev, "ratio exceed range\n");
return -EINVAL;
}
regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
EASRC_RRL_RS_RL(r[0]));
regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
EASRC_RRH_RS_RH(r[1]));
return 0;
}
/* Normalize input and output sample rates */
static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
{
struct fsl_easrc_ctx_priv *ctx_priv;
int a, b;
if (!ctx)
return;
ctx_priv = ctx->private;
a = ctx_priv->in_params.sample_rate;
b = ctx_priv->out_params.sample_rate;
a = gcd(a, b);
/* Divide by gcd to normalize the rate */
ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
}
/* Resets the pointer of the coeff memory pointers */
static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
unsigned int ctx_id, int mem_type)
{
struct device *dev;
u32 reg, mask, val;
if (!easrc)
return -ENODEV;
dev = &easrc->pdev->dev;
switch (mem_type) {
case EASRC_PF_COEFF_MEM:
/* This resets the prefilter memory pointer addr */
if (ctx_id >= EASRC_CTX_MAX_NUM) {
dev_err(dev, "Invalid context id[%d]\n", ctx_id);
return -EINVAL;
}
reg = REG_EASRC_CCE1(ctx_id);
mask = EASRC_CCE1_COEF_MEM_RST_MASK;
val = EASRC_CCE1_COEF_MEM_RST;
break;
case EASRC_RS_COEFF_MEM:
/* This resets the resampling memory pointer addr */
reg = REG_EASRC_CRCC;
mask = EASRC_CRCC_RS_CPR_MASK;
val = EASRC_CRCC_RS_CPR;
break;
default:
dev_err(dev, "Unknown memory type\n");
return -EINVAL;
}
/*
* To reset the write pointer back to zero, the register field
* ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
* 0x0 to 0x1 to 0x0.
*/
regmap_update_bits(easrc->regmap, reg, mask, 0);
regmap_update_bits(easrc->regmap, reg, mask, val);
regmap_update_bits(easrc->regmap, reg, mask, 0);
return 0;
}
static inline uint32_t bits_taps_to_val(unsigned int t)
{
switch (t) {
case EASRC_RS_32_TAPS:
return 32;
case EASRC_RS_64_TAPS:
return 64;
case EASRC_RS_128_TAPS:
return 128;
}
return 0;
}
static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
{
struct device *dev = &easrc->pdev->dev;
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr;
struct interp_params *interp = easrc_priv->interp;
struct interp_params *selected_interp = NULL;
unsigned int num_coeff;
unsigned int i;
u64 *coef;
u32 *r;
int ret;
if (!hdr) {
dev_err(dev, "firmware not loaded!\n");
return -ENODEV;
}
for (i = 0; i < hdr->interp_scen; i++) {
if ((interp[i].num_taps - 1) !=
bits_taps_to_val(easrc_priv->rs_num_taps))
continue;
coef = interp[i].coeff;
selected_interp = &interp[i];
dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
selected_interp->num_taps,
selected_interp->num_phases);
break;
}
if (!selected_interp) {
dev_err(dev, "failed to get interpreter configuration\n");
return -EINVAL;
}
/*
* RS_LOW - first half of center tap of the sinc function
* RS_HIGH - second half of center tap of the sinc function
* This is due to the fact the resampling function must be
* symetrical - i.e. odd number of taps
*/
r = (uint32_t *)&selected_interp->center_tap;
regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
/*
* Write Number of Resampling Coefficient Taps
* 00b - 32-Tap Resampling Filter
* 01b - 64-Tap Resampling Filter
* 10b - 128-Tap Resampling Filter
* 11b - N/A
*/
regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
EASRC_CRCC_RS_TAPS_MASK,
EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
/* Reset prefilter coefficient pointer back to 0 */
ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
if (ret)
return ret;
/*
* When the filter is programmed to run in:
* 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
* 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
* 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
* This means the number of writes is constant no matter
* the mode we are using
*/
num_coeff = 16 * 128 * 4;
for (i = 0; i < num_coeff; i++) {
r = (uint32_t *)&coef[i];
regmap_write(easrc->regmap, REG_EASRC_CRCM,
EASRC_CRCM_RS_CWD(r[0]));
regmap_write(easrc->regmap, REG_EASRC_CRCM,
EASRC_CRCM_RS_CWD(r[1]));
}
return 0;
}
/**
* Scale filter coefficients (64 bits float)
* For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
* scale it by multiplying filter coefficients by 2^31
* For input int[16, 24, 32] -> output float32
* scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
* input:
* asrc: Structure pointer of fsl_asrc
* infilter : Pointer to non-scaled input filter
* shift: The multiply factor
* output:
* outfilter: scaled filter
*/
static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
u64 *infilter,
u64 *outfilter,
int shift)
{
struct device *dev = &easrc->pdev->dev;
u64 coef = *infilter;
s64 exp = (coef & 0x7ff0000000000000ll) >> 52;
u64 outcoef;
/*
* If exponent is zero (value == 0), or 7ff (value == NaNs)
* dont touch the content
*/
if (exp == 0 || exp == 0x7ff) {
*outfilter = coef;
return 0;
}
/* coef * 2^shift ==> exp + shift */
exp += shift;
if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
dev_err(dev, "coef out of range\n");
return -EINVAL;
}
outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
*outfilter = outcoef;
return 0;
}
static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
u64 *coef, int n_taps, int shift)
{
struct device *dev = &easrc->pdev->dev;
int ret = 0;
int i;
u32 *r;
u64 tmp;
/* If STx_NUM_TAPS is set to 0x0 then return */
if (!n_taps)
return 0;
if (!coef) {
dev_err(dev, "coef table is NULL\n");
return -EINVAL;
}
/*
* When switching between stages, the address pointer
* should be reset back to 0x0 before performing a write
*/
ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
if (ret)
return ret;
for (i = 0; i < (n_taps + 1) / 2; i++) {
ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
if (ret)
return ret;
r = (uint32_t *)&tmp;
regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
EASRC_PCF_CD(r[0]));
regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
EASRC_PCF_CD(r[1]));
}
return 0;
}
static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
unsigned int ctx_id)
{
struct prefil_params *prefil, *selected_prefil = NULL;
struct fsl_easrc_ctx_priv *ctx_priv;
struct fsl_easrc_priv *easrc_priv;
struct asrc_firmware_hdr *hdr;
struct fsl_asrc_pair *ctx;
struct device *dev;
u32 inrate, outrate, offset = 0;
u32 in_s_rate, out_s_rate, in_s_fmt, out_s_fmt;
int ret, i;
if (!easrc)
return -ENODEV;
dev = &easrc->pdev->dev;
if (ctx_id >= EASRC_CTX_MAX_NUM) {
dev_err(dev, "Invalid context id[%d]\n", ctx_id);
return -EINVAL;
}
easrc_priv = easrc->private;
ctx = easrc->pair[ctx_id];
ctx_priv = ctx->private;
in_s_rate = ctx_priv->in_params.sample_rate;
out_s_rate = ctx_priv->out_params.sample_rate;
in_s_fmt = ctx_priv->in_params.sample_format;
out_s_fmt = ctx_priv->out_params.sample_format;
ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
ctx_priv->st1_num_taps = 0;
ctx_priv->st2_num_taps = 0;
regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
/*
* The audio float point data range is (-1, 1), the asrc would output
* all zero for float point input and integer output case, that is to
* drop the fractional part of the data directly.
*
* In order to support float to int conversion or int to float
* conversion we need to do special operation on the coefficient to
* enlarge/reduce the data to the expected range.
*
* For float to int case:
* Up sampling:
* 1. Create a 1 tap filter with center tap (only tap) of 2^31
* in 64 bits floating point.
* double value = (double)(((uint64_t)1) << 31)
* 2. Program 1 tap prefilter with center tap above.
*
* Down sampling,
* 1. If the filter is single stage filter, add "shift" to the exponent
* of stage 1 coefficients.
* 2. If the filter is two stage filter , add "shift" to the exponent
* of stage 2 coefficients.
*
* The "shift" is 31, same for int16, int24, int32 case.
*
* For int to float case:
* Up sampling:
* 1. Create a 1 tap filter with center tap (only tap) of 2^-31
* in 64 bits floating point.
* 2. Program 1 tap prefilter with center tap above.
*
* Down sampling,
* 1. If the filter is single stage filter, subtract "shift" to the
* exponent of stage 1 coefficients.
* 2. If the filter is two stage filter , subtract "shift" to the
* exponent of stage 2 coefficients.
*
* The "shift" is 15,23,31, different for int16, int24, int32 case.
*
*/
if (out_s_rate >= in_s_rate) {
if (out_s_rate == in_s_rate)
regmap_update_bits(easrc->regmap,
REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_RS_BYPASS_MASK,
EASRC_CCE1_RS_BYPASS);
ctx_priv->st1_num_taps = 1;
ctx_priv->st1_coeff = &easrc_priv->const_coeff;
ctx_priv->st1_num_exp = 1;
ctx_priv->st2_num_taps = 0;
if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
ctx_priv->st1_addexp = 31;
else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
} else {
inrate = ctx_priv->in_params.norm_rate;
outrate = ctx_priv->out_params.norm_rate;
hdr = easrc_priv->firmware_hdr;
prefil = easrc_priv->prefil;
for (i = 0; i < hdr->prefil_scen; i++) {
if (inrate == prefil[i].insr &&
outrate == prefil[i].outsr) {
selected_prefil = &prefil[i];
dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
selected_prefil->insr,
selected_prefil->outsr,
selected_prefil->st1_taps,
selected_prefil->st2_taps);
break;
}
}
if (!selected_prefil) {
dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
in_s_rate, inrate,
out_s_rate, outrate);
return -EINVAL;
}
/*
* In prefilter coeff array, first st1_num_taps represent the
* stage1 prefilter coefficients followed by next st2_num_taps
* representing stage 2 coefficients
*/
ctx_priv->st1_num_taps = selected_prefil->st1_taps;
ctx_priv->st1_coeff = selected_prefil->coeff;
ctx_priv->st1_num_exp = selected_prefil->st1_exp;
offset = ((selected_prefil->st1_taps + 1) / 2);
ctx_priv->st2_num_taps = selected_prefil->st2_taps;
ctx_priv->st2_coeff = selected_prefil->coeff + offset;
if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
/* only change stage2 coefficient for 2 stage case */
if (ctx_priv->st2_num_taps > 0)
ctx_priv->st2_addexp = 31;
else
ctx_priv->st1_addexp = 31;
} else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
if (ctx_priv->st2_num_taps > 0)
ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
else
ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
}
}
ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
ctx_priv->st2_num_taps / 2;
ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
ctx_priv->out_missed_sample += 1;
/*
* To modify the value of a prefilter coefficient, the user must
* perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
* while the respective context RUN_EN bit is set to 0b0
*/
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
EASRC_CC_EN_MASK, 0);
if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
ret = -EINVAL;
goto ctx_error;
}
/* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
EASRC_CCE2_ST1_TAPS_MASK,
EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
/* Prefilter Coefficient Write Select to write in ST1 coeff */
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_COEF_WS_MASK,
EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
ctx_priv->st1_coeff,
ctx_priv->st1_num_taps,
ctx_priv->st1_addexp);
if (ret)
goto ctx_error;
if (ctx_priv->st2_num_taps > 0) {
if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
ret = -EINVAL;
goto ctx_error;
}
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_PF_TSEN_MASK,
EASRC_CCE1_PF_TSEN);
/*
* Enable prefilter stage1 writeback floating point
* which is used for FLOAT_LE case
*/
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_PF_ST1_WBFP_MASK,
EASRC_CCE1_PF_ST1_WBFP);
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_PF_EXP_MASK,
EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
/* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
EASRC_CCE2_ST2_TAPS_MASK,
EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
/* Prefilter Coefficient Write Select to write in ST2 coeff */
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_COEF_WS_MASK,
EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
ctx_priv->st2_coeff,
ctx_priv->st2_num_taps,
ctx_priv->st2_addexp);
if (ret)
goto ctx_error;
}
return 0;
ctx_error:
return ret;
}
static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
struct fsl_easrc_slot *slot)
{
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
int st1_mem_alloc = 0, st2_mem_alloc = 0;
int pf_mem_alloc = 0;
int max_channels = 8 - slot->num_channel;
int channels = 0;
if (ctx_priv->st1_num_taps > 0) {
if (ctx_priv->st2_num_taps > 0)
st1_mem_alloc =
(ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
else
st1_mem_alloc = ctx_priv->st1_num_taps;
}
if (ctx_priv->st2_num_taps > 0)
st2_mem_alloc = ctx_priv->st2_num_taps;
pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
if (pf_mem_alloc != 0)
channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
else
channels = 8;
if (channels < max_channels)
max_channels = channels;
return max_channels;
}
static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
struct fsl_easrc_slot *slot,
unsigned int slot_ctx_idx,
unsigned int *req_channels,
unsigned int *start_channel,
unsigned int *avail_channel)
{
struct fsl_asrc *easrc = ctx->asrc;
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc = 0;
unsigned int reg0, reg1, reg2, reg3;
unsigned int addr;
if (slot->slot_index == 0) {
reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
} else {
reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
}
if (*req_channels <= *avail_channel) {
slot->num_channel = *req_channels;
*req_channels = 0;
} else {
slot->num_channel = *avail_channel;
*req_channels -= *avail_channel;
}
slot->min_channel = *start_channel;
slot->max_channel = *start_channel + slot->num_channel - 1;
slot->ctx_index = ctx->index;
slot->busy = true;
*start_channel += slot->num_channel;
regmap_update_bits(easrc->regmap, reg0,
EASRC_DPCS0R0_MAXCH_MASK,
EASRC_DPCS0R0_MAXCH(slot->max_channel));
regmap_update_bits(easrc->regmap, reg0,
EASRC_DPCS0R0_MINCH_MASK,
EASRC_DPCS0R0_MINCH(slot->min_channel));
regmap_update_bits(easrc->regmap, reg0,
EASRC_DPCS0R0_NUMCH_MASK,
EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
regmap_update_bits(easrc->regmap, reg0,
EASRC_DPCS0R0_CTXNUM_MASK,
EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
if (ctx_priv->st1_num_taps > 0) {
if (ctx_priv->st2_num_taps > 0)
st1_mem_alloc =
(ctx_priv->st1_num_taps - 1) * slot->num_channel *
ctx_priv->st1_num_exp + slot->num_channel;
else
st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
slot->pf_mem_used = st1_mem_alloc;
regmap_update_bits(easrc->regmap, reg2,
EASRC_DPCS0R2_ST1_MA_MASK,
EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
if (slot->slot_index == 1)
addr = PREFILTER_MEM_LEN - st1_mem_alloc;
else
addr = 0;
regmap_update_bits(easrc->regmap, reg2,
EASRC_DPCS0R2_ST1_SA_MASK,
EASRC_DPCS0R2_ST1_SA(addr));
}
if (ctx_priv->st2_num_taps > 0) {
st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
regmap_update_bits(easrc->regmap, reg1,
EASRC_DPCS0R1_ST1_EXP_MASK,
EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
slot->pf_mem_used += st2_mem_alloc;
regmap_update_bits(easrc->regmap, reg3,
EASRC_DPCS0R3_ST2_MA_MASK,
EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
if (slot->slot_index == 1)
addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
else
addr = st1_mem_alloc;
regmap_update_bits(easrc->regmap, reg3,
EASRC_DPCS0R3_ST2_SA_MASK,
EASRC_DPCS0R3_ST2_SA(addr));
}
regmap_update_bits(easrc->regmap, reg0,
EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
return 0;
}
/*
* fsl_easrc_config_slot
*
* A single context can be split amongst any of the 4 context processing pipes
* in the design.
* The total number of channels consumed within the context processor must be
* less than or equal to 8. if a single context is configured to contain more
* than 8 channels then it must be distributed across multiple context
* processing pipe slots.
*
*/
static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
{
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
int req_channels = ctx->channels;
int start_channel = 0, avail_channel;
struct fsl_easrc_slot *slot0, *slot1;
struct fsl_easrc_slot *slota, *slotb;
int i, ret;
if (req_channels <= 0)
return -EINVAL;
for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
slot0 = &easrc_priv->slot[i][0];
slot1 = &easrc_priv->slot[i][1];
if (slot0->busy && slot1->busy) {
continue;
} else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
(slot1->busy && slot1->ctx_index == ctx->index)) {
continue;
} else if (!slot0->busy) {
slota = slot0;
slotb = slot1;
slota->slot_index = 0;
} else if (!slot1->busy) {
slota = slot1;
slotb = slot0;
slota->slot_index = 1;
}
if (!slota || !slotb)
continue;
avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
if (avail_channel <= 0)
continue;
ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
&start_channel, &avail_channel);
if (ret)
return ret;
if (req_channels > 0)
continue;
else
break;
}
if (req_channels > 0) {
dev_err(&easrc->pdev->dev, "no avail slot.\n");
return -EINVAL;
}
return 0;
}
/*
* fsl_easrc_release_slot
*
* Clear the slot configuration
*/
static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
{
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
int i;
for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
if (easrc_priv->slot[i][0].busy &&
easrc_priv->slot[i][0].ctx_index == ctx->index) {
easrc_priv->slot[i][0].busy = false;
easrc_priv->slot[i][0].num_channel = 0;
easrc_priv->slot[i][0].pf_mem_used = 0;
/* set registers */
regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
}
if (easrc_priv->slot[i][1].busy &&
easrc_priv->slot[i][1].ctx_index == ctx->index) {
easrc_priv->slot[i][1].busy = false;
easrc_priv->slot[i][1].num_channel = 0;
easrc_priv->slot[i][1].pf_mem_used = 0;
/* set registers */
regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
}
}
return 0;
}
/*
* fsl_easrc_config_context
*
* Configure the register relate with context.
*/
int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
{
struct fsl_easrc_ctx_priv *ctx_priv;
struct fsl_asrc_pair *ctx;
struct device *dev;
unsigned long lock_flags;
int ret;
if (!easrc)
return -ENODEV;
dev = &easrc->pdev->dev;
if (ctx_id >= EASRC_CTX_MAX_NUM) {
dev_err(dev, "Invalid context id[%d]\n", ctx_id);
return -EINVAL;
}
ctx = easrc->pair[ctx_id];
ctx_priv = ctx->private;
fsl_easrc_normalize_rates(ctx);
ret = fsl_easrc_set_rs_ratio(ctx);
if (ret)
return ret;
/* Initialize the context coeficients */
ret = fsl_easrc_prefilter_config(easrc, ctx->index);
if (ret)
return ret;
spin_lock_irqsave(&easrc->lock, lock_flags);
ret = fsl_easrc_config_slot(easrc, ctx->index);
spin_unlock_irqrestore(&easrc->lock, lock_flags);
if (ret)
return ret;
/*
* Both prefilter and resampling filters can use following
* initialization modes:
* 2 - zero-fil mode
* 1 - replication mode
* 0 - software control
*/
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_RS_INIT_MASK,
EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
EASRC_CCE1_PF_INIT_MASK,
EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
/*
* Context Input FIFO Watermark
* DMA request is generated when input FIFO < FIFO_WTMK
*/
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
EASRC_CC_FIFO_WTMK_MASK,
EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
/*
* Context Output FIFO Watermark
* DMA request is generated when output FIFO > FIFO_WTMK
* So we set fifo_wtmk -1 to register.
*/
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
EASRC_COC_FIFO_WTMK_MASK,
EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
/* Number of channels */
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
EASRC_CC_CHEN_MASK,
EASRC_CC_CHEN(ctx->channels - 1));
return 0;
}
static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
struct fsl_easrc_data_fmt *fmt,
snd_pcm_format_t raw_fmt)
{
struct fsl_asrc *easrc = ctx->asrc;
struct fsl_easrc_priv *easrc_priv = easrc->private;
int ret;
if (!fmt)
return -EINVAL;
/*
* Context Input Floating Point Format
* 0 - Integer Format
* 1 - Single Precision FP Format
*/
fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
fmt->sample_pos = 0;
fmt->iec958 = 0;
/* Get the data width */
switch (snd_pcm_format_width(raw_fmt)) {
case 16:
fmt->width = EASRC_WIDTH_16_BIT;
fmt->addexp = 15;
break;
case 20:
fmt->width = EASRC_WIDTH_20_BIT;
fmt->addexp = 19;
break;
case 24:
fmt->width = EASRC_WIDTH_24_BIT;
fmt->addexp = 23;
break;
case 32:
fmt->width = EASRC_WIDTH_32_BIT;
fmt->addexp = 31;
break;
default:
return -EINVAL;
}
switch (raw_fmt) {
case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
fmt->width = easrc_priv->bps_iec958[ctx->index];
fmt->iec958 = 1;
fmt->floating_point = 0;
if (fmt->width == EASRC_WIDTH_16_BIT) {
fmt->sample_pos = 12;
fmt->addexp = 15;
} else if (fmt->width == EASRC_WIDTH_20_BIT) {
fmt->sample_pos = 8;
fmt->addexp = 19;
} else if (fmt->width == EASRC_WIDTH_24_BIT) {
fmt->sample_pos = 4;
fmt->addexp = 23;
}
break;
default:
break;
}
/*
* Data Endianness
* 0 - Little-Endian
* 1 - Big-Endian
*/
ret = snd_pcm_format_big_endian(raw_fmt);
if (ret < 0)
return ret;
fmt->endianness = ret;
/*
* Input Data sign
* 0b - Signed Format
* 1b - Unsigned Format
*/
fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
return 0;
}
int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
snd_pcm_format_t *in_raw_format,
snd_pcm_format_t *out_raw_format)
{
struct fsl_asrc *easrc = ctx->asrc;
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
int ret;
/* Get the bitfield values for input data format */
if (in_raw_format && out_raw_format) {
ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
if (ret)
return ret;
}
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_BPS_MASK,
EASRC_CC_BPS(in_fmt->width));
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_ENDIANNESS_MASK,
in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_FMT_MASK,
in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_INSIGN_MASK,
in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
/* In Sample Position */
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_SAMPLE_POS_MASK,
EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
/* Get the bitfield values for input data format */
if (in_raw_format && out_raw_format) {
ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
if (ret)
return ret;
}
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_BPS_MASK,
EASRC_COC_BPS(out_fmt->width));
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_ENDIANNESS_MASK,
out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_FMT_MASK,
out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_OUTSIGN_MASK,
out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
/* Out Sample Position */
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_SAMPLE_POS_MASK,
EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_IEC_EN_MASK,
out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
return ret;
}
/*
* The ASRC provides interleaving support in hardware to ensure that a
* variety of sample sources can be internally combined
* to conform with this format. Interleaving parameters are accessed
* through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
*/
int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
{
struct fsl_easrc_ctx_priv *ctx_priv;
struct device *dev;
struct fsl_asrc *easrc;
if (!ctx)
return -ENODEV;
easrc = ctx->asrc;
ctx_priv = ctx->private;
dev = &easrc->pdev->dev;
/* input interleaving parameters */
regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
EASRC_CIA_ITER_MASK,
EASRC_CIA_ITER(ctx_priv->in_params.iterations));
regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
EASRC_CIA_GRLEN_MASK,
EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
EASRC_CIA_ACCLEN_MASK,
EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
/* output interleaving parameters */
regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
EASRC_COA_ITER_MASK,
EASRC_COA_ITER(ctx_priv->out_params.iterations));
regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
EASRC_COA_GRLEN_MASK,
EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
EASRC_COA_ACCLEN_MASK,
EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
return 0;
}
/*
* Request one of the available contexts
*
* Returns a negative number on error and >=0 as context id
* on success
*/
int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
{
enum asrc_pair_index index = ASRC_INVALID_PAIR;
struct fsl_asrc *easrc = ctx->asrc;
struct device *dev;
unsigned long lock_flags;
int ret = 0;
int i;
dev = &easrc->pdev->dev;
spin_lock_irqsave(&easrc->lock, lock_flags);
for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
if (easrc->pair[i])
continue;
index = i;
break;
}
if (index == ASRC_INVALID_PAIR) {
dev_err(dev, "all contexts are busy\n");
ret = -EBUSY;
} else if (channels > easrc->channel_avail) {
dev_err(dev, "can't give the required channels: %d\n",
channels);
ret = -EINVAL;
} else {
ctx->index = index;
ctx->channels = channels;
easrc->pair[index] = ctx;
easrc->channel_avail -= channels;
}
spin_unlock_irqrestore(&easrc->lock, lock_flags);
return ret;
}
/*
* Release the context
*
* This funciton is mainly doing the revert thing in request context
*/
void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
{
unsigned long lock_flags;
struct fsl_asrc *easrc;
struct device *dev;
if (!ctx)
return;
easrc = ctx->asrc;
dev = &easrc->pdev->dev;
spin_lock_irqsave(&easrc->lock, lock_flags);
fsl_easrc_release_slot(easrc, ctx->index);
easrc->channel_avail += ctx->channels;
easrc->pair[ctx->index] = NULL;
spin_unlock_irqrestore(&easrc->lock, lock_flags);
}
/*
* Start the context
*
* Enable the DMA request and context
*/
int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
{
struct fsl_asrc *easrc = ctx->asrc;
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_EN_MASK, EASRC_CC_EN);
return 0;
}
/*
* Stop the context
*
* Disable the DMA request and context
*/
int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
{
struct fsl_asrc *easrc = ctx->asrc;
int val, i;
int size = 0;
int retry = 200;
regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
if (val & EASRC_CC_EN_MASK) {
regmap_update_bits(easrc->regmap,
REG_EASRC_CC(ctx->index),
EASRC_CC_STOP_MASK, EASRC_CC_STOP);
do {
regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
val &= EASRC_SFS_NSGO_MASK;
size = val >> EASRC_SFS_NSGO_SHIFT;
/* Read FIFO, drop the data */
for (i = 0; i < size * ctx->channels; i++)
regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
/* Check RUN_STOP_DONE */
regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
/*Clear RUN_STOP_DONE*/
regmap_write_bits(easrc->regmap,
REG_EASRC_IRQF,
EASRC_IRQF_RSD(1 << ctx->index),
EASRC_IRQF_RSD(1 << ctx->index));
break;
}
udelay(100);
} while (--retry);
if (retry == 0)
dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
}
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
EASRC_CC_FWMDE_MASK, 0);
regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
EASRC_COC_FWMDE_MASK, 0);
return 0;
}
struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
bool dir)
{
struct fsl_asrc *easrc = ctx->asrc;
enum asrc_pair_index index = ctx->index;
char name[8];
/* Example of dma name: ctx0_rx */
sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
return dma_request_slave_channel(&easrc->pdev->dev, name);
};
EXPORT_SYMBOL_GPL(fsl_easrc_get_dma_channel);
static const unsigned int easrc_rates[] = {
8000, 11025, 12000, 16000,
22050, 24000, 32000, 44100,
48000, 64000, 88200, 96000,
128000, 176400, 192000, 256000,
352800, 384000, 705600, 768000,
};
static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
.count = ARRAY_SIZE(easrc_rates),
.list = easrc_rates,
};
static int fsl_easrc_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
&easrc_rate_constraints);
}
static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *ctx = runtime->private_data;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = fsl_easrc_start_context(ctx);
if (ret)
return ret;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
ret = fsl_easrc_stop_context(ctx);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
struct snd_pcm_runtime *runtime = substream->runtime;
struct device *dev = &easrc->pdev->dev;
struct fsl_asrc_pair *ctx = runtime->private_data;
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
snd_pcm_format_t format = params_format(params);
int ret;
ret = fsl_easrc_request_context(channels, ctx);
if (ret) {
dev_err(dev, "failed to request context\n");
return ret;
}
ctx_priv->ctx_streams |= BIT(substream->stream);
/*
* Set the input and output ratio so we can compute
* the resampling ratio in RS_LOW/HIGH
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
ctx_priv->in_params.sample_rate = rate;
ctx_priv->in_params.sample_format = format;
ctx_priv->out_params.sample_rate = easrc->asrc_rate;
ctx_priv->out_params.sample_format = easrc->asrc_format;
} else {
ctx_priv->out_params.sample_rate = rate;
ctx_priv->out_params.sample_format = format;
ctx_priv->in_params.sample_rate = easrc->asrc_rate;
ctx_priv->in_params.sample_format = easrc->asrc_format;
}
ctx->channels = channels;
ctx_priv->in_params.fifo_wtmk = 0x20;
ctx_priv->out_params.fifo_wtmk = 0x20;
/*
* Do only rate conversion and keep the same format for input
* and output data
*/
ret = fsl_easrc_set_ctx_format(ctx,
&ctx_priv->in_params.sample_format,
&ctx_priv->out_params.sample_format);
if (ret) {
dev_err(dev, "failed to set format %d", ret);
return ret;
}
ret = fsl_easrc_config_context(easrc, ctx->index);
if (ret) {
dev_err(dev, "failed to config context\n");
return ret;
}
ctx_priv->in_params.iterations = 1;
ctx_priv->in_params.group_len = ctx->channels;
ctx_priv->in_params.access_len = ctx->channels;
ctx_priv->out_params.iterations = 1;
ctx_priv->out_params.group_len = ctx->channels;
ctx_priv->out_params.access_len = ctx->channels;
ret = fsl_easrc_set_ctx_organziation(ctx);
if (ret) {
dev_err(dev, "failed to set fifo organization\n");
return ret;
}
return 0;
}
static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_asrc_pair *ctx = runtime->private_data;
struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
if (ctx && (ctx_priv->ctx_streams & BIT(substream->stream))) {
ctx_priv->ctx_streams &= ~BIT(substream->stream);
fsl_easrc_release_context(ctx);
}
return 0;
}
static struct snd_soc_dai_ops fsl_easrc_dai_ops = {
.startup = fsl_easrc_startup,
.trigger = fsl_easrc_trigger,
.hw_params = fsl_easrc_hw_params,
.hw_free = fsl_easrc_hw_free,
};
static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
snd_soc_dai_init_dma_data(cpu_dai,
&easrc->dma_params_tx,
&easrc->dma_params_rx);
return 0;
}
static struct snd_soc_dai_driver fsl_easrc_dai = {
.probe = fsl_easrc_dai_probe,
.playback = {
.stream_name = "ASRC-Playback",
.channels_min = 1,
.channels_max = 32,
.rate_min = 8000,
.rate_max = 768000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_EASRC_FORMATS,
},
.capture = {
.stream_name = "ASRC-Capture",
.channels_min = 1,
.channels_max = 32,
.rate_min = 8000,
.rate_max = 768000,
.rates = SNDRV_PCM_RATE_KNOT,
.formats = FSL_EASRC_FORMATS |
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
.ops = &fsl_easrc_dai_ops,
};
static const struct snd_soc_component_driver fsl_easrc_component = {
.name = "fsl-easrc-dai",
.controls = fsl_easrc_snd_controls,
.num_controls = ARRAY_SIZE(fsl_easrc_snd_controls),
};
static const struct reg_default fsl_easrc_reg_defaults[] = {
{REG_EASRC_WRFIFO(0), 0x00000000},
{REG_EASRC_WRFIFO(1), 0x00000000},
{REG_EASRC_WRFIFO(2), 0x00000000},
{REG_EASRC_WRFIFO(3), 0x00000000},
{REG_EASRC_RDFIFO(0), 0x00000000},
{REG_EASRC_RDFIFO(1), 0x00000000},
{REG_EASRC_RDFIFO(2), 0x00000000},
{REG_EASRC_RDFIFO(3), 0x00000000},
{REG_EASRC_CC(0), 0x00000000},
{REG_EASRC_CC(1), 0x00000000},
{REG_EASRC_CC(2), 0x00000000},
{REG_EASRC_CC(3), 0x00000000},
{REG_EASRC_CCE1(0), 0x00000000},
{REG_EASRC_CCE1(1), 0x00000000},
{REG_EASRC_CCE1(2), 0x00000000},
{REG_EASRC_CCE1(3), 0x00000000},
{REG_EASRC_CCE2(0), 0x00000000},
{REG_EASRC_CCE2(1), 0x00000000},
{REG_EASRC_CCE2(2), 0x00000000},
{REG_EASRC_CCE2(3), 0x00000000},
{REG_EASRC_CIA(0), 0x00000000},
{REG_EASRC_CIA(1), 0x00000000},
{REG_EASRC_CIA(2), 0x00000000},
{REG_EASRC_CIA(3), 0x00000000},
{REG_EASRC_DPCS0R0(0), 0x00000000},
{REG_EASRC_DPCS0R0(1), 0x00000000},
{REG_EASRC_DPCS0R0(2), 0x00000000},
{REG_EASRC_DPCS0R0(3), 0x00000000},
{REG_EASRC_DPCS0R1(0), 0x00000000},
{REG_EASRC_DPCS0R1(1), 0x00000000},
{REG_EASRC_DPCS0R1(2), 0x00000000},
{REG_EASRC_DPCS0R1(3), 0x00000000},
{REG_EASRC_DPCS0R2(0), 0x00000000},
{REG_EASRC_DPCS0R2(1), 0x00000000},
{REG_EASRC_DPCS0R2(2), 0x00000000},
{REG_EASRC_DPCS0R2(3), 0x00000000},
{REG_EASRC_DPCS0R3(0), 0x00000000},
{REG_EASRC_DPCS0R3(1), 0x00000000},
{REG_EASRC_DPCS0R3(2), 0x00000000},
{REG_EASRC_DPCS0R3(3), 0x00000000},
{REG_EASRC_DPCS1R0(0), 0x00000000},
{REG_EASRC_DPCS1R0(1), 0x00000000},
{REG_EASRC_DPCS1R0(2), 0x00000000},
{REG_EASRC_DPCS1R0(3), 0x00000000},
{REG_EASRC_DPCS1R1(0), 0x00000000},
{REG_EASRC_DPCS1R1(1), 0x00000000},
{REG_EASRC_DPCS1R1(2), 0x00000000},
{REG_EASRC_DPCS1R1(3), 0x00000000},
{REG_EASRC_DPCS1R2(0), 0x00000000},
{REG_EASRC_DPCS1R2(1), 0x00000000},
{REG_EASRC_DPCS1R2(2), 0x00000000},
{REG_EASRC_DPCS1R2(3), 0x00000000},
{REG_EASRC_DPCS1R3(0), 0x00000000},
{REG_EASRC_DPCS1R3(1), 0x00000000},
{REG_EASRC_DPCS1R3(2), 0x00000000},
{REG_EASRC_DPCS1R3(3), 0x00000000},
{REG_EASRC_COC(0), 0x00000000},
{REG_EASRC_COC(1), 0x00000000},
{REG_EASRC_COC(2), 0x00000000},
{REG_EASRC_COC(3), 0x00000000},
{REG_EASRC_COA(0), 0x00000000},
{REG_EASRC_COA(1), 0x00000000},
{REG_EASRC_COA(2), 0x00000000},
{REG_EASRC_COA(3), 0x00000000},
{REG_EASRC_SFS(0), 0x00000000},
{REG_EASRC_SFS(1), 0x00000000},
{REG_EASRC_SFS(2), 0x00000000},
{REG_EASRC_SFS(3), 0x00000000},
{REG_EASRC_RRL(0), 0x00000000},
{REG_EASRC_RRL(1), 0x00000000},
{REG_EASRC_RRL(2), 0x00000000},
{REG_EASRC_RRL(3), 0x00000000},
{REG_EASRC_RRH(0), 0x00000000},
{REG_EASRC_RRH(1), 0x00000000},
{REG_EASRC_RRH(2), 0x00000000},
{REG_EASRC_RRH(3), 0x00000000},
{REG_EASRC_RUC(0), 0x00000000},
{REG_EASRC_RUC(1), 0x00000000},
{REG_EASRC_RUC(2), 0x00000000},
{REG_EASRC_RUC(3), 0x00000000},
{REG_EASRC_RUR(0), 0x7FFFFFFF},
{REG_EASRC_RUR(1), 0x7FFFFFFF},
{REG_EASRC_RUR(2), 0x7FFFFFFF},
{REG_EASRC_RUR(3), 0x7FFFFFFF},
{REG_EASRC_RCTCL, 0x00000000},
{REG_EASRC_RCTCH, 0x00000000},
{REG_EASRC_PCF(0), 0x00000000},
{REG_EASRC_PCF(1), 0x00000000},
{REG_EASRC_PCF(2), 0x00000000},
{REG_EASRC_PCF(3), 0x00000000},
{REG_EASRC_CRCM, 0x00000000},
{REG_EASRC_CRCC, 0x00000000},
{REG_EASRC_IRQC, 0x00000FFF},
{REG_EASRC_IRQF, 0x00000000},
{REG_EASRC_CS0(0), 0x00000000},
{REG_EASRC_CS0(1), 0x00000000},
{REG_EASRC_CS0(2), 0x00000000},
{REG_EASRC_CS0(3), 0x00000000},
{REG_EASRC_CS1(0), 0x00000000},
{REG_EASRC_CS1(1), 0x00000000},
{REG_EASRC_CS1(2), 0x00000000},
{REG_EASRC_CS1(3), 0x00000000},
{REG_EASRC_CS2(0), 0x00000000},
{REG_EASRC_CS2(1), 0x00000000},
{REG_EASRC_CS2(2), 0x00000000},
{REG_EASRC_CS2(3), 0x00000000},
{REG_EASRC_CS3(0), 0x00000000},
{REG_EASRC_CS3(1), 0x00000000},
{REG_EASRC_CS3(2), 0x00000000},
{REG_EASRC_CS3(3), 0x00000000},
{REG_EASRC_CS4(0), 0x00000000},
{REG_EASRC_CS4(1), 0x00000000},
{REG_EASRC_CS4(2), 0x00000000},
{REG_EASRC_CS4(3), 0x00000000},
{REG_EASRC_CS5(0), 0x00000000},
{REG_EASRC_CS5(1), 0x00000000},
{REG_EASRC_CS5(2), 0x00000000},
{REG_EASRC_CS5(3), 0x00000000},
{REG_EASRC_DBGC, 0x00000000},
{REG_EASRC_DBGS, 0x00000000},
};
static const struct regmap_range fsl_easrc_readable_ranges[] = {
regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
};
static const struct regmap_access_table fsl_easrc_readable_table = {
.yes_ranges = fsl_easrc_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
};
static const struct regmap_range fsl_easrc_writeable_ranges[] = {
regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
};
static const struct regmap_access_table fsl_easrc_writeable_table = {
.yes_ranges = fsl_easrc_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
};
static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
};
static const struct regmap_access_table fsl_easrc_volatileable_table = {
.yes_ranges = fsl_easrc_volatileable_ranges,
.n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
};
static const struct regmap_config fsl_easrc_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_EASRC_DBGS,
.reg_defaults = fsl_easrc_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
.rd_table = &fsl_easrc_readable_table,
.wr_table = &fsl_easrc_writeable_table,
.volatile_table = &fsl_easrc_volatileable_table,
.cache_type = REGCACHE_RBTREE,
};
#ifdef DEBUG
static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
{
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
struct interp_params *interp = easrc_priv->interp;
struct prefil_params *prefil = easrc_priv->prefil;
struct device *dev = &easrc->pdev->dev;
int i;
if (firm->magic != FIRMWARE_MAGIC) {
dev_err(dev, "Wrong magic. Something went wrong!");
return;
}
dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
dev_dbg(dev, "Num prefitler scenarios: %u\n", firm->prefil_scen);
dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
dev_dbg(dev, "\nInterpolation scenarios:\n");
for (i = 0; i < firm->interp_scen; i++) {
if (interp[i].magic != FIRMWARE_MAGIC) {
dev_dbg(dev, "%d. wrong interp magic: %x\n",
i, interp[i].magic);
continue;
}
dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
interp[i].num_taps, interp[i].num_phases,
interp[i].center_tap);
}
for (i = 0; i < firm->prefil_scen; i++) {
if (prefil[i].magic != FIRMWARE_MAGIC) {
dev_dbg(dev, "%d. wrong prefil magic: %x\n",
i, prefil[i].magic);
continue;
}
dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
prefil[i].insr, prefil[i].outsr,
prefil[i].st1_taps, prefil[i].st2_taps);
}
dev_dbg(dev, "end of firmware dump\n");
}
#endif
static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
{
struct fsl_easrc_priv *easrc_priv;
const struct firmware **fw_p;
u32 pnum, inum, offset;
const u8 *data;
int ret;
if (!easrc)
return -EINVAL;
easrc_priv = easrc->private;
fw_p = &easrc_priv->fw;
ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
if (ret)
return ret;
data = easrc_priv->fw->data;
easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
pnum = easrc_priv->firmware_hdr->prefil_scen;
inum = easrc_priv->firmware_hdr->interp_scen;
if (inum) {
offset = sizeof(struct asrc_firmware_hdr);
easrc_priv->interp = (struct interp_params *)(data + offset);
}
if (pnum) {
offset = sizeof(struct asrc_firmware_hdr) +
inum * sizeof(struct interp_params);
easrc_priv->prefil = (struct prefil_params *)(data + offset);
}
#ifdef DEBUG
fsl_easrc_dump_firmware(easrc);
#endif
return 0;
}
static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
{
struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
struct device *dev = &easrc->pdev->dev;
int val;
regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
if (val & EASRC_IRQF_OER_MASK)
dev_dbg(dev, "output FIFO underflow\n");
if (val & EASRC_IRQF_IFO_MASK)
dev_dbg(dev, "input FIFO overflow\n");
return IRQ_HANDLED;
}
static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
{
return REG_EASRC_FIFO(dir, index);
}
static const struct of_device_id fsl_easrc_dt_ids[] = {
{ .compatible = "fsl,imx8mn-easrc",},
{}
};
MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
static int fsl_easrc_probe(struct platform_device *pdev)
{
struct fsl_easrc_priv *easrc_priv;
struct device *dev = &pdev->dev;
struct fsl_asrc *easrc;
struct resource *res;
struct device_node *np;
void __iomem *regs;
int ret, irq;
easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
if (!easrc)
return -ENOMEM;
easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
if (!easrc_priv)
return -ENOMEM;
easrc->pdev = pdev;
easrc->private = easrc_priv;
np = dev->of_node;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev, res);
if (IS_ERR(regs)) {
dev_err(&pdev->dev, "failed ioremap\n");
return PTR_ERR(regs);
}
easrc->paddr = res->start;
easrc->regmap = devm_regmap_init_mmio_clk(dev, "mem", regs,
&fsl_easrc_regmap_config);
if (IS_ERR(easrc->regmap)) {
dev_err(dev, "failed to init regmap");
return PTR_ERR(easrc->regmap);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no irq for node %pOF\n", np);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
dev_name(dev), easrc);
if (ret) {
dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
return ret;
}
easrc->mem_clk = devm_clk_get(dev, "mem");
if (IS_ERR(easrc->mem_clk)) {
dev_err(dev, "failed to get mem clock\n");
return PTR_ERR(easrc->mem_clk);
}
/* Set default value */
easrc->channel_avail = 32;
easrc->get_dma_channel = fsl_easrc_get_dma_channel;
easrc->request_pair = fsl_easrc_request_context;
easrc->release_pair = fsl_easrc_release_context;
easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
easrc_priv->const_coeff = 0x3FF0000000000000;
ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
if (ret) {
dev_err(dev, "failed to asrc rate\n");
return ret;
}
ret = of_property_read_u32(np, "fsl,asrc-format", &easrc->asrc_format);
if (ret) {
dev_err(dev, "failed to asrc format\n");
return ret;
}
if (!(FSL_EASRC_FORMATS & (1ULL << easrc->asrc_format))) {
dev_warn(dev, "unsupported format, switching to S24_LE\n");
easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
}
ret = of_property_read_string(np, "firmware-name",
&easrc_priv->fw_name);
if (ret) {
dev_err(dev, "failed to get firmware name\n");
return ret;
}
platform_set_drvdata(pdev, easrc);
pm_runtime_enable(dev);
spin_lock_init(&easrc->lock);
regcache_cache_only(easrc->regmap, true);
ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
&fsl_easrc_dai, 1);
if (ret) {
dev_err(dev, "failed to register ASoC DAI\n");
return ret;
}
ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
NULL, 0);
if (ret) {
dev_err(&pdev->dev, "failed to register ASoC platform\n");
return ret;
}
return 0;
}
static int fsl_easrc_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int fsl_easrc_runtime_suspend(struct device *dev)
{
struct fsl_asrc *easrc = dev_get_drvdata(dev);
struct fsl_easrc_priv *easrc_priv = easrc->private;
unsigned long lock_flags;
regcache_cache_only(easrc->regmap, true);
clk_disable_unprepare(easrc->mem_clk);
spin_lock_irqsave(&easrc->lock, lock_flags);
easrc_priv->firmware_loaded = 0;
spin_unlock_irqrestore(&easrc->lock, lock_flags);
return 0;
}
static int fsl_easrc_runtime_resume(struct device *dev)
{
struct fsl_asrc *easrc = dev_get_drvdata(dev);
struct fsl_easrc_priv *easrc_priv = easrc->private;
struct fsl_easrc_ctx_priv *ctx_priv;
struct fsl_asrc_pair *ctx;
unsigned long lock_flags;
int ret;
int i;
ret = clk_prepare_enable(easrc->mem_clk);
if (ret)
return ret;
regcache_cache_only(easrc->regmap, false);
regcache_mark_dirty(easrc->regmap);
regcache_sync(easrc->regmap);
spin_lock_irqsave(&easrc->lock, lock_flags);
if (easrc_priv->firmware_loaded) {
spin_unlock_irqrestore(&easrc->lock, lock_flags);
goto skip_load;
}
easrc_priv->firmware_loaded = 1;
spin_unlock_irqrestore(&easrc->lock, lock_flags);
ret = fsl_easrc_get_firmware(easrc);
if (ret) {
dev_err(dev, "failed to get firmware\n");
goto disable_mem_clk;
}
/*
* Write Resampling Coefficients
* The coefficient RAM must be configured prior to beginning of
* any context processing within the ASRC
*/
ret = fsl_easrc_resampler_config(easrc);
if (ret) {
dev_err(dev, "resampler config failed\n");
goto disable_mem_clk;
}
for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
ctx = easrc->pair[i];
if (!ctx)
continue;
ctx_priv = ctx->private;
fsl_easrc_set_rs_ratio(ctx);
ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
ctx_priv->out_params.sample_rate /
ctx_priv->in_params.sample_rate;
if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
% ctx_priv->in_params.sample_rate != 0)
ctx_priv->out_missed_sample += 1;
ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
ctx_priv->st1_coeff,
ctx_priv->st1_num_taps,
ctx_priv->st1_addexp);
if (ret)
goto disable_mem_clk;
ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
ctx_priv->st2_coeff,
ctx_priv->st2_num_taps,
ctx_priv->st2_addexp);
if (ret)
goto disable_mem_clk;
}
skip_load:
return 0;
disable_mem_clk:
clk_disable_unprepare(easrc->mem_clk);
return ret;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops fsl_easrc_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend,
fsl_easrc_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver fsl_easrc_driver = {
.probe = fsl_easrc_probe,
.remove = fsl_easrc_remove,
.driver = {
.name = "fsl-easrc",
.pm = &fsl_easrc_pm_ops,
.of_match_table = fsl_easrc_dt_ids,
},
};
module_platform_driver(fsl_easrc_driver);
MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2019 NXP
*/
#ifndef _FSL_EASRC_H
#define _FSL_EASRC_H
#include <sound/asound.h>
#include <linux/platform_data/dma-imx.h>
#include "fsl_asrc_common.h"
/* EASRC Register Map */
/* ASRC Input Write FIFO */
#define REG_EASRC_WRFIFO(ctx) (0x000 + 4 * (ctx))
/* ASRC Output Read FIFO */
#define REG_EASRC_RDFIFO(ctx) (0x010 + 4 * (ctx))
/* ASRC Context Control */
#define REG_EASRC_CC(ctx) (0x020 + 4 * (ctx))
/* ASRC Context Control Extended 1 */
#define REG_EASRC_CCE1(ctx) (0x030 + 4 * (ctx))
/* ASRC Context Control Extended 2 */
#define REG_EASRC_CCE2(ctx) (0x040 + 4 * (ctx))
/* ASRC Control Input Access */
#define REG_EASRC_CIA(ctx) (0x050 + 4 * (ctx))
/* ASRC Datapath Processor Control Slot0 */
#define REG_EASRC_DPCS0R0(ctx) (0x060 + 4 * (ctx))
#define REG_EASRC_DPCS0R1(ctx) (0x070 + 4 * (ctx))
#define REG_EASRC_DPCS0R2(ctx) (0x080 + 4 * (ctx))
#define REG_EASRC_DPCS0R3(ctx) (0x090 + 4 * (ctx))
/* ASRC Datapath Processor Control Slot1 */
#define REG_EASRC_DPCS1R0(ctx) (0x0A0 + 4 * (ctx))
#define REG_EASRC_DPCS1R1(ctx) (0x0B0 + 4 * (ctx))
#define REG_EASRC_DPCS1R2(ctx) (0x0C0 + 4 * (ctx))
#define REG_EASRC_DPCS1R3(ctx) (0x0D0 + 4 * (ctx))
/* ASRC Context Output Control */
#define REG_EASRC_COC(ctx) (0x0E0 + 4 * (ctx))
/* ASRC Control Output Access */
#define REG_EASRC_COA(ctx) (0x0F0 + 4 * (ctx))
/* ASRC Sample FIFO Status */
#define REG_EASRC_SFS(ctx) (0x100 + 4 * (ctx))
/* ASRC Resampling Ratio Low */
#define REG_EASRC_RRL(ctx) (0x110 + 8 * (ctx))
/* ASRC Resampling Ratio High */
#define REG_EASRC_RRH(ctx) (0x114 + 8 * (ctx))
/* ASRC Resampling Ratio Update Control */
#define REG_EASRC_RUC(ctx) (0x130 + 4 * (ctx))
/* ASRC Resampling Ratio Update Rate */
#define REG_EASRC_RUR(ctx) (0x140 + 4 * (ctx))
/* ASRC Resampling Center Tap Coefficient Low */
#define REG_EASRC_RCTCL (0x150)
/* ASRC Resampling Center Tap Coefficient High */
#define REG_EASRC_RCTCH (0x154)
/* ASRC Prefilter Coefficient FIFO */
#define REG_EASRC_PCF(ctx) (0x160 + 4 * (ctx))
/* ASRC Context Resampling Coefficient Memory */
#define REG_EASRC_CRCM 0x170
/* ASRC Context Resampling Coefficient Control*/
#define REG_EASRC_CRCC 0x174
/* ASRC Interrupt Control */
#define REG_EASRC_IRQC 0x178
/* ASRC Interrupt Status Flags */
#define REG_EASRC_IRQF 0x17C
/* ASRC Channel Status 0 */
#define REG_EASRC_CS0(ctx) (0x180 + 4 * (ctx))
/* ASRC Channel Status 1 */
#define REG_EASRC_CS1(ctx) (0x190 + 4 * (ctx))
/* ASRC Channel Status 2 */
#define REG_EASRC_CS2(ctx) (0x1A0 + 4 * (ctx))
/* ASRC Channel Status 3 */
#define REG_EASRC_CS3(ctx) (0x1B0 + 4 * (ctx))
/* ASRC Channel Status 4 */
#define REG_EASRC_CS4(ctx) (0x1C0 + 4 * (ctx))
/* ASRC Channel Status 5 */
#define REG_EASRC_CS5(ctx) (0x1D0 + 4 * (ctx))
/* ASRC Debug Control Register */
#define REG_EASRC_DBGC 0x1E0
/* ASRC Debug Status Register */
#define REG_EASRC_DBGS 0x1E4
#define REG_EASRC_FIFO(x, ctx) (x == IN ? REG_EASRC_WRFIFO(ctx) \
: REG_EASRC_RDFIFO(ctx))
/* ASRC Context Control (CC) */
#define EASRC_CC_EN_SHIFT 31
#define EASRC_CC_EN_MASK BIT(EASRC_CC_EN_SHIFT)
#define EASRC_CC_EN BIT(EASRC_CC_EN_SHIFT)
#define EASRC_CC_STOP_SHIFT 29
#define EASRC_CC_STOP_MASK BIT(EASRC_CC_STOP_SHIFT)
#define EASRC_CC_STOP BIT(EASRC_CC_STOP_SHIFT)
#define EASRC_CC_FWMDE_SHIFT 28
#define EASRC_CC_FWMDE_MASK BIT(EASRC_CC_FWMDE_SHIFT)
#define EASRC_CC_FWMDE BIT(EASRC_CC_FWMDE_SHIFT)
#define EASRC_CC_FIFO_WTMK_SHIFT 16
#define EASRC_CC_FIFO_WTMK_WIDTH 7
#define EASRC_CC_FIFO_WTMK_MASK ((BIT(EASRC_CC_FIFO_WTMK_WIDTH) - 1) \
<< EASRC_CC_FIFO_WTMK_SHIFT)
#define EASRC_CC_FIFO_WTMK(v) (((v) << EASRC_CC_FIFO_WTMK_SHIFT) \
& EASRC_CC_FIFO_WTMK_MASK)
#define EASRC_CC_SAMPLE_POS_SHIFT 11
#define EASRC_CC_SAMPLE_POS_WIDTH 5
#define EASRC_CC_SAMPLE_POS_MASK ((BIT(EASRC_CC_SAMPLE_POS_WIDTH) - 1) \
<< EASRC_CC_SAMPLE_POS_SHIFT)
#define EASRC_CC_SAMPLE_POS(v) (((v) << EASRC_CC_SAMPLE_POS_SHIFT) \
& EASRC_CC_SAMPLE_POS_MASK)
#define EASRC_CC_ENDIANNESS_SHIFT 10
#define EASRC_CC_ENDIANNESS_MASK BIT(EASRC_CC_ENDIANNESS_SHIFT)
#define EASRC_CC_ENDIANNESS BIT(EASRC_CC_ENDIANNESS_SHIFT)
#define EASRC_CC_BPS_SHIFT 8
#define EASRC_CC_BPS_WIDTH 2
#define EASRC_CC_BPS_MASK ((BIT(EASRC_CC_BPS_WIDTH) - 1) \
<< EASRC_CC_BPS_SHIFT)
#define EASRC_CC_BPS(v) (((v) << EASRC_CC_BPS_SHIFT) \
& EASRC_CC_BPS_MASK)
#define EASRC_CC_FMT_SHIFT 7
#define EASRC_CC_FMT_MASK BIT(EASRC_CC_FMT_SHIFT)
#define EASRC_CC_FMT BIT(EASRC_CC_FMT_SHIFT)
#define EASRC_CC_INSIGN_SHIFT 6
#define EASRC_CC_INSIGN_MASK BIT(EASRC_CC_INSIGN_SHIFT)
#define EASRC_CC_INSIGN BIT(EASRC_CC_INSIGN_SHIFT)
#define EASRC_CC_CHEN_SHIFT 0
#define EASRC_CC_CHEN_WIDTH 5
#define EASRC_CC_CHEN_MASK ((BIT(EASRC_CC_CHEN_WIDTH) - 1) \
<< EASRC_CC_CHEN_SHIFT)
#define EASRC_CC_CHEN(v) (((v) << EASRC_CC_CHEN_SHIFT) \
& EASRC_CC_CHEN_MASK)
/* ASRC Context Control Extended 1 (CCE1) */
#define EASRC_CCE1_COEF_WS_SHIFT 25
#define EASRC_CCE1_COEF_WS_MASK BIT(EASRC_CCE1_COEF_WS_SHIFT)
#define EASRC_CCE1_COEF_WS BIT(EASRC_CCE1_COEF_WS_SHIFT)
#define EASRC_CCE1_COEF_MEM_RST_SHIFT 24
#define EASRC_CCE1_COEF_MEM_RST_MASK BIT(EASRC_CCE1_COEF_MEM_RST_SHIFT)
#define EASRC_CCE1_COEF_MEM_RST BIT(EASRC_CCE1_COEF_MEM_RST_SHIFT)
#define EASRC_CCE1_PF_EXP_SHIFT 16
#define EASRC_CCE1_PF_EXP_WIDTH 8
#define EASRC_CCE1_PF_EXP_MASK ((BIT(EASRC_CCE1_PF_EXP_WIDTH) - 1) \
<< EASRC_CCE1_PF_EXP_SHIFT)
#define EASRC_CCE1_PF_EXP(v) (((v) << EASRC_CCE1_PF_EXP_SHIFT) \
& EASRC_CCE1_PF_EXP_MASK)
#define EASRC_CCE1_PF_ST1_WBFP_SHIFT 9
#define EASRC_CCE1_PF_ST1_WBFP_MASK BIT(EASRC_CCE1_PF_ST1_WBFP_SHIFT)
#define EASRC_CCE1_PF_ST1_WBFP BIT(EASRC_CCE1_PF_ST1_WBFP_SHIFT)
#define EASRC_CCE1_PF_TSEN_SHIFT 8
#define EASRC_CCE1_PF_TSEN_MASK BIT(EASRC_CCE1_PF_TSEN_SHIFT)
#define EASRC_CCE1_PF_TSEN BIT(EASRC_CCE1_PF_TSEN_SHIFT)
#define EASRC_CCE1_RS_BYPASS_SHIFT 7
#define EASRC_CCE1_RS_BYPASS_MASK BIT(EASRC_CCE1_RS_BYPASS_SHIFT)
#define EASRC_CCE1_RS_BYPASS BIT(EASRC_CCE1_RS_BYPASS_SHIFT)
#define EASRC_CCE1_PF_BYPASS_SHIFT 6
#define EASRC_CCE1_PF_BYPASS_MASK BIT(EASRC_CCE1_PF_BYPASS_SHIFT)
#define EASRC_CCE1_PF_BYPASS BIT(EASRC_CCE1_PF_BYPASS_SHIFT)
#define EASRC_CCE1_RS_STOP_SHIFT 5
#define EASRC_CCE1_RS_STOP_MASK BIT(EASRC_CCE1_RS_STOP_SHIFT)
#define EASRC_CCE1_RS_STOP BIT(EASRC_CCE1_RS_STOP_SHIFT)
#define EASRC_CCE1_PF_STOP_SHIFT 4
#define EASRC_CCE1_PF_STOP_MASK BIT(EASRC_CCE1_PF_STOP_SHIFT)
#define EASRC_CCE1_PF_STOP BIT(EASRC_CCE1_PF_STOP_SHIFT)
#define EASRC_CCE1_RS_INIT_SHIFT 2
#define EASRC_CCE1_RS_INIT_WIDTH 2
#define EASRC_CCE1_RS_INIT_MASK ((BIT(EASRC_CCE1_RS_INIT_WIDTH) - 1) \
<< EASRC_CCE1_RS_INIT_SHIFT)
#define EASRC_CCE1_RS_INIT(v) (((v) << EASRC_CCE1_RS_INIT_SHIFT) \
& EASRC_CCE1_RS_INIT_MASK)
#define EASRC_CCE1_PF_INIT_SHIFT 0
#define EASRC_CCE1_PF_INIT_WIDTH 2
#define EASRC_CCE1_PF_INIT_MASK ((BIT(EASRC_CCE1_PF_INIT_WIDTH) - 1) \
<< EASRC_CCE1_PF_INIT_SHIFT)
#define EASRC_CCE1_PF_INIT(v) (((v) << EASRC_CCE1_PF_INIT_SHIFT) \
& EASRC_CCE1_PF_INIT_MASK)
/* ASRC Context Control Extended 2 (CCE2) */
#define EASRC_CCE2_ST2_TAPS_SHIFT 16
#define EASRC_CCE2_ST2_TAPS_WIDTH 9
#define EASRC_CCE2_ST2_TAPS_MASK ((BIT(EASRC_CCE2_ST2_TAPS_WIDTH) - 1) \
<< EASRC_CCE2_ST2_TAPS_SHIFT)
#define EASRC_CCE2_ST2_TAPS(v) (((v) << EASRC_CCE2_ST2_TAPS_SHIFT) \
& EASRC_CCE2_ST2_TAPS_MASK)
#define EASRC_CCE2_ST1_TAPS_SHIFT 0
#define EASRC_CCE2_ST1_TAPS_WIDTH 9
#define EASRC_CCE2_ST1_TAPS_MASK ((BIT(EASRC_CCE2_ST1_TAPS_WIDTH) - 1) \
<< EASRC_CCE2_ST1_TAPS_SHIFT)
#define EASRC_CCE2_ST1_TAPS(v) (((v) << EASRC_CCE2_ST1_TAPS_SHIFT) \
& EASRC_CCE2_ST1_TAPS_MASK)
/* ASRC Control Input Access (CIA) */
#define EASRC_CIA_ITER_SHIFT 16
#define EASRC_CIA_ITER_WIDTH 6
#define EASRC_CIA_ITER_MASK ((BIT(EASRC_CIA_ITER_WIDTH) - 1) \
<< EASRC_CIA_ITER_SHIFT)
#define EASRC_CIA_ITER(v) (((v) << EASRC_CIA_ITER_SHIFT) \
& EASRC_CIA_ITER_MASK)
#define EASRC_CIA_GRLEN_SHIFT 8
#define EASRC_CIA_GRLEN_WIDTH 6
#define EASRC_CIA_GRLEN_MASK ((BIT(EASRC_CIA_GRLEN_WIDTH) - 1) \
<< EASRC_CIA_GRLEN_SHIFT)
#define EASRC_CIA_GRLEN(v) (((v) << EASRC_CIA_GRLEN_SHIFT) \
& EASRC_CIA_GRLEN_MASK)
#define EASRC_CIA_ACCLEN_SHIFT 0
#define EASRC_CIA_ACCLEN_WIDTH 6
#define EASRC_CIA_ACCLEN_MASK ((BIT(EASRC_CIA_ACCLEN_WIDTH) - 1) \
<< EASRC_CIA_ACCLEN_SHIFT)
#define EASRC_CIA_ACCLEN(v) (((v) << EASRC_CIA_ACCLEN_SHIFT) \
& EASRC_CIA_ACCLEN_MASK)
/* ASRC Datapath Processor Control Slot0 Register0 (DPCS0R0) */
#define EASRC_DPCS0R0_MAXCH_SHIFT 24
#define EASRC_DPCS0R0_MAXCH_WIDTH 5
#define EASRC_DPCS0R0_MAXCH_MASK ((BIT(EASRC_DPCS0R0_MAXCH_WIDTH) - 1) \
<< EASRC_DPCS0R0_MAXCH_SHIFT)
#define EASRC_DPCS0R0_MAXCH(v) (((v) << EASRC_DPCS0R0_MAXCH_SHIFT) \
& EASRC_DPCS0R0_MAXCH_MASK)
#define EASRC_DPCS0R0_MINCH_SHIFT 16
#define EASRC_DPCS0R0_MINCH_WIDTH 5
#define EASRC_DPCS0R0_MINCH_MASK ((BIT(EASRC_DPCS0R0_MINCH_WIDTH) - 1) \
<< EASRC_DPCS0R0_MINCH_SHIFT)
#define EASRC_DPCS0R0_MINCH(v) (((v) << EASRC_DPCS0R0_MINCH_SHIFT) \
& EASRC_DPCS0R0_MINCH_MASK)
#define EASRC_DPCS0R0_NUMCH_SHIFT 8
#define EASRC_DPCS0R0_NUMCH_WIDTH 5
#define EASRC_DPCS0R0_NUMCH_MASK ((BIT(EASRC_DPCS0R0_NUMCH_WIDTH) - 1) \
<< EASRC_DPCS0R0_NUMCH_SHIFT)
#define EASRC_DPCS0R0_NUMCH(v) (((v) << EASRC_DPCS0R0_NUMCH_SHIFT) \
& EASRC_DPCS0R0_NUMCH_MASK)
#define EASRC_DPCS0R0_CTXNUM_SHIFT 1
#define EASRC_DPCS0R0_CTXNUM_WIDTH 2
#define EASRC_DPCS0R0_CTXNUM_MASK ((BIT(EASRC_DPCS0R0_CTXNUM_WIDTH) - 1) \
<< EASRC_DPCS0R0_CTXNUM_SHIFT)
#define EASRC_DPCS0R0_CTXNUM(v) (((v) << EASRC_DPCS0R0_CTXNUM_SHIFT) \
& EASRC_DPCS0R0_CTXNUM_MASK)
#define EASRC_DPCS0R0_EN_SHIFT 0
#define EASRC_DPCS0R0_EN_MASK BIT(EASRC_DPCS0R0_EN_SHIFT)
#define EASRC_DPCS0R0_EN BIT(EASRC_DPCS0R0_EN_SHIFT)
/* ASRC Datapath Processor Control Slot0 Register1 (DPCS0R1) */
#define EASRC_DPCS0R1_ST1_EXP_SHIFT 0
#define EASRC_DPCS0R1_ST1_EXP_WIDTH 13
#define EASRC_DPCS0R1_ST1_EXP_MASK ((BIT(EASRC_DPCS0R1_ST1_EXP_WIDTH) - 1) \
<< EASRC_DPCS0R1_ST1_EXP_SHIFT)
#define EASRC_DPCS0R1_ST1_EXP(v) (((v) << EASRC_DPCS0R1_ST1_EXP_SHIFT) \
& EASRC_DPCS0R1_ST1_EXP_MASK)
/* ASRC Datapath Processor Control Slot0 Register2 (DPCS0R2) */
#define EASRC_DPCS0R2_ST1_MA_SHIFT 16
#define EASRC_DPCS0R2_ST1_MA_WIDTH 13
#define EASRC_DPCS0R2_ST1_MA_MASK ((BIT(EASRC_DPCS0R2_ST1_MA_WIDTH) - 1) \
<< EASRC_DPCS0R2_ST1_MA_SHIFT)
#define EASRC_DPCS0R2_ST1_MA(v) (((v) << EASRC_DPCS0R2_ST1_MA_SHIFT) \
& EASRC_DPCS0R2_ST1_MA_MASK)
#define EASRC_DPCS0R2_ST1_SA_SHIFT 0
#define EASRC_DPCS0R2_ST1_SA_WIDTH 13
#define EASRC_DPCS0R2_ST1_SA_MASK ((BIT(EASRC_DPCS0R2_ST1_SA_WIDTH) - 1) \
<< EASRC_DPCS0R2_ST1_SA_SHIFT)
#define EASRC_DPCS0R2_ST1_SA(v) (((v) << EASRC_DPCS0R2_ST1_SA_SHIFT) \
& EASRC_DPCS0R2_ST1_SA_MASK)
/* ASRC Datapath Processor Control Slot0 Register3 (DPCS0R3) */
#define EASRC_DPCS0R3_ST2_MA_SHIFT 16
#define EASRC_DPCS0R3_ST2_MA_WIDTH 13
#define EASRC_DPCS0R3_ST2_MA_MASK ((BIT(EASRC_DPCS0R3_ST2_MA_WIDTH) - 1) \
<< EASRC_DPCS0R3_ST2_MA_SHIFT)
#define EASRC_DPCS0R3_ST2_MA(v) (((v) << EASRC_DPCS0R3_ST2_MA_SHIFT) \
& EASRC_DPCS0R3_ST2_MA_MASK)
#define EASRC_DPCS0R3_ST2_SA_SHIFT 0
#define EASRC_DPCS0R3_ST2_SA_WIDTH 13
#define EASRC_DPCS0R3_ST2_SA_MASK ((BIT(EASRC_DPCS0R3_ST2_SA_WIDTH) - 1) \
<< EASRC_DPCS0R3_ST2_SA_SHIFT)
#define EASRC_DPCS0R3_ST2_SA(v) (((v) << EASRC_DPCS0R3_ST2_SA_SHIFT) \
& EASRC_DPCS0R3_ST2_SA_MASK)
/* ASRC Context Output Control (COC) */
#define EASRC_COC_FWMDE_SHIFT 28
#define EASRC_COC_FWMDE_MASK BIT(EASRC_COC_FWMDE_SHIFT)
#define EASRC_COC_FWMDE BIT(EASRC_COC_FWMDE_SHIFT)
#define EASRC_COC_FIFO_WTMK_SHIFT 16
#define EASRC_COC_FIFO_WTMK_WIDTH 7
#define EASRC_COC_FIFO_WTMK_MASK ((BIT(EASRC_COC_FIFO_WTMK_WIDTH) - 1) \
<< EASRC_COC_FIFO_WTMK_SHIFT)
#define EASRC_COC_FIFO_WTMK(v) (((v) << EASRC_COC_FIFO_WTMK_SHIFT) \
& EASRC_COC_FIFO_WTMK_MASK)
#define EASRC_COC_SAMPLE_POS_SHIFT 11
#define EASRC_COC_SAMPLE_POS_WIDTH 5
#define EASRC_COC_SAMPLE_POS_MASK ((BIT(EASRC_COC_SAMPLE_POS_WIDTH) - 1) \
<< EASRC_COC_SAMPLE_POS_SHIFT)
#define EASRC_COC_SAMPLE_POS(v) (((v) << EASRC_COC_SAMPLE_POS_SHIFT) \
& EASRC_COC_SAMPLE_POS_MASK)
#define EASRC_COC_ENDIANNESS_SHIFT 10
#define EASRC_COC_ENDIANNESS_MASK BIT(EASRC_COC_ENDIANNESS_SHIFT)
#define EASRC_COC_ENDIANNESS BIT(EASRC_COC_ENDIANNESS_SHIFT)
#define EASRC_COC_BPS_SHIFT 8
#define EASRC_COC_BPS_WIDTH 2
#define EASRC_COC_BPS_MASK ((BIT(EASRC_COC_BPS_WIDTH) - 1) \
<< EASRC_COC_BPS_SHIFT)
#define EASRC_COC_BPS(v) (((v) << EASRC_COC_BPS_SHIFT) \
& EASRC_COC_BPS_MASK)
#define EASRC_COC_FMT_SHIFT 7
#define EASRC_COC_FMT_MASK BIT(EASRC_COC_FMT_SHIFT)
#define EASRC_COC_FMT BIT(EASRC_COC_FMT_SHIFT)
#define EASRC_COC_OUTSIGN_SHIFT 6
#define EASRC_COC_OUTSIGN_MASK BIT(EASRC_COC_OUTSIGN_SHIFT)
#define EASRC_COC_OUTSIGN_OUT BIT(EASRC_COC_OUTSIGN_SHIFT)
#define EASRC_COC_IEC_VDATA_SHIFT 2
#define EASRC_COC_IEC_VDATA_MASK BIT(EASRC_COC_IEC_VDATA_SHIFT)
#define EASRC_COC_IEC_VDATA BIT(EASRC_COC_IEC_VDATA_SHIFT)
#define EASRC_COC_IEC_EN_SHIFT 1
#define EASRC_COC_IEC_EN_MASK BIT(EASRC_COC_IEC_EN_SHIFT)
#define EASRC_COC_IEC_EN BIT(EASRC_COC_IEC_EN_SHIFT)
#define EASRC_COC_DITHER_EN_SHIFT 0
#define EASRC_COC_DITHER_EN_MASK BIT(EASRC_COC_DITHER_EN_SHIFT)
#define EASRC_COC_DITHER_EN BIT(EASRC_COC_DITHER_EN_SHIFT)
/* ASRC Control Output Access (COA) */
#define EASRC_COA_ITER_SHIFT 16
#define EASRC_COA_ITER_WIDTH 6
#define EASRC_COA_ITER_MASK ((BIT(EASRC_COA_ITER_WIDTH) - 1) \
<< EASRC_COA_ITER_SHIFT)
#define EASRC_COA_ITER(v) (((v) << EASRC_COA_ITER_SHIFT) \
& EASRC_COA_ITER_MASK)
#define EASRC_COA_GRLEN_SHIFT 8
#define EASRC_COA_GRLEN_WIDTH 6
#define EASRC_COA_GRLEN_MASK ((BIT(EASRC_COA_GRLEN_WIDTH) - 1) \
<< EASRC_COA_GRLEN_SHIFT)
#define EASRC_COA_GRLEN(v) (((v) << EASRC_COA_GRLEN_SHIFT) \
& EASRC_COA_GRLEN_MASK)
#define EASRC_COA_ACCLEN_SHIFT 0
#define EASRC_COA_ACCLEN_WIDTH 6
#define EASRC_COA_ACCLEN_MASK ((BIT(EASRC_COA_ACCLEN_WIDTH) - 1) \
<< EASRC_COA_ACCLEN_SHIFT)
#define EASRC_COA_ACCLEN(v) (((v) << EASRC_COA_ACCLEN_SHIFT) \
& EASRC_COA_ACCLEN_MASK)
/* ASRC Sample FIFO Status (SFS) */
#define EASRC_SFS_IWTMK_SHIFT 23
#define EASRC_SFS_IWTMK_MASK BIT(EASRC_SFS_IWTMK_SHIFT)
#define EASRC_SFS_IWTMK BIT(EASRC_SFS_IWTMK_SHIFT)
#define EASRC_SFS_NSGI_SHIFT 16
#define EASRC_SFS_NSGI_WIDTH 7
#define EASRC_SFS_NSGI_MASK ((BIT(EASRC_SFS_NSGI_WIDTH) - 1) \
<< EASRC_SFS_NSGI_SHIFT)
#define EASRC_SFS_NSGI(v) (((v) << EASRC_SFS_NSGI_SHIFT) \
& EASRC_SFS_NSGI_MASK)
#define EASRC_SFS_OWTMK_SHIFT 7
#define EASRC_SFS_OWTMK_MASK BIT(EASRC_SFS_OWTMK_SHIFT)
#define EASRC_SFS_OWTMK BIT(EASRC_SFS_OWTMK_SHIFT)
#define EASRC_SFS_NSGO_SHIFT 0
#define EASRC_SFS_NSGO_WIDTH 7
#define EASRC_SFS_NSGO_MASK ((BIT(EASRC_SFS_NSGO_WIDTH) - 1) \
<< EASRC_SFS_NSGO_SHIFT)
#define EASRC_SFS_NSGO(v) (((v) << EASRC_SFS_NSGO_SHIFT) \
& EASRC_SFS_NSGO_MASK)
/* ASRC Resampling Ratio Low (RRL) */
#define EASRC_RRL_RS_RL_SHIFT 0
#define EASRC_RRL_RS_RL_WIDTH 32
#define EASRC_RRL_RS_RL(v) ((v) << EASRC_RRL_RS_RL_SHIFT)
/* ASRC Resampling Ratio High (RRH) */
#define EASRC_RRH_RS_VLD_SHIFT 31
#define EASRC_RRH_RS_VLD_MASK BIT(EASRC_RRH_RS_VLD_SHIFT)
#define EASRC_RRH_RS_VLD BIT(EASRC_RRH_RS_VLD_SHIFT)
#define EASRC_RRH_RS_RH_SHIFT 0
#define EASRC_RRH_RS_RH_WIDTH 12
#define EASRC_RRH_RS_RH_MASK ((BIT(EASRC_RRH_RS_RH_WIDTH) - 1) \
<< EASRC_RRH_RS_RH_SHIFT)
#define EASRC_RRH_RS_RH(v) (((v) << EASRC_RRH_RS_RH_SHIFT) \
& EASRC_RRH_RS_RH_MASK)
/* ASRC Resampling Ratio Update Control (RSUC) */
#define EASRC_RSUC_RS_RM_SHIFT 0
#define EASRC_RSUC_RS_RM_WIDTH 32
#define EASRC_RSUC_RS_RM(v) ((v) << EASRC_RSUC_RS_RM_SHIFT)
/* ASRC Resampling Ratio Update Rate (RRUR) */
#define EASRC_RRUR_RRR_SHIFT 0
#define EASRC_RRUR_RRR_WIDTH 31
#define EASRC_RRUR_RRR_MASK ((BIT(EASRC_RRUR_RRR_WIDTH) - 1) \
<< EASRC_RRUR_RRR_SHIFT)
#define EASRC_RRUR_RRR(v) (((v) << EASRC_RRUR_RRR_SHIFT) \
& EASRC_RRUR_RRR_MASK)
/* ASRC Resampling Center Tap Coefficient Low (RCTCL) */
#define EASRC_RCTCL_RS_CL_SHIFT 0
#define EASRC_RCTCL_RS_CL_WIDTH 32
#define EASRC_RCTCL_RS_CL(v) ((v) << EASRC_RCTCL_RS_CL_SHIFT)
/* ASRC Resampling Center Tap Coefficient High (RCTCH) */
#define EASRC_RCTCH_RS_CH_SHIFT 0
#define EASRC_RCTCH_RS_CH_WIDTH 32
#define EASRC_RCTCH_RS_CH(v) ((v) << EASRC_RCTCH_RS_CH_SHIFT)
/* ASRC Prefilter Coefficient FIFO (PCF) */
#define EASRC_PCF_CD_SHIFT 0
#define EASRC_PCF_CD_WIDTH 32
#define EASRC_PCF_CD(v) ((v) << EASRC_PCF_CD_SHIFT)
/* ASRC Context Resampling Coefficient Memory (CRCM) */
#define EASRC_CRCM_RS_CWD_SHIFT 0
#define EASRC_CRCM_RS_CWD_WIDTH 32
#define EASRC_CRCM_RS_CWD(v) ((v) << EASRC_CRCM_RS_CWD_SHIFT)
/* ASRC Context Resampling Coefficient Control (CRCC) */
#define EASRC_CRCC_RS_CA_SHIFT 16
#define EASRC_CRCC_RS_CA_WIDTH 11
#define EASRC_CRCC_RS_CA_MASK ((BIT(EASRC_CRCC_RS_CA_WIDTH) - 1) \
<< EASRC_CRCC_RS_CA_SHIFT)
#define EASRC_CRCC_RS_CA(v) (((v) << EASRC_CRCC_RS_CA_SHIFT) \
& EASRC_CRCC_RS_CA_MASK)
#define EASRC_CRCC_RS_TAPS_SHIFT 1
#define EASRC_CRCC_RS_TAPS_WIDTH 2
#define EASRC_CRCC_RS_TAPS_MASK ((BIT(EASRC_CRCC_RS_TAPS_WIDTH) - 1) \
<< EASRC_CRCC_RS_TAPS_SHIFT)
#define EASRC_CRCC_RS_TAPS(v) (((v) << EASRC_CRCC_RS_TAPS_SHIFT) \
& EASRC_CRCC_RS_TAPS_MASK)
#define EASRC_CRCC_RS_CPR_SHIFT 0
#define EASRC_CRCC_RS_CPR_MASK BIT(EASRC_CRCC_RS_CPR_SHIFT)
#define EASRC_CRCC_RS_CPR BIT(EASRC_CRCC_RS_CPR_SHIFT)
/* ASRC Interrupt_Control (IC) */
#define EASRC_IRQC_RSDM_SHIFT 8
#define EASRC_IRQC_RSDM_WIDTH 4
#define EASRC_IRQC_RSDM_MASK ((BIT(EASRC_IRQC_RSDM_WIDTH) - 1) \
<< EASRC_IRQC_RSDM_SHIFT)
#define EASRC_IRQC_RSDM(v) (((v) << EASRC_IRQC_RSDM_SHIFT) \
& EASRC_IRQC_RSDM_MASK)
#define EASRC_IRQC_OERM_SHIFT 4
#define EASRC_IRQC_OERM_WIDTH 4
#define EASRC_IRQC_OERM_MASK ((BIT(EASRC_IRQC_OERM_WIDTH) - 1) \
<< EASRC_IRQC_OERM_SHIFT)
#define EASRC_IRQC_OERM(v) (((v) << EASRC_IRQC_OERM_SHIFT) \
& EASRC_IEQC_OERM_MASK)
#define EASRC_IRQC_IOM_SHIFT 0
#define EASRC_IRQC_IOM_WIDTH 4
#define EASRC_IRQC_IOM_MASK ((BIT(EASRC_IRQC_IOM_WIDTH) - 1) \
<< EASRC_IRQC_IOM_SHIFT)
#define EASRC_IRQC_IOM(v) (((v) << EASRC_IRQC_IOM_SHIFT) \
& EASRC_IRQC_IOM_MASK)
/* ASRC Interrupt Status Flags (ISF) */
#define EASRC_IRQF_RSD_SHIFT 8
#define EASRC_IRQF_RSD_WIDTH 4
#define EASRC_IRQF_RSD_MASK ((BIT(EASRC_IRQF_RSD_WIDTH) - 1) \
<< EASRC_IRQF_RSD_SHIFT)
#define EASRC_IRQF_RSD(v) (((v) << EASRC_IRQF_RSD_SHIFT) \
& EASRC_IRQF_RSD_MASK)
#define EASRC_IRQF_OER_SHIFT 4
#define EASRC_IRQF_OER_WIDTH 4
#define EASRC_IRQF_OER_MASK ((BIT(EASRC_IRQF_OER_WIDTH) - 1) \
<< EASRC_IRQF_OER_SHIFT)
#define EASRC_IRQF_OER(v) (((v) << EASRC_IRQF_OER_SHIFT) \
& EASRC_IRQF_OER_MASK)
#define EASRC_IRQF_IFO_SHIFT 0
#define EASRC_IRQF_IFO_WIDTH 4
#define EASRC_IRQF_IFO_MASK ((BIT(EASRC_IRQF_IFO_WIDTH) - 1) \
<< EASRC_IRQF_IFO_SHIFT)
#define EASRC_IRQF_IFO(v) (((v) << EASRC_IRQF_IFO_SHIFT) \
& EASRC_IRQF_IFO_MASK)
/* ASRC Context Channel STAT */
#define EASRC_CSx_CSx_SHIFT 0
#define EASRC_CSx_CSx_WIDTH 32
#define EASRC_CSx_CSx(v) ((v) << EASRC_CSx_CSx_SHIFT)
/* ASRC Debug Control Register */
#define EASRC_DBGC_DMS_SHIFT 0
#define EASRC_DBGC_DMS_WIDTH 6
#define EASRC_DBGC_DMS_MASK ((BIT(EASRC_DBGC_DMS_WIDTH) - 1) \
<< EASRC_DBGC_DMS_SHIFT)
#define EASRC_DBGC_DMS(v) (((v) << EASRC_DBGC_DMS_SHIFT) \
& EASRC_DBGC_DMS_MASK)
/* ASRC Debug Status Register */
#define EASRC_DBGS_DS_SHIFT 0
#define EASRC_DBGS_DS_WIDTH 32
#define EASRC_DBGS_DS(v) ((v) << EASRC_DBGS_DS_SHIFT)
/* General Constants */
#define EASRC_CTX_MAX_NUM 4
#define EASRC_RS_COEFF_MEM 0
#define EASRC_PF_COEFF_MEM 1
/* Prefilter constants */
#define EASRC_PF_ST1_ONLY 0
#define EASRC_PF_TWO_STAGE_MODE 1
#define EASRC_PF_ST1_COEFF_WR 0
#define EASRC_PF_ST2_COEFF_WR 1
#define EASRC_MAX_PF_TAPS 384
/* Resampling constants */
#define EASRC_RS_32_TAPS 0
#define EASRC_RS_64_TAPS 1
#define EASRC_RS_128_TAPS 2
/* Initialization mode */
#define EASRC_INIT_MODE_SW_CONTROL 0
#define EASRC_INIT_MODE_REPLICATE 1
#define EASRC_INIT_MODE_ZERO_FILL 2
/* FIFO watermarks */
#define FSL_EASRC_INPUTFIFO_WML 0x4
#define FSL_EASRC_OUTPUTFIFO_WML 0x1
#define EASRC_INPUTFIFO_THRESHOLD_MIN 0
#define EASRC_INPUTFIFO_THRESHOLD_MAX 127
#define EASRC_OUTPUTFIFO_THRESHOLD_MIN 0
#define EASRC_OUTPUTFIFO_THRESHOLD_MAX 63
#define EASRC_DMA_BUFFER_SIZE (1024 * 48 * 9)
#define EASRC_MAX_BUFFER_SIZE (1024 * 48)
#define FIRMWARE_MAGIC 0xDEAD
#define FIRMWARE_VERSION 1
#define PREFILTER_MEM_LEN 0x1800
enum easrc_word_width {
EASRC_WIDTH_16_BIT = 0,
EASRC_WIDTH_20_BIT = 1,
EASRC_WIDTH_24_BIT = 2,
EASRC_WIDTH_32_BIT = 3,
};
struct __attribute__((__packed__)) asrc_firmware_hdr {
u32 magic;
u32 interp_scen;
u32 prefil_scen;
u32 firmware_version;
};
struct __attribute__((__packed__)) interp_params {
u32 magic;
u32 num_taps;
u32 num_phases;
u64 center_tap;
u64 coeff[8192];
};
struct __attribute__((__packed__)) prefil_params {
u32 magic;
u32 insr;
u32 outsr;
u32 st1_taps;
u32 st2_taps;
u32 st1_exp;
u64 coeff[256];
};
struct dma_block {
void *dma_vaddr;
unsigned int length;
unsigned int max_buf_size;
};
struct fsl_easrc_data_fmt {
unsigned int width : 2;
unsigned int endianness : 1;
unsigned int unsign : 1;
unsigned int floating_point : 1;
unsigned int iec958: 1;
unsigned int sample_pos: 5;
unsigned int addexp;
};
struct fsl_easrc_io_params {
struct fsl_easrc_data_fmt fmt;
unsigned int group_len;
unsigned int iterations;
unsigned int access_len;
unsigned int fifo_wtmk;
unsigned int sample_rate;
unsigned int sample_format;
unsigned int norm_rate;
};
struct fsl_easrc_slot {
bool busy;
int ctx_index;
int slot_index;
int num_channel; /* maximum is 8 */
int min_channel;
int max_channel;
int pf_mem_used;
};
/**
* fsl_easrc_ctx_priv: EASRC context private data
*
* @in_params: input parameter
* @out_params: output parameter
* @st1_num_taps: tap number of stage 1
* @st2_num_taps: tap number of stage 2
* @st1_num_exp: exponent number of stage 1
* @pf_init_mode: prefilter init mode
* @rs_init_mode: resample filter init mode
* @ctx_streams: stream flag of ctx
* @rs_ratio: resampler ratio
* @st1_coeff: pointer of stage 1 coeff
* @st2_coeff: pointer of stage 2 coeff
* @in_filled_sample: input filled sample
* @out_missed_sample: sample missed in output
* @st1_addexp: exponent added for stage1
* @st2_addexp: exponent added for stage2
*/
struct fsl_easrc_ctx_priv {
struct fsl_easrc_io_params in_params;
struct fsl_easrc_io_params out_params;
unsigned int st1_num_taps;
unsigned int st2_num_taps;
unsigned int st1_num_exp;
unsigned int pf_init_mode;
unsigned int rs_init_mode;
unsigned int ctx_streams;
u64 rs_ratio;
u64 *st1_coeff;
u64 *st2_coeff;
int in_filled_sample;
int out_missed_sample;
int st1_addexp;
int st2_addexp;
};
/**
* fsl_easrc_priv: EASRC private data
*
* @slot: slot setting
* @firmware_hdr: the header of firmware
* @interp: pointer to interpolation filter coeff
* @prefil: pointer to prefilter coeff
* @fw: firmware of coeff table
* @fw_name: firmware name
* @rs_num_taps: resample filter taps, 32, 64, or 128
* @bps_iec958: bits per sample of iec958
* @rs_coeff: resampler coefficient
* @const_coeff: one tap prefilter coefficient
* @firmware_loaded: firmware is loaded
*/
struct fsl_easrc_priv {
struct fsl_easrc_slot slot[EASRC_CTX_MAX_NUM][2];
struct asrc_firmware_hdr *firmware_hdr;
struct interp_params *interp;
struct prefil_params *prefil;
const struct firmware *fw;
const char *fw_name;
unsigned int rs_num_taps;
unsigned int bps_iec958[EASRC_CTX_MAX_NUM];
u64 *rs_coeff;
u64 const_coeff;
int firmware_loaded;
};
#endif /* _FSL_EASRC_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment