Commit 96178769 authored by David Woodhouse's avatar David Woodhouse

Merge branch 'mxc-nand' of git://git.pengutronix.de/git/imx/linux-2.6

parents 2e386e4b 1fbff0a6
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
struct mxc_nand_platform_data { struct mxc_nand_platform_data {
int width; /* data bus width in bytes */ int width; /* data bus width in bytes */
int hw_ecc; /* 0 if supress hardware ECC */ int hw_ecc:1; /* 0 if supress hardware ECC */
int flash_bbt:1; /* set to 1 to use a flash based bbt */
}; };
#endif /* __ASM_ARCH_NAND_H */ #endif /* __ASM_ARCH_NAND_H */
...@@ -33,9 +33,13 @@ ...@@ -33,9 +33,13 @@
#include <asm/mach/flash.h> #include <asm/mach/flash.h>
#include <mach/mxc_nand.h> #include <mach/mxc_nand.h>
#include <mach/hardware.h>
#define DRIVER_NAME "mxc_nand" #define DRIVER_NAME "mxc_nand"
#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27())
/* Addresses for NFC registers */ /* Addresses for NFC registers */
#define NFC_BUF_SIZE 0xE00 #define NFC_BUF_SIZE 0xE00
#define NFC_BUF_ADDR 0xE04 #define NFC_BUF_ADDR 0xE04
...@@ -46,24 +50,14 @@ ...@@ -46,24 +50,14 @@
#define NFC_RSLTMAIN_AREA 0xE0E #define NFC_RSLTMAIN_AREA 0xE0E
#define NFC_RSLTSPARE_AREA 0xE10 #define NFC_RSLTSPARE_AREA 0xE10
#define NFC_WRPROT 0xE12 #define NFC_WRPROT 0xE12
#define NFC_UNLOCKSTART_BLKADDR 0xE14 #define NFC_V1_UNLOCKSTART_BLKADDR 0xe14
#define NFC_UNLOCKEND_BLKADDR 0xE16 #define NFC_V1_UNLOCKEND_BLKADDR 0xe16
#define NFC_V21_UNLOCKSTART_BLKADDR 0xe20
#define NFC_V21_UNLOCKEND_BLKADDR 0xe22
#define NFC_NF_WRPRST 0xE18 #define NFC_NF_WRPRST 0xE18
#define NFC_CONFIG1 0xE1A #define NFC_CONFIG1 0xE1A
#define NFC_CONFIG2 0xE1C #define NFC_CONFIG2 0xE1C
/* Addresses for NFC RAM BUFFER Main area 0 */
#define MAIN_AREA0 0x000
#define MAIN_AREA1 0x200
#define MAIN_AREA2 0x400
#define MAIN_AREA3 0x600
/* Addresses for NFC SPARE BUFFER Spare area 0 */
#define SPARE_AREA0 0x800
#define SPARE_AREA1 0x810
#define SPARE_AREA2 0x820
#define SPARE_AREA3 0x830
/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
* for Command operation */ * for Command operation */
#define NFC_CMD 0x1 #define NFC_CMD 0x1
...@@ -106,48 +100,66 @@ struct mxc_nand_host { ...@@ -106,48 +100,66 @@ struct mxc_nand_host {
struct mtd_partition *parts; struct mtd_partition *parts;
struct device *dev; struct device *dev;
void *spare0;
void *main_area0;
void *main_area1;
void __iomem *base;
void __iomem *regs; void __iomem *regs;
int spare_only;
int status_request; int status_request;
int pagesize_2k;
uint16_t col_addr;
struct clk *clk; struct clk *clk;
int clk_act; int clk_act;
int irq; int irq;
wait_queue_head_t irq_waitq; wait_queue_head_t irq_waitq;
};
/* Define delays in microsec for NAND device operations */
#define TROP_US_DELAY 2000
/* Macros to get byte and bit positions of ECC */
#define COLPOS(x) ((x) >> 3)
#define BITPOS(x) ((x) & 0xf)
/* Define single bit Error positions in Main & Spare area */ uint8_t *data_buf;
#define MAIN_SINGLEBIT_ERROR 0x4 unsigned int buf_start;
#define SPARE_SINGLEBIT_ERROR 0x1 int spare_len;
/* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nand_hw_eccoob_8 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}, }
}; };
static struct nand_ecclayout nand_hw_eccoob_16 = { /* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
.eccbytes = 5, .eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10}, .eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}, } .oobfree = {{0, 5}, {12, 4}, }
}; };
static struct nand_ecclayout nand_hw_eccoob_64 = { static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
.eccbytes = 20, .eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26, .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58}, 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, } .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
}; };
/* OOB description for 512 byte pages with 16 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
.eccbytes = 1 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15
},
.oobfree = {
{.offset = 0, .length = 5}
}
};
/* OOB description for 2048 byte pages with 64 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
.eccbytes = 4 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7}
}
};
#ifdef CONFIG_MTD_PARTITIONS #ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
#endif #endif
...@@ -170,10 +182,10 @@ static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) ...@@ -170,10 +182,10 @@ static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
/* This function polls the NANDFC to wait for the basic operation to /* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register. * complete by checking the INT bit of config2 register.
*/ */
static void wait_op_done(struct mxc_nand_host *host, int max_retries, static void wait_op_done(struct mxc_nand_host *host, int useirq)
uint16_t param, int useirq)
{ {
uint32_t tmp; uint32_t tmp;
int max_retries = 2000;
if (useirq) { if (useirq) {
if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
...@@ -200,8 +212,8 @@ static void wait_op_done(struct mxc_nand_host *host, int max_retries, ...@@ -200,8 +212,8 @@ static void wait_op_done(struct mxc_nand_host *host, int max_retries,
udelay(1); udelay(1);
} }
if (max_retries < 0) if (max_retries < 0)
DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
__func__, param); __func__);
} }
} }
...@@ -215,7 +227,7 @@ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) ...@@ -215,7 +227,7 @@ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
writew(NFC_CMD, host->regs + NFC_CONFIG2); writew(NFC_CMD, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */ /* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd, useirq); wait_op_done(host, useirq);
} }
/* This function sends an address (or partial address) to the /* This function sends an address (or partial address) to the
...@@ -229,82 +241,47 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) ...@@ -229,82 +241,47 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
writew(NFC_ADDR, host->regs + NFC_CONFIG2); writew(NFC_ADDR, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */ /* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr, islast); wait_op_done(host, islast);
} }
/* This function requests the NANDFC to initate the transfer static void send_page(struct mtd_info *mtd, unsigned int ops)
* of data currently in the NANDFC RAM buffer to the NAND device. */
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{ {
DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* NANDFC buffer 0 is used for page read/write */ int bufs, i;
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint16_t config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~(NFC_SP_EN);
writew(config1, host->regs + NFC_CONFIG1);
}
writew(NFC_INPUT, host->regs + NFC_CONFIG2); if (nfc_is_v1() && mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
/* Wait for operation to complete */ for (i = 0; i < bufs; i++) {
wait_op_done(host, TROP_US_DELAY, spare_only, true);
}
/* Requests NANDFC to initated the transfer of data from the /* NANDFC buffer 0 is used for page read/write */
* NAND device into in the NANDFC ram buffer. */ writew(i, host->regs + NFC_BUF_ADDR);
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
/* NANDFC buffer 0 is used for page read/write */ writew(ops, host->regs + NFC_CONFIG2);
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */ /* Wait for operation to complete */
if (!host->pagesize_2k) { wait_op_done(host, true);
uint32_t config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, host->regs + NFC_CONFIG1);
} }
writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only, true);
} }
/* Request the NANDFC to perform a read of the NAND device ID. */ /* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host) static void send_read_id(struct mxc_nand_host *host)
{ {
struct nand_chip *this = &host->nand; struct nand_chip *this = &host->nand;
uint16_t tmp;
/* NANDFC buffer 0 is used for device ID output */ /* NANDFC buffer 0 is used for device ID output */
writew(0x0, host->regs + NFC_BUF_ADDR); writew(0x0, host->regs + NFC_BUF_ADDR);
/* Read ID into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_ID, host->regs + NFC_CONFIG2); writew(NFC_ID, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */ /* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0, true); wait_op_done(host, true);
if (this->options & NAND_BUSWIDTH_16) { if (this->options & NAND_BUSWIDTH_16) {
void __iomem *main_buf = host->regs + MAIN_AREA0; void __iomem *main_buf = host->main_area0;
/* compress the ID info */ /* compress the ID info */
writeb(readb(main_buf + 2), main_buf + 1); writeb(readb(main_buf + 2), main_buf + 1);
writeb(readb(main_buf + 4), main_buf + 2); writeb(readb(main_buf + 4), main_buf + 2);
...@@ -312,15 +289,16 @@ static void send_read_id(struct mxc_nand_host *host) ...@@ -312,15 +289,16 @@ static void send_read_id(struct mxc_nand_host *host)
writeb(readb(main_buf + 8), main_buf + 4); writeb(readb(main_buf + 8), main_buf + 4);
writeb(readb(main_buf + 10), main_buf + 5); writeb(readb(main_buf + 10), main_buf + 5);
} }
memcpy(host->data_buf, host->main_area0, 16);
} }
/* This function requests the NANDFC to perform a read of the /* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */ * NAND device status and returns the current status. */
static uint16_t get_dev_status(struct mxc_nand_host *host) static uint16_t get_dev_status(struct mxc_nand_host *host)
{ {
void __iomem *main_buf = host->regs + MAIN_AREA1; void __iomem *main_buf = host->main_area1;
uint32_t store; uint32_t store;
uint16_t ret, tmp; uint16_t ret;
/* Issue status request to NAND device */ /* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */ /* store the main area1 first word, later do recovery */
...@@ -329,15 +307,10 @@ static uint16_t get_dev_status(struct mxc_nand_host *host) ...@@ -329,15 +307,10 @@ static uint16_t get_dev_status(struct mxc_nand_host *host)
* corruption of read/write buffer on status requests. */ * corruption of read/write buffer on status requests. */
writew(1, host->regs + NFC_BUF_ADDR); writew(1, host->regs + NFC_BUF_ADDR);
/* Read status into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_STATUS, host->regs + NFC_CONFIG2); writew(NFC_STATUS, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */ /* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0, true); wait_op_done(host, true);
/* Status is placed in first word of main buffer */ /* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */ /* get status, then recovery area 1 data */
...@@ -397,32 +370,14 @@ static u_char mxc_nand_read_byte(struct mtd_info *mtd) ...@@ -397,32 +370,14 @@ static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{ {
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = nand_chip->priv;
uint8_t ret = 0; uint8_t ret;
uint16_t col, rd_word;
uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
/* Check for status request */ /* Check for status request */
if (host->status_request) if (host->status_request)
return get_dev_status(host) & 0xFF; return get_dev_status(host) & 0xFF;
/* Get column for 16-bit access */ ret = *(uint8_t *)(host->data_buf + host->buf_start);
col = host->col_addr >> 1; host->buf_start++;
/* If we are accessing the spare region */
if (host->spare_only)
rd_word = readw(&spare_buf[col]);
else
rd_word = readw(&main_buf[col]);
/* Pick upper/lower byte of word from RAM buffer */
if (host->col_addr & 0x1)
ret = (rd_word >> 8) & 0xFF;
else
ret = rd_word & 0xFF;
/* Update saved column address */
host->col_addr++;
return ret; return ret;
} }
...@@ -431,33 +386,10 @@ static uint16_t mxc_nand_read_word(struct mtd_info *mtd) ...@@ -431,33 +386,10 @@ static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{ {
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = nand_chip->priv;
uint16_t col, rd_word, ret; uint16_t ret;
uint16_t __iomem *p;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_read_word(col = %d)\n", host->col_addr);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
if (col < mtd->writesize) ret = *(uint16_t *)(host->data_buf + host->buf_start);
p = (host->regs + MAIN_AREA0) + (col >> 1); host->buf_start += 2;
else
p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
if (col & 1) {
rd_word = readw(p);
ret = (rd_word >> 8) & 0xff;
rd_word = readw(&p[1]);
ret |= (rd_word << 8) & 0xff00;
} else
ret = readw(p);
/* Update saved column address */
host->col_addr = col + 2;
return ret; return ret;
} }
...@@ -470,94 +402,14 @@ static void mxc_nand_write_buf(struct mtd_info *mtd, ...@@ -470,94 +402,14 @@ static void mxc_nand_write_buf(struct mtd_info *mtd,
{ {
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = nand_chip->priv;
int n, col, i = 0; u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
DEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
while (n) {
void __iomem *p;
if (col < mtd->writesize)
p = host->regs + MAIN_AREA0 + (col & ~3);
else
p = host->regs + SPARE_AREA0 -
mtd->writesize + (col & ~3);
DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
__LINE__, p);
if (((col | (int)&buf[i]) & 3) || n < 16) {
uint32_t data = 0;
if (col & 3 || n < 4)
data = readl(p);
switch (col & 3) {
case 0:
if (n) {
data = (data & 0xffffff00) |
(buf[i++] << 0);
n--;
col++;
}
case 1:
if (n) {
data = (data & 0xffff00ff) |
(buf[i++] << 8);
n--;
col++;
}
case 2:
if (n) {
data = (data & 0xff00ffff) |
(buf[i++] << 16);
n--;
col++;
}
case 3:
if (n) {
data = (data & 0x00ffffff) |
(buf[i++] << 24);
n--;
col++;
}
}
writel(data, p); n = min(n, len);
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3; memcpy(host->data_buf + col, buf, n);
DEBUG(MTD_DEBUG_LEVEL3, host->buf_start += n;
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
__func__, __LINE__, n, m, i, col);
memcpy(p, &buf[i], m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
} }
/* Read the data buffer from the NAND Flash. To read the data from NAND /* Read the data buffer from the NAND Flash. To read the data from NAND
...@@ -568,75 +420,14 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) ...@@ -568,75 +420,14 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{ {
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = nand_chip->priv;
int n, col, i = 0; u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
col = host->col_addr;
/* Adjust saved column address */ n = min(n, len);
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col; memcpy(buf, host->data_buf + col, len);
n = min(len, n);
while (n) {
void __iomem *p;
if (col < mtd->writesize)
p = host->regs + MAIN_AREA0 + (col & ~3);
else
p = host->regs + SPARE_AREA0 -
mtd->writesize + (col & ~3);
if (((col | (int)&buf[i]) & 3) || n < 16) {
uint32_t data;
data = readl(p);
switch (col & 3) {
case 0:
if (n) {
buf[i++] = (uint8_t) (data);
n--;
col++;
}
case 1:
if (n) {
buf[i++] = (uint8_t) (data >> 8);
n--;
col++;
}
case 2:
if (n) {
buf[i++] = (uint8_t) (data >> 16);
n--;
col++;
}
case 3:
if (n) {
buf[i++] = (uint8_t) (data >> 24);
n--;
col++;
}
}
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
memcpy(&buf[i], p, m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
host->buf_start += len;
} }
/* Used by the upper layer to verify the data in NAND Flash /* Used by the upper layer to verify the data in NAND Flash
...@@ -654,23 +445,6 @@ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) ...@@ -654,23 +445,6 @@ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = nand_chip->priv;
#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
if (chip > 0) {
DEBUG(MTD_DEBUG_LEVEL0,
"ERROR: Illegal chip select (chip = %d)\n", chip);
return;
}
if (chip == -1) {
writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
host->regs + NFC_CONFIG1);
return;
}
writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
host->regs + NFC_CONFIG1);
#endif
switch (chip) { switch (chip) {
case -1: case -1:
/* Disable the NFC clock */ /* Disable the NFC clock */
...@@ -692,94 +466,40 @@ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) ...@@ -692,94 +466,40 @@ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
} }
} }
/* Used by the upper layer to write command to NAND Flash for /*
* different operations to be carried out on NAND Flash */ * Function to transfer data to/from spare area.
static void mxc_nand_command(struct mtd_info *mtd, unsigned command, */
int column, int page_addr) static void copy_spare(struct mtd_info *mtd, bool bfrom)
{ {
struct nand_chip *nand_chip = mtd->priv; struct nand_chip *this = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv; struct mxc_nand_host *host = this->priv;
int useirq = true; u16 i, j;
u16 n = mtd->writesize >> 9;
DEBUG(MTD_DEBUG_LEVEL3, u8 *d = host->data_buf + mtd->writesize;
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", u8 *s = host->spare0;
command, column, page_addr); u16 t = host->spare_len;
/* Reset command state information */ j = (mtd->oobsize / n >> 1) << 1;
host->status_request = false;
if (bfrom) {
/* Command pre-processing step */ for (i = 0; i < n - 1; i++)
switch (command) { memcpy(d + i * j, s + i * t, j);
case NAND_CMD_STATUS: /* the last section */
host->col_addr = 0; memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
host->status_request = true; } else {
break; for (i = 0; i < n - 1; i++)
memcpy(&s[i * t], &d[i * j], j);
case NAND_CMD_READ0:
host->col_addr = column;
host->spare_only = false;
useirq = false;
break;
case NAND_CMD_READOOB:
host->col_addr = column;
host->spare_only = true;
useirq = false;
if (host->pagesize_2k)
command = NAND_CMD_READ0; /* only READ0 is valid */
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
/*
* FIXME: before send SEQIN command for write OOB,
* We must read one page out.
* For K9F1GXX has no READ1 command to set current HW
* pointer to spare area, we must write the whole page
* including OOB together.
*/
if (host->pagesize_2k)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
host->col_addr = column - mtd->writesize;
host->spare_only = true;
/* Set program pointer to spare region */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READOOB, false);
} else {
host->spare_only = false;
host->col_addr = column;
/* Set program pointer to page start */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READ0, false);
}
useirq = false;
break;
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k) {
/* data in 4 areas datas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
send_prog_page(host, 3, host->spare_only);
}
break;
case NAND_CMD_ERASE1: /* the last section */
useirq = false; memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
break;
} }
}
/* Write out the command to the device. */ static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
send_cmd(host, command, useirq); {
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* Write out column address, if necessary */ /* Write out column address, if necessary */
if (column != -1) { if (column != -1) {
...@@ -791,7 +511,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, ...@@ -791,7 +511,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
* the full page. * the full page.
*/ */
send_addr(host, 0, page_addr == -1); send_addr(host, 0, page_addr == -1);
if (host->pagesize_2k) if (mtd->writesize > 512)
/* another col addr cycle for 2k page */ /* another col addr cycle for 2k page */
send_addr(host, 0, false); send_addr(host, 0, false);
} }
...@@ -801,7 +521,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, ...@@ -801,7 +521,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
/* paddr_0 - p_addr_7 */ /* paddr_0 - p_addr_7 */
send_addr(host, (page_addr & 0xff), false); send_addr(host, (page_addr & 0xff), false);
if (host->pagesize_2k) { if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) { if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */ /* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff, false); send_addr(host, (page_addr >> 8) & 0xff, false);
...@@ -820,43 +540,138 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, ...@@ -820,43 +540,138 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
send_addr(host, (page_addr >> 8) & 0xff, true); send_addr(host, (page_addr >> 8) & 0xff, true);
} }
} }
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
DEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command post-processing step */ /* Command pre-processing step */
switch (command) { switch (command) {
case NAND_CMD_RESET: case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break; break;
case NAND_CMD_READOOB:
case NAND_CMD_READ0: case NAND_CMD_READ0:
if (host->pagesize_2k) { case NAND_CMD_READOOB:
/* send read confirm command */ if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
if (mtd->writesize > 512)
command = NAND_CMD_READ0; /* only READ0 is valid */
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
if (mtd->writesize > 512)
send_cmd(host, NAND_CMD_READSTART, true); send_cmd(host, NAND_CMD_READSTART, true);
/* read for each AREA */
send_read_page(host, 0, host->spare_only); send_page(mtd, NFC_OUTPUT);
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only); memcpy(host->data_buf, host->main_area0, mtd->writesize);
send_read_page(host, 3, host->spare_only); copy_spare(mtd, true);
} else
send_read_page(host, 0, host->spare_only);
break; break;
case NAND_CMD_READID: case NAND_CMD_SEQIN:
host->col_addr = 0; if (column >= mtd->writesize) {
send_read_id(host); /*
* FIXME: before send SEQIN command for write OOB,
* We must read one page out.
* For K9F1GXX has no READ1 command to set current HW
* pointer to spare area, we must write the whole page
* including OOB together.
*/
if (mtd->writesize > 512)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
host->buf_start = column;
/* Set program pointer to spare region */
if (mtd->writesize == 512)
send_cmd(host, NAND_CMD_READOOB, false);
} else {
host->buf_start = column;
/* Set program pointer to page start */
if (mtd->writesize == 512)
send_cmd(host, NAND_CMD_READ0, false);
}
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break; break;
case NAND_CMD_PAGEPROG: case NAND_CMD_PAGEPROG:
memcpy(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, false);
send_page(mtd, NFC_INPUT);
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
break; break;
case NAND_CMD_STATUS: case NAND_CMD_READID:
send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
send_read_id(host);
host->buf_start = column;
break; break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2: case NAND_CMD_ERASE2:
send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
break; break;
} }
} }
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static int __init mxcnd_probe(struct platform_device *pdev) static int __init mxcnd_probe(struct platform_device *pdev)
{ {
struct nand_chip *this; struct nand_chip *this;
...@@ -866,12 +681,16 @@ static int __init mxcnd_probe(struct platform_device *pdev) ...@@ -866,12 +681,16 @@ static int __init mxcnd_probe(struct platform_device *pdev)
struct resource *res; struct resource *res;
uint16_t tmp; uint16_t tmp;
int err = 0, nr_parts = 0; int err = 0, nr_parts = 0;
struct nand_ecclayout *oob_smallpage, *oob_largepage;
/* Allocate memory for MTD device structure and private data */ /* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL); host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
NAND_MAX_OOBSIZE, GFP_KERNEL);
if (!host) if (!host)
return -ENOMEM; return -ENOMEM;
host->data_buf = (uint8_t *)(host + 1);
host->dev = &pdev->dev; host->dev = &pdev->dev;
/* structures must be linked */ /* structures must be linked */
this = &host->nand; this = &host->nand;
...@@ -879,7 +698,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) ...@@ -879,7 +698,7 @@ static int __init mxcnd_probe(struct platform_device *pdev)
mtd->priv = this; mtd->priv = this;
mtd->owner = THIS_MODULE; mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev; mtd->dev.parent = &pdev->dev;
mtd->name = "mxc_nand"; mtd->name = DRIVER_NAME;
/* 50 us command delay time */ /* 50 us command delay time */
this->chip_delay = 5; this->chip_delay = 5;
...@@ -909,62 +728,93 @@ static int __init mxcnd_probe(struct platform_device *pdev) ...@@ -909,62 +728,93 @@ static int __init mxcnd_probe(struct platform_device *pdev)
goto eres; goto eres;
} }
host->regs = ioremap(res->start, res->end - res->start + 1); host->base = ioremap(res->start, resource_size(res));
if (!host->regs) { if (!host->base) {
err = -ENOMEM; err = -ENOMEM;
goto eres; goto eres;
} }
host->main_area0 = host->base;
host->main_area1 = host->base + 0x200;
if (nfc_is_v21()) {
host->regs = host->base + 0x1000;
host->spare0 = host->base + 0x1000;
host->spare_len = 64;
oob_smallpage = &nandv2_hw_eccoob_smallpage;
oob_largepage = &nandv2_hw_eccoob_largepage;
} else if (nfc_is_v1()) {
host->regs = host->base;
host->spare0 = host->base + 0x800;
host->spare_len = 16;
oob_smallpage = &nandv1_hw_eccoob_smallpage;
oob_largepage = &nandv1_hw_eccoob_largepage;
} else
BUG();
/* disable interrupt and spare enable */
tmp = readw(host->regs + NFC_CONFIG1); tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK; tmp |= NFC_INT_MSK;
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1); writew(tmp, host->regs + NFC_CONFIG1);
init_waitqueue_head(&host->irq_waitq); init_waitqueue_head(&host->irq_waitq);
host->irq = platform_get_irq(pdev, 0); host->irq = platform_get_irq(pdev, 0);
err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host); err = request_irq(host->irq, mxc_nfc_irq, 0, DRIVER_NAME, host);
if (err) if (err)
goto eirq; goto eirq;
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
if (nfc_is_v21()) {
writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR);
writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR);
this->ecc.bytes = 9;
} else if (nfc_is_v1()) {
writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR);
this->ecc.bytes = 3;
} else
BUG();
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
this->ecc.size = 512;
this->ecc.layout = oob_smallpage;
if (pdata->hw_ecc) { if (pdata->hw_ecc) {
this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data; this->ecc.correct = mxc_nand_correct_data;
this->ecc.mode = NAND_ECC_HW; this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
this->ecc.bytes = 3;
tmp = readw(host->regs + NFC_CONFIG1); tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN; tmp |= NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1); writew(tmp, host->regs + NFC_CONFIG1);
} else { } else {
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
this->ecc.mode = NAND_ECC_SOFT; this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(host->regs + NFC_CONFIG1); tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN; tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1); writew(tmp, host->regs + NFC_CONFIG1);
} }
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
/* NAND bus width determines access funtions used by upper layer */ /* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2) { if (pdata->width == 2)
this->options |= NAND_BUSWIDTH_16; this->options |= NAND_BUSWIDTH_16;
this->ecc.layout = &nand_hw_eccoob_16;
if (pdata->flash_bbt) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
} }
/* first scan to find the device and get the page size */ /* first scan to find the device and get the page size */
...@@ -973,35 +823,8 @@ static int __init mxcnd_probe(struct platform_device *pdev) ...@@ -973,35 +823,8 @@ static int __init mxcnd_probe(struct platform_device *pdev)
goto escan; goto escan;
} }
host->pagesize_2k = (mtd->writesize == 2048) ? 1 : 0; if (mtd->writesize == 2048)
this->ecc.layout = oob_largepage;
if (this->ecc.mode == NAND_ECC_HW) {
switch (mtd->oobsize) {
case 8:
this->ecc.layout = &nand_hw_eccoob_8;
break;
case 16:
this->ecc.layout = &nand_hw_eccoob_16;
break;
case 64:
this->ecc.layout = &nand_hw_eccoob_64;
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.calculate = NULL;
this->ecc.correct = NULL;
this->ecc.hwctl = NULL;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
break;
}
}
/* second phase scan */ /* second phase scan */
if (nand_scan_tail(mtd)) { if (nand_scan_tail(mtd)) {
...@@ -1029,7 +852,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) ...@@ -1029,7 +852,7 @@ static int __init mxcnd_probe(struct platform_device *pdev)
escan: escan:
free_irq(host->irq, host); free_irq(host->irq, host);
eirq: eirq:
iounmap(host->regs); iounmap(host->base);
eres: eres:
clk_put(host->clk); clk_put(host->clk);
eclk: eclk:
...@@ -1048,7 +871,7 @@ static int __exit mxcnd_remove(struct platform_device *pdev) ...@@ -1048,7 +871,7 @@ static int __exit mxcnd_remove(struct platform_device *pdev)
nand_release(&host->mtd); nand_release(&host->mtd);
free_irq(host->irq, host); free_irq(host->irq, host);
iounmap(host->regs); iounmap(host->base);
kfree(host); kfree(host);
return 0; return 0;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment