Commit 9a7e6039 authored by Jeff Garzik's avatar Jeff Garzik

Remove GMAC net driver, with the ok of the PPC folks.

'sungem' which DaveM is maintaining is the replacement.
parent 43adf430
...@@ -37,7 +37,6 @@ if [ "$CONFIG_NET_ETHERNET" = "y" ]; then ...@@ -37,7 +37,6 @@ if [ "$CONFIG_NET_ETHERNET" = "y" ]; then
bool ' Use AAUI port instead of TP by default' CONFIG_MACE_AAUI_PORT bool ' Use AAUI port instead of TP by default' CONFIG_MACE_AAUI_PORT
fi fi
dep_tristate ' BMAC (G3 ethernet) support' CONFIG_BMAC $CONFIG_ALL_PPC dep_tristate ' BMAC (G3 ethernet) support' CONFIG_BMAC $CONFIG_ALL_PPC
dep_tristate ' GMAC (G4/iBook ethernet) support' CONFIG_GMAC $CONFIG_ALL_PPC
tristate ' National DP83902AV (Oak ethernet) support' CONFIG_OAKNET tristate ' National DP83902AV (Oak ethernet) support' CONFIG_OAKNET
fi fi
if [ "$CONFIG_ZORRO" = "y" ]; then if [ "$CONFIG_ZORRO" = "y" ]; then
......
...@@ -57,7 +57,6 @@ obj-$(CONFIG_SUNGEM) += sungem.o ...@@ -57,7 +57,6 @@ obj-$(CONFIG_SUNGEM) += sungem.o
obj-$(CONFIG_MACE) += mace.o obj-$(CONFIG_MACE) += mace.o
obj-$(CONFIG_BMAC) += bmac.o obj-$(CONFIG_BMAC) += bmac.o
obj-$(CONFIG_GMAC) += gmac.o
obj-$(CONFIG_OAKNET) += oaknet.o 8390.o obj-$(CONFIG_OAKNET) += oaknet.o 8390.o
......
/*
* Network device driver for the GMAC ethernet controller on
* Apple G4 Powermacs.
*
* Copyright (C) 2000 Paul Mackerras & Ben. Herrenschmidt
*
* portions based on sunhme.c by David S. Miller
*
* Changes:
* Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 08/06/2000
* - check init_etherdev return in gmac_probe1
* BenH <benh@kernel.crashing.org> - 03/09/2000
* - Add support for new PHYs
* - Add some PowerBook sleep code
* BenH <benh@kernel.crashing.org> - ??/??/????
* - PHY updates
* BenH <benh@kernel.crashing.org> - 08/08/2001
* - Add more PHYs, fixes to sleep code
* Matt Domsch <Matt_Domsch@dell.com> - 11/12/2001
* - use library crc32 functions
*/
#include <linux/module.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/crc32.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/feature.h>
#include <asm/keylargo.h>
#include <asm/pci-bridge.h>
#ifdef CONFIG_PMAC_PBOOK
#include <linux/adb.h>
#include <linux/pmu.h>
#include <asm/irq.h>
#endif
#include "gmac.h"
#define DEBUG_PHY
/* Driver version 1.5, kernel 2.4.x */
#define GMAC_VERSION "v1.5k4"
#define DUMMY_BUF_LEN RX_BUF_ALLOC_SIZE + RX_OFFSET + GMAC_BUFFER_ALIGN
static unsigned char *dummy_buf;
static struct net_device *gmacs;
/* Prototypes */
static int mii_read(struct gmac *gm, int phy, int r);
static int mii_write(struct gmac *gm, int phy, int r, int v);
static void mii_poll_start(struct gmac *gm);
static void mii_poll_stop(struct gmac *gm);
static void mii_interrupt(struct gmac *gm);
static int mii_lookup_and_reset(struct gmac *gm);
static void mii_setup_phy(struct gmac *gm);
static int mii_do_reset_phy(struct gmac *gm, int phy_addr);
static void mii_init_BCM5400(struct gmac *gm);
static void mii_init_BCM5401(struct gmac *gm);
static void gmac_set_power(struct gmac *gm, int power_up);
static int gmac_powerup_and_reset(struct net_device *dev);
static void gmac_set_gigabit_mode(struct gmac *gm, int gigabit);
static void gmac_set_duplex_mode(struct gmac *gm, int full_duplex);
static void gmac_mac_init(struct gmac *gm, unsigned char *mac_addr);
static void gmac_init_rings(struct gmac *gm, int from_irq);
static void gmac_start_dma(struct gmac *gm);
static void gmac_stop_dma(struct gmac *gm);
static void gmac_set_multicast(struct net_device *dev);
static int gmac_open(struct net_device *dev);
static int gmac_close(struct net_device *dev);
static void gmac_tx_timeout(struct net_device *dev);
static int gmac_xmit_start(struct sk_buff *skb, struct net_device *dev);
static void gmac_tx_cleanup(struct net_device *dev, int force_cleanup);
static void gmac_receive(struct net_device *dev);
static void gmac_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static struct net_device_stats *gmac_stats(struct net_device *dev);
static int gmac_probe(void);
static void gmac_probe1(struct device_node *gmac);
#ifdef CONFIG_PMAC_PBOOK
int gmac_sleep_notify(struct pmu_sleep_notifier *self, int when);
static struct pmu_sleep_notifier gmac_sleep_notifier = {
gmac_sleep_notify, SLEEP_LEVEL_NET,
};
#endif
/*
* Read via the mii interface from a PHY register
*/
static int
mii_read(struct gmac *gm, int phy, int r)
{
int timeout;
GM_OUT(GM_MIF_FRAME_CTL_DATA,
(0x01 << GM_MIF_FRAME_START_SHIFT) |
(0x02 << GM_MIF_FRAME_OPCODE_SHIFT) |
GM_MIF_FRAME_TURNAROUND_HI |
(phy << GM_MIF_FRAME_PHY_ADDR_SHIFT) |
(r << GM_MIF_FRAME_REG_ADDR_SHIFT));
for (timeout = 1000; timeout > 0; --timeout) {
udelay(20);
if (GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_TURNAROUND_LO)
return GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_DATA_MASK;
}
return -1;
}
/*
* Write on the mii interface to a PHY register
*/
static int
mii_write(struct gmac *gm, int phy, int r, int v)
{
int timeout;
GM_OUT(GM_MIF_FRAME_CTL_DATA,
(0x01 << GM_MIF_FRAME_START_SHIFT) |
(0x01 << GM_MIF_FRAME_OPCODE_SHIFT) |
GM_MIF_FRAME_TURNAROUND_HI |
(phy << GM_MIF_FRAME_PHY_ADDR_SHIFT) |
(r << GM_MIF_FRAME_REG_ADDR_SHIFT) |
(v & GM_MIF_FRAME_DATA_MASK));
for (timeout = 1000; timeout > 0; --timeout) {
udelay(20);
if (GM_IN(GM_MIF_FRAME_CTL_DATA) & GM_MIF_FRAME_TURNAROUND_LO)
return 0;
}
return -1;
}
/*
* Start MIF autopolling of the PHY status register
*/
static void
mii_poll_start(struct gmac *gm)
{
unsigned int tmp;
/* Start the MIF polling on the external transceiver. */
tmp = GM_IN(GM_MIF_CFG);
tmp &= ~(GM_MIF_CFGPR_MASK | GM_MIF_CFGPD_MASK);
tmp |= ((gm->phy_addr & 0x1f) << GM_MIF_CFGPD_SHIFT);
tmp |= (MII_SR << GM_MIF_CFGPR_SHIFT);
tmp |= GM_MIF_CFGPE;
GM_OUT(GM_MIF_CFG, tmp);
/* Let the bits set. */
udelay(GM_MIF_POLL_DELAY);
GM_OUT(GM_MIF_IRQ_MASK, 0xffc0);
}
/*
* Stop MIF autopolling of the PHY status register
*/
static void
mii_poll_stop(struct gmac *gm)
{
GM_OUT(GM_MIF_IRQ_MASK, 0xffff);
GM_BIC(GM_MIF_CFG, GM_MIF_CFGPE);
udelay(GM_MIF_POLL_DELAY);
}
/*
* Called when the MIF detect a change of the PHY status
*
* handles monitoring the link and updating GMAC with the correct
* duplex mode.
*
* Note: Are we missing status changes ? In this case, we'll have to
* a timer and control the autoneg. process more closely. Also, we may
* want to stop rx and tx side when the link is down.
*/
/* Link modes of the BCM5400 PHY */
static int phy_BCM5400_link_table[8][3] = {
{ 0, 0, 0 }, /* No link */
{ 0, 0, 0 }, /* 10BT Half Duplex */
{ 1, 0, 0 }, /* 10BT Full Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 0, 1, 0 }, /* 100BT Half Duplex */
{ 1, 1, 0 }, /* 100BT Full Duplex*/
{ 1, 0, 1 }, /* 1000BT */
{ 1, 0, 1 }, /* 1000BT */
};
static void
mii_interrupt(struct gmac *gm)
{
int phy_status;
int lpar_ability;
mii_poll_stop(gm);
/* May the status change before polling is re-enabled ? */
mii_poll_start(gm);
/* We read the Auxilliary Status Summary register */
phy_status = mii_read(gm, gm->phy_addr, MII_SR);
if ((phy_status ^ gm->phy_status) & (MII_SR_ASSC | MII_SR_LKS)) {
int full_duplex = 0;
int link_100 = 0;
int gigabit = 0;
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link state change, phy_status: 0x%04x\n",
gm->dev->name, phy_status);
#endif
gm->phy_status = phy_status;
/* Should we enable that in generic mode ? */
lpar_ability = mii_read(gm, gm->phy_addr, MII_ANLPA);
if (lpar_ability & MII_ANLPA_PAUS)
GM_BIS(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_SND_PAUSE_EN);
else
GM_BIC(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_SND_PAUSE_EN);
/* Link ? Check for speed and duplex */
if ((phy_status & MII_SR_LKS) && (phy_status & MII_SR_ASSC)) {
int restart = 0;
int aux_stat, link;
switch (gm->phy_type) {
case PHY_B5201:
case PHY_B5221:
aux_stat = mii_read(gm, gm->phy_addr, MII_BCM5201_AUXCTLSTATUS);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! BCM5201/5221 aux_stat: 0x%04x\n",
gm->dev->name, aux_stat);
#endif
full_duplex = ((aux_stat & MII_BCM5201_AUXCTLSTATUS_DUPLEX) != 0);
link_100 = ((aux_stat & MII_BCM5201_AUXCTLSTATUS_SPEED) != 0);
break;
case PHY_B5400:
case PHY_B5401:
case PHY_B5411:
aux_stat = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXSTATUS);
link = (aux_stat & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT;
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! BCM54xx aux_stat: 0x%04x (link mode: %d)\n",
gm->dev->name, aux_stat, link);
#endif
full_duplex = phy_BCM5400_link_table[link][0];
link_100 = phy_BCM5400_link_table[link][1];
gigabit = phy_BCM5400_link_table[link][2];
break;
case PHY_LXT971:
aux_stat = mii_read(gm, gm->phy_addr, MII_LXT971_STATUS2);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link up ! LXT971 stat2: 0x%04x\n",
gm->dev->name, aux_stat);
#endif
full_duplex = ((aux_stat & MII_LXT971_STATUS2_FULLDUPLEX) != 0);
link_100 = ((aux_stat & MII_LXT971_STATUS2_SPEED) != 0);
break;
default:
full_duplex = (lpar_ability & MII_ANLPA_FDAM) != 0;
link_100 = (lpar_ability & MII_ANLPA_100M) != 0;
break;
}
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Full Duplex: %d, Speed: %s\n",
gm->dev->name, full_duplex,
gigabit ? "1000" : (link_100 ? "100" : "10"));
#endif
if (gigabit != gm->gigabit) {
gm->gigabit = gigabit;
gmac_set_gigabit_mode(gm, gm->gigabit);
restart = 1;
}
if (full_duplex != gm->full_duplex) {
gm->full_duplex = full_duplex;
gmac_set_duplex_mode(gm, gm->full_duplex);
restart = 1;
}
if (restart)
gmac_start_dma(gm);
} else if (!(phy_status & MII_SR_LKS)) {
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: Link down !\n", gm->dev->name);
#endif
}
}
}
/* Power management: stop PHY chip for suspend mode
*
* TODO: This will have to be modified is WOL is to be supported.
*/
static void
gmac_suspend(struct gmac* gm)
{
int data, timeout;
unsigned long flags;
gm->sleeping = 1;
netif_device_detach(gm->dev);
spin_lock_irqsave(&gm->lock, flags);
if (gm->opened) {
disable_irq(gm->dev->irq);
/* Stop polling PHY */
mii_poll_stop(gm);
}
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
spin_unlock_irqrestore(&gm->lock, flags);
if (gm->opened) {
int i;
/* Empty Tx ring of any remaining gremlins */
gmac_tx_cleanup(gm->dev, 1);
/* Empty Rx ring of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb_irq(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
}
/* Clear interrupts on 5201 */
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221)
mii_write(gm, gm->phy_addr, MII_BCM5201_INTERRUPT, 0);
/* Drive MDIO high */
GM_OUT(GM_MIF_CFG, 0);
/* Unchanged, don't ask me why */
data = mii_read(gm, gm->phy_addr, MII_ANLPA);
mii_write(gm, gm->phy_addr, MII_ANLPA, data);
/* Stop everything */
GM_OUT(GM_MAC_RX_CONFIG, 0);
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_XIF_CONFIG, 0);
GM_OUT(GM_TX_CONF, 0);
GM_OUT(GM_RX_CONF, 0);
/* Set MAC in reset state */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0)
break;
}
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
/* Superisolate PHY */
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221)
mii_write(gm, gm->phy_addr, MII_BCM5201_MULTIPHY,
MII_BCM5201_MULTIPHY_SUPERISOLATE);
/* Put MDIO in sane electric state. According to an obscure
* Apple comment, not doing so may let them drive some current
* during sleep and possibly damage BCM PHYs.
*/
GM_OUT(GM_MIF_CFG, GM_MIF_CFGBB);
GM_OUT(GM_MIF_BB_CLOCK, 0);
GM_OUT(GM_MIF_BB_DATA, 0);
GM_OUT(GM_MIF_BB_OUT_ENABLE, 0);
GM_OUT(GM_MAC_XIF_CONFIG,
GM_MAC_XIF_CONF_GMII_MODE|GM_MAC_XIF_CONF_MII_INT_LOOP);
(void)GM_IN(GM_MAC_XIF_CONFIG);
/* Unclock the GMAC chip */
gmac_set_power(gm, 0);
}
static void
gmac_resume(struct gmac *gm)
{
int data;
if (gmac_powerup_and_reset(gm->dev)) {
printk(KERN_ERR "%s: Couldn't revive gmac ethernet !\n", gm->dev->name);
return;
}
gm->sleeping = 0;
if (gm->opened) {
/* Create fresh rings */
gmac_init_rings(gm, 1);
/* re-initialize the MAC */
gmac_mac_init(gm, gm->dev->dev_addr);
/* re-initialize the multicast tables & promisc mode if any */
gmac_set_multicast(gm->dev);
}
/* Early enable Tx and Rx so that we are clocked */
GM_BIS(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
if (gm->phy_type == PHY_B5201 || gm->phy_type == PHY_B5221) {
data = mii_read(gm, gm->phy_addr, MII_BCM5201_MULTIPHY);
mii_write(gm, gm->phy_addr, MII_BCM5201_MULTIPHY,
data & ~MII_BCM5201_MULTIPHY_SUPERISOLATE);
}
mdelay(1);
if (gm->opened) {
/* restart polling PHY */
mii_interrupt(gm);
/* restart DMA operations */
gmac_start_dma(gm);
netif_device_attach(gm->dev);
enable_irq(gm->dev->irq);
} else {
/* Driver not opened, just leave things off. Note that
* we could be smart and superisolate the PHY when the
* driver is closed, but I won't do that unless I have
* a better understanding of some electrical issues with
* this PHY chip --BenH
*/
GM_OUT(GM_MAC_RX_CONFIG, 0);
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_XIF_CONFIG, 0);
GM_OUT(GM_TX_CONF, 0);
GM_OUT(GM_RX_CONF, 0);
}
}
static int
mii_do_reset_phy(struct gmac *gm, int phy_addr)
{
int mii_control, timeout;
mii_control = mii_read(gm, phy_addr, MII_CR);
mii_write(gm, phy_addr, MII_CR, mii_control | MII_CR_RST);
mdelay(10);
for (timeout = 100; timeout > 0; --timeout) {
mii_control = mii_read(gm, phy_addr, MII_CR);
if (mii_control == -1) {
printk(KERN_ERR "%s PHY died after reset !\n",
gm->dev->name);
return 1;
}
if ((mii_control & MII_CR_RST) == 0)
break;
mdelay(10);
}
if (mii_control & MII_CR_RST) {
printk(KERN_ERR "%s PHY reset timeout !\n", gm->dev->name);
return 1;
}
mii_write(gm, phy_addr, MII_CR, mii_control & ~MII_CR_ISOL);
return 0;
}
/* Here's a bunch of configuration routines for
* Broadcom PHYs used on various Mac models. Unfortunately,
* except for the 5201, Broadcom never sent me any documentation,
* so this is from my understanding of Apple's Open Firmware
* drivers and Darwin's implementation
*/
static void
mii_init_BCM5400(struct gmac *gm)
{
int data;
/* Configure for gigabit full duplex */
data = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL);
data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
mii_write(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL, data);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
mdelay(10);
/* Reset and configure cascaded 10/100 PHY */
mii_do_reset_phy(gm, 0x1f);
data = mii_read(gm, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
mii_write(gm, 0x1f, MII_BCM5201_MULTIPHY, data);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL);
data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
mii_write(gm, gm->phy_addr, MII_BCM5400_AUXCONTROL, data);
}
static void
mii_init_BCM5401(struct gmac *gm)
{
int data;
int rev;
rev = mii_read(gm, gm->phy_addr, MII_ID1) & 0x000f;
if (rev == 0 || rev == 3) {
/* Some revisions of 5401 appear to need this
* initialisation sequence to disable, according
* to OF, "tap power management"
*
* WARNING ! OF and Darwin don't agree on the
* register addresses. OF seem to interpret the
* register numbers below as decimal
*/
mii_write(gm, gm->phy_addr, 0x18, 0x0c20);
mii_write(gm, gm->phy_addr, 0x17, 0x0012);
mii_write(gm, gm->phy_addr, 0x15, 0x1804);
mii_write(gm, gm->phy_addr, 0x17, 0x0013);
mii_write(gm, gm->phy_addr, 0x15, 0x1204);
mii_write(gm, gm->phy_addr, 0x17, 0x8006);
mii_write(gm, gm->phy_addr, 0x15, 0x0132);
mii_write(gm, gm->phy_addr, 0x17, 0x8006);
mii_write(gm, gm->phy_addr, 0x15, 0x0232);
mii_write(gm, gm->phy_addr, 0x17, 0x201f);
mii_write(gm, gm->phy_addr, 0x15, 0x0a20);
}
/* Configure for gigabit full duplex */
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
mdelay(10);
/* Reset and configure cascaded 10/100 PHY */
mii_do_reset_phy(gm, 0x1f);
data = mii_read(gm, 0x1f, MII_BCM5201_MULTIPHY);
data |= MII_BCM5201_MULTIPHY_SERIALMODE;
mii_write(gm, 0x1f, MII_BCM5201_MULTIPHY, data);
}
static void
mii_init_BCM5411(struct gmac *gm)
{
int data;
/* Here's some more Apple black magic to setup
* some voltage stuffs.
*/
mii_write(gm, gm->phy_addr, 0x1c, 0x8c23);
mii_write(gm, gm->phy_addr, 0x1c, 0x8ca3);
mii_write(gm, gm->phy_addr, 0x1c, 0x8c23);
/* Here, Apple seems to want to reset it, do
* it as well
*/
mii_write(gm, gm->phy_addr, MII_CR, MII_CR_RST);
/* Start autoneg */
mii_write(gm, gm->phy_addr, MII_CR,
MII_CR_ASSE|MII_CR_FDM| /* Autospeed, full duplex */
MII_CR_RAN|
MII_CR_SPEEDSEL2 /* chip specific, gigabit enable ? */);
data = mii_read(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL);
data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
mii_write(gm, gm->phy_addr, MII_BCM5400_GB_CONTROL, data);
}
static int
mii_lookup_and_reset(struct gmac *gm)
{
int i, mii_status, mii_control;
gm->phy_addr = -1;
gm->phy_type = PHY_UNKNOWN;
/* Hard reset the PHY */
feature_gmac_phy_reset(gm->of_node);
/* Find the PHY */
for(i=0; i<=31; i++) {
mii_control = mii_read(gm, i, MII_CR);
mii_status = mii_read(gm, i, MII_SR);
if (mii_control != -1 && mii_status != -1 &&
(mii_control != 0xffff || mii_status != 0xffff))
break;
}
gm->phy_addr = i;
if (gm->phy_addr > 31)
return 0;
/* Reset it */
if (mii_do_reset_phy(gm, gm->phy_addr))
goto fail;
/* Read the PHY ID */
gm->phy_id = (mii_read(gm, gm->phy_addr, MII_ID0) << 16) |
mii_read(gm, gm->phy_addr, MII_ID1);
#ifdef DEBUG_PHY
printk(KERN_INFO "%s: PHY ID: 0x%08x\n", gm->dev->name, gm->phy_id);
#endif
if ((gm->phy_id & MII_BCM5400_MASK) == MII_BCM5400_ID) {
gm->phy_type = PHY_B5400;
printk(KERN_INFO "%s: Found Broadcom BCM5400 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5400(gm);
} else if ((gm->phy_id & MII_BCM5401_MASK) == MII_BCM5401_ID) {
gm->phy_type = PHY_B5401;
printk(KERN_INFO "%s: Found Broadcom BCM5401 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5401(gm);
} else if ((gm->phy_id & MII_BCM5411_MASK) == MII_BCM5411_ID) {
gm->phy_type = PHY_B5411;
printk(KERN_INFO "%s: Found Broadcom BCM5411 PHY (Gigabit)\n",
gm->dev->name);
mii_init_BCM5411(gm);
} else if ((gm->phy_id & MII_BCM5201_MASK) == MII_BCM5201_ID) {
gm->phy_type = PHY_B5201;
printk(KERN_INFO "%s: Found Broadcom BCM5201 PHY\n", gm->dev->name);
} else if ((gm->phy_id & MII_BCM5221_MASK) == MII_BCM5221_ID) {
gm->phy_type = PHY_B5221;
printk(KERN_INFO "%s: Found Broadcom BCM5221 PHY\n", gm->dev->name);
} else if ((gm->phy_id & MII_LXT971_MASK) == MII_LXT971_ID) {
gm->phy_type = PHY_LXT971;
printk(KERN_INFO "%s: Found LevelOne LX971 PHY\n", gm->dev->name);
} else {
printk(KERN_WARNING "%s: Warning ! Unknown PHY ID 0x%08x, using generic mode...\n",
gm->dev->name, gm->phy_id);
}
return 1;
fail:
gm->phy_addr = -1;
return 0;
}
/*
* Setup the PHY autonegociation parameters
*
* Code to force the PHY duplex mode and speed should be
* added here
*/
static void
mii_setup_phy(struct gmac *gm)
{
int data;
/* Stop auto-negociation */
data = mii_read(gm, gm->phy_addr, MII_CR);
mii_write(gm, gm->phy_addr, MII_CR, data & ~MII_CR_ASSE);
/* Set advertisement to 10/100 and Half/Full duplex
* (full capabilities) */
data = mii_read(gm, gm->phy_addr, MII_ANA);
data |= MII_ANA_TXAM | MII_ANA_FDAM | MII_ANA_10M;
mii_write(gm, gm->phy_addr, MII_ANA, data);
/* Restart auto-negociation */
data = mii_read(gm, gm->phy_addr, MII_CR);
data |= MII_CR_ASSE;
mii_write(gm, gm->phy_addr, MII_CR, data);
data |= MII_CR_RAN;
mii_write(gm, gm->phy_addr, MII_CR, data);
}
/*
* Turn On/Off the gmac cell inside Uni-N
*
* ToDo: Add code to support powering down of the PHY.
*/
static void
gmac_set_power(struct gmac *gm, int power_up)
{
if (power_up) {
feature_set_gmac_power(gm->of_node, 1);
if (gm->pci_devfn != 0xff) {
u16 cmd;
/*
* Make sure PCI is correctly configured
*
* We use old pci_bios versions of the function since, by
* default, gmac is not powered up, and so will be absent
* from the kernel initial PCI lookup.
*
* Should be replaced by 2.4 new PCI mecanisms and really
* regiser the device.
*/
pcibios_read_config_word(gm->pci_bus, gm->pci_devfn,
PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE;
pcibios_write_config_word(gm->pci_bus, gm->pci_devfn,
PCI_COMMAND, cmd);
pcibios_write_config_byte(gm->pci_bus, gm->pci_devfn,
PCI_LATENCY_TIMER, 16);
pcibios_write_config_byte(gm->pci_bus, gm->pci_devfn,
PCI_CACHE_LINE_SIZE, 8);
}
} else {
feature_set_gmac_power(gm->of_node, 0);
}
}
/*
* Makes sure the GMAC cell is powered up, and reset it
*/
static int
gmac_powerup_and_reset(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int timeout;
/* turn on GB clock */
gmac_set_power(gm, 1);
/* Perform a software reset */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0) {
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
return 0;
}
}
printk(KERN_ERR "%s reset failed!\n", dev->name);
gmac_set_power(gm, 0);
gm->phy_type = 0;
return -1;
}
/*
* Set the MAC duplex mode.
*
* Side effect: stops Tx MAC
*/
static void
gmac_set_duplex_mode(struct gmac *gm, int full_duplex)
{
/* Stop Tx MAC */
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
while(GM_IN(GM_MAC_TX_CONFIG) & GM_MAC_TX_CONF_ENABLE)
;
if (full_duplex) {
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_IGNORE_CARRIER
| GM_MAC_TX_CONF_IGNORE_COLL);
GM_BIC(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_DISABLE_ECHO);
} else {
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_IGNORE_CARRIER
| GM_MAC_TX_CONF_IGNORE_COLL);
GM_BIS(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_DISABLE_ECHO);
}
}
/* Set the MAC gigabit mode. Side effect: stops Tx MAC */
static void
gmac_set_gigabit_mode(struct gmac *gm, int gigabit)
{
/* Stop Tx MAC */
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
while(GM_IN(GM_MAC_TX_CONFIG) & GM_MAC_TX_CONF_ENABLE)
;
if (gigabit) {
GM_BIS(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_GMII_MODE);
} else {
GM_BIC(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_GMII_MODE);
}
}
/*
* Initialize a bunch of registers to put the chip into a known
* and hopefully happy state
*/
static void
gmac_mac_init(struct gmac *gm, unsigned char *mac_addr)
{
int i, fifo_size;
/* Set random seed to low bits of MAC address */
GM_OUT(GM_MAC_RANDOM_SEED, mac_addr[5] | (mac_addr[4] << 8));
/* Configure the data path mode to MII/GII */
GM_OUT(GM_PCS_DATAPATH_MODE, GM_PCS_DATAPATH_MII);
/* Configure XIF to MII mode. Full duplex led is set
* by Apple, so...
*/
GM_OUT(GM_MAC_XIF_CONFIG, GM_MAC_XIF_CONF_TX_MII_OUT_EN
| GM_MAC_XIF_CONF_FULL_DPLX_LED);
/* Mask out all MAC interrupts */
GM_OUT(GM_MAC_TX_MASK, 0xffff);
GM_OUT(GM_MAC_RX_MASK, 0xffff);
GM_OUT(GM_MAC_CTRLSTAT_MASK, 0xff);
/* Setup bits of MAC */
GM_OUT(GM_MAC_SND_PAUSE, GM_MAC_SND_PAUSE_DEFAULT);
GM_OUT(GM_MAC_CTRL_CONFIG, GM_MAC_CTRL_CONF_RCV_PAUSE_EN);
/* Configure GEM DMA */
GM_OUT(GM_GCONF, GM_GCONF_BURST_SZ |
(31 << GM_GCONF_TXDMA_LIMIT_SHIFT) |
(31 << GM_GCONF_RXDMA_LIMIT_SHIFT));
GM_OUT(GM_TX_CONF,
(GM_TX_CONF_FIFO_THR_DEFAULT << GM_TX_CONF_FIFO_THR_SHIFT) |
NTX_CONF);
/* 34 byte offset for checksum computation. This works because ip_input() will clear out
* the skb->csum and skb->ip_summed fields and recompute the csum if IP options are
* present in the header. 34 == (ethernet header len) + sizeof(struct iphdr)
*/
GM_OUT(GM_RX_CONF,
(RX_OFFSET << GM_RX_CONF_FBYTE_OFF_SHIFT) |
(0x22 << GM_RX_CONF_CHK_START_SHIFT) |
(GM_RX_CONF_DMA_THR_DEFAULT << GM_RX_CONF_DMA_THR_SHIFT) |
NRX_CONF);
/* Configure other bits of MAC */
GM_OUT(GM_MAC_INTR_PKT_GAP0, GM_MAC_INTR_PKT_GAP0_DEFAULT);
GM_OUT(GM_MAC_INTR_PKT_GAP1, GM_MAC_INTR_PKT_GAP1_DEFAULT);
GM_OUT(GM_MAC_INTR_PKT_GAP2, GM_MAC_INTR_PKT_GAP2_DEFAULT);
GM_OUT(GM_MAC_MIN_FRAME_SIZE, GM_MAC_MIN_FRAME_SIZE_DEFAULT);
GM_OUT(GM_MAC_MAX_FRAME_SIZE, GM_MAC_MAX_FRAME_SIZE_DEFAULT);
GM_OUT(GM_MAC_PREAMBLE_LEN, GM_MAC_PREAMBLE_LEN_DEFAULT);
GM_OUT(GM_MAC_JAM_SIZE, GM_MAC_JAM_SIZE_DEFAULT);
GM_OUT(GM_MAC_ATTEMPT_LIMIT, GM_MAC_ATTEMPT_LIMIT_DEFAULT);
GM_OUT(GM_MAC_SLOT_TIME, GM_MAC_SLOT_TIME_DEFAULT);
GM_OUT(GM_MAC_CONTROL_TYPE, GM_MAC_CONTROL_TYPE_DEFAULT);
/* Setup MAC addresses, clear filters, clear hash table */
GM_OUT(GM_MAC_ADDR_NORMAL0, (mac_addr[4] << 8) + mac_addr[5]);
GM_OUT(GM_MAC_ADDR_NORMAL1, (mac_addr[2] << 8) + mac_addr[3]);
GM_OUT(GM_MAC_ADDR_NORMAL2, (mac_addr[0] << 8) + mac_addr[1]);
GM_OUT(GM_MAC_ADDR_ALT0, 0);
GM_OUT(GM_MAC_ADDR_ALT1, 0);
GM_OUT(GM_MAC_ADDR_ALT2, 0);
GM_OUT(GM_MAC_ADDR_CTRL0, 0x0001);
GM_OUT(GM_MAC_ADDR_CTRL1, 0xc200);
GM_OUT(GM_MAC_ADDR_CTRL2, 0x0180);
GM_OUT(GM_MAC_ADDR_FILTER0, 0);
GM_OUT(GM_MAC_ADDR_FILTER1, 0);
GM_OUT(GM_MAC_ADDR_FILTER2, 0);
GM_OUT(GM_MAC_ADDR_FILTER_MASK1_2, 0);
GM_OUT(GM_MAC_ADDR_FILTER_MASK0, 0);
for (i = 0; i < 27; ++i)
GM_OUT(GM_MAC_ADDR_FILTER_HASH0 + i, 0);
/* Clear stat counters */
GM_OUT(GM_MAC_COLLISION_CTR, 0);
GM_OUT(GM_MAC_FIRST_COLLISION_CTR, 0);
GM_OUT(GM_MAC_EXCS_COLLISION_CTR, 0);
GM_OUT(GM_MAC_LATE_COLLISION_CTR, 0);
GM_OUT(GM_MAC_DEFER_TIMER_COUNTER, 0);
GM_OUT(GM_MAC_PEAK_ATTEMPTS, 0);
GM_OUT(GM_MAC_RX_FRAME_CTR, 0);
GM_OUT(GM_MAC_RX_LEN_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_ALIGN_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_CRC_ERR_CTR, 0);
GM_OUT(GM_MAC_RX_CODE_VIOLATION_CTR, 0);
/* default to half duplex */
GM_OUT(GM_MAC_TX_CONFIG, 0);
GM_OUT(GM_MAC_RX_CONFIG, 0);
gmac_set_duplex_mode(gm, gm->full_duplex);
/* Setup pause thresholds */
fifo_size = GM_IN(GM_RX_FIFO_SIZE);
GM_OUT(GM_RX_PTH,
((fifo_size - ((GM_MAC_MAX_FRAME_SIZE_ALIGN + 8) * 2 / GM_RX_PTH_UNITS))
<< GM_RX_PTH_OFF_SHIFT) |
((fifo_size - ((GM_MAC_MAX_FRAME_SIZE_ALIGN + 8) * 3 / GM_RX_PTH_UNITS))
<< GM_RX_PTH_ON_SHIFT));
/* Setup interrupt blanking */
if (GM_IN(GM_BIF_CFG) & GM_BIF_CFG_M66EN)
GM_OUT(GM_RX_BLANK, (5 << GM_RX_BLANK_INTR_PACKETS_SHIFT)
| (8 << GM_RX_BLANK_INTR_TIME_SHIFT));
else
GM_OUT(GM_RX_BLANK, (5 << GM_RX_BLANK_INTR_PACKETS_SHIFT)
| (4 << GM_RX_BLANK_INTR_TIME_SHIFT));
}
/*
* Fill the Rx and Tx rings with good initial values, alloc
* fresh Rx skb's.
*/
static void
gmac_init_rings(struct gmac *gm, int from_irq)
{
int i;
struct sk_buff *skb;
unsigned char *data;
struct gmac_dma_desc *ring;
int gfp_flags = GFP_KERNEL;
if (from_irq || in_interrupt())
gfp_flags = GFP_ATOMIC;
/* init rx ring */
ring = (struct gmac_dma_desc *) gm->rxring;
memset(ring, 0, NRX * sizeof(struct gmac_dma_desc));
for (i = 0; i < NRX; ++i, ++ring) {
data = dummy_buf;
gm->rx_buff[i] = skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags);
if (skb != 0) {
skb->dev = gm->dev;
skb_put(skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(skb, RX_OFFSET);
data = skb->data - RX_OFFSET;
}
st_le32(&ring->lo_addr, virt_to_bus(data));
st_le32(&ring->size, RX_SZ_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET) << RX_SZ_SHIFT));
}
/* init tx ring */
ring = (struct gmac_dma_desc *) gm->txring;
memset(ring, 0, NTX * sizeof(struct gmac_dma_desc));
gm->next_rx = 0;
gm->next_tx = 0;
gm->tx_gone = 0;
/* set pointers in chip */
mb();
GM_OUT(GM_RX_DESC_HI, 0);
GM_OUT(GM_RX_DESC_LO, virt_to_bus(gm->rxring));
GM_OUT(GM_TX_DESC_HI, 0);
GM_OUT(GM_TX_DESC_LO, virt_to_bus(gm->txring));
}
/*
* Start the Tx and Rx DMA engines and enable interrupts
*
* Note: The various mdelay(20); come from Darwin implentation. Some
* tests (doc ?) are needed to replace those with something more intrusive.
*/
static void
gmac_start_dma(struct gmac *gm)
{
/* Enable Tx and Rx */
GM_BIS(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
GM_BIS(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
/* Kick the receiver and enable interrupts */
GM_OUT(GM_RX_KICK, NRX);
GM_BIC(GM_IRQ_MASK, GM_IRQ_TX_INT_ME |
GM_IRQ_TX_ALL |
GM_IRQ_RX_DONE |
GM_IRQ_RX_TAG_ERR |
GM_IRQ_MAC_RX |
GM_IRQ_MIF |
GM_IRQ_BUS_ERROR);
}
/*
* Stop the Tx and Rx DMA engines after disabling interrupts
*
* Note: The various mdelay(20); come from Darwin implentation. Some
* tests (doc ?) are needed to replace those with something more intrusive.
*/
static void
gmac_stop_dma(struct gmac *gm)
{
/* disable interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
/* Enable Tx and Rx */
GM_BIC(GM_TX_CONF, GM_TX_CONF_DMA_EN);
mdelay(20);
GM_BIC(GM_RX_CONF, GM_RX_CONF_DMA_EN);
mdelay(20);
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_ENABLE);
mdelay(20);
GM_BIC(GM_MAC_TX_CONFIG, GM_MAC_TX_CONF_ENABLE);
mdelay(20);
}
/*
* Configure promisc mode and setup multicast hash table
* filter
*/
static void
gmac_set_multicast(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
struct dev_mc_list *dmi = dev->mc_list;
int i,j,k,b;
u32 crc;
int multicast_hash = 0;
int multicast_all = 0;
int promisc = 0;
if (gm->sleeping)
return;
/* Lock out others. */
netif_stop_queue(dev);
if (dev->flags & IFF_PROMISC)
promisc = 1;
else if ((dev->flags & IFF_ALLMULTI) /* || (dev->mc_count > XXX) */) {
multicast_all = 1;
} else {
u16 hash_table[16];
for(i = 0; i < 16; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 24; /* bit number in multicast_filter */
hash_table[j >> 4] |= 1 << (15 - (j & 0xf));
dmi = dmi->next;
}
for (i = 0; i < 16; i++)
GM_OUT(GM_MAC_ADDR_FILTER_HASH0 + (i*4), hash_table[i]);
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
multicast_hash = 1;
}
if (promisc)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL);
if (multicast_hash)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_HASH_ENABLE);
if (multicast_all)
GM_BIS(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL_MULTI);
else
GM_BIC(GM_MAC_RX_CONFIG, GM_MAC_RX_CONF_RX_ALL_MULTI);
/* Let us get going again. */
netif_wake_queue(dev);
}
/*
* Open the interface
*/
static int
gmac_open(struct net_device *dev)
{
int ret;
struct gmac *gm = (struct gmac *) dev->priv;
/* Power up and reset chip */
if (gmac_powerup_and_reset(dev))
return -EIO;
/* Get our interrupt */
ret = request_irq(dev->irq, gmac_interrupt, 0, dev->name, dev);
if (ret) {
printk(KERN_ERR "%s can't get irq %d\n", dev->name, dev->irq);
return ret;
}
gm->full_duplex = 0;
gm->phy_status = 0;
/* Find a PHY */
if (!mii_lookup_and_reset(gm))
printk(KERN_WARNING "%s WARNING ! Can't find PHY\n", dev->name);
/* Configure the PHY */
mii_setup_phy(gm);
/* Initialize the descriptor rings */
gmac_init_rings(gm, 0);
/* Initialize the MAC */
gmac_mac_init(gm, dev->dev_addr);
/* Initialize the multicast tables & promisc mode if any */
gmac_set_multicast(dev);
/*
* Check out PHY status and start auto-poll
*
* Note: do this before enabling interrutps
*/
mii_interrupt(gm);
/* Start the chip */
gmac_start_dma(gm);
gm->opened = 1;
return 0;
}
/*
* Close the interface
*/
static int
gmac_close(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i;
gm->opened = 0;
/* Stop chip and interrupts */
gmac_stop_dma(gm);
/* Stop polling PHY */
mii_poll_stop(gm);
/* Free interrupt */
free_irq(dev->irq, dev);
/* Shut down chip */
gmac_set_power(gm, 0);
gm->phy_type = 0;
/* Empty rings of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
for (i = 0; i < NTX; ++i) {
if (gm->tx_buff[i] != 0) {
dev_kfree_skb(gm->tx_buff[i]);
gm->tx_buff[i] = 0;
}
}
return 0;
}
#ifdef CONFIG_PMAC_PBOOK
int
gmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
struct gmac *gm;
/* XXX should handle more than one */
if (gmacs == NULL)
return PBOOK_SLEEP_OK;
gm = (struct gmac *) gmacs->priv;
if (!gm->opened)
return PBOOK_SLEEP_OK;
switch (when) {
case PBOOK_SLEEP_REQUEST:
break;
case PBOOK_SLEEP_REJECT:
break;
case PBOOK_SLEEP_NOW:
gmac_suspend(gm);
break;
case PBOOK_WAKE:
gmac_resume(gm);
break;
}
return PBOOK_SLEEP_OK;
}
#endif /* CONFIG_PMAC_PBOOK */
/*
* Handle a transmit timeout
*/
static void
gmac_tx_timeout(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i, timeout;
unsigned long flags;
if (gm->sleeping)
return;
printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
spin_lock_irqsave(&gm->lock, flags);
/* Stop chip */
gmac_stop_dma(gm);
/* Empty Tx ring of any remaining gremlins */
gmac_tx_cleanup(dev, 1);
/* Empty Rx ring of any remaining gremlins */
for (i = 0; i < NRX; ++i) {
if (gm->rx_buff[i] != 0) {
dev_kfree_skb_irq(gm->rx_buff[i]);
gm->rx_buff[i] = 0;
}
}
/* Perform a software reset */
GM_OUT(GM_RESET, GM_RESET_TX | GM_RESET_RX);
for (timeout = 100; timeout > 0; --timeout) {
mdelay(10);
if ((GM_IN(GM_RESET) & (GM_RESET_TX | GM_RESET_RX)) == 0) {
/* Mask out all chips interrupts */
GM_OUT(GM_IRQ_MASK, 0xffffffff);
GM_OUT(GM_MAC_TX_RESET, GM_MAC_TX_RESET_NOW);
GM_OUT(GM_MAC_RX_RESET, GM_MAC_RX_RESET_NOW);
break;
}
}
if (!timeout)
printk(KERN_ERR "%s reset chip failed !\n", dev->name);
/* Create fresh rings */
gmac_init_rings(gm, 1);
/* re-initialize the MAC */
gmac_mac_init(gm, dev->dev_addr);
/* re-initialize the multicast tables & promisc mode if any */
gmac_set_multicast(dev);
/* Restart PHY auto-poll */
mii_interrupt(gm);
/* Restart chip */
gmac_start_dma(gm);
spin_unlock_irqrestore(&gm->lock, flags);
netif_wake_queue(dev);
}
/*
* Add a packet to the transmit ring
*/
static int
gmac_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
volatile struct gmac_dma_desc *dp;
unsigned long flags;
int i;
if (gm->sleeping)
return 1;
spin_lock_irqsave(&gm->lock, flags);
i = gm->next_tx;
if (gm->tx_buff[i] != 0) {
/*
* Buffer is full, can't send this packet at the moment
*
* Can this ever happen in 2.4 ?
*/
netif_stop_queue(dev);
spin_unlock_irqrestore(&gm->lock, flags);
return 1;
}
gm->next_tx = (i + 1) & (NTX - 1);
gm->tx_buff[i] = skb;
dp = &gm->txring[i];
/* FIXME: Interrupt on all packet for now, change this to every N packet,
* with N to be adjusted
*/
dp->flags = TX_FL_INTERRUPT;
dp->hi_addr = 0;
st_le32(&dp->lo_addr, virt_to_bus(skb->data));
mb();
st_le32(&dp->size, TX_SZ_SOP | TX_SZ_EOP | skb->len);
mb();
GM_OUT(GM_TX_KICK, gm->next_tx);
if (gm->tx_buff[gm->next_tx] != 0)
netif_stop_queue(dev);
spin_unlock_irqrestore(&gm->lock, flags);
dev->trans_start = jiffies;
return 0;
}
/*
* Handle servicing of the transmit ring by deallocating used
* Tx packets and restoring flow control when necessary
*/
static void
gmac_tx_cleanup(struct net_device *dev, int force_cleanup)
{
struct gmac *gm = (struct gmac *) dev->priv;
volatile struct gmac_dma_desc *dp;
struct sk_buff *skb;
int gone, i;
i = gm->tx_gone;
/* Note: If i==gone, we empty the entire ring. This works because
* if the ring was empty, we wouldn't have received the interrupt
*/
do {
gone = GM_IN(GM_TX_COMP);
skb = gm->tx_buff[i];
if (skb == NULL)
break;
dp = &gm->txring[i];
if (force_cleanup)
++gm->stats.tx_errors;
else {
++gm->stats.tx_packets;
gm->stats.tx_bytes += skb->len;
}
gm->tx_buff[i] = NULL;
dev_kfree_skb_irq(skb);
if (++i >= NTX)
i = 0;
} while (force_cleanup || i != gone);
gm->tx_gone = i;
if (!force_cleanup && netif_queue_stopped(dev) &&
(gm->tx_buff[gm->next_tx] == 0))
netif_wake_queue(dev);
}
/*
* Handle servicing of receive ring
*/
static void
gmac_receive(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
int i = gm->next_rx;
volatile struct gmac_dma_desc *dp;
struct sk_buff *skb, *new_skb;
int len, flags, drop, last;
unsigned char *data;
u16 csum;
last = -1;
for (;;) {
dp = &gm->rxring[i];
/* Buffer not yet filled, no more Rx buffers to handle */
if (ld_le32(&dp->size) & RX_SZ_OWN)
break;
/* Get packet length, flags, etc... */
len = (ld_le32(&dp->size) >> 16) & 0x7fff;
flags = ld_le32(&dp->flags);
skb = gm->rx_buff[i];
drop = 0;
new_skb = NULL;
csum = ld_le32(&dp->size) & RX_SZ_CKSUM_MASK;
/* Handle errors */
if ((len < ETH_ZLEN)||(flags & RX_FL_CRC_ERROR)||(!skb)) {
++gm->stats.rx_errors;
if (len < ETH_ZLEN)
++gm->stats.rx_length_errors;
if (flags & RX_FL_CRC_ERROR)
++gm->stats.rx_crc_errors;
if (!skb) {
++gm->stats.rx_dropped;
skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (skb) {
gm->rx_buff[i] = skb;
skb->dev = dev;
skb_put(skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(skb, RX_OFFSET);
}
}
drop = 1;
} else {
/* Large packet, alloc a new skb for the ring */
if (len > RX_COPY_THRESHOLD) {
new_skb = gmac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if(!new_skb) {
printk(KERN_INFO "%s: Out of SKBs in Rx, packet dropped !\n",
dev->name);
drop = 1;
++gm->stats.rx_dropped;
goto finish;
}
gm->rx_buff[i] = new_skb;
new_skb->dev = dev;
skb_put(new_skb, ETH_FRAME_LEN + RX_OFFSET);
skb_reserve(new_skb, RX_OFFSET);
skb_trim(skb, len);
} else {
/* Small packet, copy it to a new small skb */
struct sk_buff *copy_skb = dev_alloc_skb(len + RX_OFFSET);
if(!copy_skb) {
printk(KERN_INFO "%s: Out of SKBs in Rx, packet dropped !\n",
dev->name);
drop = 1;
++gm->stats.rx_dropped;
goto finish;
}
copy_skb->dev = dev;
skb_reserve(copy_skb, RX_OFFSET);
skb_put(copy_skb, len);
memcpy(copy_skb->data, skb->data, len);
new_skb = skb;
skb = copy_skb;
}
}
finish:
/* Need to drop packet ? */
if (drop) {
new_skb = skb;
skb = NULL;
}
/* Put back ring entry */
data = new_skb ? (new_skb->data - RX_OFFSET) : dummy_buf;
dp->hi_addr = 0;
st_le32(&dp->lo_addr, virt_to_bus(data));
mb();
st_le32(&dp->size, RX_SZ_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET) << RX_SZ_SHIFT));
/* Got Rx packet ? */
if (skb) {
/* Yes, baby, keep that hot ;) */
if(!(csum ^ 0xffff))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
skb->ip_summed = CHECKSUM_NONE;
skb->protocol = eth_type_trans(skb, dev);
gm->stats.rx_bytes += skb->len;
netif_rx(skb);
dev->last_rx = jiffies;
++gm->stats.rx_packets;
}
last = i;
if (++i >= NRX)
i = 0;
}
gm->next_rx = i;
if (last >= 0) {
mb();
GM_OUT(GM_RX_KICK, last & 0xfffffffc);
}
}
/*
* Service chip interrupts
*/
static void
gmac_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) dev_id;
struct gmac *gm = (struct gmac *) dev->priv;
unsigned int status;
status = GM_IN(GM_IRQ_STATUS);
if (status & (GM_IRQ_BUS_ERROR | GM_IRQ_MIF))
GM_OUT(GM_IRQ_ACK, status & (GM_IRQ_BUS_ERROR | GM_IRQ_MIF));
if (status & (GM_IRQ_RX_TAG_ERR | GM_IRQ_BUS_ERROR)) {
printk(KERN_ERR "%s: IRQ Error status: 0x%08x\n",
dev->name, status);
}
if (status & GM_IRQ_MIF) {
spin_lock(&gm->lock);
mii_interrupt(gm);
spin_unlock(&gm->lock);
}
if (status & GM_IRQ_RX_DONE) {
spin_lock(&gm->lock);
gmac_receive(dev);
spin_unlock(&gm->lock);
}
if (status & (GM_IRQ_TX_INT_ME | GM_IRQ_TX_ALL)) {
spin_lock(&gm->lock);
gmac_tx_cleanup(dev, 0);
spin_unlock(&gm->lock);
}
}
/*
* Retreive some error stats from chip and return them
* to above layer
*/
static struct net_device_stats *
gmac_stats(struct net_device *dev)
{
struct gmac *gm = (struct gmac *) dev->priv;
struct net_device_stats *stats = &gm->stats;
if (gm && gm->opened && !gm->sleeping) {
stats->rx_crc_errors += GM_IN(GM_MAC_RX_CRC_ERR_CTR);
GM_OUT(GM_MAC_RX_CRC_ERR_CTR, 0);
stats->rx_frame_errors += GM_IN(GM_MAC_RX_ALIGN_ERR_CTR);
GM_OUT(GM_MAC_RX_ALIGN_ERR_CTR, 0);
stats->rx_length_errors += GM_IN(GM_MAC_RX_LEN_ERR_CTR);
GM_OUT(GM_MAC_RX_LEN_ERR_CTR, 0);
stats->tx_aborted_errors += GM_IN(GM_MAC_EXCS_COLLISION_CTR);
stats->collisions +=
(GM_IN(GM_MAC_EXCS_COLLISION_CTR) +
GM_IN(GM_MAC_LATE_COLLISION_CTR));
GM_OUT(GM_MAC_EXCS_COLLISION_CTR, 0);
GM_OUT(GM_MAC_LATE_COLLISION_CTR, 0);
}
return stats;
}
static int __init
gmac_probe(void)
{
struct device_node *gmac;
/* We bump use count during probe since get_free_page can sleep
* which can be a race condition if module is unloaded at this
* point.
*/
MOD_INC_USE_COUNT;
/*
* We don't use PCI scanning on pmac since the GMAC cell is disabled
* by default, and thus absent from kernel original PCI probing.
*/
for (gmac = find_compatible_devices("network", "gmac"); gmac != 0;
gmac = gmac->next)
gmac_probe1(gmac);
#ifdef CONFIG_PMAC_PBOOK
if (gmacs)
pmu_register_sleep_notifier(&gmac_sleep_notifier);
#endif
MOD_DEC_USE_COUNT;
return gmacs? 0: -ENODEV;
}
static void
gmac_probe1(struct device_node *gmac)
{
struct gmac *gm;
unsigned long tx_descpage, rx_descpage;
unsigned char *addr;
struct net_device *dev;
int i;
if (gmac->n_addrs < 1 || gmac->n_intrs < 1) {
printk(KERN_ERR "can't use GMAC %s: %d addrs and %d intrs\n",
gmac->full_name, gmac->n_addrs, gmac->n_intrs);
return;
}
addr = get_property(gmac, "local-mac-address", NULL);
if (addr == NULL) {
printk(KERN_ERR "Can't get mac-address for GMAC %s\n",
gmac->full_name);
return;
}
if (dummy_buf == NULL) {
dummy_buf = kmalloc(DUMMY_BUF_LEN, GFP_KERNEL);
if (dummy_buf == NULL) {
printk(KERN_ERR "GMAC: failed to allocated dummy buffer\n");
return;
}
}
tx_descpage = get_free_page(GFP_KERNEL);
if (tx_descpage == 0) {
printk(KERN_ERR "GMAC: can't get a page for tx descriptors\n");
return;
}
rx_descpage = get_free_page(GFP_KERNEL);
if (rx_descpage == 0) {
printk(KERN_ERR "GMAC: can't get a page for rx descriptors\n");
goto out_txdesc;
}
dev = init_etherdev(NULL, sizeof(struct gmac));
if (!dev) {
printk(KERN_ERR "GMAC: init_etherdev failed, out of memory\n");
goto out_rxdesc;
}
SET_MODULE_OWNER(dev);
gm = dev->priv;
dev->base_addr = gmac->addrs[0].address;
gm->regs = (volatile unsigned int *)
ioremap(gmac->addrs[0].address, 0x10000);
if (!gm->regs) {
printk(KERN_ERR "GMAC: unable to map I/O registers\n");
goto out_unreg;
}
dev->irq = gmac->intrs[0].line;
gm->dev = dev;
gm->of_node = gmac;
spin_lock_init(&gm->lock);
if (pci_device_from_OF_node(gmac, &gm->pci_bus, &gm->pci_devfn)) {
gm->pci_bus = gm->pci_devfn = 0xff;
printk(KERN_ERR "Can't locate GMAC PCI entry\n");
}
printk(KERN_INFO "%s: GMAC at", dev->name);
for (i = 0; i < 6; ++i) {
dev->dev_addr[i] = addr[i];
printk("%c%.2x", (i? ':': ' '), addr[i]);
}
printk(", driver " GMAC_VERSION "\n");
gm->tx_desc_page = tx_descpage;
gm->rx_desc_page = rx_descpage;
gm->rxring = (volatile struct gmac_dma_desc *) rx_descpage;
gm->txring = (volatile struct gmac_dma_desc *) tx_descpage;
gm->phy_addr = 0;
gm->opened = 0;
gm->sleeping = 0;
dev->open = gmac_open;
dev->stop = gmac_close;
dev->hard_start_xmit = gmac_xmit_start;
dev->get_stats = gmac_stats;
dev->set_multicast_list = &gmac_set_multicast;
dev->tx_timeout = &gmac_tx_timeout;
dev->watchdog_timeo = 5*HZ;
ether_setup(dev);
gm->next_gmac = gmacs;
gmacs = dev;
return;
out_unreg:
unregister_netdev(dev);
kfree(dev);
out_rxdesc:
free_page(rx_descpage);
out_txdesc:
free_page(tx_descpage);
}
MODULE_AUTHOR("Paul Mackerras/Ben Herrenschmidt");
MODULE_DESCRIPTION("PowerMac GMAC driver.");
MODULE_LICENSE("GPL");
static void __exit gmac_cleanup_module(void)
{
struct gmac *gm;
struct net_device *dev;
#ifdef CONFIG_PMAC_PBOOK
if (gmacs)
pmu_unregister_sleep_notifier(&gmac_sleep_notifier);
#endif
while ((dev = gmacs) != NULL) {
gm = (struct gmac *) dev->priv;
unregister_netdev(dev);
iounmap((void *) gm->regs);
free_page(gm->tx_desc_page);
free_page(gm->rx_desc_page);
gmacs = gm->next_gmac;
kfree(dev);
}
if (dummy_buf != NULL) {
kfree(dummy_buf);
dummy_buf = NULL;
}
}
module_init(gmac_probe);
module_exit(gmac_cleanup_module);
/*
* Definitions for the GMAC ethernet chip, used in the
* Apple G4 powermac.
*/
/*
* GMAC register definitions
*
* Note: We encode the register size the same way Apple does. I didn't copy
* Apple's source as-is to avoid licence issues however. That's really
* painful to re-define all those registers ...
* The constants themselves were partially found in OF code, in Sun
* GEM driver and in Apple's Darwin GMAC driver
*/
#define REG_SZ_8 0x00000000
#define REG_SZ_16 0x40000000
#define REG_SZ_32 0x80000000
#define REG_MASK 0x0FFFFFFF
/*
* Global registers
*/
/* -- 0x0004 RW Global configuration
* d: 0x00000042
*/
#define GM_GCONF (0x0004 | REG_SZ_16)
#define GM_GCONF_BURST_SZ 0x0001 /* 1: 64 bytes/burst, 0: infinite */
#define GM_GCONF_TXDMA_LIMIT_MASK 0x003e /* 5-1: No of 64 bytes transfers */
#define GM_GCONF_TXDMA_LIMIT_SHIFT 1
#define GM_GCONF_RXDMA_LIMIT_MASK 0x07c0 /* 10-6: No of 64 bytes transfers */
#define GM_GCONF_RXDMA_LIMIT_SHIFT 6
/* -- 0x000C R-C Global Interrupt status.
* d: 0x00000000 bits 0-6 cleared on read (C)
*/
#define GM_IRQ_STATUS (0x000c | REG_SZ_32)
#define GM_IRQ_TX_INT_ME 0x00000001 /* C Frame with INT_ME bit set in fifo */
#define GM_IRQ_TX_ALL 0x00000002 /* C TX descriptor ring empty */
#define GM_IRQ_TX_DONE 0x00000004 /* C moved from host to TX fifo */
#define GM_IRQ_RX_DONE 0x00000010 /* C moved from RX fifo to host */
#define GM_IRQ_RX_NO_BUF 0x00000020 /* C No RX buffer available */
#define GM_IRQ_RX_TAG_ERR 0x00000040 /* C RX tag error */
#define GM_IRQ_PCS 0x00002000 /* PCS interrupt ? */
#define GM_IRQ_MAC_TX 0x00004000 /* MAC tx register set */
#define GM_IRQ_MAC_RX 0x00008000 /* MAC rx register set */
#define GM_IRQ_MAC_CTRL 0x00010000 /* MAC control register set */
#define GM_IRQ_MIF 0x00020000 /* MIF status register set */
#define GM_IRQ_BUS_ERROR 0x00040000 /* Bus error status register set */
#define GM_IRQ_TX_COMP 0xfff80000 /* TX completion mask */
/* -- 0x0010 RW Interrupt mask.
* d: 0xFFFFFFFF
*/
#define GM_IRQ_MASK (0x0010 | REG_SZ_32)
/* -- 0x0014 WO Interrupt ack.
* Ack. "high" interrupts
*/
#define GM_IRQ_ACK (0x0014 | REG_SZ_32)
/* -- 0x001C WO Alias of status register (no auto-clear of "low" interrupts)
*/
#define GM_IRQ_ALT_STAT (0x001C | REG_SZ_32)
/* -- 0x1000 R-C PCI Error status register
*/
#define GM_PCI_ERR_STAT (0x1000 | REG_SZ_8)
#define GM_PCI_ERR_BAD_ACK 0x01 /* Bad Ack64 */
#define GM_PCI_ERR_TIMEOUT 0x02 /* Transaction timeout */
#define GM_PCI_ERR_OTHER 0x04 /* Any other PCI error */
/* -- 0x1004 RW PCI Error mask register
* d: 0xFFFFFFFF
*/
#define GM_PCI_ERR_MASK (0x1004 | REG_SZ_8)
/* -- 0x1008 RW BIF Configuration
* d: 0x00000000
*/
#define GM_BIF_CFG (0x1008 | REG_SZ_8)
#define GM_BIF_CFG_SLOWCLK 0x01 /* for parity error timing */
#define GM_BIF_CFG_HOST_64 0x02 /* 64-bit host */
#define GM_BIF_CFG_B64D_DIS 0x04 /* no 64-bit wide data cycle */
#define GM_BIF_CFG_M66EN 0x08 /* Read-only: sense if configured for 66MHz */
/* -- 0x100C RW BIF Diagnostic ???
*/
#define GM_BIF_DIAG (0x100C | REG_SZ_32)
#define GM_BIF_DIAG_BURST_STATE 0x007F0000
#define GM_BIF_DIAG_STATE_MACH 0xFF000000
/* -- 0x1010 RW Software reset
* Lower two bits reset TX and RX, both reset whole gmac. They come back
* to 0 when reset is complete.
* bit 2 force RSTOUT# pin when set (PHY reset)
*/
#define GM_RESET (0x1010 | REG_SZ_8)
#define GM_RESET_TX 0x01
#define GM_RESET_RX 0x02
#define GM_RESET_RSTOUT 0x04 /* PHY reset */
/*
* Tx DMA Registers
*/
/* -- 0x2000 RW Tx Kick
* d: 0x00000000 Written by the host with the last tx descriptor number +1 to send
*/
#define GM_TX_KICK (0x2000 | REG_SZ_16)
/* -- 0x2004 RW Tx configuration
* d: 0x118010 Controls operation of Tx DMA channel
*/
#define GM_TX_CONF (0x2004 | REG_SZ_32)
#define GM_TX_CONF_DMA_EN 0x00000001 /* Tx DMA enable */
#define GM_TX_CONF_RING_SZ_MASK 0x0000001e /* Tx desc ring size */
#define GM_TX_CONF_RING_SZ_SHIFT 1 /* Tx desc ring size shift */
#define GM_TX_CONF_FIFO_PIO 0x00000020 /* Tx fifo PIO select ??? */
#define GM_TX_CONF_FIFO_THR_MASK 0x001ffc00 /* Tx fifo threshold */
#define GM_TX_CONF_FIFO_THR_SHIFT 10 /* Tx fifo threshold shift */
#define GM_TX_CONF_FIFO_THR_DEFAULT 0x7ff /* Tx fifo threshold default */
#define GM_TX_CONF_PACED_MODE 0x00100000 /* 1: tx_all irq after last descriptor */
/* 0: tx_all irq when tx fifo empty */
#define GM_TX_RING_SZ_32 (0 << 1)
#define GM_TX_RING_SZ_64 (1 << 1)
#define GM_TX_RING_SZ_128 (2 << 1)
#define GM_TX_RING_SZ_256 (3 << 1)
#define GM_TX_RING_SZ_512 (4 << 1)
#define GM_TX_RING_SZ_1024 (5 << 1)
#define GM_TX_RING_SZ_2048 (6 << 1)
#define GM_TX_RING_SZ_4086 (7 << 1)
#define GM_TX_RING_SZ_8192 (8 << 1)
/* -- 0x2008 RW Tx descriptor ring base low
* -- 0x200C RW Tx descriptor ring base high
*
* Base of tx ring, must be 2k aligned
*/
#define GM_TX_DESC_LO (0x2008 | REG_SZ_32)
#define GM_TX_DESC_HI (0x200C | REG_SZ_32)
/* -- 0x2100 RW Tx Completion
* d: 0x00000000 Written by the gmac with the last tx descriptor number +1 sent
*/
#define GM_TX_COMP (0x2100 | REG_SZ_16)
/*
* Rx DMA registers
*/
/* -- 0x4000 RW Rx configuration
* d: 0x1000010 Controls operation of Rx DMA channel
*/
#define GM_RX_CONF (0x4000 | REG_SZ_32)
#define GM_RX_CONF_DMA_EN 0x00000001 /* Rx DMA enable */
#define GM_RX_CONF_RING_SZ_MASK 0x0000001e /* Rx desc ring size */
#define GM_RX_CONF_RING_SZ_SHIFT 1
#define GM_RX_CONF_BATCH_DIS 0x00000020 /* Rx batch disable */
#define GM_RX_CONF_FBYTE_OFF_MASK 0x00001c00 /* First byte offset (10-12) */
#define GM_RX_CONF_FBYTE_OFF_SHIFT 10
#define GM_RX_CONF_CHK_START_MASK 0x000FE000 /* Checksum start offset */
#define GM_RX_CONF_CHK_START_SHIFT 13
#define GM_RX_CONF_DMA_THR_MASK 0x07000000 /* Rx DMA threshold */
#define GM_RX_CONF_DMA_THR_SHIFT 24 /* Rx DMA threshold shift */
#define GM_RX_CONF_DMA_THR_DEFAULT 1 /* Rx DMA threshold default */
#define GM_RX_RING_SZ_32 (0 << 1)
#define GM_RX_RING_SZ_64 (1 << 1)
#define GM_RX_RING_SZ_128 (2 << 1)
#define GM_RX_RING_SZ_256 (3 << 1)
#define GM_RX_RING_SZ_512 (4 << 1)
#define GM_RX_RING_SZ_1024 (5 << 1)
#define GM_RX_RING_SZ_2048 (6 << 1)
#define GM_RX_RING_SZ_4086 (7 << 1)
#define GM_RX_RING_SZ_8192 (8 << 1)
/* -- 0x4004 RW Rx descriptor ring base low
* -- 0x4008 RW Rx descriptor ring base high
*
* Base of rx ring
*/
#define GM_RX_DESC_LO (0x4004 | REG_SZ_32)
#define GM_RX_DESC_HI (0x4008 | REG_SZ_32)
/* -- 0x4020 RW Rx pause threshold
* d: 0x000000f8
*
* Two PAUSE thresholds are used to define when PAUSE flow control frames are
* emitted by GEM. The granularity of these thresholds is in 64 byte increments.
* XOFF PAUSE frames use the pause_time value pre-programmed in the
* Send PAUSE MAC Register.
* XON PAUSE frames use a pause_time of 0.
*/
#define GM_RX_PTH (0x4020 | REG_SZ_32)
/*
* 0-8: XOFF PAUSE emitted when RX FIFO
* occupancy rises above this value (times 64 bytes)
*/
#define GM_RX_PTH_OFF_MASK 0x000001ff
#define GM_RX_PTH_OFF_SHIFT 0
/*
* 12-20: XON PAUSE emitted when RX FIFO
* occupancy falls below this value (times 64 bytes)
*/
#define GM_RX_PTH_ON_MASK 0x001ff000
#define GM_RX_PTH_ON_SHIFT 12
#define GM_RX_PTH_UNITS 64
/* -- 0x4100 RW Rx Kick
* d: 0x00000000 The last valid RX descriptor is the one right before the value of the
* register. Initially set to 0 on reset. RX descriptors must be posted
* in multiples of 4. The first descriptor should be cache-line aligned
* for best performance.
*/
#define GM_RX_KICK (0x4100 | REG_SZ_16)
/* -- 0x4104 RW Rx Completion
* d: 0x00000000 All descriptors upto but excluding the register value are ready to be
* processed by the host.
*/
#define GM_RX_COMP (0x4104 | REG_SZ_16)
/* -- 0x4108 RW Rx Blanking
* d: 0x00000000 Written by the gmac with the last tx descriptor number +1 sent
*
* Defines the values used for receive interrupt blanking.
* For INTR_TIME field, every count is 2048 PCI clock time. For 66 Mhz, each
* count is about 15 ns.
*/
#define GM_RX_BLANK (0x4108 | REG_SZ_32)
/*
* 0-8:no.of pkts to be recvd since the last RX_DONE
* interrupt, before a new interrupt
*/
#define GM_RX_BLANK_INTR_PACKETS_MASK 0x000001ff
#define GM_RX_BLANK_INTR_PACKETS_SHIFT 0
/*
* 12-19 : no. of clocks to be counted since the last
* RX_DONE interrupt, before a new interrupt
*/
#define GM_RX_BLANK_INTR_TIME_MASK 0x000ff000
#define GM_RX_BLANK_INTR_TIME_SHIFT 12
#define GM_RX_BLANK_UNITS 2048
/* -- 0x4120 RO Rx fifo size
*
* This 11-bit RO register indicates the size, in 64-byte multiples, of the
* RX FIFO. Software should use it to properly configure the PAUSE thresholds.
* The value read is 0x140, indicating a 20kbyte RX FIFO.
* -------------------------------------------------------------------------
*/
#define GM_RX_FIFO_SIZE (0x4120 | REG_SZ_16)
#define GM_RZ_FIFO_SIZE_UNITS 64
/*
* MAC regisers
*/
/* -- 0x6000 MAC Tx reset control
*/
#define GM_MAC_TX_RESET (0x6000 | REG_SZ_8)
#define GM_MAC_TX_RESET_NOW 0x01
/* -- 0x6004 MAC Rx reset control
*/
#define GM_MAC_RX_RESET (0x6004 | REG_SZ_8)
#define GM_MAC_RX_RESET_NOW 0x01
/* -- 0x6008 Send Pause command register
*/
#define GM_MAC_SND_PAUSE (0x6008 | REG_SZ_32)
#define GM_MAC_SND_PAUSE_TIME_MASK 0x0000ffff
#define GM_MAC_SND_PAUSE_TIME_SHIFT 0
#define GM_MAC_SND_PAUSE_NOW 0x00010000
#define GM_MAC_SND_PAUSE_DEFAULT 0x00001bf0
/* -- 0x6010 MAC transmit status
*/
#define GM_MAC_TX_STATUS (0x6010 | REG_SZ_16)
#define GM_MAC_TX_STAT_SENT 0x0001
#define GM_MAC_TX_STAT_UNDERRUN 0x0002
#define GM_MAC_TX_STAT_MAX_PKT_ERR 0x0004
#define GM_MAC_TX_STAT_NORM_COLL_OVF 0x0008
#define GM_MAC_TX_STAT_EXCS_COLL_OVF 0x0010
#define GM_MAC_TX_STAT_LATE_COLL_OVF 0x0020
#define GM_MAC_TX_STAT_FIRS_COLL_OVF 0x0040
#define GM_MAC_TX_STAT_DEFER_TIMER_OVF 0x0080
#define GM_MAC_TX_STAT_PEAK_ATTMP_OVF 0x0100
/* -- 0x6014 MAC receive status
*/
#define GM_MAC_RX_STATUS (0x6014 | REG_SZ_16)
#define GM_MAC_RX_STAT_RECEIVED 0x0001
#define GM_MAC_RX_STAT_FIFO_OVF 0x0002
#define GM_MAC_RX_STAT_FRAME_CTR_OVF 0x0004
#define GM_MAC_RX_STAT_ALIGN_ERR_OVF 0x0008
#define GM_MAC_RX_STAT_CRC_ERR_OVF 0x0010
#define GM_MAC_RX_STAT_LEN_ERR_OVF 0x0020
#define GM_MAC_RX_STAT_CODE_ERR_OVF 0x0040
/* -- 0x6018 MAC control & status
*/
#define GM_MAC_CTRLSTAT (0x6018 | REG_SZ_32)
#define GM_MAC_CTRLSTAT_PAUSE_RCVD 0x00000001
#define GM_MAC_CTRLSTAT_PAUSE_STATE 0x00000002
#define GM_MAC_CTRLSTAT_PAUSE_NOT 0x00000004
#define GM_MAC_CTRLSTAT_PAUSE_TIM_MASK 0xffff0000
#define GM_MAC_CTRLSTAT_PAUSE_TIM_SHIFT 16
/* -- 0x6020 MAC Tx mask
* Same bits as MAC Tx status
*/
#define GM_MAC_TX_MASK (0x6020 | REG_SZ_16)
/* -- 0x6024 MAC Rx mask
* Same bits as MAC Rx status
*/
#define GM_MAC_RX_MASK (0x6024 | REG_SZ_16)
/* -- 0x6028 MAC Control/Status mask
* Same bits as MAC control/status low order byte
*/
#define GM_MAC_CTRLSTAT_MASK (0x6024 | REG_SZ_8)
/* -- 0x6030 MAC Tx configuration
*/
#define GM_MAC_TX_CONFIG (0x6030 | REG_SZ_16)
#define GM_MAC_TX_CONF_ENABLE 0x0001
#define GM_MAC_TX_CONF_IGNORE_CARRIER 0x0002
#define GM_MAC_TX_CONF_IGNORE_COLL 0x0004
#define GM_MAC_TX_CONF_ENABLE_IPG0 0x0008
#define GM_MAC_TX_CONF_DONT_GIVEUP 0x0010
#define GM_MAC_TX_CONF_DONT_GIVEUP_NLMT 0x0020
#define GM_MAC_TX_CONF_NO_BACKOFF 0x0040
#define GM_MAC_TX_CONF_SLOWDOWN 0x0080
#define GM_MAC_TX_CONF_NO_FCS 0x0100
#define GM_MAC_TX_CONF_CARRIER_EXT 0x0200
/* -- 0x6034 MAC Rx configuration
*/
#define GM_MAC_RX_CONFIG (0x6034 | REG_SZ_16)
#define GM_MAC_RX_CONF_ENABLE 0x0001
#define GM_MAC_RX_CONF_STRIP_PAD 0x0002
#define GM_MAC_RX_CONF_STIP_FCS 0x0004
#define GM_MAC_RX_CONF_RX_ALL 0x0008
#define GM_MAC_RX_CONF_RX_ALL_MULTI 0x0010
#define GM_MAC_RX_CONF_HASH_ENABLE 0x0020
#define GM_MAC_RX_CONF_ADDR_FLTR_ENABLE 0x0040
#define GM_MAC_RX_CONF_PASS_ERROR_FRAM 0x0080
#define GM_MAC_RX_CONF_CARRIER_EXT 0x0100
/* -- 0x6038 MAC control configuration
*/
#define GM_MAC_CTRL_CONFIG (0x6038 | REG_SZ_8)
#define GM_MAC_CTRL_CONF_SND_PAUSE_EN 0x01
#define GM_MAC_CTRL_CONF_RCV_PAUSE_EN 0x02
#define GM_MAC_CTRL_CONF_PASS_CTRL_FRAM 0x04
/* -- 0x603c MAC XIF configuration */
#define GM_MAC_XIF_CONFIG (0x603c | REG_SZ_8)
#define GM_MAC_XIF_CONF_TX_MII_OUT_EN 0x01
#define GM_MAC_XIF_CONF_MII_INT_LOOP 0x02
#define GM_MAC_XIF_CONF_DISABLE_ECHO 0x04
#define GM_MAC_XIF_CONF_GMII_MODE 0x08
#define GM_MAC_XIF_CONF_MII_BUFFER_EN 0x10
#define GM_MAC_XIF_CONF_LINK_LED 0x20
#define GM_MAC_XIF_CONF_FULL_DPLX_LED 0x40
/* -- 0x6040 MAC inter-packet GAP 0
*/
#define GM_MAC_INTR_PKT_GAP0 (0x6040 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP0_DEFAULT 0x00
/* -- 0x6044 MAC inter-packet GAP 1
*/
#define GM_MAC_INTR_PKT_GAP1 (0x6044 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP1_DEFAULT 0x08
/* -- 0x6048 MAC inter-packet GAP 2
*/
#define GM_MAC_INTR_PKT_GAP2 (0x6048 | REG_SZ_8)
#define GM_MAC_INTR_PKT_GAP2_DEFAULT 0x04
/* -- 604c MAC slot time
*/
#define GM_MAC_SLOT_TIME (0x604C | REG_SZ_16)
#define GM_MAC_SLOT_TIME_DEFAULT 0x0040
/* -- 6050 MAC minimum frame size
*/
#define GM_MAC_MIN_FRAME_SIZE (0x6050 | REG_SZ_16)
#define GM_MAC_MIN_FRAME_SIZE_DEFAULT 0x0040
/* -- 6054 MAC maximum frame size
*/
#define GM_MAC_MAX_FRAME_SIZE (0x6054 | REG_SZ_16)
#define GM_MAC_MAX_FRAME_SIZE_DEFAULT 0x05ee
#define GM_MAC_MAX_FRAME_SIZE_ALIGN 0x5f0
/* -- 6058 MAC preamble length
*/
#define GM_MAC_PREAMBLE_LEN (0x6058 | REG_SZ_16)
#define GM_MAC_PREAMBLE_LEN_DEFAULT 0x0007
/* -- 605c MAC jam size
*/
#define GM_MAC_JAM_SIZE (0x605c | REG_SZ_8)
#define GM_MAC_JAM_SIZE_DEFAULT 0x04
/* -- 6060 MAC attempt limit
*/
#define GM_MAC_ATTEMPT_LIMIT (0x6060 | REG_SZ_8)
#define GM_MAC_ATTEMPT_LIMIT_DEFAULT 0x10
/* -- 6064 MAC control type
*/
#define GM_MAC_CONTROL_TYPE (0x6064 | REG_SZ_16)
#define GM_MAC_CONTROL_TYPE_DEFAULT 0x8808
/* -- 6080 MAC address 15..0
* -- 6084 MAC address 16..31
* -- 6088 MAC address 32..47
*/
#define GM_MAC_ADDR_NORMAL0 (0x6080 | REG_SZ_16)
#define GM_MAC_ADDR_NORMAL1 (0x6084 | REG_SZ_16)
#define GM_MAC_ADDR_NORMAL2 (0x6088 | REG_SZ_16)
/* -- 608c MAC alternate address 15..0
* -- 6090 MAC alternate address 16..31
* -- 6094 MAC alternate address 32..47
*/
#define GM_MAC_ADDR_ALT0 (0x608c | REG_SZ_16)
#define GM_MAC_ADDR_ALT1 (0x6090 | REG_SZ_16)
#define GM_MAC_ADDR_ALT2 (0x6094 | REG_SZ_16)
/* -- 6098 MAC control address 15..0
* -- 609c MAC control address 16..31
* -- 60a0 MAC control address 32..47
*/
#define GM_MAC_ADDR_CTRL0 (0x6098 | REG_SZ_16)
#define GM_MAC_ADDR_CTRL1 (0x609c | REG_SZ_16)
#define GM_MAC_ADDR_CTRL2 (0x60a0 | REG_SZ_16)
/* -- 60a4 MAC address filter (0_0)
* -- 60a8 MAC address filter (0_1)
* -- 60ac MAC address filter (0_2)
*/
#define GM_MAC_ADDR_FILTER0 (0x60a4 | REG_SZ_16)
#define GM_MAC_ADDR_FILTER1 (0x60a8 | REG_SZ_16)
#define GM_MAC_ADDR_FILTER2 (0x60ac | REG_SZ_16)
/* -- 60b0 MAC address filter mask 1,2
*/
#define GM_MAC_ADDR_FILTER_MASK1_2 (0x60b0 | REG_SZ_8)
/* -- 60b4 MAC address filter mask 0
*/
#define GM_MAC_ADDR_FILTER_MASK0 (0x60b4 | REG_SZ_16)
/* -- [60c0 .. 60fc] MAC hash table
*/
#define GM_MAC_ADDR_FILTER_HASH0 (0x60c0 | REG_SZ_16)
/* -- 6100 MAC normal collision counter
*/
#define GM_MAC_COLLISION_CTR (0x6100 | REG_SZ_16)
/* -- 6104 MAC 1st successful collision counter
*/
#define GM_MAC_FIRST_COLLISION_CTR (0x6104 | REG_SZ_16)
/* -- 6108 MAC excess collision counter
*/
#define GM_MAC_EXCS_COLLISION_CTR (0x6108 | REG_SZ_16)
/* -- 610c MAC late collision counter
*/
#define GM_MAC_LATE_COLLISION_CTR (0x610c | REG_SZ_16)
/* -- 6110 MAC defer timer counter
*/
#define GM_MAC_DEFER_TIMER_COUNTER (0x6110 | REG_SZ_16)
/* -- 6114 MAC peak attempts
*/
#define GM_MAC_PEAK_ATTEMPTS (0x6114 | REG_SZ_16)
/* -- 6118 MAC Rx frame counter
*/
#define GM_MAC_RX_FRAME_CTR (0x6118 | REG_SZ_16)
/* -- 611c MAC Rx length error counter
*/
#define GM_MAC_RX_LEN_ERR_CTR (0x611c | REG_SZ_16)
/* -- 6120 MAC Rx alignment error counter
*/
#define GM_MAC_RX_ALIGN_ERR_CTR (0x6120 | REG_SZ_16)
/* -- 6124 MAC Rx CRC error counter
*/
#define GM_MAC_RX_CRC_ERR_CTR (0x6124 | REG_SZ_16)
/* -- 6128 MAC Rx code violation error counter
*/
#define GM_MAC_RX_CODE_VIOLATION_CTR (0x6128 | REG_SZ_16)
/* -- 6130 MAC random number seed
*/
#define GM_MAC_RANDOM_SEED (0x6130 | REG_SZ_16)
/* -- 6134 MAC state machine
*/
#define GM_MAC_STATE_MACHINE (0x6134 | REG_SZ_8)
/*
* MIF registers
*/
/* -- 0x6200 RW MIF bit bang clock
*/
#define GM_MIF_BB_CLOCK (0x6200 | REG_SZ_8)
/* -- 0x6204 RW MIF bit bang data
*/
#define GM_MIF_BB_DATA (0x6204 | REG_SZ_8)
/* -- 0x6208 RW MIF bit bang output enable
*/
#define GM_MIF_BB_OUT_ENABLE (0x6208 | REG_SZ_8)
/* -- 0x620c RW MIF frame control & data
*/
#define GM_MIF_FRAME_CTL_DATA (0x620c | REG_SZ_32)
#define GM_MIF_FRAME_START_MASK 0xc0000000
#define GM_MIF_FRAME_START_SHIFT 30
#define GM_MIF_FRAME_OPCODE_MASK 0x30000000
#define GM_MIF_FRAME_OPCODE_SHIFT 28
#define GM_MIF_FRAME_PHY_ADDR_MASK 0x0f800000
#define GM_MIF_FRAME_PHY_ADDR_SHIFT 23
#define GM_MIF_FRAME_REG_ADDR_MASK 0x007c0000
#define GM_MIF_FRAME_REG_ADDR_SHIFT 18
#define GM_MIF_FRAME_TURNAROUND_HI 0x00020000
#define GM_MIF_FRAME_TURNAROUND_LO 0x00010000
#define GM_MIF_FRAME_DATA_MASK 0x0000ffff
#define GM_MIF_FRAME_DATA_SHIFT 0
/* -- 0x6210 RW MIF config reg
*/
#define GM_MIF_CFG (0x6210 | REG_SZ_16)
#define GM_MIF_CFGPS 0x00000001 /* PHY Select */
#define GM_MIF_CFGPE 0x00000002 /* Poll Enable */
#define GM_MIF_CFGBB 0x00000004 /* Bit Bang Enable */
#define GM_MIF_CFGPR_MASK 0x000000f8 /* Poll Register address */
#define GM_MIF_CFGPR_SHIFT 3
#define GM_MIF_CFGM0 0x00000100 /* MDIO_0 Data / MDIO_0 attached */
#define GM_MIF_CFGM1 0x00000200 /* MDIO_1 Data / MDIO_1 attached */
#define GM_MIF_CFGPD_MASK 0x00007c00 /* Poll Device PHY address */
#define GM_MIF_CFGPD_SHIFT 10
#define GM_MIF_POLL_DELAY 200
#define GM_INTERNAL_PHYAD 1 /* PHY address for int. transceiver */
#define GM_EXTERNAL_PHYAD 0 /* PHY address for ext. transceiver */
/* -- 0x6214 RW MIF interrupt mask reg
* same as basic/status Register
*/
#define GM_MIF_IRQ_MASK (0x6214 | REG_SZ_16)
/* -- 0x6218 RW MIF basic/status reg
* The Basic portion of this register indicates the last
* value of the register read indicated in the POLL REG field
* of the Configuration Register.
* The Status portion indicates bit(s) that have changed.
* The MIF Mask register is corresponding to this register in
* terms of the bit(s) that need to be masked for generating
* interrupt on the MIF Interrupt Bit of the Global Status Rgister.
*/
#define GM_MIF_STATUS (0x6218 | REG_SZ_32)
#define GM_MIF_STATUS_MASK 0x0000ffff /* 0-15 : Status */
#define GM_MIF_BASIC_MASK 0xffff0000 /* 16-31 : Basic register */
/*
* PCS link registers
*/
/* -- 0x9000 RW PCS mii control reg
*/
#define GM_PCS_CONTROL (0x9000 | REG_SZ_16)
/* -- 0x9004 RW PCS mii status reg
*/
#define GM_PCS_STATUS (0x9004 | REG_SZ_16)
/* -- 0x9008 RW PCS mii advertisement
*/
#define GM_PCS_ADVERTISEMENT (0x9008 | REG_SZ_16)
/* -- 0x900c RW PCS mii LP ability
*/
#define GM_PCS_ABILITY (0x900c | REG_SZ_16)
/* -- 0x9010 RW PCS config
*/
#define GM_PCS_CONFIG (0x9010 | REG_SZ_8)
/* -- 0x9014 RW PCS state machine
*/
#define GM_PCS_STATE_MACHINE (0x9014 | REG_SZ_32)
/* -- 0x9018 RW PCS interrupt status
*/
#define GM_PCS_IRQ_STATUS (0x9018 | REG_SZ_8)
/* -- 0x9050 RW PCS datapath mode
*/
#define GM_PCS_DATAPATH_MODE (0x9050 | REG_SZ_8)
#define GM_PCS_DATAPATH_INTERNAL 0x01 /* Internal serial link */
#define GM_PCS_DATAPATH_SERDES 0x02 /* 10-bit Serdes interface */
#define GM_PCS_DATAPATH_MII 0x04 /* Select mii/gmii mode */
#define GM_PCS_DATAPATH_GMII_OUT 0x08 /* serial mode only, copy data to gmii */
/* -- 0x9054 RW PCS serdes control
*/
#define GM_PCS_SERDES_CTRL (0x9054 | REG_SZ_8)
/* -- 0x9058 RW PCS serdes output select
*/
#define GM_PCS_SERDES_SELECT (0x9058 | REG_SZ_8)
/* -- 0x905c RW PCS serdes state
*/
#define GM_PCS_SERDES_STATE (0x905c | REG_SZ_8)
/*
* PHY registers
*/
/*
* Standard PHY registers (from de4x5.h)
*/
#define MII_CR 0x00 /* MII Management Control Register */
#define MII_SR 0x01 /* MII Management Status Register */
#define MII_ID0 0x02 /* PHY Identifier Register 0 */
#define MII_ID1 0x03 /* PHY Identifier Register 1 */
#define MII_ANA 0x04 /* Auto Negotiation Advertisement */
#define MII_ANLPA 0x05 /* Auto Negotiation Link Partner Ability */
#define MII_ANE 0x06 /* Auto Negotiation Expansion */
#define MII_ANP 0x07 /* Auto Negotiation Next Page TX */
/*
** MII Management Control Register
*/
#define MII_CR_RST 0x8000 /* RESET the PHY chip */
#define MII_CR_LPBK 0x4000 /* Loopback enable */
#define MII_CR_SPD 0x2000 /* 0: 10Mb/s; 1: 100Mb/s */
#define MII_CR_10 0x0000 /* Set 10Mb/s */
#define MII_CR_100 0x2000 /* Set 100Mb/s */
#define MII_CR_ASSE 0x1000 /* Auto Speed Select Enable */
#define MII_CR_PD 0x0800 /* Power Down */
#define MII_CR_ISOL 0x0400 /* Isolate Mode */
#define MII_CR_RAN 0x0200 /* Restart Auto Negotiation */
#define MII_CR_FDM 0x0100 /* Full Duplex Mode */
#define MII_CR_CTE 0x0080 /* Collision Test Enable */
#define MII_CR_SPEEDSEL2 0x0040 /* Speed selection 2 on BCM */
/*
** MII Management Status Register
*/
#define MII_SR_T4C 0x8000 /* 100BASE-T4 capable */
#define MII_SR_TXFD 0x4000 /* 100BASE-TX Full Duplex capable */
#define MII_SR_TXHD 0x2000 /* 100BASE-TX Half Duplex capable */
#define MII_SR_TFD 0x1000 /* 10BASE-T Full Duplex capable */
#define MII_SR_THD 0x0800 /* 10BASE-T Half Duplex capable */
#define MII_SR_ASSC 0x0020 /* Auto Speed Selection Complete*/
#define MII_SR_RFD 0x0010 /* Remote Fault Detected */
#define MII_SR_ANC 0x0008 /* Auto Negotiation capable */
#define MII_SR_LKS 0x0004 /* Link Status */
#define MII_SR_JABD 0x0002 /* Jabber Detect */
#define MII_SR_XC 0x0001 /* Extended Capabilities */
/*
** MII Management Auto Negotiation Advertisement Register
*/
#define MII_ANA_TAF 0x03e0 /* Technology Ability Field */
#define MII_ANA_T4AM 0x0200 /* T4 Technology Ability Mask */
#define MII_ANA_TXAM 0x0180 /* TX Technology Ability Mask */
#define MII_ANA_FDAM 0x0140 /* Full Duplex Technology Ability Mask */
#define MII_ANA_HDAM 0x02a0 /* Half Duplex Technology Ability Mask */
#define MII_ANA_100M 0x0380 /* 100Mb Technology Ability Mask */
#define MII_ANA_10M 0x0060 /* 10Mb Technology Ability Mask */
#define MII_ANA_CSMA 0x0001 /* CSMA-CD Capable */
/*
** MII Management Auto Negotiation Remote End Register
*/
#define MII_ANLPA_NP 0x8000 /* Next Page (Enable) */
#define MII_ANLPA_ACK 0x4000 /* Remote Acknowledge */
#define MII_ANLPA_RF 0x2000 /* Remote Fault */
#define MII_ANLPA_TAF 0x03e0 /* Technology Ability Field */
#define MII_ANLPA_T4AM 0x0200 /* T4 Technology Ability Mask */
#define MII_ANLPA_TXAM 0x0180 /* TX Technology Ability Mask */
#define MII_ANLPA_FDAM 0x0140 /* Full Duplex Technology Ability Mask */
#define MII_ANLPA_HDAM 0x02a0 /* Half Duplex Technology Ability Mask */
#define MII_ANLPA_100M 0x0380 /* 100Mb Technology Ability Mask */
#define MII_ANLPA_10M 0x0060 /* 10Mb Technology Ability Mask */
#define MII_ANLPA_CSMA 0x0001 /* CSMA-CD Capable */
#define MII_ANLPA_PAUS 0x0400
/* Generic PHYs
*
* These GENERIC values assumes that the PHY devices follow 802.3u and
* allow parallel detection to set the link partner ability register.
* Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
*/
/*
* Model-specific PHY registers
*
* Note: Only the BCM5201 is described here for now. I'll add the 5400 once
* I see a machine using it in real world.
*/
/* Supported PHYs (phy_type field ) */
#define PHY_B5400 0x5400
#define PHY_B5401 0x5401
#define PHY_B5411 0x5411
#define PHY_B5201 0x5201
#define PHY_B5221 0x5221
#define PHY_LXT971 0x0971
#define PHY_UNKNOWN 0
/* Identification (for multi-PHY) */
#define MII_BCM5201_OUI 0x001018
#define MII_BCM5201_MODEL 0x21
#define MII_BCM5201_REV 0x01
#define MII_BCM5201_ID ((MII_BCM5201_OUI << 10) | (MII_BCM5201_MODEL << 4))
#define MII_BCM5201_MASK 0xfffffff0
#define MII_BCM5221_OUI 0x001018
#define MII_BCM5221_MODEL 0x1e
#define MII_BCM5221_REV 0x00
#define MII_BCM5221_ID ((MII_BCM5221_OUI << 10) | (MII_BCM5221_MODEL << 4))
#define MII_BCM5221_MASK 0xfffffff0
#define MII_BCM5400_OUI 0x000818
#define MII_BCM5400_MODEL 0x04
#define MII_BCM5400_REV 0x01
#define MII_BCM5400_ID ((MII_BCM5400_OUI << 10) | (MII_BCM5400_MODEL << 4))
#define MII_BCM5400_MASK 0xfffffff0
#define MII_BCM5401_OUI 0x000818
#define MII_BCM5401_MODEL 0x05
#define MII_BCM5401_REV 0x01
#define MII_BCM5401_ID ((MII_BCM5401_OUI << 10) | (MII_BCM5401_MODEL << 4))
#define MII_BCM5401_MASK 0xfffffff0
#define MII_BCM5411_OUI 0x000818
#define MII_BCM5411_MODEL 0x07
#define MII_BCM5411_REV 0x01
#define MII_BCM5411_ID ((MII_BCM5411_OUI << 10) | (MII_BCM5411_MODEL << 4))
#define MII_BCM5411_MASK 0xfffffff0
#define MII_LXT971_OUI 0x0004de
#define MII_LXT971_MODEL 0x0e
#define MII_LXT971_REV 0x00
#define MII_LXT971_ID ((MII_LXT971_OUI << 10) | (MII_LXT971_MODEL << 4))
#define MII_LXT971_MASK 0xfffffff0
/* BCM5201 AUX STATUS register */
#define MII_BCM5201_AUXCTLSTATUS 0x18
#define MII_BCM5201_AUXCTLSTATUS_DUPLEX 0x0001
#define MII_BCM5201_AUXCTLSTATUS_SPEED 0x0002
/* MII BCM5201 MULTIPHY interrupt register */
#define MII_BCM5201_INTERRUPT 0x1A
#define MII_BCM5201_INTERRUPT_INTENABLE 0x4000
#define MII_BCM5201_AUXMODE2 0x1B
#define MII_BCM5201_AUXMODE2_LOWPOWER 0x0008
#define MII_BCM5201_MULTIPHY 0x1E
/* MII BCM5201 MULTIPHY register bits */
#define MII_BCM5201_MULTIPHY_SERIALMODE 0x0002
#define MII_BCM5201_MULTIPHY_SUPERISOLATE 0x0008
/* MII BCM5400 1000-BASET Control register */
#define MII_BCM5400_GB_CONTROL 0x09
#define MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP 0x0200
/* MII BCM5400 AUXCONTROL register */
#define MII_BCM5400_AUXCONTROL 0x18
#define MII_BCM5400_AUXCONTROL_PWR10BASET 0x0004
/* MII BCM5400 AUXSTATUS register */
#define MII_BCM5400_AUXSTATUS 0x19
#define MII_BCM5400_AUXSTATUS_LINKMODE_MASK 0x0700
#define MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT 8
/* MII LXT971 STATUS2 register */
#define MII_LXT971_STATUS2 0x11
#define MII_LXT971_STATUS2_SPEED 0x4000
#define MII_LXT971_STATUS2_LINK 0x0400
#define MII_LXT971_STATUS2_FULLDUPLEX 0x0200
#define MII_LXT971_STATUS2_AUTONEG_COMPLETE 0x0080
/*
* DMA descriptors
*/
/*
* Descriptor counts and buffer sizes
*/
#define NTX 64 /* must be power of 2 */
#define NTX_CONF GM_TX_RING_SZ_64
#define NRX 64 /* must be power of 2 */
#define NRX_CONF GM_RX_RING_SZ_64
#define RX_COPY_THRESHOLD 256
#define GMAC_BUFFER_ALIGN 32 /* Align on a cache line */
#define RX_BUF_ALLOC_SIZE (ETH_FRAME_LEN + GMAC_BUFFER_ALIGN + 2)
#define RX_OFFSET 2
/*
* Definitions of Rx and Tx descriptors
*/
struct gmac_dma_desc {
unsigned int size; /* data size and OWN bit */
unsigned int flags; /* flags */
unsigned int lo_addr; /* phys addr, low 32 bits */
unsigned int hi_addr;
};
/*
* Rx bits
*/
/* Bits in size */
#define RX_SZ_OWN 0x80000000 /* 1 = owned by chip */
#define RX_SZ_MASK 0x7FFF0000
#define RX_SZ_SHIFT 16
#define RX_SZ_CKSUM_MASK 0x0000FFFF
/* Bits in flags */
#define RX_FL_CRC_ERROR 0x40000000
#define RX_FL_ALT_ADDR 0x20000000 /* Packet rcv. from alt MAC address */
/*
* Tx bits
*/
/* Bits in size */
#define TX_SZ_MASK 0x00007FFF
#define TX_SZ_CRC_MASK 0x00FF8000
#define TX_SZ_CRC_STUFF 0x1F000000
#define TX_SZ_CRC_ENABLE 0x20000000
#define TX_SZ_EOP 0x40000000
#define TX_SZ_SOP 0x80000000
/* Bits in flags */
#define TX_FL_INTERRUPT 0x00000001
#define TX_FL_NO_CRC 0x00000002
/*
* Other stuffs
*/
struct gmac {
volatile unsigned int *regs; /* hardware registers, virtual addr */
struct net_device *dev;
struct device_node *of_node;
unsigned long tx_desc_page; /* page for DMA descriptors */
unsigned long rx_desc_page; /* page for DMA descriptors */
volatile struct gmac_dma_desc *rxring;
struct sk_buff *rx_buff[NRX];
int next_rx;
volatile struct gmac_dma_desc *txring;
struct sk_buff *tx_buff[NTX];
int next_tx;
int tx_gone;
int phy_addr;
unsigned int phy_id;
int phy_type;
int phy_status; /* Cached PHY status */
int full_duplex; /* Current set to full duplex */
int gigabit; /* Current set to 1000BT */
struct net_device_stats stats;
u8 pci_bus;
u8 pci_devfn;
spinlock_t lock;
int opened;
int sleeping;
struct net_device *next_gmac;
};
/* Register access macros. We hope the preprocessor will be smart enough
* to optimize them into one single access instruction
*/
#define GM_OUT(reg, v) (((reg) & REG_SZ_32) ? out_le32(gm->regs + \
(((reg) & REG_MASK)>>2), (v)) \
: (((reg) & REG_SZ_16) ? out_le16((volatile u16 *) \
(gm->regs + (((reg) & REG_MASK)>>2)), (v)) \
: out_8((volatile u8 *)(gm->regs + \
(((reg) & REG_MASK)>>2)), (v))))
#define GM_IN(reg) (((reg) & REG_SZ_32) ? in_le32(gm->regs + \
(((reg) & REG_MASK)>>2)) \
: (((reg) & REG_SZ_16) ? in_le16((volatile u16 *) \
(gm->regs + (((reg) & REG_MASK)>>2))) \
: in_8((volatile u8 *)(gm->regs + \
(((reg) & REG_MASK)>>2)))))
#define GM_BIS(r, v) GM_OUT((r), GM_IN(r) | (v))
#define GM_BIC(r, v) GM_OUT((r), GM_IN(r) & ~(v))
/* Wrapper to alloc_skb to test various alignements */
#define GMAC_ALIGNED_RX_SKB_ADDR(addr) \
((((unsigned long)(addr) + GMAC_BUFFER_ALIGN - 1) & \
~(GMAC_BUFFER_ALIGN - 1)) - (unsigned long)(addr))
static inline struct sk_buff *
gmac_alloc_skb(unsigned int length, int gfp_flags)
{
struct sk_buff *skb;
skb = alloc_skb(length + GMAC_BUFFER_ALIGN, gfp_flags);
if(skb) {
int offset = GMAC_ALIGNED_RX_SKB_ADDR(skb->data);
if(offset)
skb_reserve(skb, offset);
}
return skb;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment