Commit a17a75e2 authored by Martyn Welch's avatar Martyn Welch Committed by Greg Kroah-Hartman

Staging: VME Framework for the Linux Kernel

This framework aims to colelese, extend and improve the VME Linux
drivers found at vmelinux.org, universe2.sourceforge.net and
openfmi.net/frs/?group_id=144. The last 2 drivers appear to be forks of
the original code found at vmelinux.org though have extended the
codebase.
Signed-off-by: default avatarMartyn Welch <martyn.welch@gefanuc.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 03cd7136
......@@ -137,5 +137,7 @@ source "drivers/staging/udlfb/Kconfig"
source "drivers/staging/hv/Kconfig"
source "drivers/staging/vme/Kconfig"
endif # !STAGING_EXCLUDE_BUILD
endif # STAGING
......@@ -50,3 +50,4 @@ obj-$(CONFIG_USB_CPC) += cpc-usb/
obj-$(CONFIG_RDC_17F3101X) += pata_rdc/
obj-$(CONFIG_FB_UDL) += udlfb/
obj-$(CONFIG_HYPERV) += hv/
obj-$(CONFIG_VME) += vme/
#
# VME configuration.
#
menuconfig VME
tristate "VME bridge support"
depends on PCI
---help---
If you say Y here you get support for the VME bridge Framework.
if VME
#source "drivers/staging/vme/bridges/Kconfig"
#
#source "drivers/staging/vme/devices/Kconfig"
endif # VME
#
# Makefile for the VME bridge device drivers.
#
obj-$(CONFIG_VME) += vme.o
#obj-y += bridges/
#obj-y += devices/
/*
* VME Bridge Framework
*
* Author: Martyn Welch <martyn.welch@gefanuc.com>
* Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
*
* Based on work by Tom Armistead and Ajit Prem
* Copyright 2004 Motorola Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/syscalls.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include "vme.h"
#include "vme_bridge.h"
/* Bitmask and semaphore to keep track of bridge numbers */
static unsigned int vme_bus_numbers;
DECLARE_MUTEX(vme_bus_num_sem);
static void __exit vme_exit (void);
static int __init vme_init (void);
/*
* Find the bridge resource associated with a specific device resource
*/
static struct vme_bridge *dev_to_bridge(struct device *dev)
{
return dev->platform_data;
}
/*
* Find the bridge that the resource is associated with.
*/
static struct vme_bridge *find_bridge(struct vme_resource *resource)
{
/* Get list to search */
switch (resource->type) {
case VME_MASTER:
return list_entry(resource->entry, struct vme_master_resource,
list)->parent;
break;
case VME_SLAVE:
return list_entry(resource->entry, struct vme_slave_resource,
list)->parent;
break;
case VME_DMA:
return list_entry(resource->entry, struct vme_dma_resource,
list)->parent;
break;
default:
printk(KERN_ERR "Unknown resource type\n");
return NULL;
break;
}
}
/*
* Allocate a contiguous block of memory for use by the driver. This is used to
* create the buffers for the slave windows.
*
* XXX VME bridges could be available on buses other than PCI. At the momment
* this framework only supports PCI devices.
*/
void * vme_alloc_consistent(struct vme_resource *resource, size_t size,
dma_addr_t *dma)
{
struct vme_bridge *bridge;
struct pci_dev *pdev;
if(resource == NULL) {
printk("No resource\n");
return NULL;
}
bridge = find_bridge(resource);
if(bridge == NULL) {
printk("Can't find bridge\n");
return NULL;
}
/* Find pci_dev container of dev */
if (bridge->parent == NULL) {
printk("Dev entry NULL\n");
return NULL;
}
pdev = container_of(bridge->parent, struct pci_dev, dev);
return pci_alloc_consistent(pdev, size, dma);
}
EXPORT_SYMBOL(vme_alloc_consistent);
/*
* Free previously allocated contiguous block of memory.
*
* XXX VME bridges could be available on buses other than PCI. At the momment
* this framework only supports PCI devices.
*/
void vme_free_consistent(struct vme_resource *resource, size_t size,
void *vaddr, dma_addr_t dma)
{
struct vme_bridge *bridge;
struct pci_dev *pdev;
if(resource == NULL) {
printk("No resource\n");
return;
}
bridge = find_bridge(resource);
if(bridge == NULL) {
printk("Can't find bridge\n");
return;
}
/* Find pci_dev container of dev */
pdev = container_of(bridge->parent, struct pci_dev, dev);
pci_free_consistent(pdev, size, vaddr, dma);
}
EXPORT_SYMBOL(vme_free_consistent);
size_t vme_get_size(struct vme_resource *resource)
{
int enabled, retval;
unsigned long long base, size;
dma_addr_t buf_base;
vme_address_t aspace;
vme_cycle_t cycle;
vme_width_t dwidth;
switch (resource->type) {
case VME_MASTER:
retval = vme_master_get(resource, &enabled, &base, &size,
&aspace, &cycle, &dwidth);
return size;
break;
case VME_SLAVE:
retval = vme_slave_get(resource, &enabled, &base, &size,
&buf_base, &aspace, &cycle);
return size;
break;
case VME_DMA:
return 0;
break;
default:
printk(KERN_ERR "Unknown resource type\n");
return 0;
break;
}
}
EXPORT_SYMBOL(vme_get_size);
static int vme_check_window(vme_address_t aspace, unsigned long long vme_base,
unsigned long long size)
{
int retval = 0;
switch (aspace) {
case VME_A16:
if (((vme_base + size) > VME_A16_MAX) ||
(vme_base > VME_A16_MAX))
retval = -EFAULT;
break;
case VME_A24:
if (((vme_base + size) > VME_A24_MAX) ||
(vme_base > VME_A24_MAX))
retval = -EFAULT;
break;
case VME_A32:
if (((vme_base + size) > VME_A32_MAX) ||
(vme_base > VME_A32_MAX))
retval = -EFAULT;
break;
case VME_A64:
/*
* Any value held in an unsigned long long can be used as the
* base
*/
break;
case VME_CRCSR:
if (((vme_base + size) > VME_CRCSR_MAX) ||
(vme_base > VME_CRCSR_MAX))
retval = -EFAULT;
break;
case VME_USER1:
case VME_USER2:
case VME_USER3:
case VME_USER4:
/* User Defined */
break;
default:
printk("Invalid address space\n");
retval = -EINVAL;
break;
}
return retval;
}
/*
* Request a slave image with specific attributes, return some unique
* identifier.
*/
struct vme_resource * vme_slave_request(struct device *dev,
vme_address_t address, vme_cycle_t cycle)
{
struct vme_bridge *bridge;
struct list_head *slave_pos = NULL;
struct vme_slave_resource *allocated_image = NULL;
struct vme_slave_resource *slave_image = NULL;
struct vme_resource *resource = NULL;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through slave resources */
list_for_each(slave_pos, &(bridge->slave_resources)) {
slave_image = list_entry(slave_pos,
struct vme_slave_resource, list);
if (slave_image == NULL) {
printk("Registered NULL Slave resource\n");
continue;
}
/* Find an unlocked and compatible image */
down(&(slave_image->sem));
if(((slave_image->address_attr & address) == address) &&
((slave_image->cycle_attr & cycle) == cycle) &&
(slave_image->locked == 0)) {
slave_image->locked = 1;
up(&(slave_image->sem));
allocated_image = slave_image;
break;
}
up(&(slave_image->sem));
}
/* No free image */
if (allocated_image == NULL)
goto err_image;
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_WARNING "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_SLAVE;
resource->entry = &(allocated_image->list);
return resource;
err_alloc:
/* Unlock image */
down(&(slave_image->sem));
slave_image->locked = 0;
up(&(slave_image->sem));
err_image:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_slave_request);
int vme_slave_set (struct vme_resource *resource, int enabled,
unsigned long long vme_base, unsigned long long size,
dma_addr_t buf_base, vme_address_t aspace, vme_cycle_t cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_slave_resource *image;
int retval;
if (resource->type != VME_SLAVE) {
printk("Not a slave resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_slave_resource, list);
if (bridge->slave_set == NULL) {
printk("Function not supported\n");
return -ENOSYS;
}
if(!(((image->address_attr & aspace) == aspace) &&
((image->cycle_attr & cycle) == cycle))) {
printk("Invalid attributes\n");
return -EINVAL;
}
retval = vme_check_window(aspace, vme_base, size);
if(retval)
return retval;
return bridge->slave_set(image, enabled, vme_base, size, buf_base,
aspace, cycle);
}
EXPORT_SYMBOL(vme_slave_set);
int vme_slave_get (struct vme_resource *resource, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
dma_addr_t *buf_base, vme_address_t *aspace, vme_cycle_t *cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_slave_resource *image;
if (resource->type != VME_SLAVE) {
printk("Not a slave resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_slave_resource, list);
if (bridge->slave_set == NULL) {
printk("vme_slave_get not supported\n");
return -EINVAL;
}
return bridge->slave_get(image, enabled, vme_base, size, buf_base,
aspace, cycle);
}
EXPORT_SYMBOL(vme_slave_get);
void vme_slave_free(struct vme_resource *resource)
{
struct vme_slave_resource *slave_image;
if (resource->type != VME_SLAVE) {
printk("Not a slave resource\n");
return;
}
slave_image = list_entry(resource->entry, struct vme_slave_resource,
list);
if (slave_image == NULL) {
printk("Can't find slave resource\n");
return;
}
/* Unlock image */
down(&(slave_image->sem));
if (slave_image->locked == 0)
printk(KERN_ERR "Image is already free\n");
slave_image->locked = 0;
up(&(slave_image->sem));
/* Free up resource memory */
kfree(resource);
}
EXPORT_SYMBOL(vme_slave_free);
/*
* Request a master image with specific attributes, return some unique
* identifier.
*/
struct vme_resource * vme_master_request(struct device *dev,
vme_address_t address, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_bridge *bridge;
struct list_head *master_pos = NULL;
struct vme_master_resource *allocated_image = NULL;
struct vme_master_resource *master_image = NULL;
struct vme_resource *resource = NULL;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through master resources */
list_for_each(master_pos, &(bridge->master_resources)) {
master_image = list_entry(master_pos,
struct vme_master_resource, list);
if (master_image == NULL) {
printk(KERN_WARNING "Registered NULL master resource\n");
continue;
}
/* Find an unlocked and compatible image */
spin_lock(&(master_image->lock));
if(((master_image->address_attr & address) == address) &&
((master_image->cycle_attr & cycle) == cycle) &&
((master_image->width_attr & dwidth) == dwidth) &&
(master_image->locked == 0)) {
master_image->locked = 1;
spin_unlock(&(master_image->lock));
allocated_image = master_image;
break;
}
spin_unlock(&(master_image->lock));
}
/* Check to see if we found a resource */
if (allocated_image == NULL) {
printk(KERN_ERR "Can't find a suitable resource\n");
goto err_image;
}
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_ERR "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_MASTER;
resource->entry = &(allocated_image->list);
return resource;
kfree(resource);
err_alloc:
/* Unlock image */
spin_lock(&(master_image->lock));
master_image->locked = 0;
spin_unlock(&(master_image->lock));
err_image:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_master_request);
int vme_master_set (struct vme_resource *resource, int enabled,
unsigned long long vme_base, unsigned long long size,
vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
int retval;
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
if (bridge->master_set == NULL) {
printk("vme_master_set not supported\n");
return -EINVAL;
}
if(!(((image->address_attr & aspace) == aspace) &&
((image->cycle_attr & cycle) == cycle) &&
((image->width_attr & dwidth) == dwidth))) {
printk("Invalid attributes\n");
return -EINVAL;
}
retval = vme_check_window(aspace, vme_base, size);
if(retval)
return retval;
return bridge->master_set(image, enabled, vme_base, size, aspace,
cycle, dwidth);
}
EXPORT_SYMBOL(vme_master_set);
int vme_master_get (struct vme_resource *resource, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
if (bridge->master_set == NULL) {
printk("vme_master_set not supported\n");
return -EINVAL;
}
return bridge->master_get(image, enabled, vme_base, size, aspace,
cycle, dwidth);
}
EXPORT_SYMBOL(vme_master_get);
/*
* Read data out of VME space into a buffer.
*/
ssize_t vme_master_read (struct vme_resource *resource, void *buf, size_t count,
loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
size_t length;
if (bridge->master_read == NULL) {
printk("Reading from resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
length = vme_get_size(resource);
if (offset > length) {
printk("Invalid Offset\n");
return -EFAULT;
}
if ((offset + count) > length)
count = length - offset;
return bridge->master_read(image, buf, count, offset);
}
EXPORT_SYMBOL(vme_master_read);
/*
* Write data out to VME space from a buffer.
*/
ssize_t vme_master_write (struct vme_resource *resource, void *buf,
size_t count, loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
size_t length;
if (bridge->master_write == NULL) {
printk("Writing to resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
length = vme_get_size(resource);
if (offset > length) {
printk("Invalid Offset\n");
return -EFAULT;
}
if ((offset + count) > length)
count = length - offset;
return bridge->master_write(image, buf, count, offset);
}
EXPORT_SYMBOL(vme_master_write);
/*
* Perform RMW cycle to provided location.
*/
unsigned int vme_master_rmw (struct vme_resource *resource, unsigned int mask,
unsigned int compare, unsigned int swap, loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
if (bridge->master_rmw == NULL) {
printk("Writing to resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
return bridge->master_rmw(image, mask, compare, swap, offset);
}
EXPORT_SYMBOL(vme_master_rmw);
void vme_master_free(struct vme_resource *resource)
{
struct vme_master_resource *master_image;
if (resource->type != VME_MASTER) {
printk("Not a master resource\n");
return;
}
master_image = list_entry(resource->entry, struct vme_master_resource,
list);
if (master_image == NULL) {
printk("Can't find master resource\n");
return;
}
/* Unlock image */
spin_lock(&(master_image->lock));
if (master_image->locked == 0)
printk(KERN_ERR "Image is already free\n");
master_image->locked = 0;
spin_unlock(&(master_image->lock));
/* Free up resource memory */
kfree(resource);
}
EXPORT_SYMBOL(vme_master_free);
/*
* Request a DMA controller with specific attributes, return some unique
* identifier.
*/
struct vme_resource *vme_request_dma(struct device *dev)
{
struct vme_bridge *bridge;
struct list_head *dma_pos = NULL;
struct vme_dma_resource *allocated_ctrlr = NULL;
struct vme_dma_resource *dma_ctrlr = NULL;
struct vme_resource *resource = NULL;
/* XXX Not checking resource attributes */
printk(KERN_ERR "No VME resource Attribute tests done\n");
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through DMA resources */
list_for_each(dma_pos, &(bridge->dma_resources)) {
dma_ctrlr = list_entry(dma_pos,
struct vme_dma_resource, list);
if (dma_ctrlr == NULL) {
printk("Registered NULL DMA resource\n");
continue;
}
/* Find an unlocked controller */
down(&(dma_ctrlr->sem));
if(dma_ctrlr->locked == 0) {
dma_ctrlr->locked = 1;
up(&(dma_ctrlr->sem));
allocated_ctrlr = dma_ctrlr;
break;
}
up(&(dma_ctrlr->sem));
}
/* Check to see if we found a resource */
if (allocated_ctrlr == NULL)
goto err_ctrlr;
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_WARNING "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_DMA;
resource->entry = &(allocated_ctrlr->list);
return resource;
err_alloc:
/* Unlock image */
down(&(dma_ctrlr->sem));
dma_ctrlr->locked = 0;
up(&(dma_ctrlr->sem));
err_ctrlr:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_request_dma);
/*
* Start new list
*/
struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
{
struct vme_dma_resource *ctrlr;
struct vme_dma_list *dma_list;
if (resource->type != VME_DMA) {
printk("Not a DMA resource\n");
return NULL;
}
ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
dma_list = (struct vme_dma_list *)kmalloc(
sizeof(struct vme_dma_list), GFP_KERNEL);
if(dma_list == NULL) {
printk("Unable to allocate memory for new dma list\n");
return NULL;
}
INIT_LIST_HEAD(&(dma_list->entries));
dma_list->parent = ctrlr;
init_MUTEX(&(dma_list->sem));
return dma_list;
}
EXPORT_SYMBOL(vme_new_dma_list);
/*
* Create "Pattern" type attributes
*/
struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern,
vme_pattern_t type)
{
struct vme_dma_attr *attributes;
struct vme_dma_pattern *pattern_attr;
attributes = (struct vme_dma_attr *)kmalloc(
sizeof(struct vme_dma_attr), GFP_KERNEL);
if(attributes == NULL) {
printk("Unable to allocate memory for attributes structure\n");
goto err_attr;
}
pattern_attr = (struct vme_dma_pattern *)kmalloc(
sizeof(struct vme_dma_pattern), GFP_KERNEL);
if(pattern_attr == NULL) {
printk("Unable to allocate memory for pattern attributes\n");
goto err_pat;
}
attributes->type = VME_DMA_PATTERN;
attributes->private = (void *)pattern_attr;
pattern_attr->pattern = pattern;
pattern_attr->type = type;
return attributes;
kfree(pattern_attr);
err_pat:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_pattern_attribute);
/*
* Create "PCI" type attributes
*/
struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
{
struct vme_dma_attr *attributes;
struct vme_dma_pci *pci_attr;
/* XXX Run some sanity checks here */
attributes = (struct vme_dma_attr *)kmalloc(
sizeof(struct vme_dma_attr), GFP_KERNEL);
if(attributes == NULL) {
printk("Unable to allocate memory for attributes structure\n");
goto err_attr;
}
pci_attr = (struct vme_dma_pci *)kmalloc(sizeof(struct vme_dma_pci),
GFP_KERNEL);
if(pci_attr == NULL) {
printk("Unable to allocate memory for pci attributes\n");
goto err_pci;
}
attributes->type = VME_DMA_PCI;
attributes->private = (void *)pci_attr;
pci_attr->address = address;
return attributes;
kfree(pci_attr);
err_pci:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_pci_attribute);
/*
* Create "VME" type attributes
*/
struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_dma_attr *attributes;
struct vme_dma_vme *vme_attr;
/* XXX Run some sanity checks here */
attributes = (struct vme_dma_attr *)kmalloc(
sizeof(struct vme_dma_attr), GFP_KERNEL);
if(attributes == NULL) {
printk("Unable to allocate memory for attributes structure\n");
goto err_attr;
}
vme_attr = (struct vme_dma_vme *)kmalloc(sizeof(struct vme_dma_vme),
GFP_KERNEL);
if(vme_attr == NULL) {
printk("Unable to allocate memory for vme attributes\n");
goto err_vme;
}
attributes->type = VME_DMA_VME;
attributes->private = (void *)vme_attr;
vme_attr->address = address;
vme_attr->aspace = aspace;
vme_attr->cycle = cycle;
vme_attr->dwidth = dwidth;
return attributes;
kfree(vme_attr);
err_vme:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_vme_attribute);
/*
* Free attribute
*/
void vme_dma_free_attribute(struct vme_dma_attr *attributes)
{
kfree(attributes->private);
kfree(attributes);
}
EXPORT_SYMBOL(vme_dma_free_attribute);
int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
struct vme_dma_attr *dest, size_t count)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_add == NULL) {
printk("Link List DMA generation not supported\n");
return -EINVAL;
}
if (down_trylock(&(list->sem))) {
printk("Link List already submitted\n");
return -EINVAL;
}
retval = bridge->dma_list_add(list, src, dest, count);
up(&(list->sem));
return retval;
}
EXPORT_SYMBOL(vme_dma_list_add);
int vme_dma_list_exec(struct vme_dma_list *list)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_exec == NULL) {
printk("Link List DMA execution not supported\n");
return -EINVAL;
}
down(&(list->sem));
retval = bridge->dma_list_exec(list);
up(&(list->sem));
return retval;
}
EXPORT_SYMBOL(vme_dma_list_exec);
int vme_dma_list_free(struct vme_dma_list *list)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_empty == NULL) {
printk("Emptying of Link Lists not supported\n");
return -EINVAL;
}
if (down_trylock(&(list->sem))) {
printk("Link List in use\n");
return -EINVAL;
}
/*
* Empty out all of the entries from the dma list. We need to go to the
* low level driver as dma entries are driver specific.
*/
retval = bridge->dma_list_empty(list);
if (retval) {
printk("Unable to empty link-list entries\n");
up(&(list->sem));
return retval;
}
up(&(list->sem));
kfree(list);
return retval;
}
EXPORT_SYMBOL(vme_dma_list_free);
int vme_dma_free(struct vme_resource *resource)
{
struct vme_dma_resource *ctrlr;
if (resource->type != VME_DMA) {
printk("Not a DMA resource\n");
return -EINVAL;
}
ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
if (down_trylock(&(ctrlr->sem))) {
printk("Resource busy, can't free\n");
return -EBUSY;
}
if (!(list_empty(&(ctrlr->pending)) && list_empty(&(ctrlr->running)))) {
printk("Resource still processing transfers\n");
up(&(ctrlr->sem));
return -EBUSY;
}
ctrlr->locked = 0;
up(&(ctrlr->sem));
return 0;
}
EXPORT_SYMBOL(vme_dma_free);
int vme_request_irq(struct device *dev, int level, int statid,
void (*callback)(int level, int vector, void *priv_data),
void *priv_data)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if((level < 1) || (level > 7)) {
printk(KERN_WARNING "Invalid interrupt level\n");
return -EINVAL;
}
if (bridge->request_irq == NULL) {
printk("Registering interrupts not supported\n");
return -EINVAL;
}
return bridge->request_irq(level, statid, callback, priv_data);
}
EXPORT_SYMBOL(vme_request_irq);
void vme_free_irq(struct device *dev, int level, int statid)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return;
}
if((level < 1) || (level > 7)) {
printk(KERN_WARNING "Invalid interrupt level\n");
return;
}
if (bridge->free_irq == NULL) {
printk("Freeing interrupts not supported\n");
return;
}
bridge->free_irq(level, statid);
}
EXPORT_SYMBOL(vme_free_irq);
int vme_generate_irq(struct device *dev, int level, int statid)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if((level < 1) || (level > 7)) {
printk(KERN_WARNING "Invalid interrupt level\n");
return -EINVAL;
}
if (bridge->generate_irq == NULL) {
printk("Interrupt generation not supported\n");
return -EINVAL;
}
return bridge->generate_irq(level, statid);
}
EXPORT_SYMBOL(vme_generate_irq);
int vme_lm_set(struct device *dev, unsigned long long lm_base, vme_address_t aspace,
vme_cycle_t cycle)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->lm_set == NULL) {
printk("vme_lm_set not supported\n");
return -EINVAL;
}
return bridge->lm_set(lm_base, aspace, cycle);
}
EXPORT_SYMBOL(vme_lm_set);
int vme_lm_get(struct device *dev, unsigned long long *lm_base, vme_address_t *aspace,
vme_cycle_t *cycle)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->lm_get == NULL) {
printk("vme_lm_get not supported\n");
return -EINVAL;
}
return bridge->lm_get(lm_base, aspace, cycle);
}
EXPORT_SYMBOL(vme_lm_get);
int vme_lm_attach(struct device *dev, int monitor, void (*callback)(int))
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->lm_attach == NULL) {
printk("vme_lm_attach not supported\n");
return -EINVAL;
}
return bridge->lm_attach(monitor, callback);
}
EXPORT_SYMBOL(vme_lm_attach);
int vme_lm_detach(struct device *dev, int monitor)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->lm_detach == NULL) {
printk("vme_lm_detach not supported\n");
return -EINVAL;
}
return bridge->lm_detach(monitor);
}
EXPORT_SYMBOL(vme_lm_detach);
int vme_slot_get(struct device *bus)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(bus);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->slot_get == NULL) {
printk("vme_slot_get not supported\n");
return -EINVAL;
}
return bridge->slot_get();
}
EXPORT_SYMBOL(vme_slot_get);
/* - Bridge Registration --------------------------------------------------- */
static int vme_alloc_bus_num(void)
{
int i;
down(&vme_bus_num_sem);
for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
if (((vme_bus_numbers >> i) & 0x1) == 0) {
vme_bus_numbers |= (0x1 << i);
break;
}
}
up(&vme_bus_num_sem);
return i;
}
static void vme_free_bus_num(int bus)
{
down(&vme_bus_num_sem);
vme_bus_numbers |= ~(0x1 << bus);
up(&vme_bus_num_sem);
}
int vme_register_bridge (struct vme_bridge *bridge)
{
struct device *dev;
int retval;
int i;
bridge->num = vme_alloc_bus_num();
/* This creates 32 vme "slot" devices. This equates to a slot for each
* ID available in a system conforming to the ANSI/VITA 1-1994
* specification.
*/
for (i = 0; i < VME_SLOTS_MAX; i++) {
dev = &(bridge->dev[i]);
memset(dev, 0, sizeof(struct device));
dev->parent = bridge->parent;
dev->bus = &(vme_bus_type);
/*
* We save a pointer to the bridge in platform_data so that we
* can get to it later. We keep driver_data for use by the
* driver that binds against the slot
*/
dev->platform_data = bridge;
dev_set_name(dev, "vme-%x.%x", bridge->num, i + 1);
retval = device_register(dev);
if(retval)
goto err_reg;
}
return retval;
i = VME_SLOTS_MAX;
err_reg:
while (i > -1) {
dev = &(bridge->dev[i]);
device_unregister(dev);
}
vme_free_bus_num(bridge->num);
return retval;
}
EXPORT_SYMBOL(vme_register_bridge);
void vme_unregister_bridge (struct vme_bridge *bridge)
{
int i;
struct device *dev;
for (i = 0; i < VME_SLOTS_MAX; i++) {
dev = &(bridge->dev[i]);
device_unregister(dev);
}
vme_free_bus_num(bridge->num);
}
EXPORT_SYMBOL(vme_unregister_bridge);
/* - Driver Registration --------------------------------------------------- */
int vme_register_driver (struct vme_driver *drv)
{
drv->driver.name = drv->name;
drv->driver.bus = &vme_bus_type;
return driver_register(&drv->driver);
}
EXPORT_SYMBOL(vme_register_driver);
void vme_unregister_driver (struct vme_driver *drv)
{
driver_unregister(&drv->driver);
}
EXPORT_SYMBOL(vme_unregister_driver);
/* - Bus Registration ------------------------------------------------------ */
int vme_calc_slot(struct device *dev)
{
struct vme_bridge *bridge;
int num;
bridge = dev_to_bridge(dev);
/* Determine slot number */
num = 0;
while(num < VME_SLOTS_MAX) {
if(&(bridge->dev[num]) == dev) {
break;
}
num++;
}
if (num == VME_SLOTS_MAX) {
dev_err(dev, "Failed to identify slot\n");
num = 0;
goto err_dev;
}
num++;
err_dev:
return num;
}
static struct vme_driver *dev_to_vme_driver(struct device *dev)
{
if(dev->driver == NULL)
printk("Bugger dev->driver is NULL\n");
return container_of(dev->driver, struct vme_driver, driver);
}
static int vme_bus_match(struct device *dev, struct device_driver *drv)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int i, num;
bridge = dev_to_bridge(dev);
driver = container_of(drv, struct vme_driver, driver);
num = vme_calc_slot(dev);
if (!num)
goto err_dev;
if (driver->bind_table == NULL) {
dev_err(dev, "Bind table NULL\n");
goto err_table;
}
i = 0;
while((driver->bind_table[i].bus != 0) ||
(driver->bind_table[i].slot != 0)) {
if ((bridge->num == driver->bind_table[i].bus) &&
(num == driver->bind_table[i].slot))
return 1;
i++;
}
err_dev:
err_table:
return 0;
}
static int vme_bus_probe(struct device *dev)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int retval = -ENODEV;
driver = dev_to_vme_driver(dev);
bridge = dev_to_bridge(dev);
if(driver->probe != NULL) {
retval = driver->probe(dev, bridge->num, vme_calc_slot(dev));
}
return retval;
}
static int vme_bus_remove(struct device *dev)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int retval = -ENODEV;
driver = dev_to_vme_driver(dev);
bridge = dev_to_bridge(dev);
if(driver->remove != NULL) {
retval = driver->remove(dev, bridge->num, vme_calc_slot(dev));
}
return retval;
}
struct bus_type vme_bus_type = {
.name = "vme",
.match = vme_bus_match,
.probe = vme_bus_probe,
.remove = vme_bus_remove,
};
EXPORT_SYMBOL(vme_bus_type);
static int __init vme_init (void)
{
return bus_register(&vme_bus_type);
}
static void __exit vme_exit (void)
{
bus_unregister(&vme_bus_type);
}
MODULE_DESCRIPTION("VME bridge driver framework");
MODULE_AUTHOR("Martyn Welch <martyn.welch@gefanuc.com");
MODULE_LICENSE("GPL");
module_init(vme_init);
module_exit(vme_exit);
#ifndef _VME_H_
#define _VME_H_
/* Resource Type */
enum vme_resource_type {
VME_MASTER,
VME_SLAVE,
VME_DMA
};
/* VME Address Spaces */
typedef u32 vme_address_t;
#define VME_A16 0x1
#define VME_A24 0x2
#define VME_A32 0x4
#define VME_A64 0x8
#define VME_CRCSR 0x10
#define VME_USER1 0x20
#define VME_USER2 0x40
#define VME_USER3 0x80
#define VME_USER4 0x100
#define VME_A16_MAX 0x10000ULL
#define VME_A24_MAX 0x1000000ULL
#define VME_A32_MAX 0x100000000ULL
#define VME_A64_MAX 0x10000000000000000ULL
#define VME_CRCSR_MAX 0x1000000ULL
/* VME Cycle Types */
typedef u32 vme_cycle_t;
#define VME_SCT 0x1
#define VME_BLT 0x2
#define VME_MBLT 0x4
#define VME_2eVME 0x8
#define VME_2eSST 0x10
#define VME_2eSSTB 0x20
#define VME_2eSST160 0x100
#define VME_2eSST267 0x200
#define VME_2eSST320 0x400
#define VME_SUPER 0x1000
#define VME_USER 0x2000
#define VME_PROG 0x4000
#define VME_DATA 0x8000
/* VME Data Widths */
typedef u32 vme_width_t;
#define VME_D8 0x1
#define VME_D16 0x2
#define VME_D32 0x4
#define VME_D64 0x8
/* Arbitration Scheduling Modes */
typedef u32 vme_arbitration_t;
#define VME_R_ROBIN_MODE 0x1
#define VME_PRIORITY_MODE 0x2
typedef u32 vme_dma_t;
#define VME_DMA_PATTERN (1<<0)
#define VME_DMA_PCI (1<<1)
#define VME_DMA_VME (1<<2)
typedef u32 vme_pattern_t;
#define VME_DMA_PATTERN_BYTE (1<<0)
#define VME_DMA_PATTERN_WORD (1<<1)
#define VME_DMA_PATTERN_INCREMENT (1<<2)
struct vme_dma_attr {
vme_dma_t type;
void *private;
};
struct vme_resource {
enum vme_resource_type type;
struct list_head *entry;
};
extern struct bus_type vme_bus_type;
struct vme_device_id {
int bus;
int slot;
};
struct vme_driver {
struct list_head node;
char *name;
const struct vme_device_id *bind_table;
int (*probe) (struct device *, int, int);
int (*remove) (struct device *, int, int);
void (*shutdown) (void);
struct device_driver driver;
};
void * vme_alloc_consistent(struct vme_resource *, size_t, dma_addr_t *);
void vme_free_consistent(struct vme_resource *, size_t, void *,
dma_addr_t);
size_t vme_get_size(struct vme_resource *);
struct vme_resource * vme_slave_request(struct device *, vme_address_t, vme_cycle_t);
int vme_slave_set (struct vme_resource *, int, unsigned long long,
unsigned long long, dma_addr_t, vme_address_t, vme_cycle_t);
int vme_slave_get (struct vme_resource *, int *, unsigned long long *,
unsigned long long *, dma_addr_t *, vme_address_t *, vme_cycle_t *);
void vme_slave_free(struct vme_resource *);
struct vme_resource * vme_master_request(struct device *, vme_address_t, vme_cycle_t,
vme_width_t);
int vme_master_set (struct vme_resource *, int, unsigned long long,
unsigned long long, vme_address_t, vme_cycle_t, vme_width_t);
int vme_master_get (struct vme_resource *, int *, unsigned long long *,
unsigned long long *, vme_address_t *, vme_cycle_t *, vme_width_t *);
ssize_t vme_master_read(struct vme_resource *, void *, size_t, loff_t);
ssize_t vme_master_write(struct vme_resource *, void *, size_t, loff_t);
unsigned int vme_master_rmw (struct vme_resource *, unsigned int, unsigned int,
unsigned int, loff_t);
void vme_master_free(struct vme_resource *);
struct vme_resource *vme_request_dma(struct device *);
struct vme_dma_list *vme_new_dma_list(struct vme_resource *);
struct vme_dma_attr *vme_dma_pattern_attribute(u32, vme_pattern_t);
struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t);
struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long, vme_address_t,
vme_cycle_t, vme_width_t);
void vme_dma_free_attribute(struct vme_dma_attr *);
int vme_dma_list_add(struct vme_dma_list *, struct vme_dma_attr *,
struct vme_dma_attr *, size_t);
int vme_dma_list_exec(struct vme_dma_list *);
int vme_dma_list_free(struct vme_dma_list *);
int vme_dma_free(struct vme_resource *);
int vme_request_irq(struct device *, int, int,
void (*callback)(int, int, void *), void *);
void vme_free_irq(struct device *, int, int);
int vme_generate_irq(struct device *, int, int);
int vme_lm_set(struct device *, unsigned long long, vme_address_t, vme_cycle_t);
int vme_lm_get(struct device *, unsigned long long *, vme_address_t *,
vme_cycle_t *);
int vme_lm_attach(struct device *, int, void (*callback)(int));
int vme_lm_detach(struct device *, int);
int vme_slot_get(struct device *);
int vme_register_driver (struct vme_driver *);
void vme_unregister_driver (struct vme_driver *);
#endif /* _VME_H_ */
#ifndef _VME_BRIDGE_H_
#define _VME_BRIDGE_H_
#define VME_CRCSR_BUF_SIZE (508*1024)
#define VME_SLOTS_MAX 32
/*
* Resource structures
*/
struct vme_master_resource {
struct list_head list;
struct vme_bridge *parent;
/*
* We are likely to need to access the VME bus in interrupt context, so
* protect master routines with a spinlock rather than a semaphore.
*/
spinlock_t lock;
int locked;
int number;
vme_address_t address_attr;
vme_cycle_t cycle_attr;
vme_width_t width_attr;
struct resource pci_resource; /* XXX Rename to be bus agnostic */
void *kern_base;
};
struct vme_slave_resource {
struct list_head list;
struct vme_bridge *parent;
struct semaphore sem;
int locked;
int number;
vme_address_t address_attr;
vme_cycle_t cycle_attr;
};
struct vme_dma_pattern {
u32 pattern;
vme_pattern_t type;
};
struct vme_dma_pci {
dma_addr_t address;
};
struct vme_dma_vme {
unsigned long long address;
vme_address_t aspace;
vme_cycle_t cycle;
vme_width_t dwidth;
};
struct vme_dma_list {
struct list_head list;
struct vme_dma_resource *parent;
struct list_head entries;
struct semaphore sem;
};
struct vme_dma_resource {
struct list_head list;
struct vme_bridge *parent;
struct semaphore sem;
int locked;
int number;
struct list_head pending;
struct list_head running;
};
struct vme_bus_error {
struct list_head list;
unsigned long long address;
u32 attributes;
};
struct vme_callback {
void (*func)(int, int, void*);
void *priv_data;
};
struct vme_irq {
int count;
struct vme_callback callback[255];
};
/* Allow 16 characters for name (including null character) */
#define VMENAMSIZ 16
/* This structure stores all the information about one bridge
* The structure should be dynamically allocated by the driver and one instance
* of the structure should be present for each VME chip present in the system.
*
* Currently we assume that all chips are PCI-based
*/
struct vme_bridge {
char name[VMENAMSIZ];
int num;
struct list_head master_resources;
struct list_head slave_resources;
struct list_head dma_resources;
struct list_head vme_errors; /* List for errors generated on VME */
/* Bridge Info - XXX Move to private structure? */
struct device *parent; /* Generic device struct (pdev->dev for PCI) */
void * base; /* Base Address of device registers */
struct device dev[VME_SLOTS_MAX]; /* Device registered with
* device model on VME bus
*/
/* Interrupt callbacks */
struct vme_irq irq[7];
/* Slave Functions */
int (*slave_get) (struct vme_slave_resource *, int *,
unsigned long long *, unsigned long long *, dma_addr_t *,
vme_address_t *, vme_cycle_t *);
int (*slave_set) (struct vme_slave_resource *, int, unsigned long long,
unsigned long long, dma_addr_t, vme_address_t, vme_cycle_t);
/* Master Functions */
int (*master_get) (struct vme_master_resource *, int *,
unsigned long long *, unsigned long long *, vme_address_t *,
vme_cycle_t *, vme_width_t *);
int (*master_set) (struct vme_master_resource *, int,
unsigned long long, unsigned long long, vme_address_t,
vme_cycle_t, vme_width_t);
ssize_t (*master_read) (struct vme_master_resource *, void *, size_t,
loff_t);
ssize_t (*master_write) (struct vme_master_resource *, void *, size_t,
loff_t);
unsigned int (*master_rmw) (struct vme_master_resource *, unsigned int,
unsigned int, unsigned int, loff_t);
/* DMA Functions */
int (*dma_list_add) (struct vme_dma_list *, struct vme_dma_attr *,
struct vme_dma_attr *, size_t);
int (*dma_list_exec) (struct vme_dma_list *);
int (*dma_list_empty) (struct vme_dma_list *);
/* Interrupt Functions */
int (*request_irq) (int, int, void (*cback)(int, int, void*), void *);
void (*free_irq) (int, int);
int (*generate_irq) (int, int);
/* Location monitor functions */
int (*lm_set) (unsigned long long, vme_address_t, vme_cycle_t);
int (*lm_get) (unsigned long long *, vme_address_t *, vme_cycle_t *);
int (*lm_attach) (int, void (*callback)(int));
int (*lm_detach) (int);
/* CR/CSR space functions */
int (*slot_get) (void);
/* Use standard master read and write functions to access CR/CSR */
#if 0
int (*set_prefetch) (void);
int (*get_prefetch) (void);
int (*set_arbiter) (void);
int (*get_arbiter) (void);
int (*set_requestor) (void);
int (*get_requestor) (void);
#endif
};
int vme_register_bridge (struct vme_bridge *);
void vme_unregister_bridge (struct vme_bridge *);
#endif /* _VME_BRIDGE_H_ */
#if 0
/*
* VMEbus GET INFO Arg Structure
*/
struct vmeInfoCfg {
int vmeSlotNum; /* VME slot number of interest */
int boardResponded; /* Board responded */
char sysConFlag; /* System controller flag */
int vmeControllerID; /* Vendor/device ID of VME bridge */
int vmeControllerRev; /* Revision of VME bridge */
char osName[8]; /* Name of OS e.g. "Linux" */
int vmeSharedDataValid; /* Validity of data struct */
int vmeDriverRev; /* Revision of VME driver */
unsigned int vmeAddrHi[8]; /* Address on VME bus */
unsigned int vmeAddrLo[8]; /* Address on VME bus */
unsigned int vmeSize[8]; /* Size on VME bus */
unsigned int vmeAm[8]; /* Address modifier on VME bus */
int reserved; /* For future use */
};
typedef struct vmeInfoCfg vmeInfoCfg_t;
/*
* VMEbus Requester Arg Structure
*/
struct vmeRequesterCfg {
int requestLevel; /* Requester Bus Request Level */
char fairMode; /* Requester Fairness Mode Indicator */
int releaseMode; /* Requester Bus Release Mode */
int timeonTimeoutTimer; /* Master Time-on Time-out Timer */
int timeoffTimeoutTimer; /* Master Time-off Time-out Timer */
int reserved; /* For future use */
};
typedef struct vmeRequesterCfg vmeRequesterCfg_t;
/*
* VMEbus Arbiter Arg Structure
*/
struct vmeArbiterCfg {
vme_arbitration_t arbiterMode; /* Arbitration Scheduling Algorithm */
char arbiterTimeoutFlag; /* Arbiter Time-out Timer Indicator */
int globalTimeoutTimer; /* VMEbus Global Time-out Timer */
char noEarlyReleaseFlag; /* No Early Release on BBUSY */
int reserved; /* For future use */
};
typedef struct vmeArbiterCfg vmeArbiterCfg_t;
/*
* VMEbus RMW Configuration Data
*/
struct vmeRmwCfg {
unsigned int targetAddrU; /* VME Address (Upper) to trigger RMW cycle */
unsigned int targetAddr; /* VME Address (Lower) to trigger RMW cycle */
vme_address_t addrSpace; /* VME Address Space */
int enableMask; /* Bit mask defining the bits of interest */
int compareData; /* Data to be compared with the data read */
int swapData; /* Data written to the VMEbus on success */
int maxAttempts; /* Maximum times to try */
int numAttempts; /* Number of attempts before success */
int reserved; /* For future use */
};
typedef struct vmeRmwCfg vmeRmwCfg_t;
/*
* VMEbus Location Monitor Arg Structure
*/
struct vmeLmCfg {
unsigned int addrU; /* Location Monitor Address upper */
unsigned int addr; /* Location Monitor Address lower */
vme_address_t addrSpace; /* Address Space */
int userAccessType; /* User/Supervisor Access Type */
int dataAccessType; /* Data/Program Access Type */
int lmWait; /* Time to wait for access */
int lmEvents; /* Lm event mask */
int reserved; /* For future use */
};
typedef struct vmeLmCfg vmeLmCfg_t;
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment