Commit a25a1d6c authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 microcode updates from Ingo Molnar:
 "The main changes are further simplification and unification of the
  code between the AMD and Intel microcode loaders, plus other
  simplifications - by Borislav Petkov"

* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/microcode/AMD: Remove struct cont_desc.eq_id
  x86/microcode/AMD: Remove AP scanning optimization
  x86/microcode/AMD: Simplify saving from initrd
  x86/microcode/AMD: Unify load_ucode_amd_ap()
  x86/microcode/AMD: Check patch level only on the BSP
  x86/microcode: Remove local vendor variable
  x86/microcode/AMD: Use find_microcode_in_initrd()
  x86/microcode/AMD: Get rid of global this_equiv_id
  x86/microcode: Decrease CPUID use
  x86/microcode/AMD: Rework container parsing
  x86/microcode/AMD: Extend the container struct
  x86/microcode/AMD: Shorten function parameter's name
  x86/microcode/AMD: Clean up find_equiv_id()
  x86/microcode: Convert to bare minimum MSR accessors
  x86/MSR: Carve out bare minimum accessors
parents 280d7a1e f26483ea
...@@ -195,7 +195,7 @@ static inline void native_apic_msr_write(u32 reg, u32 v) ...@@ -195,7 +195,7 @@ static inline void native_apic_msr_write(u32 reg, u32 v)
static inline void native_apic_msr_eoi_write(u32 reg, u32 v) static inline void native_apic_msr_eoi_write(u32 reg, u32 v)
{ {
wrmsr_notrace(APIC_BASE_MSR + (APIC_EOI >> 4), APIC_EOI_ACK, 0); __wrmsr(APIC_BASE_MSR + (APIC_EOI >> 4), APIC_EOI_ACK, 0);
} }
static inline u32 native_apic_msr_read(u32 reg) static inline u32 native_apic_msr_read(u32 reg)
......
...@@ -7,17 +7,16 @@ ...@@ -7,17 +7,16 @@
#define native_rdmsr(msr, val1, val2) \ #define native_rdmsr(msr, val1, val2) \
do { \ do { \
u64 __val = native_read_msr((msr)); \ u64 __val = __rdmsr((msr)); \
(void)((val1) = (u32)__val); \ (void)((val1) = (u32)__val); \
(void)((val2) = (u32)(__val >> 32)); \ (void)((val2) = (u32)(__val >> 32)); \
} while (0) } while (0)
#define native_wrmsr(msr, low, high) \ #define native_wrmsr(msr, low, high) \
native_write_msr(msr, low, high) __wrmsr(msr, low, high)
#define native_wrmsrl(msr, val) \ #define native_wrmsrl(msr, val) \
native_write_msr((msr), \ __wrmsr((msr), (u32)((u64)(val)), \
(u32)((u64)(val)), \
(u32)((u64)(val) >> 32)) (u32)((u64)(val) >> 32))
struct ucode_patch { struct ucode_patch {
......
...@@ -54,6 +54,4 @@ static inline int __init ...@@ -54,6 +54,4 @@ static inline int __init
save_microcode_in_initrd_amd(unsigned int family) { return -EINVAL; } save_microcode_in_initrd_amd(unsigned int family) { return -EINVAL; }
void reload_ucode_amd(void) {} void reload_ucode_amd(void) {}
#endif #endif
extern bool check_current_patch_level(u32 *rev, bool early);
#endif /* _ASM_X86_MICROCODE_AMD_H */ #endif /* _ASM_X86_MICROCODE_AMD_H */
...@@ -80,7 +80,14 @@ static inline void do_trace_read_msr(unsigned int msr, u64 val, int failed) {} ...@@ -80,7 +80,14 @@ static inline void do_trace_read_msr(unsigned int msr, u64 val, int failed) {}
static inline void do_trace_rdpmc(unsigned int msr, u64 val, int failed) {} static inline void do_trace_rdpmc(unsigned int msr, u64 val, int failed) {}
#endif #endif
static inline unsigned long long native_read_msr(unsigned int msr) /*
* __rdmsr() and __wrmsr() are the two primitives which are the bare minimum MSR
* accessors and should not have any tracing or other functionality piggybacking
* on them - those are *purely* for accessing MSRs and nothing more. So don't even
* think of extending them - you will be slapped with a stinking trout or a frozen
* shark will reach you, wherever you are! You've been warned.
*/
static inline unsigned long long notrace __rdmsr(unsigned int msr)
{ {
DECLARE_ARGS(val, low, high); DECLARE_ARGS(val, low, high);
...@@ -88,11 +95,30 @@ static inline unsigned long long native_read_msr(unsigned int msr) ...@@ -88,11 +95,30 @@ static inline unsigned long long native_read_msr(unsigned int msr)
"2:\n" "2:\n"
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe) _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_unsafe)
: EAX_EDX_RET(val, low, high) : "c" (msr)); : EAX_EDX_RET(val, low, high) : "c" (msr));
if (msr_tracepoint_active(__tracepoint_read_msr))
do_trace_read_msr(msr, EAX_EDX_VAL(val, low, high), 0);
return EAX_EDX_VAL(val, low, high); return EAX_EDX_VAL(val, low, high);
} }
static inline void notrace __wrmsr(unsigned int msr, u32 low, u32 high)
{
asm volatile("1: wrmsr\n"
"2:\n"
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe)
: : "c" (msr), "a"(low), "d" (high) : "memory");
}
static inline unsigned long long native_read_msr(unsigned int msr)
{
unsigned long long val;
val = __rdmsr(msr);
if (msr_tracepoint_active(__tracepoint_read_msr))
do_trace_read_msr(msr, val, 0);
return val;
}
static inline unsigned long long native_read_msr_safe(unsigned int msr, static inline unsigned long long native_read_msr_safe(unsigned int msr,
int *err) int *err)
{ {
...@@ -114,31 +140,16 @@ static inline unsigned long long native_read_msr_safe(unsigned int msr, ...@@ -114,31 +140,16 @@ static inline unsigned long long native_read_msr_safe(unsigned int msr,
return EAX_EDX_VAL(val, low, high); return EAX_EDX_VAL(val, low, high);
} }
/* Can be uninlined because referenced by paravirt */
static inline void notrace
__native_write_msr_notrace(unsigned int msr, u32 low, u32 high)
{
asm volatile("1: wrmsr\n"
"2:\n"
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_unsafe)
: : "c" (msr), "a"(low), "d" (high) : "memory");
}
/* Can be uninlined because referenced by paravirt */ /* Can be uninlined because referenced by paravirt */
static inline void notrace static inline void notrace
native_write_msr(unsigned int msr, u32 low, u32 high) native_write_msr(unsigned int msr, u32 low, u32 high)
{ {
__native_write_msr_notrace(msr, low, high); __wrmsr(msr, low, high);
if (msr_tracepoint_active(__tracepoint_write_msr)) if (msr_tracepoint_active(__tracepoint_write_msr))
do_trace_write_msr(msr, ((u64)high << 32 | low), 0); do_trace_write_msr(msr, ((u64)high << 32 | low), 0);
} }
static inline void
wrmsr_notrace(unsigned int msr, u32 low, u32 high)
{
__native_write_msr_notrace(msr, low, high);
}
/* Can be uninlined because referenced by paravirt */ /* Can be uninlined because referenced by paravirt */
static inline int notrace static inline int notrace
native_write_msr_safe(unsigned int msr, u32 low, u32 high) native_write_msr_safe(unsigned int msr, u32 low, u32 high)
......
...@@ -42,16 +42,19 @@ static struct equiv_cpu_entry *equiv_cpu_table; ...@@ -42,16 +42,19 @@ static struct equiv_cpu_entry *equiv_cpu_table;
/* /*
* This points to the current valid container of microcode patches which we will * This points to the current valid container of microcode patches which we will
* save from the initrd/builtin before jettisoning its contents. * save from the initrd/builtin before jettisoning its contents. @mc is the
* microcode patch we found to match.
*/ */
struct container { struct cont_desc {
struct microcode_amd *mc;
u32 cpuid_1_eax;
u32 psize;
u8 *data; u8 *data;
size_t size; size_t size;
} cont; };
static u32 ucode_new_rev; static u32 ucode_new_rev;
static u8 amd_ucode_patch[PATCH_MAX_SIZE]; static u8 amd_ucode_patch[PATCH_MAX_SIZE];
static u16 this_equiv_id;
/* /*
* Microcode patch container file is prepended to the initrd in cpio * Microcode patch container file is prepended to the initrd in cpio
...@@ -60,57 +63,13 @@ static u16 this_equiv_id; ...@@ -60,57 +63,13 @@ static u16 this_equiv_id;
static const char static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
static size_t compute_container_size(u8 *data, u32 total_size) static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
{ {
size_t size = 0; for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
u32 *header = (u32 *)data; if (sig == equiv_table->installed_cpu)
return equiv_table->equiv_cpu;
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return size;
size = header[2] + CONTAINER_HDR_SZ;
total_size -= size;
data += size;
while (total_size) {
u16 patch_size;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE)
break;
/*
* Sanity-check patch size.
*/
patch_size = header[1];
if (patch_size > PATCH_MAX_SIZE)
break;
size += patch_size + SECTION_HDR_SIZE;
data += patch_size + SECTION_HDR_SIZE;
total_size -= patch_size + SECTION_HDR_SIZE;
} }
return size;
}
static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
unsigned int sig)
{
int i = 0;
if (!equiv_cpu_table)
return 0;
while (equiv_cpu_table[i].installed_cpu != 0) {
if (sig == equiv_cpu_table[i].installed_cpu)
return equiv_cpu_table[i].equiv_cpu;
i++;
}
return 0; return 0;
} }
...@@ -118,91 +77,109 @@ static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table, ...@@ -118,91 +77,109 @@ static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
* This scans the ucode blob for the proper container as we can have multiple * This scans the ucode blob for the proper container as we can have multiple
* containers glued together. Returns the equivalence ID from the equivalence * containers glued together. Returns the equivalence ID from the equivalence
* table or 0 if none found. * table or 0 if none found.
* Returns the amount of bytes consumed while scanning. @desc contains all the
* data we're going to use in later stages of the application.
*/ */
static u16 static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
{ {
struct container ret = { NULL, 0 };
u32 eax, ebx, ecx, edx;
struct equiv_cpu_entry *eq; struct equiv_cpu_entry *eq;
int offset, left; ssize_t orig_size = size;
u16 eq_id = 0; u32 *hdr = (u32 *)ucode;
u32 *header; u16 eq_id;
u8 *data; u8 *buf;
data = ucode; /* Am I looking at an equivalence table header? */
left = size; if (hdr[0] != UCODE_MAGIC ||
header = (u32 *)data; hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
hdr[2] == 0)
return CONTAINER_HDR_SZ;
buf = ucode;
/* find equiv cpu table */ eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return eq_id;
eax = 0x00000001; /* Find the equivalence ID of our CPU in this table: */
ecx = 0; eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
native_cpuid(&eax, &ebx, &ecx, &edx);
while (left > 0) { buf += hdr[2] + CONTAINER_HDR_SZ;
eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ); size -= hdr[2] + CONTAINER_HDR_SZ;
ret.data = data; /*
* Scan through the rest of the container to find where it ends. We do
* some basic sanity-checking too.
*/
while (size > 0) {
struct microcode_amd *mc;
u32 patch_size;
/* Advance past the container header */ hdr = (u32 *)buf;
offset = header[2] + CONTAINER_HDR_SZ;
data += offset;
left -= offset;
eq_id = find_equiv_id(eq, eax); if (hdr[0] != UCODE_UCODE_TYPE)
if (eq_id) { break;
ret.size = compute_container_size(ret.data, left + offset);
/* /* Sanity-check patch size. */
* truncate how much we need to iterate over in the patch_size = hdr[1];
* ucode update loop below if (patch_size > PATCH_MAX_SIZE)
*/ break;
left = ret.size - offset;
/* Skip patch section header: */
buf += SECTION_HDR_SIZE;
size -= SECTION_HDR_SIZE;
mc = (struct microcode_amd *)buf;
if (eq_id == mc->hdr.processor_rev_id) {
desc->psize = patch_size;
desc->mc = mc;
}
*ret_cont = ret; buf += patch_size;
return eq_id; size -= patch_size;
} }
/* /*
* support multiple container files appended together. if this * If we have found a patch (desc->mc), it means we're looking at the
* one does not have a matching equivalent cpu entry, we fast * container which has a patch for this CPU so return 0 to mean, @ucode
* forward to the next container file. * already points to the proper container. Otherwise, we return the size
* we scanned so that we can advance to the next container in the
* buffer.
*/ */
while (left > 0) { if (desc->mc) {
header = (u32 *)data; desc->data = ucode;
desc->size = orig_size - size;
if (header[0] == UCODE_MAGIC && return 0;
header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
break;
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
} }
/* mark where the next microcode container file starts */ return orig_size - size;
offset = data - (u8 *)ucode; }
ucode = data;
}
return eq_id; /*
* Scan the ucode blob for the proper container as we can have multiple
* containers glued together.
*/
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
ssize_t rem = size;
while (rem >= 0) {
ssize_t s = parse_container(ucode, rem, desc);
if (!s)
return;
ucode += s;
rem -= s;
}
} }
static int __apply_microcode_amd(struct microcode_amd *mc_amd) static int __apply_microcode_amd(struct microcode_amd *mc)
{ {
u32 rev, dummy; u32 rev, dummy;
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code); native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
/* verify patch application was successful */ /* verify patch application was successful */
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev != mc_amd->hdr.patch_id) if (rev != mc->hdr.patch_id)
return -1; return -1;
return 0; return 0;
...@@ -217,17 +194,16 @@ static int __apply_microcode_amd(struct microcode_amd *mc_amd) ...@@ -217,17 +194,16 @@ static int __apply_microcode_amd(struct microcode_amd *mc_amd)
* load_microcode_amd() to save equivalent cpu table and microcode patches in * load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory. * kernel heap memory.
* *
* Returns true if container found (sets @ret_cont), false otherwise. * Returns true if container found (sets @desc), false otherwise.
*/ */
static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch, static bool
struct container *ret_cont) apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
{ {
struct cont_desc desc = { 0 };
u8 (*patch)[PATCH_MAX_SIZE]; u8 (*patch)[PATCH_MAX_SIZE];
u32 rev, *header, *new_rev; struct microcode_amd *mc;
struct container ret; u32 rev, dummy, *new_rev;
int offset, left; bool ret = false;
u16 eq_id = 0;
u8 *data;
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
...@@ -237,50 +213,27 @@ static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch, ...@@ -237,50 +213,27 @@ static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch,
patch = &amd_ucode_patch; patch = &amd_ucode_patch;
#endif #endif
if (check_current_patch_level(&rev, true)) desc.cpuid_1_eax = cpuid_1_eax;
return false;
eq_id = find_proper_container(ucode, size, &ret); scan_containers(ucode, size, &desc);
if (!eq_id)
return false;
this_equiv_id = eq_id;
header = (u32 *)ret.data;
/* We're pointing to an equiv table, skip over it. */
data = ret.data + header[2] + CONTAINER_HDR_SZ;
left = ret.size - (header[2] + CONTAINER_HDR_SZ);
while (left > 0) {
struct microcode_amd *mc;
header = (u32 *)data; mc = desc.mc;
if (header[0] != UCODE_UCODE_TYPE || /* type */ if (!mc)
header[1] == 0) /* size */ return ret;
break;
mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) { native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev >= mc->hdr.patch_id)
return ret;
if (!__apply_microcode_amd(mc)) { if (!__apply_microcode_amd(mc)) {
rev = mc->hdr.patch_id; *new_rev = mc->hdr.patch_id;
*new_rev = rev; ret = true;
if (save_patch) if (save_patch)
memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE)); memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
}
}
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
} }
if (ret_cont) return ret;
*ret_cont = ret;
return true;
} }
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
...@@ -298,10 +251,9 @@ static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) ...@@ -298,10 +251,9 @@ static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
#endif #endif
} }
void __init load_ucode_amd_bsp(unsigned int family) void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
{ {
struct ucode_cpu_info *uci; struct ucode_cpu_info *uci;
u32 eax, ebx, ecx, edx;
struct cpio_data cp; struct cpio_data cp;
const char *path; const char *path;
bool use_pa; bool use_pa;
...@@ -316,184 +268,95 @@ void __init load_ucode_amd_bsp(unsigned int family) ...@@ -316,184 +268,95 @@ void __init load_ucode_amd_bsp(unsigned int family)
use_pa = false; use_pa = false;
} }
if (!get_builtin_microcode(&cp, family)) if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
cp = find_microcode_in_initrd(path, use_pa); cp = find_microcode_in_initrd(path, use_pa);
if (!(cp.data && cp.size)) /* Needed in load_microcode_amd() */
return; uci->cpu_sig.sig = cpuid_1_eax;
/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
eax = 1;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
uci->cpu_sig.sig = eax;
apply_microcode_early_amd(cp.data, cp.size, true, NULL); *ret = cp;
} }
#ifdef CONFIG_X86_32 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
/*
* On 32-bit, since AP's early load occurs before paging is turned on, we
* cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
* So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
* In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
* which is used upon resume from suspend.
*/
void load_ucode_amd_ap(unsigned int family)
{ {
struct microcode_amd *mc; struct cpio_data cp = { };
struct cpio_data cp;
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
__apply_microcode_amd(mc);
return;
}
if (!get_builtin_microcode(&cp, family))
cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
__load_ucode_amd(cpuid_1_eax, &cp);
if (!(cp.data && cp.size)) if (!(cp.data && cp.size))
return; return;
/* apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
* This would set amd_ucode_patch above so that the following APs can
* use it directly instead of going down this path again.
*/
apply_microcode_early_amd(cp.data, cp.size, true, NULL);
} }
#else
void load_ucode_amd_ap(unsigned int family) void load_ucode_amd_ap(unsigned int cpuid_1_eax)
{ {
struct equiv_cpu_entry *eq;
struct microcode_amd *mc; struct microcode_amd *mc;
u32 rev, eax; struct cpio_data cp;
u16 eq_id; u32 *new_rev, rev, dummy;
/* 64-bit runs with paging enabled, thus early==false. */
if (check_current_patch_level(&rev, false))
return;
/* First AP hasn't cached it yet, go through the blob. */
if (!cont.data) {
struct cpio_data cp = { NULL, 0, "" };
if (cont.size == -1)
return;
reget: if (IS_ENABLED(CONFIG_X86_32)) {
if (!get_builtin_microcode(&cp, family)) { mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
#ifdef CONFIG_BLK_DEV_INITRD new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
if (!initrd_gone) } else {
cp = find_cpio_data(ucode_path, (void *)initrd_start, mc = (struct microcode_amd *)amd_ucode_patch;
initrd_end - initrd_start, NULL); new_rev = &ucode_new_rev;
#endif
if (!(cp.data && cp.size)) {
/*
* Mark it so that other APs do not scan again
* for no real reason and slow down boot
* needlessly.
*/
cont.size = -1;
return;
}
} }
if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) { native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
cont.size = -1;
/* Check whether we have saved a new patch already: */
if (*new_rev && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) {
*new_rev = mc->hdr.patch_id;
return; return;
} }
} }
eax = cpuid_eax(0x00000001); __load_ucode_amd(cpuid_1_eax, &cp);
eq = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ); if (!(cp.data && cp.size))
eq_id = find_equiv_id(eq, eax);
if (!eq_id)
return; return;
if (eq_id == this_equiv_id) { apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
mc = (struct microcode_amd *)amd_ucode_patch;
if (mc && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc))
ucode_new_rev = mc->hdr.patch_id;
}
} else {
/*
* AP has a different equivalence ID than BSP, looks like
* mixed-steppings silicon so go through the ucode blob anew.
*/
goto reget;
}
} }
#endif /* CONFIG_X86_32 */
static enum ucode_state static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size); load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);
int __init save_microcode_in_initrd_amd(unsigned int fam) int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
{ {
struct cont_desc desc = { 0 };
enum ucode_state ret; enum ucode_state ret;
int retval = 0; struct cpio_data cp;
u16 eq_id;
if (!cont.data) {
if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
struct cpio_data cp = { NULL, 0, "" };
#ifdef CONFIG_BLK_DEV_INITRD
cp = find_cpio_data(ucode_path, (void *)initrd_start,
initrd_end - initrd_start, NULL);
#endif
if (!(cp.data && cp.size)) { cp = find_microcode_in_initrd(ucode_path, false);
cont.size = -1; if (!(cp.data && cp.size))
return -EINVAL; return -EINVAL;
}
eq_id = find_proper_container(cp.data, cp.size, &cont); desc.cpuid_1_eax = cpuid_1_eax;
if (!eq_id) {
cont.size = -1;
return -EINVAL;
}
} else scan_containers(cp.data, cp.size, &desc);
if (!desc.mc)
return -EINVAL; return -EINVAL;
}
ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size); ret = load_microcode_amd(smp_processor_id(), x86_family(cpuid_1_eax),
desc.data, desc.size);
if (ret != UCODE_OK) if (ret != UCODE_OK)
retval = -EINVAL; return -EINVAL;
/*
* This will be freed any msec now, stash patches for the current
* family and switch to patch cache for cpu hotplug, etc later.
*/
cont.data = NULL;
cont.size = 0;
return retval; return 0;
} }
void reload_ucode_amd(void) void reload_ucode_amd(void)
{ {
struct microcode_amd *mc; struct microcode_amd *mc;
u32 rev; u32 rev, dummy;
/*
* early==false because this is a syscore ->resume path and by
* that time paging is long enabled.
*/
if (check_current_patch_level(&rev, false))
return;
mc = (struct microcode_amd *)amd_ucode_patch; mc = (struct microcode_amd *)amd_ucode_patch;
if (!mc) if (!mc)
return; return;
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev < mc->hdr.patch_id) { if (rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) { if (!__apply_microcode_amd(mc)) {
ucode_new_rev = mc->hdr.patch_id; ucode_new_rev = mc->hdr.patch_id;
...@@ -631,60 +494,13 @@ static unsigned int verify_patch_size(u8 family, u32 patch_size, ...@@ -631,60 +494,13 @@ static unsigned int verify_patch_size(u8 family, u32 patch_size,
return patch_size; return patch_size;
} }
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* @rev: Use it to return the patch level. It is set to 0 in the case of
* error.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
bool check_current_patch_level(u32 *rev, bool early)
{
u32 lvl, dummy, i;
bool ret = false;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32) && early)
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i]) {
lvl = 0;
ret = true;
break;
}
}
if (rev)
*rev = lvl;
return ret;
}
static int apply_microcode_amd(int cpu) static int apply_microcode_amd(int cpu)
{ {
struct cpuinfo_x86 *c = &cpu_data(cpu); struct cpuinfo_x86 *c = &cpu_data(cpu);
struct microcode_amd *mc_amd; struct microcode_amd *mc_amd;
struct ucode_cpu_info *uci; struct ucode_cpu_info *uci;
struct ucode_patch *p; struct ucode_patch *p;
u32 rev; u32 rev, dummy;
BUG_ON(raw_smp_processor_id() != cpu); BUG_ON(raw_smp_processor_id() != cpu);
...@@ -697,8 +513,7 @@ static int apply_microcode_amd(int cpu) ...@@ -697,8 +513,7 @@ static int apply_microcode_amd(int cpu)
mc_amd = p->data; mc_amd = p->data;
uci->mc = p->data; uci->mc = p->data;
if (check_current_patch_level(&rev, false)) rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
return -1;
/* need to apply patch? */ /* need to apply patch? */
if (rev >= mc_amd->hdr.patch_id) { if (rev >= mc_amd->hdr.patch_id) {
......
...@@ -66,19 +66,50 @@ static DEFINE_MUTEX(microcode_mutex); ...@@ -66,19 +66,50 @@ static DEFINE_MUTEX(microcode_mutex);
struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
/*
* Operations that are run on a target cpu:
*/
struct cpu_info_ctx { struct cpu_info_ctx {
struct cpu_signature *cpu_sig; struct cpu_signature *cpu_sig;
int err; int err;
}; };
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
static bool amd_check_current_patch_level(void)
{
u32 lvl, dummy, i;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32))
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i])
return true;
}
return false;
}
static bool __init check_loader_disabled_bsp(void) static bool __init check_loader_disabled_bsp(void)
{ {
static const char *__dis_opt_str = "dis_ucode_ldr"; static const char *__dis_opt_str = "dis_ucode_ldr";
u32 a, b, c, d;
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
const char *cmdline = (const char *)__pa_nodebug(boot_command_line); const char *cmdline = (const char *)__pa_nodebug(boot_command_line);
...@@ -94,18 +125,19 @@ static bool __init check_loader_disabled_bsp(void) ...@@ -94,18 +125,19 @@ static bool __init check_loader_disabled_bsp(void)
if (!have_cpuid_p()) if (!have_cpuid_p())
return *res; return *res;
a = 1;
c = 0;
native_cpuid(&a, &b, &c, &d);
/* /*
* CPUID(1).ECX[31]: reserved for hypervisor use. This is still not * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
* completely accurate as xen pv guests don't see that CPUID bit set but * completely accurate as xen pv guests don't see that CPUID bit set but
* that's good enough as they don't land on the BSP path anyway. * that's good enough as they don't land on the BSP path anyway.
*/ */
if (c & BIT(31)) if (native_cpuid_ecx(1) & BIT(31))
return *res; return *res;
if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
if (amd_check_current_patch_level())
return *res;
}
if (cmdline_find_option_bool(cmdline, option) <= 0) if (cmdline_find_option_bool(cmdline, option) <= 0)
*res = false; *res = false;
...@@ -133,23 +165,21 @@ bool get_builtin_firmware(struct cpio_data *cd, const char *name) ...@@ -133,23 +165,21 @@ bool get_builtin_firmware(struct cpio_data *cd, const char *name)
void __init load_ucode_bsp(void) void __init load_ucode_bsp(void)
{ {
int vendor; unsigned int cpuid_1_eax;
unsigned int family;
if (check_loader_disabled_bsp()) if (check_loader_disabled_bsp())
return; return;
vendor = x86_cpuid_vendor(); cpuid_1_eax = native_cpuid_eax(1);
family = x86_cpuid_family();
switch (vendor) { switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL: case X86_VENDOR_INTEL:
if (family >= 6) if (x86_family(cpuid_1_eax) >= 6)
load_ucode_intel_bsp(); load_ucode_intel_bsp();
break; break;
case X86_VENDOR_AMD: case X86_VENDOR_AMD:
if (family >= 0x10) if (x86_family(cpuid_1_eax) >= 0x10)
load_ucode_amd_bsp(family); load_ucode_amd_bsp(cpuid_1_eax);
break; break;
default: default:
break; break;
...@@ -167,22 +197,21 @@ static bool check_loader_disabled_ap(void) ...@@ -167,22 +197,21 @@ static bool check_loader_disabled_ap(void)
void load_ucode_ap(void) void load_ucode_ap(void)
{ {
int vendor, family; unsigned int cpuid_1_eax;
if (check_loader_disabled_ap()) if (check_loader_disabled_ap())
return; return;
vendor = x86_cpuid_vendor(); cpuid_1_eax = native_cpuid_eax(1);
family = x86_cpuid_family();
switch (vendor) { switch (x86_cpuid_vendor()) {
case X86_VENDOR_INTEL: case X86_VENDOR_INTEL:
if (family >= 6) if (x86_family(cpuid_1_eax) >= 6)
load_ucode_intel_ap(); load_ucode_intel_ap();
break; break;
case X86_VENDOR_AMD: case X86_VENDOR_AMD:
if (family >= 0x10) if (x86_family(cpuid_1_eax) >= 0x10)
load_ucode_amd_ap(family); load_ucode_amd_ap(cpuid_1_eax);
break; break;
default: default:
break; break;
...@@ -201,7 +230,7 @@ static int __init save_microcode_in_initrd(void) ...@@ -201,7 +230,7 @@ static int __init save_microcode_in_initrd(void)
break; break;
case X86_VENDOR_AMD: case X86_VENDOR_AMD:
if (c->x86 >= 0x10) if (c->x86 >= 0x10)
ret = save_microcode_in_initrd_amd(c->x86); return save_microcode_in_initrd_amd(cpuid_eax(1));
break; break;
default: default:
break; break;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment