Commit a960d61c authored by Rex Zhu's avatar Rex Zhu Committed by Alex Deucher

drm/amd/powerplay: add raven support in hwmgr. (v2)

hwmgr handles the GPU power state management.

v2: squash in updates (Alex)
Signed-off-by: default avatarRex Zhu <Rex.Zhu@amd.com>
Reviewed-by: default avatarAlex Deucher <alexander.deucher@amd.com>
Reviewed-by: default avatarHawking Zhang <Hawking.Zhang@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 4fa483e5
......@@ -42,8 +42,8 @@ static int pem_init(struct pp_eventmgr *eventmgr)
/* Call initialization event */
result = pem_handle_event(eventmgr, AMD_PP_EVENT_INITIALIZE, &event_data);
if (0 != result)
return result;
/* if (0 != result)
return result; */
/* Register interrupt callback functions */
result = pem_register_interrupts(eventmgr);
......
......@@ -9,7 +9,7 @@ HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \
smu7_hwmgr.o smu7_powertune.o smu7_thermal.o \
smu7_clockpowergating.o \
vega10_processpptables.o vega10_hwmgr.o vega10_powertune.o \
vega10_thermal.o pp_overdriver.o
vega10_thermal.o pp_overdriver.o rv_hwmgr.o
AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR))
......
......@@ -115,6 +115,15 @@ int hwmgr_early_init(struct pp_instance *handle)
return -EINVAL;
}
break;
case AMDGPU_FAMILY_RV:
switch (hwmgr->chip_id) {
case CHIP_RAVEN:
rv_init_function_pointers(hwmgr);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
......
......@@ -1015,6 +1015,10 @@ static int init_overdrive_limits(struct pp_hwmgr *hwmgr,
hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0;
hwmgr->platform_descriptor.minOverdriveVDDC = 0;
hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
hwmgr->platform_descriptor.overdriveVDDCStep = 0;
if (hwmgr->chip_id == CHIP_RAVEN)
return 0;
/* We assume here that fw_info is unchanged if this call fails.*/
fw_info = cgs_atom_get_data_table(hwmgr->device,
......
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "rv_ppsmc.h"
#include "rv_hwmgr.h"
#include "power_state.h"
#include "rv_smumgr.h"
#define RAVEN_MAX_DEEPSLEEP_DIVIDER_ID 5
#define RAVEN_MINIMUM_ENGINE_CLOCK 800 //8Mhz, the low boundary of engine clock allowed on this chip
#define SCLK_MIN_DIV_INTV_SHIFT 12
#define RAVEN_DISPCLK_BYPASS_THRESHOLD 10000 //100mhz
#define SMC_RAM_END 0x40000
static const unsigned long PhwRaven_Magic = (unsigned long) PHM_Cz_Magic;
struct phm_vq_budgeting_record rv_vqtable[] = {
/* _TBD
* CUs, SSP low, SSP High, Min Sclk Low, Min Sclk, High, AWD/non-AWD, DCLK, ECLK, Sustainable Sclk, Sustainable CUs */
{ 8, 0, 45, 0, 0, VQ_DisplayConfig_NoneAWD, 80000, 120000, 4, 0 },
};
static struct rv_power_state *cast_rv_ps(struct pp_hw_power_state *hw_ps)
{
if (PhwRaven_Magic != hw_ps->magic)
return NULL;
return (struct rv_power_state *)hw_ps;
}
static const struct rv_power_state *cast_const_rv_ps(
const struct pp_hw_power_state *hw_ps)
{
if (PhwRaven_Magic != hw_ps->magic)
return NULL;
return (struct rv_power_state *)hw_ps;
}
static int rv_init_vq_budget_table(struct pp_hwmgr *hwmgr)
{
uint32_t table_size, i;
struct phm_vq_budgeting_table *ptable;
uint32_t num_entries = (sizeof(rv_vqtable) / sizeof(*rv_vqtable));
if (hwmgr->dyn_state.vq_budgeting_table != NULL)
return 0;
table_size = sizeof(struct phm_vq_budgeting_table) +
sizeof(struct phm_vq_budgeting_record) * (num_entries - 1);
ptable = kzalloc(table_size, GFP_KERNEL);
if (NULL == ptable)
return -ENOMEM;
ptable->numEntries = (uint8_t) num_entries;
for (i = 0; i < ptable->numEntries; i++) {
ptable->entries[i].ulCUs = rv_vqtable[i].ulCUs;
ptable->entries[i].ulSustainableSOCPowerLimitLow = rv_vqtable[i].ulSustainableSOCPowerLimitLow;
ptable->entries[i].ulSustainableSOCPowerLimitHigh = rv_vqtable[i].ulSustainableSOCPowerLimitHigh;
ptable->entries[i].ulMinSclkLow = rv_vqtable[i].ulMinSclkLow;
ptable->entries[i].ulMinSclkHigh = rv_vqtable[i].ulMinSclkHigh;
ptable->entries[i].ucDispConfig = rv_vqtable[i].ucDispConfig;
ptable->entries[i].ulDClk = rv_vqtable[i].ulDClk;
ptable->entries[i].ulEClk = rv_vqtable[i].ulEClk;
ptable->entries[i].ulSustainableSclk = rv_vqtable[i].ulSustainableSclk;
ptable->entries[i].ulSustainableCUs = rv_vqtable[i].ulSustainableCUs;
}
hwmgr->dyn_state.vq_budgeting_table = ptable;
return 0;
}
static int rv_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_hwmgr = (struct rv_hwmgr *)(hwmgr->backend);
struct cgs_system_info sys_info = {0};
int result;
rv_hwmgr->ddi_power_gating_disabled = 0;
rv_hwmgr->bapm_enabled = 1;
rv_hwmgr->dce_slow_sclk_threshold = 30000;
rv_hwmgr->disable_driver_thermal_policy = 1;
rv_hwmgr->thermal_auto_throttling_treshold = 0;
rv_hwmgr->is_nb_dpm_enabled = 1;
rv_hwmgr->dpm_flags = 1;
rv_hwmgr->disable_smu_acp_s3_handshake = 1;
rv_hwmgr->disable_notify_smu_vpu_recovery = 0;
rv_hwmgr->gfx_off_controled_by_driver = false;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicM3Arbiter);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDynamicPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SamuPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ACP);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GFXDynamicMGPowerGating);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableVoltageIsland);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (!result) {
if (sys_info.value & AMD_PG_SUPPORT_GFX_DMG)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GFXDynamicMGPowerGating);
}
return 0;
}
static int rv_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
struct phm_clock_and_voltage_limits *table)
{
return 0;
}
static int rv_init_dynamic_state_adjustment_rule_settings(
struct pp_hwmgr *hwmgr)
{
uint32_t table_size =
sizeof(struct phm_clock_voltage_dependency_table) +
(7 * sizeof(struct phm_clock_voltage_dependency_record));
struct phm_clock_voltage_dependency_table *table_clk_vlt =
kzalloc(table_size, GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate memory!\n");
return -ENOMEM;
}
table_clk_vlt->count = 8;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
table_clk_vlt->entries[1].v = 1;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
table_clk_vlt->entries[2].v = 2;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
table_clk_vlt->entries[3].v = 3;
table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
table_clk_vlt->entries[4].v = 4;
table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
table_clk_vlt->entries[5].v = 5;
table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
table_clk_vlt->entries[6].v = 6;
table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
table_clk_vlt->entries[7].v = 7;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
return 0;
}
static int rv_get_system_info_data(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)hwmgr->backend;
rv_data->sys_info.htc_hyst_lmt = 5;
rv_data->sys_info.htc_tmp_lmt = 203;
if (rv_data->thermal_auto_throttling_treshold == 0)
rv_data->thermal_auto_throttling_treshold = 203;
rv_construct_max_power_limits_table (hwmgr,
&hwmgr->dyn_state.max_clock_voltage_on_ac);
rv_init_dynamic_state_adjustment_rule_settings(hwmgr);
return 0;
}
static int rv_construct_boot_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int rv_tf_set_isp_clock_limit(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
return 0;
}
static int rv_tf_set_num_active_display(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
uint32_t num_of_active_displays = 0;
struct cgs_display_info info = {0};
cgs_get_active_displays_info(hwmgr->device, &info);
num_of_active_displays = info.display_count;
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetDisplayCount,
num_of_active_displays);
return 0;
}
static const struct phm_master_table_item rv_set_power_state_list[] = {
{ NULL, rv_tf_set_isp_clock_limit },
{ NULL, rv_tf_set_num_active_display },
{ }
};
static const struct phm_master_table_header rv_set_power_state_master = {
0,
PHM_MasterTableFlag_None,
rv_set_power_state_list
};
static int rv_tf_init_power_gate_state(struct pp_hwmgr *hwmgr, void *input,
void *output, void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
rv_data->vcn_power_gated = true;
rv_data->isp_tileA_power_gated = true;
rv_data->isp_tileB_power_gated = true;
return 0;
}
static const struct phm_master_table_item rv_setup_asic_list[] = {
{ .tableFunction = rv_tf_init_power_gate_state },
{ }
};
static const struct phm_master_table_header rv_setup_asic_master = {
0,
PHM_MasterTableFlag_None,
rv_setup_asic_list
};
static int rv_tf_reset_cc6_data(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
rv_data->separation_time = 0;
rv_data->cc6_disable = false;
rv_data->pstate_disable = false;
rv_data->cc6_setting_changed = false;
return 0;
}
static const struct phm_master_table_item rv_power_down_asic_list[] = {
{ .tableFunction = rv_tf_reset_cc6_data },
{ }
};
static const struct phm_master_table_header rv_power_down_asic_master = {
0,
PHM_MasterTableFlag_None,
rv_power_down_asic_list
};
static int rv_tf_disable_gfx_off(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
if (rv_data->gfx_off_controled_by_driver)
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_DisableGfxOff);
return 0;
}
static const struct phm_master_table_item rv_disable_dpm_list[] = {
{NULL, rv_tf_disable_gfx_off},
{ },
};
static const struct phm_master_table_header rv_disable_dpm_master = {
0,
PHM_MasterTableFlag_None,
rv_disable_dpm_list
};
static int rv_tf_enable_gfx_off(struct pp_hwmgr *hwmgr,
void *input, void *output,
void *storage, int result)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
if (rv_data->gfx_off_controled_by_driver)
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_EnableGfxOff);
return 0;
}
static const struct phm_master_table_item rv_enable_dpm_list[] = {
{NULL, rv_tf_enable_gfx_off},
{ },
};
static const struct phm_master_table_header rv_enable_dpm_master = {
0,
PHM_MasterTableFlag_None,
rv_enable_dpm_list
};
static int rv_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *prequest_ps,
const struct pp_power_state *pcurrent_ps)
{
return 0;
}
/* temporary hardcoded clock voltage breakdown tables */
DpmClock_t VddDcfClk[]= {
{ 300, 2600},
{ 600, 3200},
{ 600, 3600},
};
DpmClock_t VddSocClk[]= {
{ 478, 2600},
{ 722, 3200},
{ 722, 3600},
};
DpmClock_t VddFClk[]= {
{ 400, 2600},
{1200, 3200},
{1200, 3600},
};
DpmClock_t VddDispClk[]= {
{ 435, 2600},
{ 661, 3200},
{1086, 3600},
};
DpmClock_t VddDppClk[]= {
{ 435, 2600},
{ 661, 3200},
{ 661, 3600},
};
DpmClock_t VddPhyClk[]= {
{ 540, 2600},
{ 810, 3200},
{ 810, 3600},
};
static int rv_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
struct rv_voltage_dependency_table **pptable,
uint32_t num_entry, DpmClock_t *pclk_dependency_table)
{
uint32_t table_size, i;
struct rv_voltage_dependency_table *ptable;
table_size = sizeof(uint32_t) + sizeof(struct rv_voltage_dependency_table) * num_entry;
ptable = kzalloc(table_size, GFP_KERNEL);
if (NULL == ptable)
return -ENOMEM;
ptable->count = num_entry;
for (i = 0; i < ptable->count; i++) {
ptable->entries[i].clk = pclk_dependency_table->Freq * 100;
ptable->entries[i].vol = pclk_dependency_table->Vol;
pclk_dependency_table++;
}
*pptable = ptable;
return 0;
}
static int rv_populate_clock_table(struct pp_hwmgr *hwmgr)
{
int result;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
DpmClocks_t *table = &(rv_data->clock_table);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
result = rv_copy_table_from_smc(hwmgr->smumgr, (uint8_t *)table, CLOCKTABLE);
PP_ASSERT_WITH_CODE((0 == result),
"Attempt to copy clock table from smc failed",
return result);
if (0 == result && table->DcefClocks[0].Freq != 0) {
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
NUM_DCEFCLK_DPM_LEVELS,
&rv_data->clock_table.DcefClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
NUM_SOCCLK_DPM_LEVELS,
&rv_data->clock_table.SocClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
NUM_FCLK_DPM_LEVELS,
&rv_data->clock_table.FClocks[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
NUM_MEMCLK_DPM_LEVELS,
&rv_data->clock_table.MemClocks[0]);
} else {
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
sizeof(VddDcfClk)/sizeof(*VddDcfClk), &VddDcfClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
sizeof(VddSocClk)/sizeof(*VddSocClk), &VddSocClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
sizeof(VddFClk)/sizeof(*VddFClk), &VddFClk[0]);
}
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
sizeof(VddDispClk)/sizeof(*VddDispClk), &VddDispClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
sizeof(VddDppClk)/sizeof(*VddDppClk), &VddDppClk[0]);
rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
sizeof(VddPhyClk)/sizeof(*VddPhyClk), &VddPhyClk[0]);
return 0;
}
static int rv_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct rv_hwmgr *data;
data = kzalloc(sizeof(struct rv_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
result = rv_initialize_dpm_defaults(hwmgr);
if (result != 0) {
pr_err("rv_initialize_dpm_defaults failed\n");
return result;
}
rv_populate_clock_table(hwmgr);
result = rv_get_system_info_data(hwmgr);
if (result != 0) {
pr_err("rv_get_system_info_data failed\n");
return result;
}
rv_construct_boot_state(hwmgr);
result = phm_construct_table(hwmgr, &rv_setup_asic_master,
&(hwmgr->setup_asic));
if (result != 0) {
pr_err("Fail to construct setup ASIC\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_power_down_asic_master,
&(hwmgr->power_down_asic));
if (result != 0) {
pr_err("Fail to construct power down ASIC\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_set_power_state_master,
&(hwmgr->set_power_state));
if (result != 0) {
pr_err("Fail to construct set_power_state\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_disable_dpm_master,
&(hwmgr->disable_dynamic_state_management));
if (result != 0) {
pr_err("Fail to disable_dynamic_state\n");
return result;
}
result = phm_construct_table(hwmgr, &rv_enable_dpm_master,
&(hwmgr->enable_dynamic_state_management));
if (result != 0) {
pr_err("Fail to enable_dynamic_state\n");
return result;
}
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
RAVEN_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels =
RAVEN_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.vbiosInterruptId = 0;
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
rv_init_vq_budget_table(hwmgr);
return result;
}
static int rv_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
phm_destroy_table(hwmgr, &(hwmgr->set_power_state));
phm_destroy_table(hwmgr, &(hwmgr->enable_dynamic_state_management));
phm_destroy_table(hwmgr, &(hwmgr->disable_dynamic_state_management));
phm_destroy_table(hwmgr, &(hwmgr->power_down_asic));
phm_destroy_table(hwmgr, &(hwmgr->setup_asic));
if (pinfo->vdd_dep_on_dcefclk) {
kfree(pinfo->vdd_dep_on_dcefclk);
pinfo->vdd_dep_on_dcefclk = NULL;
}
if (pinfo->vdd_dep_on_socclk) {
kfree(pinfo->vdd_dep_on_socclk);
pinfo->vdd_dep_on_socclk = NULL;
}
if (pinfo->vdd_dep_on_fclk) {
kfree(pinfo->vdd_dep_on_fclk);
pinfo->vdd_dep_on_fclk = NULL;
}
if (pinfo->vdd_dep_on_dispclk) {
kfree(pinfo->vdd_dep_on_dispclk);
pinfo->vdd_dep_on_dispclk = NULL;
}
if (pinfo->vdd_dep_on_dppclk) {
kfree(pinfo->vdd_dep_on_dppclk);
pinfo->vdd_dep_on_dppclk = NULL;
}
if (pinfo->vdd_dep_on_phyclk) {
kfree(pinfo->vdd_dep_on_phyclk);
pinfo->vdd_dep_on_phyclk = NULL;
}
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int rv_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
return 0;
}
static int rv_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
return 0;
}
static int rv_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
return 0;
}
static int rv_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static int rv_dpm_get_pp_table_entry_callback(
struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps,
unsigned int index,
const void *clock_info)
{
struct rv_power_state *rv_ps = cast_rv_ps(hw_ps);
const ATOM_PPLIB_CZ_CLOCK_INFO *rv_clock_info = clock_info;
struct phm_clock_voltage_dependency_table *table =
hwmgr->dyn_state.vddc_dependency_on_sclk;
uint8_t clock_info_index = rv_clock_info->index;
if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1))
clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1);
rv_ps->levels[index].engine_clock = table->entries[clock_info_index].clk;
rv_ps->levels[index].vddc_index = (uint8_t)table->entries[clock_info_index].v;
rv_ps->level = index + 1;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
rv_ps->levels[index].ds_divider_index = 5;
rv_ps->levels[index].ss_divider_index = 5;
}
return 0;
}
static int rv_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
int result;
unsigned long ret = 0;
result = pp_tables_get_num_of_entries(hwmgr, &ret);
return result ? 0 : ret;
}
static int rv_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry, struct pp_power_state *ps)
{
int result;
struct rv_power_state *rv_ps;
ps->hardware.magic = PhwRaven_Magic;
rv_ps = cast_rv_ps(&(ps->hardware));
result = pp_tables_get_entry(hwmgr, entry, ps,
rv_dpm_get_pp_table_entry_callback);
rv_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
rv_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;
return result;
}
static int rv_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct rv_power_state);
}
static int rv_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int rv_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
return 0;
}
static int rv_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
return -EINVAL;
}
static int rv_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
return 0;
}
static int rv_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
return 0;
}
static int rv_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
const struct rv_power_state *ps;
struct rv_hwmgr *data;
uint32_t level_index;
uint32_t i;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
data = (struct rv_hwmgr *)(hwmgr->backend);
ps = cast_const_rv_ps(state);
level_index = index > ps->level - 1 ? ps->level - 1 : index;
level->coreClock = ps->levels[level_index].engine_clock;
if (designation == PHM_PerformanceLevelDesignation_PowerContainment) {
for (i = 1; i < ps->level; i++) {
if (ps->levels[i].engine_clock > data->dce_slow_sclk_threshold) {
level->coreClock = ps->levels[i].engine_clock;
break;
}
}
}
level->nonLocalMemoryFreq = 0;
level->nonLocalMemoryWidth = 0;
return 0;
}
static int rv_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
const struct rv_power_state *ps = cast_const_rv_ps(state);
clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));
return 0;
}
#define MEM_FREQ_LOW_LATENCY 25000
#define MEM_FREQ_HIGH_LATENCY 80000
#define MEM_LATENCY_HIGH 245
#define MEM_LATENCY_LOW 35
#define MEM_LATENCY_ERR 0xFFFF
static uint32_t rv_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
if (clock >= MEM_FREQ_LOW_LATENCY &&
clock < MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_HIGH;
else if (clock >= MEM_FREQ_HIGH_LATENCY)
return MEM_LATENCY_LOW;
else
return MEM_LATENCY_ERR;
}
static void rv_get_memclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *pmclk_table;
uint32_t i;
pmclk_table = pinfo->vdd_dep_on_mclk;
clocks->num_levels = 0;
for (i = 0; i < pmclk_table->count; i++) {
if (pmclk_table->entries[i].clk) {
clocks->data[clocks->num_levels].clocks_in_khz =
pmclk_table->entries[i].clk;
clocks->data[clocks->num_levels].latency_in_us =
rv_get_mem_latency(hwmgr,
pmclk_table->entries[i].clk);
clocks->num_levels++;
}
}
}
static void rv_get_dcefclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *pdcef_table;
uint32_t i;
pdcef_table = pinfo->vdd_dep_on_dcefclk;
for (i = 0; i < pdcef_table->count; i++) {
clocks->data[i].clocks_in_khz = pdcef_table->entries[i].clk;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = pdcef_table->count;
}
static void rv_get_socclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *psoc_table;
uint32_t i;
psoc_table = pinfo->vdd_dep_on_socclk;
for (i = 0; i < psoc_table->count; i++) {
clocks->data[i].clocks_in_khz = psoc_table->entries[i].clk;
clocks->data[i].latency_in_us = 0;
}
clocks->num_levels = psoc_table->count;
}
static int rv_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
switch (type) {
case amd_pp_mem_clock:
rv_get_memclocks(hwmgr, clocks);
break;
case amd_pp_dcef_clock:
rv_get_dcefclocks(hwmgr, clocks);
break;
case amd_pp_soc_clock:
rv_get_socclocks(hwmgr, clocks);
break;
default:
return -1;
}
return 0;
}
static int rv_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
uint32_t i;
struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
struct rv_voltage_dependency_table *pclk_vol_table;
switch (type) {
case amd_pp_mem_clock:
pclk_vol_table = pinfo->vdd_dep_on_mclk;
break;
case amd_pp_dcef_clock:
pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
break;
case amd_pp_disp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dispclk;
break;
case amd_pp_phy_clock:
pclk_vol_table = pinfo->vdd_dep_on_phyclk;
break;
case amd_pp_dpp_clock:
pclk_vol_table = pinfo->vdd_dep_on_dppclk;
default:
return -EINVAL;
}
if (pclk_vol_table->count == 0)
return -EINVAL;
for (i = 0; i < pclk_vol_table->count; i++) {
clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
clocks->num_levels++;
}
clocks->num_levels = pclk_vol_table->count;
return 0;
}
int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 100;
PPSMC_Msg msg;
switch (clk_type) {
case amd_pp_dcef_clock:
msg = PPSMC_MSG_SetHardMinDcefclkByFreq;
break;
case amd_pp_soc_clock:
msg = PPSMC_MSG_SetHardMinSocclkByFreq;
break;
case amd_pp_mem_clock:
msg = PPSMC_MSG_SetHardMinFclkByFreq;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
return -EINVAL;
}
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, msg,
clk_freq);
return result;
}
static int rv_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
return -EINVAL;
}
static int rv_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
return -EINVAL;
}
static const struct pp_hwmgr_func rv_hwmgr_funcs = {
.backend_init = rv_hwmgr_backend_init,
.backend_fini = rv_hwmgr_backend_fini,
.asic_setup = NULL,
.apply_state_adjust_rules = rv_apply_state_adjust_rules,
.force_dpm_level = rv_dpm_force_dpm_level,
.get_power_state_size = rv_get_power_state_size,
.powerdown_uvd = NULL,
.powergate_uvd = NULL,
.powergate_vce = NULL,
.get_mclk = rv_dpm_get_mclk,
.get_sclk = rv_dpm_get_sclk,
.patch_boot_state = rv_dpm_patch_boot_state,
.get_pp_table_entry = rv_dpm_get_pp_table_entry,
.get_num_of_pp_table_entries = rv_dpm_get_num_of_pp_table_entries,
.set_cpu_power_state = rv_set_cpu_power_state,
.store_cc6_data = rv_store_cc6_data,
.force_clock_level = rv_force_clock_level,
.print_clock_levels = rv_print_clock_levels,
.get_dal_power_level = rv_get_dal_power_level,
.get_performance_level = rv_get_performance_level,
.get_current_shallow_sleep_clocks = rv_get_current_shallow_sleep_clocks,
.get_clock_by_type_with_latency = rv_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = rv_get_clock_by_type_with_voltage,
.get_max_high_clocks = rv_get_max_high_clocks,
.read_sensor = rv_read_sensor,
};
int rv_init_function_pointers(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &rv_hwmgr_funcs;
hwmgr->pptable_func = &pptable_funcs;
return 0;
}
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef RAVEN_HWMGR_H
#define RAVEN_HWMGR_H
#include "hwmgr.h"
#include "rv_inc.h"
#include "smu10_driver_if.h"
#include "rv_ppsmc.h"
#define RAVEN_MAX_HARDWARE_POWERLEVELS 8
#define PHMRAVEN_DYNCLK_NUMBER_OF_TREND_COEFFICIENTS 15
#define DPMFlags_SCLK_Enabled 0x00000001
#define DPMFlags_UVD_Enabled 0x00000002
#define DPMFlags_VCE_Enabled 0x00000004
#define DPMFlags_ACP_Enabled 0x00000008
#define DPMFlags_ForceHighestValid 0x40000000
/* Do not change the following, it is also defined in SMU8.h */
#define SMU_EnabledFeatureScoreboard_AcpDpmOn 0x00000001
#define SMU_EnabledFeatureScoreboard_SclkDpmOn 0x00200000
#define SMU_EnabledFeatureScoreboard_UvdDpmOn 0x01000000
#define SMU_EnabledFeatureScoreboard_VceDpmOn 0x02000000
#define SMU_PHYID_SHIFT 8
#define RAVEN_PCIE_POWERGATING_TARGET_GFX 0
#define RAVEN_PCIE_POWERGATING_TARGET_DDI 1
#define RAVEN_PCIE_POWERGATING_TARGET_PLLCASCADE 2
#define RAVEN_PCIE_POWERGATING_TARGET_PHY 3
enum VQ_TYPE {
CLOCK_TYPE_DCLK = 0L,
CLOCK_TYPE_ECLK,
CLOCK_TYPE_SCLK,
CLOCK_TYPE_CCLK,
VQ_GFX_CU
};
#define SUSTAINABLE_SCLK_MASK 0x00ffffff
#define SUSTAINABLE_SCLK_SHIFT 0
#define SUSTAINABLE_CU_MASK 0xff000000
#define SUSTAINABLE_CU_SHIFT 24
struct rv_dpm_entry {
uint32_t soft_min_clk;
uint32_t hard_min_clk;
uint32_t soft_max_clk;
uint32_t hard_max_clk;
};
struct rv_power_level {
uint32_t engine_clock;
uint8_t vddc_index;
uint8_t ds_divider_index;
uint8_t ss_divider_index;
uint8_t allow_gnb_slow;
uint8_t force_nbp_state;
uint8_t display_wm;
uint8_t vce_wm;
uint8_t num_simd_to_powerdown;
uint8_t hysteresis_up;
uint8_t rsv[3];
};
/*used for the nbpsFlags field in rv_power state*/
#define RAVEN_POWERSTATE_FLAGS_NBPS_FORCEHIGH (1<<0)
#define RAVEN_POWERSTATE_FLAGS_NBPS_LOCKTOHIGH (1<<1)
#define RAVEN_POWERSTATE_FLAGS_NBPS_LOCKTOLOW (1<<2)
#define RAVEN_POWERSTATE_FLAGS_BAPM_DISABLE (1<<0)
struct rv_uvd_clocks {
uint32_t vclk;
uint32_t dclk;
uint32_t vclk_low_divider;
uint32_t vclk_high_divider;
uint32_t dclk_low_divider;
uint32_t dclk_high_divider;
};
struct pp_disable_nbpslo_flags {
union {
struct {
uint32_t entry : 1;
uint32_t display : 1;
uint32_t driver: 1;
uint32_t vce : 1;
uint32_t uvd : 1;
uint32_t acp : 1;
uint32_t reserved: 26;
} bits;
uint32_t u32All;
};
};
enum rv_pstate_previous_action {
DO_NOTHING = 1,
FORCE_HIGH,
CANCEL_FORCE_HIGH
};
struct rv_power_state {
unsigned int magic;
uint32_t level;
struct rv_uvd_clocks uvd_clocks;
uint32_t evclk;
uint32_t ecclk;
uint32_t samclk;
uint32_t acpclk;
bool need_dfs_bypass;
uint32_t nbps_flags;
uint32_t bapm_flags;
uint8_t dpm0_pg_nbps_low;
uint8_t dpm0_pg_nbps_high;
uint8_t dpm_x_nbps_low;
uint8_t dpm_x_nbps_high;
enum rv_pstate_previous_action action;
struct rv_power_level levels[RAVEN_MAX_HARDWARE_POWERLEVELS];
struct pp_disable_nbpslo_flags nbpslo_flags;
};
#define RAVEN_NUM_NBPSTATES 4
#define RAVEN_NUM_NBPMEMORYCLOCK 2
struct rv_display_phy_info_entry {
uint8_t phy_present;
uint8_t active_lane_mapping;
uint8_t display_config_type;
uint8_t active_num_of_lanes;
};
#define RAVEN_MAX_DISPLAYPHY_IDS 10
struct rv_display_phy_info {
bool display_phy_access_initialized;
struct rv_display_phy_info_entry entries[RAVEN_MAX_DISPLAYPHY_IDS];
};
#define MAX_DISPLAY_CLOCK_LEVEL 8
struct rv_system_info{
uint8_t htc_tmp_lmt;
uint8_t htc_hyst_lmt;
};
#define MAX_REGULAR_DPM_NUMBER 8
struct rv_mclk_latency_entries {
uint32_t frequency;
uint32_t latency;
};
struct rv_mclk_latency_table {
uint32_t count;
struct rv_mclk_latency_entries entries[MAX_REGULAR_DPM_NUMBER];
};
struct rv_clock_voltage_dependency_record {
uint32_t clk;
uint32_t vol;
};
struct rv_voltage_dependency_table {
uint32_t count;
struct rv_clock_voltage_dependency_record entries[1];
};
struct rv_clock_voltage_information {
struct rv_voltage_dependency_table *vdd_dep_on_dcefclk;
struct rv_voltage_dependency_table *vdd_dep_on_socclk;
struct rv_voltage_dependency_table *vdd_dep_on_fclk;
struct rv_voltage_dependency_table *vdd_dep_on_mclk;
struct rv_voltage_dependency_table *vdd_dep_on_dispclk;
struct rv_voltage_dependency_table *vdd_dep_on_dppclk;
struct rv_voltage_dependency_table *vdd_dep_on_phyclk;
};
struct rv_hwmgr {
uint32_t disable_driver_thermal_policy;
uint32_t thermal_auto_throttling_treshold;
struct rv_system_info sys_info;
struct rv_mclk_latency_table mclk_latency_table;
uint32_t ddi_power_gating_disabled;
struct rv_display_phy_info_entry display_phy_info;
uint32_t dce_slow_sclk_threshold;
bool disp_clk_bypass;
bool disp_clk_bypass_pending;
uint32_t bapm_enabled;
bool video_start;
bool battery_state;
uint32_t is_nb_dpm_enabled;
uint32_t is_voltage_island_enabled;
uint32_t disable_smu_acp_s3_handshake;
uint32_t disable_notify_smu_vpu_recovery;
bool in_vpu_recovery;
bool pg_acp_init;
uint8_t disp_config;
/* PowerTune */
uint32_t power_containment_features;
bool cac_enabled;
bool disable_uvd_power_tune_feature;
bool enable_bapm_feature;
bool enable_tdc_limit_feature;
/* SMC SRAM Address of firmware header tables */
uint32_t sram_end;
uint32_t dpm_table_start;
uint32_t soft_regs_start;
/* start of SMU7_Fusion_DpmTable */
uint8_t uvd_level_count;
uint8_t vce_level_count;
uint8_t acp_level_count;
uint8_t samu_level_count;
uint32_t fps_high_threshold;
uint32_t fps_low_threshold;
uint32_t dpm_flags;
struct rv_dpm_entry sclk_dpm;
struct rv_dpm_entry uvd_dpm;
struct rv_dpm_entry vce_dpm;
struct rv_dpm_entry acp_dpm;
bool acp_power_up_no_dsp;
uint32_t max_sclk_level;
uint32_t num_of_clk_entries;
/* CPU Power State */
uint32_t separation_time;
bool cc6_disable;
bool pstate_disable;
bool cc6_setting_changed;
uint32_t ulTotalActiveCUs;
bool isp_tileA_power_gated;
bool isp_tileB_power_gated;
uint32_t isp_actual_hard_min_freq;
uint32_t soc_actual_hard_min_freq;
bool vcn_power_gated;
bool vcn_dpg_mode;
bool gfx_off_controled_by_driver;
Watermarks_t water_marks_table;
struct rv_clock_voltage_information clock_vol_info;
DpmClocks_t clock_table;
uint32_t active_process_mask;
};
struct pp_hwmgr;
int rv_init_function_pointers(struct pp_hwmgr *hwmgr);
#endif
......@@ -273,7 +273,8 @@ enum amd_pp_clock_type {
amd_pp_dcef_clock,
amd_pp_soc_clock,
amd_pp_pixel_clock,
amd_pp_phy_clock
amd_pp_phy_clock,
amd_pp_dpp_clock
};
#define MAX_NUM_CLOCKS 16
......
......@@ -612,17 +612,6 @@ struct phm_ppt_v2_information {
uint8_t uc_dcef_dpm_voltage_mode;
};
struct phm_ppt_v3_information {
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_mclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_socclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_dcefclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_pixclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_dispclk;
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_phyclk;
};
struct phm_dynamic_state_info {
struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk;
struct phm_clock_voltage_dependency_table *vddci_dependency_on_mclk;
......@@ -638,7 +627,7 @@ struct phm_dynamic_state_info {
uint32_t vddc_vddci_delta;
uint32_t min_vddc_for_pcie_gen2;
struct phm_cac_leakage_table *cac_leakage_table;
struct phm_phase_shedding_limits_table *vddc_phase_shed_limits_table;
struct phm_phase_shedding_limits_table *vddc_phase_shed_limits_table;
struct phm_vce_clock_voltage_dependency_table
*vce_clock_voltage_dependency_table;
......@@ -651,8 +640,8 @@ struct phm_dynamic_state_info {
struct phm_ppm_table *ppm_parameter_table;
struct phm_cac_tdp_table *cac_dtp_table;
struct phm_clock_voltage_dependency_table *vdd_gfx_dependency_on_sclk;
struct phm_vq_budgeting_table *vq_budgeting_table;
struct phm_clock_voltage_dependency_table *vdd_gfx_dependency_on_sclk;
struct phm_vq_budgeting_table *vq_budgeting_table;
};
struct pp_fan_info {
......@@ -836,6 +825,7 @@ extern void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr);
extern int smu7_init_function_pointers(struct pp_hwmgr *hwmgr);
extern int vega10_hwmgr_init(struct pp_hwmgr *hwmgr);
extern int rv_init_function_pointers(struct pp_hwmgr *hwmgr);
extern int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t id, uint16_t *voltage);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment