Commit b243c4aa authored by J.R. Mauro's avatar J.R. Mauro Committed by Greg Kroah-Hartman

Staging: sxg: clean up C99 comments

Change  C99 comments to C89 comments

Some nested comments seem to have been missed and some blocks are redundantly
commented, but at least most of the //'s are gone

Signed-off by: J.R. Mauro <jrm8005@gmail.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 4460a860
......@@ -223,7 +223,7 @@ static void sxg_dbg_macaddrs(p_adapter_t adapter)
return;
}
// SXG Globals
/* SXG Globals */
static SXG_DRIVER SxgDriver;
#ifdef ATKDBG
......@@ -250,7 +250,7 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
u32 ThisSectionSize;
u32 *Instruction = NULL;
u32 BaseAddress, AddressOffset, Address;
// u32 Failure;
/* u32 Failure; */
u32 ValueRead;
u32 i;
u32 numSections = 0;
......@@ -262,7 +262,7 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
DBG_ERROR("sxg: %s ENTER\n", __func__);
switch (UcodeSel) {
case SXG_UCODE_SAHARA: // Sahara operational ucode
case SXG_UCODE_SAHARA: /* Sahara operational ucode */
numSections = SNumSections;
for (i = 0; i < numSections; i++) {
sectionSize[i] = SSectionSize[i];
......@@ -276,13 +276,13 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
}
DBG_ERROR("sxg: RESET THE CARD\n");
// First, reset the card
/* First, reset the card */
WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
// Download each section of the microcode as specified in
// its download file. The *download.c file is generated using
// the saharaobjtoc facility which converts the metastep .obj
// file to a .c file which contains a two dimentional array.
/* Download each section of the microcode as specified in */
/* its download file. The *download.c file is generated using */
/* the saharaobjtoc facility which converts the metastep .obj */
/* file to a .c file which contains a two dimentional array. */
for (Section = 0; Section < numSections; Section++) {
DBG_ERROR("sxg: SECTION # %d\n", Section);
switch (UcodeSel) {
......@@ -294,35 +294,35 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
break;
}
BaseAddress = sectionStart[Section];
ThisSectionSize = sectionSize[Section] / 12; // Size in instructions
ThisSectionSize = sectionSize[Section] / 12; /* Size in instructions */
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
Address = BaseAddress + AddressOffset;
ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
// Write instruction bits 31 - 0
/* Write instruction bits 31 - 0 */
WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
// Write instruction bits 63-32
/* Write instruction bits 63-32 */
WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
FLUSH);
// Write instruction bits 95-64
/* Write instruction bits 95-64 */
WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
FLUSH);
// Write instruction address with the WRITE bit set
/* Write instruction address with the WRITE bit set */
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_WRITE), FLUSH);
// Sahara bug in the ucode download logic - the write to DataLow
// for the next instruction could get corrupted. To avoid this,
// write to DataLow again for this instruction (which may get
// corrupted, but it doesn't matter), then increment the address
// and write the data for the next instruction to DataLow. That
// write should succeed.
/* Sahara bug in the ucode download logic - the write to DataLow */
/* for the next instruction could get corrupted. To avoid this, */
/* write to DataLow again for this instruction (which may get */
/* corrupted, but it doesn't matter), then increment the address */
/* and write the data for the next instruction to DataLow. That */
/* write should succeed. */
WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
// Advance 3 u32S to start of next instruction
/* Advance 3 u32S to start of next instruction */
Instruction += 3;
}
}
// Now repeat the entire operation reading the instruction back and
// checking for parity errors
/* Now repeat the entire operation reading the instruction back and */
/* checking for parity errors */
for (Section = 0; Section < numSections; Section++) {
DBG_ERROR("sxg: check SECTION # %d\n", Section);
switch (UcodeSel) {
......@@ -334,51 +334,51 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
break;
}
BaseAddress = sectionStart[Section];
ThisSectionSize = sectionSize[Section] / 12; // Size in instructions
ThisSectionSize = sectionSize[Section] / 12; /* Size in instructions */
for (AddressOffset = 0; AddressOffset < ThisSectionSize;
AddressOffset++) {
Address = BaseAddress + AddressOffset;
// Write the address with the READ bit set
/* Write the address with the READ bit set */
WRITE_REG(HwRegs->UcodeAddr,
(Address | MICROCODE_ADDRESS_READ), FLUSH);
// Read it back and check parity bit.
/* Read it back and check parity bit. */
READ_REG(HwRegs->UcodeAddr, ValueRead);
if (ValueRead & MICROCODE_ADDRESS_PARITY) {
DBG_ERROR("sxg: %s PARITY ERROR\n",
__func__);
return (FALSE); // Parity error
return (FALSE); /* Parity error */
}
ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
// Read the instruction back and compare
/* Read the instruction back and compare */
READ_REG(HwRegs->UcodeDataLow, ValueRead);
if (ValueRead != *Instruction) {
DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
__func__);
return (FALSE); // Miscompare
return (FALSE); /* Miscompare */
}
READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
if (ValueRead != *(Instruction + 1)) {
DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
__func__);
return (FALSE); // Miscompare
return (FALSE); /* Miscompare */
}
READ_REG(HwRegs->UcodeDataHigh, ValueRead);
if (ValueRead != *(Instruction + 2)) {
DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
__func__);
return (FALSE); // Miscompare
return (FALSE); /* Miscompare */
}
// Advance 3 u32S to start of next instruction
/* Advance 3 u32S to start of next instruction */
Instruction += 3;
}
}
// Everything OK, Go.
/* Everything OK, Go. */
WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
// Poll the CardUp register to wait for microcode to initialize
// Give up after 10,000 attemps (500ms).
/* Poll the CardUp register to wait for microcode to initialize */
/* Give up after 10,000 attemps (500ms). */
for (i = 0; i < 10000; i++) {
udelay(50);
READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
......@@ -390,11 +390,11 @@ static bool sxg_download_microcode(p_adapter_t adapter, SXG_UCODE_SEL UcodeSel)
if (i == 10000) {
DBG_ERROR("sxg: %s TIMEOUT\n", __func__);
return (FALSE); // Timeout
return (FALSE); /* Timeout */
}
// Now write the LoadSync register. This is used to
// synchronize with the card so it can scribble on the memory
// that contained 0xCAFE from the "CardUp" step above
/* Now write the LoadSync register. This is used to */
/* synchronize with the card so it can scribble on the memory */
/* that contained 0xCAFE from the "CardUp" step above */
if (UcodeSel == SXG_UCODE_SAHARA) {
WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
}
......@@ -420,22 +420,22 @@ static int sxg_allocate_resources(p_adapter_t adapter)
int status;
u32 i;
u32 RssIds, IsrCount;
// PSXG_XMT_RING XmtRing;
// PSXG_RCV_RING RcvRing;
/* PSXG_XMT_RING XmtRing; */
/* PSXG_RCV_RING RcvRing; */
DBG_ERROR("%s ENTER\n", __func__);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
adapter, 0, 0, 0);
// Windows tells us how many CPUs it plans to use for
// RSS
/* Windows tells us how many CPUs it plans to use for */
/* RSS */
RssIds = SXG_RSS_CPU_COUNT(adapter);
IsrCount = adapter->MsiEnabled ? RssIds : 1;
DBG_ERROR("%s Setup the spinlocks\n", __func__);
// Allocate spinlocks and initialize listheads first.
/* Allocate spinlocks and initialize listheads first. */
spin_lock_init(&adapter->RcvQLock);
spin_lock_init(&adapter->SglQLock);
spin_lock_init(&adapter->XmtZeroLock);
......@@ -450,21 +450,21 @@ static int sxg_allocate_resources(p_adapter_t adapter)
InitializeListHead(&adapter->FreeSglBuffers);
InitializeListHead(&adapter->AllSglBuffers);
// Mark these basic allocations done. This flags essentially
// tells the SxgFreeResources routine that it can grab spinlocks
// and reference listheads.
/* Mark these basic allocations done. This flags essentially */
/* tells the SxgFreeResources routine that it can grab spinlocks */
/* and reference listheads. */
adapter->BasicAllocations = TRUE;
// Main allocation loop. Start with the maximum supported by
// the microcode and back off if memory allocation
// fails. If we hit a minimum, fail.
/* Main allocation loop. Start with the maximum supported by */
/* the microcode and back off if memory allocation */
/* fails. If we hit a minimum, fail. */
for (;;) {
DBG_ERROR("%s Allocate XmtRings size[%lx]\n", __func__,
(sizeof(SXG_XMT_RING) * 1));
// Start with big items first - receive and transmit rings. At the moment
// I'm going to keep the ring size fixed and adjust the number of
// TCBs if we fail. Later we might consider reducing the ring size as well..
/* Start with big items first - receive and transmit rings. At the moment */
/* I'm going to keep the ring size fixed and adjust the number of */
/* TCBs if we fail. Later we might consider reducing the ring size as well.. */
adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
sizeof(SXG_XMT_RING) *
1,
......@@ -490,7 +490,7 @@ static int sxg_allocate_resources(p_adapter_t adapter)
break;
per_tcb_allocation_failed:
// an allocation failed. Free any successful allocations.
/* an allocation failed. Free any successful allocations. */
if (adapter->XmtRings) {
pci_free_consistent(adapter->pcidev,
sizeof(SXG_XMT_RING) * 4096,
......@@ -505,22 +505,22 @@ static int sxg_allocate_resources(p_adapter_t adapter)
adapter->PRcvRings);
adapter->RcvRings = NULL;
}
// Loop around and try again....
/* Loop around and try again.... */
}
DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
// Initialize rcv zero and xmt zero rings
/* Initialize rcv zero and xmt zero rings */
SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
// Sanity check receive data structure format
/* Sanity check receive data structure format */
ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
ASSERT(sizeof(SXG_RCV_DESCRIPTOR_BLOCK) ==
SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
// Allocate receive data buffers. We allocate a block of buffers and
// a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
/* Allocate receive data buffers. We allocate a block of buffers and */
/* a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK */
for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
sxg_allocate_buffer_memory(adapter,
......@@ -528,8 +528,8 @@ static int sxg_allocate_resources(p_adapter_t adapter)
ReceiveBufferSize),
SXG_BUFFER_TYPE_RCV);
}
// NBL resource allocation can fail in the 'AllocateComplete' routine, which
// doesn't return status. Make sure we got the number of buffers we requested
/* NBL resource allocation can fail in the 'AllocateComplete' routine, which */
/* doesn't return status. Make sure we got the number of buffers we requested */
if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
......@@ -540,14 +540,14 @@ static int sxg_allocate_resources(p_adapter_t adapter)
DBG_ERROR("%s Allocate EventRings size[%lx]\n", __func__,
(sizeof(SXG_EVENT_RING) * RssIds));
// Allocate event queues.
/* Allocate event queues. */
adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
sizeof(SXG_EVENT_RING) *
RssIds,
&adapter->PEventRings);
if (!adapter->EventRings) {
// Caller will call SxgFreeAdapter to clean up above allocations
/* Caller will call SxgFreeAdapter to clean up above allocations */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
......@@ -556,11 +556,11 @@ static int sxg_allocate_resources(p_adapter_t adapter)
memset(adapter->EventRings, 0, sizeof(SXG_EVENT_RING) * RssIds);
DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
// Allocate ISR
/* Allocate ISR */
adapter->Isr = pci_alloc_consistent(adapter->pcidev,
IsrCount, &adapter->PIsr);
if (!adapter->Isr) {
// Caller will call SxgFreeAdapter to clean up above allocations
/* Caller will call SxgFreeAdapter to clean up above allocations */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
adapter, SXG_MAX_ENTRIES, 0, 0);
status = STATUS_RESOURCES;
......@@ -571,7 +571,7 @@ static int sxg_allocate_resources(p_adapter_t adapter)
DBG_ERROR("%s Allocate shared XMT ring zero index location size[%lx]\n",
__func__, sizeof(u32));
// Allocate shared XMT ring zero index location
/* Allocate shared XMT ring zero index location */
adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
sizeof(u32),
&adapter->
......@@ -607,13 +607,13 @@ static void sxg_config_pci(struct pci_dev *pcidev)
pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __func__, pci_command);
// Set the command register
new_command = pci_command | (PCI_COMMAND_MEMORY | // Memory Space Enable
PCI_COMMAND_MASTER | // Bus master enable
PCI_COMMAND_INVALIDATE | // Memory write and invalidate
PCI_COMMAND_PARITY | // Parity error response
PCI_COMMAND_SERR | // System ERR
PCI_COMMAND_FAST_BACK); // Fast back-to-back
/* Set the command register */
new_command = pci_command | (PCI_COMMAND_MEMORY | /* Memory Space Enable */
PCI_COMMAND_MASTER | /* Bus master enable */
PCI_COMMAND_INVALIDATE | /* Memory write and invalidate */
PCI_COMMAND_PARITY | /* Parity error response */
PCI_COMMAND_SERR | /* System ERR */
PCI_COMMAND_FAST_BACK); /* Fast back-to-back */
if (pci_command != new_command) {
DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
__func__, pci_command, new_command);
......@@ -636,7 +636,7 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
__func__, jiffies, smp_processor_id());
// Initialize trace buffer
/* Initialize trace buffer */
#ifdef ATKDBG
SxgTraceBuffer = &LSxgTraceBuffer;
SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
......@@ -738,13 +738,13 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
adapter->UcodeRegs = (void *)memmapped_ioaddr;
adapter->State = SXG_STATE_INITIALIZING;
// Maintain a list of all adapters anchored by
// the global SxgDriver structure.
/* Maintain a list of all adapters anchored by */
/* the global SxgDriver structure. */
adapter->Next = SxgDriver.Adapters;
SxgDriver.Adapters = adapter;
adapter->AdapterID = ++SxgDriver.AdapterID;
// Initialize CRC table used to determine multicast hash
/* Initialize CRC table used to determine multicast hash */
sxg_mcast_init_crc32();
adapter->JumboEnabled = FALSE;
......@@ -757,10 +757,10 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
}
// status = SXG_READ_EEPROM(adapter);
// if (!status) {
// goto sxg_init_bad;
// }
/* status = SXG_READ_EEPROM(adapter); */
/* if (!status) { */
/* goto sxg_init_bad; */
/* } */
DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
sxg_config_pci(pcidev);
......@@ -780,11 +780,11 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
adapter->irq = pcidev->irq;
adapter->next_netdevice = head_netdevice;
head_netdevice = netdev;
// adapter->chipid = chip_idx;
adapter->port = 0; //adapter->functionnumber;
/* adapter->chipid = chip_idx; */
adapter->port = 0; /*adapter->functionnumber; */
adapter->cardindex = adapter->port;
// Allocate memory and other resources
/* Allocate memory and other resources */
DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
status = sxg_allocate_resources(adapter);
DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
......@@ -819,7 +819,7 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
#endif
strcpy(netdev->name, "eth%d");
// strcpy(netdev->name, pci_name(pcidev));
/* strcpy(netdev->name, pci_name(pcidev)); */
if ((err = register_netdev(netdev))) {
DBG_ERROR("Cannot register net device, aborting. %s\n",
netdev->name);
......@@ -832,9 +832,9 @@ static int sxg_entry_probe(struct pci_dev *pcidev,
netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
netdev->dev_addr[4], netdev->dev_addr[5]);
//sxg_init_bad:
/*sxg_init_bad: */
ASSERT(status == FALSE);
// sxg_free_adapter(adapter);
/* sxg_free_adapter(adapter); */
DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
status, jiffies, smp_processor_id());
......@@ -874,12 +874,12 @@ static void sxg_disable_interrupt(p_adapter_t adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
// For now, RSS is disabled with line based interrupts
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
//
// Turn off interrupts by writing to the icr register.
//
/* */
/* Turn off interrupts by writing to the icr register. */
/* */
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
adapter->InterruptsEnabled = 0;
......@@ -905,12 +905,12 @@ static void sxg_enable_interrupt(p_adapter_t adapter)
{
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
adapter, adapter->InterruptsEnabled, 0, 0);
// For now, RSS is disabled with line based interrupts
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
//
// Turn on interrupts by writing to the icr register.
//
/* */
/* Turn on interrupts by writing to the icr register. */
/* */
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
adapter->InterruptsEnabled = 1;
......@@ -935,29 +935,29 @@ static irqreturn_t sxg_isr(int irq, void *dev_id)
{
p_net_device dev = (p_net_device) dev_id;
p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
// u32 CpuMask = 0, i;
/* u32 CpuMask = 0, i; */
adapter->Stats.NumInts++;
if (adapter->Isr[0] == 0) {
// The SLIC driver used to experience a number of spurious interrupts
// due to the delay associated with the masking of the interrupt
// (we'd bounce back in here). If we see that again with Sahara,
// add a READ_REG of the Icr register after the WRITE_REG below.
/* The SLIC driver used to experience a number of spurious interrupts */
/* due to the delay associated with the masking of the interrupt */
/* (we'd bounce back in here). If we see that again with Sahara, */
/* add a READ_REG of the Icr register after the WRITE_REG below. */
adapter->Stats.FalseInts++;
return IRQ_NONE;
}
//
// Move the Isr contents and clear the value in
// shared memory, and mask interrupts
//
/* */
/* Move the Isr contents and clear the value in */
/* shared memory, and mask interrupts */
/* */
adapter->IsrCopy[0] = adapter->Isr[0];
adapter->Isr[0] = 0;
WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
// ASSERT(adapter->IsrDpcsPending == 0);
#if XXXTODO // RSS Stuff
// If RSS is enabled and the ISR specifies
// SXG_ISR_EVENT, then schedule DPC's
// based on event queues.
/* ASSERT(adapter->IsrDpcsPending == 0); */
#if XXXTODO /* RSS Stuff */
/* If RSS is enabled and the ISR specifies */
/* SXG_ISR_EVENT, then schedule DPC's */
/* based on event queues. */
if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
for (i = 0;
i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
......@@ -973,8 +973,8 @@ static irqreturn_t sxg_isr(int irq, void *dev_id)
}
}
}
// Now, either schedule the CPUs specified by the CpuMask,
// or queue default
/* Now, either schedule the CPUs specified by the CpuMask, */
/* or queue default */
if (CpuMask) {
*QueueDefault = FALSE;
} else {
......@@ -983,9 +983,9 @@ static irqreturn_t sxg_isr(int irq, void *dev_id)
}
*TargetCpus = CpuMask;
#endif
//
// There are no DPCs in Linux, so call the handler now
//
/* */
/* There are no DPCs in Linux, so call the handler now */
/* */
sxg_handle_interrupt(adapter);
return IRQ_HANDLED;
......@@ -993,7 +993,7 @@ static irqreturn_t sxg_isr(int irq, void *dev_id)
static void sxg_handle_interrupt(p_adapter_t adapter)
{
// unsigned char RssId = 0;
/* unsigned char RssId = 0; */
u32 NewIsr;
if (adapter->Stats.RcvNoBuffer < 5) {
......@@ -1002,32 +1002,32 @@ static void sxg_handle_interrupt(p_adapter_t adapter)
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
adapter, adapter->IsrCopy[0], 0, 0);
// For now, RSS is disabled with line based interrupts
/* For now, RSS is disabled with line based interrupts */
ASSERT(adapter->RssEnabled == FALSE);
ASSERT(adapter->MsiEnabled == FALSE);
ASSERT(adapter->IsrCopy[0]);
/////////////////////////////
/*/////////////////////////// */
// Always process the event queue.
/* Always process the event queue. */
sxg_process_event_queue(adapter,
(adapter->RssEnabled ? /*RssId */ 0 : 0));
#if XXXTODO // RSS stuff
#if XXXTODO /* RSS stuff */
if (--adapter->IsrDpcsPending) {
// We're done.
/* We're done. */
ASSERT(adapter->RssEnabled);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
adapter, 0, 0, 0);
return;
}
#endif
//
// Last (or only) DPC processes the ISR and clears the interrupt.
//
/* */
/* Last (or only) DPC processes the ISR and clears the interrupt. */
/* */
NewIsr = sxg_process_isr(adapter, 0);
//
// Reenable interrupts
//
/* */
/* Reenable interrupts */
/* */
adapter->IsrCopy[0] = 0;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
adapter, NewIsr, 0, 0);
......@@ -1063,29 +1063,29 @@ static int sxg_process_isr(p_adapter_t adapter, u32 MessageId)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
adapter, Isr, 0, 0);
// Error
/* Error */
if (Isr & SXG_ISR_ERR) {
if (Isr & SXG_ISR_PDQF) {
adapter->Stats.PdqFull++;
DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __func__);
}
// No host buffer
/* No host buffer */
if (Isr & SXG_ISR_RMISS) {
// There is a bunch of code in the SLIC driver which
// attempts to process more receive events per DPC
// if we start to fall behind. We'll probably
// need to do something similar here, but hold
// off for now. I don't want to make the code more
// complicated than strictly needed.
/* There is a bunch of code in the SLIC driver which */
/* attempts to process more receive events per DPC */
/* if we start to fall behind. We'll probably */
/* need to do something similar here, but hold */
/* off for now. I don't want to make the code more */
/* complicated than strictly needed. */
adapter->Stats.RcvNoBuffer++;
if (adapter->Stats.RcvNoBuffer < 5) {
DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
__func__);
}
}
// Card crash
/* Card crash */
if (Isr & SXG_ISR_DEAD) {
// Set aside the crash info and set the adapter state to RESET
/* Set aside the crash info and set the adapter state to RESET */
adapter->CrashCpu =
(unsigned char)((Isr & SXG_ISR_CPU) >>
SXG_ISR_CPU_SHIFT);
......@@ -1094,44 +1094,44 @@ static int sxg_process_isr(p_adapter_t adapter, u32 MessageId)
DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
adapter->CrashLocation, adapter->CrashCpu);
}
// Event ring full
/* Event ring full */
if (Isr & SXG_ISR_ERFULL) {
// Same issue as RMISS, really. This means the
// host is falling behind the card. Need to increase
// event ring size, process more events per interrupt,
// and/or reduce/remove interrupt aggregation.
/* Same issue as RMISS, really. This means the */
/* host is falling behind the card. Need to increase */
/* event ring size, process more events per interrupt, */
/* and/or reduce/remove interrupt aggregation. */
adapter->Stats.EventRingFull++;
DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
__func__);
}
// Transmit drop - no DRAM buffers or XMT error
/* Transmit drop - no DRAM buffers or XMT error */
if (Isr & SXG_ISR_XDROP) {
adapter->Stats.XmtDrops++;
adapter->Stats.XmtErrors++;
DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __func__);
}
}
// Slowpath send completions
/* Slowpath send completions */
if (Isr & SXG_ISR_SPSEND) {
sxg_complete_slow_send(adapter);
}
// Dump
/* Dump */
if (Isr & SXG_ISR_UPC) {
ASSERT(adapter->DumpCmdRunning); // Maybe change when debug is added..
ASSERT(adapter->DumpCmdRunning); /* Maybe change when debug is added.. */
adapter->DumpCmdRunning = FALSE;
}
// Link event
/* Link event */
if (Isr & SXG_ISR_LINK) {
sxg_link_event(adapter);
}
// Debug - breakpoint hit
/* Debug - breakpoint hit */
if (Isr & SXG_ISR_BREAK) {
// At the moment AGDB isn't written to support interactive
// debug sessions. When it is, this interrupt will be used
// to signal AGDB that it has hit a breakpoint. For now, ASSERT.
/* At the moment AGDB isn't written to support interactive */
/* debug sessions. When it is, this interrupt will be used */
/* to signal AGDB that it has hit a breakpoint. For now, ASSERT. */
ASSERT(0);
}
// Heartbeat response
/* Heartbeat response */
if (Isr & SXG_ISR_PING) {
adapter->PingOutstanding = FALSE;
}
......@@ -1171,39 +1171,39 @@ static u32 sxg_process_event_queue(p_adapter_t adapter, u32 RssId)
(adapter->State == SXG_STATE_PAUSING) ||
(adapter->State == SXG_STATE_PAUSED) ||
(adapter->State == SXG_STATE_HALTING));
// We may still have unprocessed events on the queue if
// the card crashed. Don't process them.
/* We may still have unprocessed events on the queue if */
/* the card crashed. Don't process them. */
if (adapter->Dead) {
return (0);
}
// In theory there should only be a single processor that
// accesses this queue, and only at interrupt-DPC time. So
// we shouldn't need a lock for any of this.
/* In theory there should only be a single processor that */
/* accesses this queue, and only at interrupt-DPC time. So */
/* we shouldn't need a lock for any of this. */
while (Event->Status & EVENT_STATUS_VALID) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
Event, Event->Code, Event->Status,
adapter->NextEvent);
switch (Event->Code) {
case EVENT_CODE_BUFFERS:
ASSERT(!(Event->CommandIndex & 0xFF00)); // SXG_RING_INFO Head & Tail == unsigned char
//
ASSERT(!(Event->CommandIndex & 0xFF00)); /* SXG_RING_INFO Head & Tail == unsigned char */
/* */
sxg_complete_descriptor_blocks(adapter,
Event->CommandIndex);
//
/* */
break;
case EVENT_CODE_SLOWRCV:
--adapter->RcvBuffersOnCard;
if ((skb = sxg_slow_receive(adapter, Event))) {
u32 rx_bytes;
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
// Add it to our indication list
/* Add it to our indication list */
SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
IndicationList, num_skbs);
// In Linux, we just pass up each skb to the protocol above at this point,
// there is no capability of an indication list.
/* In Linux, we just pass up each skb to the protocol above at this point, */
/* there is no capability of an indication list. */
#else
// CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE);
rx_bytes = Event->Length; // (rcvbuf->length & IRHDDR_FLEN_MSK);
/* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
rx_bytes = Event->Length; /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
skb_put(skb, rx_bytes);
adapter->stats.rx_packets++;
adapter->stats.rx_bytes += rx_bytes;
......@@ -1219,42 +1219,42 @@ static u32 sxg_process_event_queue(p_adapter_t adapter, u32 RssId)
default:
DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
__func__, Event->Code);
// ASSERT(0);
}
// See if we need to restock card receive buffers.
// There are two things to note here:
// First - This test is not SMP safe. The
// adapter->BuffersOnCard field is protected via atomic interlocked calls, but
// we do not protect it with respect to these tests. The only way to do that
// is with a lock, and I don't want to grab a lock every time we adjust the
// BuffersOnCard count. Instead, we allow the buffer replenishment to be off
// once in a while. The worst that can happen is the card is given one
// more-or-less descriptor block than the arbitrary value we've chosen.
// No big deal
// In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard is adjusted.
// Second - We expect this test to rarely evaluate to true. We attempt to
// refill descriptor blocks as they are returned to us
// (sxg_complete_descriptor_blocks), so The only time this should evaluate
// to true is when sxg_complete_descriptor_blocks failed to allocate
// receive buffers.
/* ASSERT(0); */
}
/* See if we need to restock card receive buffers. */
/* There are two things to note here: */
/* First - This test is not SMP safe. The */
/* adapter->BuffersOnCard field is protected via atomic interlocked calls, but */
/* we do not protect it with respect to these tests. The only way to do that */
/* is with a lock, and I don't want to grab a lock every time we adjust the */
/* BuffersOnCard count. Instead, we allow the buffer replenishment to be off */
/* once in a while. The worst that can happen is the card is given one */
/* more-or-less descriptor block than the arbitrary value we've chosen. */
/* No big deal */
/* In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard is adjusted. */
/* Second - We expect this test to rarely evaluate to true. We attempt to */
/* refill descriptor blocks as they are returned to us */
/* (sxg_complete_descriptor_blocks), so The only time this should evaluate */
/* to true is when sxg_complete_descriptor_blocks failed to allocate */
/* receive buffers. */
if (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
sxg_stock_rcv_buffers(adapter);
}
// It's more efficient to just set this to zero.
// But clearing the top bit saves potential debug info...
/* It's more efficient to just set this to zero. */
/* But clearing the top bit saves potential debug info... */
Event->Status &= ~EVENT_STATUS_VALID;
// Advanct to the next event
/* Advanct to the next event */
SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
Event = &EventRing->Ring[adapter->NextEvent[RssId]];
EventsProcessed++;
if (EventsProcessed == EVENT_RING_BATCH) {
// Release a batch of events back to the card
/* Release a batch of events back to the card */
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EVENT_RING_BATCH, FALSE);
EventsProcessed = 0;
// If we've processed our batch limit, break out of the
// loop and return SXG_ISR_EVENT to arrange for us to
// be called again
/* If we've processed our batch limit, break out of the */
/* loop and return SXG_ISR_EVENT to arrange for us to */
/* be called again */
if (Batches++ == EVENT_BATCH_LIMIT) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_NOISY, "EvtLimit", Batches,
......@@ -1265,14 +1265,14 @@ static u32 sxg_process_event_queue(p_adapter_t adapter, u32 RssId)
}
}
#ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
//
// Indicate any received dumb-nic frames
//
/* */
/* Indicate any received dumb-nic frames */
/* */
SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
#endif
//
// Release events back to the card.
//
/* */
/* Release events back to the card. */
/* */
if (EventsProcessed) {
WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
EventsProcessed, FALSE);
......@@ -1299,43 +1299,43 @@ static void sxg_complete_slow_send(p_adapter_t adapter)
u32 *ContextType;
PSXG_CMD XmtCmd;
// NOTE - This lock is dropped and regrabbed in this loop.
// This means two different processors can both be running
// through this loop. Be *very* careful.
/* NOTE - This lock is dropped and regrabbed in this loop. */
/* This means two different processors can both be running */
/* through this loop. Be *very* careful. */
spin_lock(&adapter->XmtZeroLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
while (XmtRingInfo->Tail != *adapter->XmtRingZeroIndex) {
// Locate the current Cmd (ring descriptor entry), and
// associated SGL, and advance the tail
/* Locate the current Cmd (ring descriptor entry), and */
/* associated SGL, and advance the tail */
SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
ASSERT(ContextType);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
// Clear the SGL field.
/* Clear the SGL field. */
XmtCmd->Sgl = 0;
switch (*ContextType) {
case SXG_SGL_DUMB:
{
struct sk_buff *skb;
// Dumb-nic send. Command context is the dumb-nic SGL
/* Dumb-nic send. Command context is the dumb-nic SGL */
skb = (struct sk_buff *)ContextType;
// Complete the send
/* Complete the send */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
TRACE_IMPORTANT, "DmSndCmp", skb, 0,
0, 0);
ASSERT(adapter->Stats.XmtQLen);
adapter->Stats.XmtQLen--; // within XmtZeroLock
adapter->Stats.XmtQLen--; /* within XmtZeroLock */
adapter->Stats.XmtOk++;
// Now drop the lock and complete the send back to
// Microsoft. We need to drop the lock because
// Microsoft can come back with a chimney send, which
// results in a double trip in SxgTcpOuput
/* Now drop the lock and complete the send back to */
/* Microsoft. We need to drop the lock because */
/* Microsoft can come back with a chimney send, which */
/* results in a double trip in SxgTcpOuput */
spin_unlock(&adapter->XmtZeroLock);
SXG_COMPLETE_DUMB_SEND(adapter, skb);
// and reacquire..
/* and reacquire.. */
spin_lock(&adapter->XmtZeroLock);
}
break;
......@@ -1371,7 +1371,7 @@ static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
RcvDataBufferHdr, RcvDataBufferHdr->State,
RcvDataBufferHdr->VirtualAddress);
// Drop rcv frames in non-running state
/* Drop rcv frames in non-running state */
switch (adapter->State) {
case SXG_STATE_RUNNING:
break;
......@@ -1384,12 +1384,12 @@ static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
goto drop;
}
// Change buffer state to UPSTREAM
/* Change buffer state to UPSTREAM */
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
if (Event->Status & EVENT_STATUS_RCVERR) {
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
Event, Event->Status, Event->HostHandle, 0);
// XXXTODO - Remove this print later
/* XXXTODO - Remove this print later */
DBG_ERROR("SXG: Receive error %x\n", *(u32 *)
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr));
sxg_process_rcv_error(adapter, *(u32 *)
......@@ -1397,8 +1397,8 @@ static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
(RcvDataBufferHdr));
goto drop;
}
#if XXXTODO // VLAN stuff
// If there's a VLAN tag, extract it and validate it
#if XXXTODO /* VLAN stuff */
/* If there's a VLAN tag, extract it and validate it */
if (((p_ether_header) (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->
EtherType == ETHERTYPE_VLAN) {
if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
......@@ -1411,9 +1411,9 @@ static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
}
}
#endif
//
// Dumb-nic frame. See if it passes our mac filter and update stats
//
/* */
/* Dumb-nic frame. See if it passes our mac filter and update stats */
/* */
if (!sxg_mac_filter(adapter, (p_ether_header)
SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
Event->Length)) {
......@@ -1427,9 +1427,9 @@ static struct sk_buff *sxg_slow_receive(p_adapter_t adapter, PSXG_EVENT Event)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
RcvDataBufferHdr, Packet, Event->Length, 0);
//
// Lastly adjust the receive packet length.
//
/* */
/* Lastly adjust the receive packet length. */
/* */
SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
return (Packet);
......@@ -1541,7 +1541,7 @@ static bool sxg_mac_filter(p_adapter_t adapter, p_ether_header EtherHdr,
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
// broadcast
/* broadcast */
if (adapter->MacFilter & MAC_BCAST) {
adapter->Stats.DumbRcvBcastPkts++;
adapter->Stats.DumbRcvBcastBytes += length;
......@@ -1550,7 +1550,7 @@ static bool sxg_mac_filter(p_adapter_t adapter, p_ether_header EtherHdr,
return (TRUE);
}
} else {
// multicast
/* multicast */
if (adapter->MacFilter & MAC_ALLMCAST) {
adapter->Stats.DumbRcvMcastPkts++;
adapter->Stats.DumbRcvMcastBytes += length;
......@@ -1580,9 +1580,9 @@ static bool sxg_mac_filter(p_adapter_t adapter, p_ether_header EtherHdr,
}
}
} else if (adapter->MacFilter & MAC_DIRECTED) {
// Not broadcast or multicast. Must be directed at us or
// the card is in promiscuous mode. Either way, consider it
// ours if MAC_DIRECTED is set
/* Not broadcast or multicast. Must be directed at us or */
/* the card is in promiscuous mode. Either way, consider it */
/* ours if MAC_DIRECTED is set */
adapter->Stats.DumbRcvUcastPkts++;
adapter->Stats.DumbRcvUcastBytes += length;
adapter->Stats.DumbRcvPkts++;
......@@ -1590,7 +1590,7 @@ static bool sxg_mac_filter(p_adapter_t adapter, p_ether_header EtherHdr,
return (TRUE);
}
if (adapter->MacFilter & MAC_PROMISC) {
// Whatever it is, keep it.
/* Whatever it is, keep it. */
adapter->Stats.DumbRcvPkts++;
adapter->Stats.DumbRcvBytes += length;
return (TRUE);
......@@ -1625,7 +1625,7 @@ static int sxg_register_interrupt(p_adapter_t adapter)
}
adapter->intrregistered = 1;
adapter->IntRegistered = TRUE;
// Disable RSS with line-based interrupts
/* Disable RSS with line-based interrupts */
adapter->MsiEnabled = FALSE;
adapter->RssEnabled = FALSE;
DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
......@@ -1738,7 +1738,7 @@ static int sxg_entry_open(p_net_device dev)
sxg_global.num_sxg_ports_active++;
adapter->activated = 1;
}
// Initialize the adapter
/* Initialize the adapter */
DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
status = sxg_initialize_adapter(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
......@@ -1762,7 +1762,7 @@ static int sxg_entry_open(p_net_device dev)
}
DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
// Enable interrupts
/* Enable interrupts */
SXG_ENABLE_ALL_INTERRUPTS(adapter);
DBG_ERROR("sxg: %s EXIT\n", __func__);
......@@ -1825,11 +1825,11 @@ static int sxg_entry_halt(p_net_device dev)
static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd)
{
ASSERT(rq);
// DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);
/* DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev); */
switch (cmd) {
case SIOCSLICSETINTAGG:
{
// p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
/* p_adapter_t adapter = (p_adapter_t) netdev_priv(dev); */
u32 data[7];
u32 intagg;
......@@ -1846,7 +1846,7 @@ static int sxg_ioctl(p_net_device dev, struct ifreq *rq, int cmd)
}
default:
// DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd);
/* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
return -EOPNOTSUPP;
}
return 0;
......@@ -1872,13 +1872,13 @@ static int sxg_send_packets(struct sk_buff *skb, p_net_device dev)
DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __func__,
skb);
// Check the adapter state
/* Check the adapter state */
switch (adapter->State) {
case SXG_STATE_INITIALIZING:
case SXG_STATE_HALTED:
case SXG_STATE_SHUTDOWN:
ASSERT(0); // unexpected
// fall through
ASSERT(0); /* unexpected */
/* fall through */
case SXG_STATE_RESETTING:
case SXG_STATE_SLEEP:
case SXG_STATE_BOOTDIAG:
......@@ -1898,17 +1898,17 @@ static int sxg_send_packets(struct sk_buff *skb, p_net_device dev)
if (status != STATUS_SUCCESS) {
goto xmit_fail;
}
// send a packet
/* send a packet */
status = sxg_transmit_packet(adapter, skb);
if (status == STATUS_SUCCESS) {
goto xmit_done;
}
xmit_fail:
// reject & complete all the packets if they cant be sent
/* reject & complete all the packets if they cant be sent */
if (status != STATUS_SUCCESS) {
#if XXXTODO
// sxg_send_packets_fail(adapter, skb, status);
/* sxg_send_packets_fail(adapter, skb, status); */
#else
SXG_DROP_DUMB_SEND(adapter, skb);
adapter->stats.tx_dropped++;
......@@ -1940,12 +1940,12 @@ static int sxg_transmit_packet(p_adapter_t adapter, struct sk_buff *skb)
void *SglBuffer;
u32 SglBufferLength;
// The vast majority of work is done in the shared
// sxg_dumb_sgl routine.
/* The vast majority of work is done in the shared */
/* sxg_dumb_sgl routine. */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
adapter, skb, 0, 0);
// Allocate a SGL buffer
/* Allocate a SGL buffer */
SXG_GET_SGL_BUFFER(adapter, SxgSgl);
if (!SxgSgl) {
adapter->Stats.NoSglBuf++;
......@@ -1963,9 +1963,9 @@ static int sxg_transmit_packet(p_adapter_t adapter, struct sk_buff *skb)
SxgSgl->DumbPacket = skb;
pSgl = NULL;
// Call the common sxg_dumb_sgl routine to complete the send.
/* Call the common sxg_dumb_sgl routine to complete the send. */
sxg_dumb_sgl(pSgl, SxgSgl);
// Return success sxg_dumb_sgl (or something later) will complete it.
/* Return success sxg_dumb_sgl (or something later) will complete it. */
return (STATUS_SUCCESS);
}
......@@ -1983,39 +1983,39 @@ static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl)
{
p_adapter_t adapter = SxgSgl->adapter;
struct sk_buff *skb = SxgSgl->DumbPacket;
// For now, all dumb-nic sends go on RSS queue zero
/* For now, all dumb-nic sends go on RSS queue zero */
PSXG_XMT_RING XmtRing = &adapter->XmtRings[0];
PSXG_RING_INFO XmtRingInfo = &adapter->XmtRingZeroInfo;
PSXG_CMD XmtCmd = NULL;
// u32 Index = 0;
/* u32 Index = 0; */
u32 DataLength = skb->len;
// unsigned int BufLen;
// u32 SglOffset;
/* unsigned int BufLen; */
/* u32 SglOffset; */
u64 phys_addr;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
pSgl, SxgSgl, 0, 0);
// Set aside a pointer to the sgl
/* Set aside a pointer to the sgl */
SxgSgl->pSgl = pSgl;
// Sanity check that our SGL format is as we expect.
/* Sanity check that our SGL format is as we expect. */
ASSERT(sizeof(SXG_X64_SGE) == sizeof(SCATTER_GATHER_ELEMENT));
// Shouldn't be a vlan tag on this frame
/* Shouldn't be a vlan tag on this frame */
ASSERT(SxgSgl->VlanTag.VlanTci == 0);
ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
// From here below we work with the SGL placed in our
// buffer.
/* From here below we work with the SGL placed in our */
/* buffer. */
SxgSgl->Sgl.NumberOfElements = 1;
// Grab the spinlock and acquire a command
/* Grab the spinlock and acquire a command */
spin_lock(&adapter->XmtZeroLock);
SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
if (XmtCmd == NULL) {
// Call sxg_complete_slow_send to see if we can
// free up any XmtRingZero entries and then try again
/* Call sxg_complete_slow_send to see if we can */
/* free up any XmtRingZero entries and then try again */
spin_unlock(&adapter->XmtZeroLock);
sxg_complete_slow_send(adapter);
spin_lock(&adapter->XmtZeroLock);
......@@ -2027,10 +2027,10 @@ static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl)
}
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
// Update stats
/* Update stats */
adapter->Stats.DumbXmtPkts++;
adapter->Stats.DumbXmtBytes += DataLength;
#if XXXTODO // Stats stuff
#if XXXTODO /* Stats stuff */
if (SXG_MULTICAST_PACKET(EtherHdr)) {
if (SXG_BROADCAST_PACKET(EtherHdr)) {
adapter->Stats.DumbXmtBcastPkts++;
......@@ -2044,8 +2044,8 @@ static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl)
adapter->Stats.DumbXmtUcastBytes += DataLength;
}
#endif
// Fill in the command
// Copy out the first SGE to the command and adjust for offset
/* Fill in the command */
/* Copy out the first SGE to the command and adjust for offset */
phys_addr =
pci_map_single(adapter->pcidev, skb->data, skb->len,
PCI_DMA_TODEVICE);
......@@ -2053,54 +2053,54 @@ static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl, PSXG_SCATTER_GATHER SxgSgl)
XmtCmd->Buffer.FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress << 32;
XmtCmd->Buffer.FirstSgeAddress =
XmtCmd->Buffer.FirstSgeAddress | SXG_GET_ADDR_LOW(phys_addr);
// XmtCmd->Buffer.FirstSgeAddress = SxgSgl->Sgl.Elements[Index].Address;
// XmtCmd->Buffer.FirstSgeAddress.LowPart += MdlOffset;
/* XmtCmd->Buffer.FirstSgeAddress = SxgSgl->Sgl.Elements[Index].Address; */
/* XmtCmd->Buffer.FirstSgeAddress.LowPart += MdlOffset; */
XmtCmd->Buffer.FirstSgeLength = DataLength;
// Set a pointer to the remaining SGL entries
// XmtCmd->Sgl = SxgSgl->PhysicalAddress;
// Advance the physical address of the SxgSgl structure to
// the second SGE
// SglOffset = (u32)((u32 *)(&SxgSgl->Sgl.Elements[Index+1]) -
// (u32 *)SxgSgl);
// XmtCmd->Sgl.LowPart += SglOffset;
/* Set a pointer to the remaining SGL entries */
/* XmtCmd->Sgl = SxgSgl->PhysicalAddress; */
/* Advance the physical address of the SxgSgl structure to */
/* the second SGE */
/* SglOffset = (u32)((u32 *)(&SxgSgl->Sgl.Elements[Index+1]) - */
/* (u32 *)SxgSgl); */
/* XmtCmd->Sgl.LowPart += SglOffset; */
XmtCmd->Buffer.SgeOffset = 0;
// Note - TotalLength might be overwritten with MSS below..
/* Note - TotalLength might be overwritten with MSS below.. */
XmtCmd->Buffer.TotalLength = DataLength;
XmtCmd->SgEntries = 1; //(ushort)(SxgSgl->Sgl.NumberOfElements - Index);
XmtCmd->SgEntries = 1; /*(ushort)(SxgSgl->Sgl.NumberOfElements - Index); */
XmtCmd->Flags = 0;
//
// Advance transmit cmd descripter by 1.
// NOTE - See comments in SxgTcpOutput where we write
// to the XmtCmd register regarding CPU ID values and/or
// multiple commands.
//
//
/* */
/* Advance transmit cmd descripter by 1. */
/* NOTE - See comments in SxgTcpOutput where we write */
/* to the XmtCmd register regarding CPU ID values and/or */
/* multiple commands. */
/* */
/* */
WRITE_REG(adapter->UcodeRegs[0].XmtCmd, 1, TRUE);
//
//
adapter->Stats.XmtQLen++; // Stats within lock
/* */
/* */
adapter->Stats.XmtQLen++; /* Stats within lock */
spin_unlock(&adapter->XmtZeroLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
XmtCmd, pSgl, SxgSgl, 0);
return;
abortcmd:
// NOTE - Only jump to this label AFTER grabbing the
// XmtZeroLock, and DO NOT DROP IT between the
// command allocation and the following abort.
/* NOTE - Only jump to this label AFTER grabbing the */
/* XmtZeroLock, and DO NOT DROP IT between the */
/* command allocation and the following abort. */
if (XmtCmd) {
SXG_ABORT_CMD(XmtRingInfo);
}
spin_unlock(&adapter->XmtZeroLock);
// failsgl:
// Jump to this label if failure occurs before the
// XmtZeroLock is grabbed
/* failsgl: */
/* Jump to this label if failure occurs before the */
/* XmtZeroLock is grabbed */
adapter->Stats.XmtErrors++;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket); // SxgSgl->DumbPacket is the skb
SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket); /* SxgSgl->DumbPacket is the skb */
}
/***************************************************************
......@@ -2127,122 +2127,122 @@ static int sxg_initialize_link(p_adapter_t adapter)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
adapter, 0, 0, 0);
// Reset PHY and XGXS module
/* Reset PHY and XGXS module */
WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
// Reset transmit configuration register
/* Reset transmit configuration register */
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
// Reset receive configuration register
/* Reset receive configuration register */
WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
// Reset all MAC modules
/* Reset all MAC modules */
WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
// Link address 0
// XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
// is stored with the first nibble (0a) in the byte 0
// of the Mac address. Possibly reverse?
/* Link address 0 */
/* XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f) */
/* is stored with the first nibble (0a) in the byte 0 */
/* of the Mac address. Possibly reverse? */
Value = *(u32 *) adapter->MacAddr;
WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
// also write the MAC address to the MAC. Endian is reversed.
/* also write the MAC address to the MAC. Endian is reversed. */
WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
Value = (*(u16 *) & adapter->MacAddr[4] & 0x0000FFFF);
WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
// endian swap for the MAC (put high bytes in bits [31:16], swapped)
/* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
Value = ntohl(Value);
WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
// Link address 1
/* Link address 1 */
WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
// Link address 2
/* Link address 2 */
WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
// Link address 3
/* Link address 3 */
WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
// Enable MAC modules
/* Enable MAC modules */
WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
// Configure MAC
WRITE_REG(HwRegs->MacConfig1, (AXGMAC_CFG1_XMT_PAUSE | // Allow sending of pause
AXGMAC_CFG1_XMT_EN | // Enable XMT
AXGMAC_CFG1_RCV_PAUSE | // Enable detection of pause
AXGMAC_CFG1_RCV_EN | // Enable receive
AXGMAC_CFG1_SHORT_ASSERT | // short frame detection
AXGMAC_CFG1_CHECK_LEN | // Verify frame length
AXGMAC_CFG1_GEN_FCS | // Generate FCS
AXGMAC_CFG1_PAD_64), // Pad frames to 64 bytes
/* Configure MAC */
WRITE_REG(HwRegs->MacConfig1, (AXGMAC_CFG1_XMT_PAUSE | /* Allow sending of pause */
AXGMAC_CFG1_XMT_EN | /* Enable XMT */
AXGMAC_CFG1_RCV_PAUSE | /* Enable detection of pause */
AXGMAC_CFG1_RCV_EN | /* Enable receive */
AXGMAC_CFG1_SHORT_ASSERT | /* short frame detection */
AXGMAC_CFG1_CHECK_LEN | /* Verify frame length */
AXGMAC_CFG1_GEN_FCS | /* Generate FCS */
AXGMAC_CFG1_PAD_64), /* Pad frames to 64 bytes */
TRUE);
// Set AXGMAC max frame length if jumbo. Not needed for standard MTU
/* Set AXGMAC max frame length if jumbo. Not needed for standard MTU */
if (adapter->JumboEnabled) {
WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
}
// AMIIM Configuration Register -
// The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
// (bottom bits) of this register is used to determine the
// MDC frequency as specified in the A-XGMAC Design Document.
// This value must not be zero. The following value (62 or 0x3E)
// is based on our MAC transmit clock frequency (MTCLK) of 312.5 MHz.
// Given a maximum MDIO clock frequency of 2.5 MHz (see the PHY spec),
// we get: 312.5/(2*(X+1)) < 2.5 ==> X = 62.
// This value happens to be the default value for this register,
// so we really don't have to do this.
/* AMIIM Configuration Register - */
/* The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion */
/* (bottom bits) of this register is used to determine the */
/* MDC frequency as specified in the A-XGMAC Design Document. */
/* This value must not be zero. The following value (62 or 0x3E) */
/* is based on our MAC transmit clock frequency (MTCLK) of 312.5 MHz. */
/* Given a maximum MDIO clock frequency of 2.5 MHz (see the PHY spec), */
/* we get: 312.5/(2*(X+1)) < 2.5 ==> X = 62. */
/* This value happens to be the default value for this register, */
/* so we really don't have to do this. */
WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
// Power up and enable PHY and XAUI/XGXS/Serdes logic
/* Power up and enable PHY and XAUI/XGXS/Serdes logic */
WRITE_REG(HwRegs->LinkStatus,
(LS_PHY_CLR_RESET |
LS_XGXS_ENABLE |
LS_XGXS_CTL | LS_PHY_CLK_EN | LS_ATTN_ALARM), TRUE);
DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
// Per information given by Aeluros, wait 100 ms after removing reset.
// It's not enough to wait for the self-clearing reset bit in reg 0 to clear.
/* Per information given by Aeluros, wait 100 ms after removing reset. */
/* It's not enough to wait for the self-clearing reset bit in reg 0 to clear. */
mdelay(100);
// Verify the PHY has come up by checking that the Reset bit has cleared.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
PHY_PMA_CONTROL1, // PMA/PMD control register
/* Verify the PHY has come up by checking that the Reset bit has cleared. */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
PHY_PMA_CONTROL1, /* PMA/PMD control register */
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value & PMA_CONTROL1_RESET) // reset complete if bit is 0
if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
return (STATUS_FAILURE);
// The SERDES should be initialized by now - confirm
/* The SERDES should be initialized by now - confirm */
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_SERDES_DOWN) // verify SERDES is initialized
if (Value & LS_SERDES_DOWN) /* verify SERDES is initialized */
return (STATUS_FAILURE);
// The XAUI link should also be up - confirm
if (!(Value & LS_XAUI_LINK_UP)) // verify XAUI link is up
/* The XAUI link should also be up - confirm */
if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
return (STATUS_FAILURE);
// Initialize the PHY
/* Initialize the PHY */
status = sxg_phy_init(adapter);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
// Enable the Link Alarm
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_CONTROL, // LASI control register
LASI_CTL_LS_ALARM_ENABLE); // enable link alarm bit
/* Enable the Link Alarm */
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
LASI_CONTROL, /* LASI control register */
LASI_CTL_LS_ALARM_ENABLE); /* enable link alarm bit */
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
// XXXTODO - temporary - verify bit is set
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_CONTROL, // LASI control register
/* XXXTODO - temporary - verify bit is set */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
LASI_CONTROL, /* LASI control register */
&Value);
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
}
// Enable receive
/* Enable receive */
MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
ConfigData = (RCV_CONFIG_ENABLE |
RCV_CONFIG_ENPARSE |
......@@ -2256,7 +2256,7 @@ static int sxg_initialize_link(p_adapter_t adapter)
WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
// Mark the link as down. We'll get a link event when it comes up.
/* Mark the link as down. We'll get a link event when it comes up. */
sxg_link_state(adapter, SXG_LINK_DOWN);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
......@@ -2281,27 +2281,27 @@ static int sxg_phy_init(p_adapter_t adapter)
DBG_ERROR("ENTER %s\n", __func__);
// Read a register to identify the PHY type
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
0xC205, // PHY ID register (?)
&Value); // XXXTODO - add def
/* Read a register to identify the PHY type */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
0xC205, /* PHY ID register (?) */
&Value); /* XXXTODO - add def */
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
if (Value == 0x0012) { // 0x0012 == AEL2005C PHY(?) - XXXTODO - add def
if (Value == 0x0012) { /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
DBG_ERROR
("AEL2005C PHY detected. Downloading PHY microcode.\n");
// Initialize AEL2005C PHY and download PHY microcode
/* Initialize AEL2005C PHY and download PHY microcode */
for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
if (p->Addr == 0) {
// if address == 0, data == sleep time in ms
/* if address == 0, data == sleep time in ms */
mdelay(p->Data);
} else {
// write the given data to the specified address
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
p->Addr, // PHY address
p->Data); // PHY data
/* write the given data to the specified address */
status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
p->Addr, /* PHY address */
p->Data); /* PHY data */
if (status != STATUS_SUCCESS)
return (STATUS_FAILURE);
}
......@@ -2332,38 +2332,38 @@ static void sxg_link_event(p_adapter_t adapter)
adapter, 0, 0, 0);
DBG_ERROR("ENTER %s\n", __func__);
// Check the Link Status register. We should have a Link Alarm.
/* Check the Link Status register. We should have a Link Alarm. */
READ_REG(HwRegs->LinkStatus, Value);
if (Value & LS_LINK_ALARM) {
// We got a Link Status alarm. First, pause to let the
// link state settle (it can bounce a number of times)
/* We got a Link Status alarm. First, pause to let the */
/* link state settle (it can bounce a number of times) */
mdelay(10);
// Now clear the alarm by reading the LASI status register.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
LASI_STATUS, // LASI status register
/* Now clear the alarm by reading the LASI status register. */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
LASI_STATUS, /* LASI status register */
&Value);
if (status != STATUS_SUCCESS) {
DBG_ERROR("Error reading LASI Status MDIO register!\n");
sxg_link_state(adapter, SXG_LINK_DOWN);
// ASSERT(0);
/* ASSERT(0); */
}
ASSERT(Value & LASI_STATUS_LS_ALARM);
// Now get and set the link state
/* Now get and set the link state */
LinkState = sxg_get_link_state(adapter);
sxg_link_state(adapter, LinkState);
DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
} else {
// XXXTODO - Assuming Link Attention is only being generated for the
// Link Alarm pin (and not for a XAUI Link Status change), then it's
// impossible to get here. Yet we've gotten here twice (under extreme
// conditions - bouncing the link up and down many times a second).
// Needs further investigation.
/* XXXTODO - Assuming Link Attention is only being generated for the */
/* Link Alarm pin (and not for a XAUI Link Status change), then it's */
/* impossible to get here. Yet we've gotten here twice (under extreme */
/* conditions - bouncing the link up and down many times a second). */
/* Needs further investigation. */
DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
// ASSERT(0);
/* ASSERT(0); */
}
DBG_ERROR("EXIT %s\n", __func__);
......@@ -2388,45 +2388,45 @@ static SXG_LINK_STATE sxg_get_link_state(p_adapter_t adapter)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
adapter, 0, 0, 0);
// Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
// the following 3 bits (from 3 different MDIO registers) are all true.
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, // PHY PMA/PMD module
PHY_PMA_RCV_DET, // PMA/PMD Receive Signal Detect register
/* Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if */
/* the following 3 bits (from 3 different MDIO registers) are all true. */
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
PHY_PMA_RCV_DET, /* PMA/PMD Receive Signal Detect register */
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If PMA/PMD receive signal detect is 0, then the link is down
/* If PMA/PMD receive signal detect is 0, then the link is down */
if (!(Value & PMA_RCV_DETECT))
return (SXG_LINK_DOWN);
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS, // PHY PCS module
PHY_PCS_10G_STATUS1, // PCS 10GBASE-R Status 1 register
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS, /* PHY PCS module */
PHY_PCS_10G_STATUS1, /* PCS 10GBASE-R Status 1 register */
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If PCS is not locked to receive blocks, then the link is down
/* If PCS is not locked to receive blocks, then the link is down */
if (!(Value & PCS_10B_BLOCK_LOCK))
return (SXG_LINK_DOWN);
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS, // PHY XS module
PHY_XS_LANE_STATUS, // XS Lane Status register
status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS, /* PHY XS module */
PHY_XS_LANE_STATUS, /* XS Lane Status register */
&Value);
if (status != STATUS_SUCCESS)
goto bad;
// If XS transmit lanes are not aligned, then the link is down
/* If XS transmit lanes are not aligned, then the link is down */
if (!(Value & XS_LANE_ALIGN))
return (SXG_LINK_DOWN);
// All 3 bits are true, so the link is up
/* All 3 bits are true, so the link is up */
DBG_ERROR("EXIT %s\n", __func__);
return (SXG_LINK_UP);
bad:
// An error occurred reading an MDIO register. This shouldn't happen.
/* An error occurred reading an MDIO register. This shouldn't happen. */
DBG_ERROR("Error reading an MDIO register!\n");
ASSERT(0);
return (SXG_LINK_DOWN);
......@@ -2466,19 +2466,19 @@ static void sxg_link_state(p_adapter_t adapter, SXG_LINK_STATE LinkState)
DBG_ERROR("ENTER %s\n", __func__);
// Hold the adapter lock during this routine. Maybe move
// the lock to the caller.
/* Hold the adapter lock during this routine. Maybe move */
/* the lock to the caller. */
spin_lock(&adapter->AdapterLock);
if (LinkState == adapter->LinkState) {
// Nothing changed..
/* Nothing changed.. */
spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #0 %s\n", __func__);
return;
}
// Save the adapter state
/* Save the adapter state */
adapter->LinkState = LinkState;
// Drop the lock and indicate link state
/* Drop the lock and indicate link state */
spin_unlock(&adapter->AdapterLock);
DBG_ERROR("EXIT #1 %s\n", __func__);
......@@ -2501,76 +2501,76 @@ static int sxg_write_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 Value)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 AddrOp; // Address operation (written to MIIM field reg)
u32 WriteOp; // Write operation (written to MIIM field reg)
u32 Cmd; // Command (written to MIIM command reg)
u32 AddrOp; /* Address operation (written to MIIM field reg) */
u32 WriteOp; /* Write operation (written to MIIM field reg) */
u32 Cmd; /* Command (written to MIIM command reg) */
u32 ValueRead;
u32 Timeout;
// DBG_ERROR("ENTER %s\n", __func__);
/* DBG_ERROR("ENTER %s\n", __func__); */
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
// Ensure values don't exceed field width
DevAddr &= 0x001F; // 5-bit field
RegAddr &= 0xFFFF; // 16-bit field
Value &= 0xFFFF; // 16-bit field
/* Ensure values don't exceed field width */
DevAddr &= 0x001F; /* 5-bit field */
RegAddr &= 0xFFFF; /* 16-bit field */
Value &= 0xFFFF; /* 16-bit field */
// Set MIIM field register bits for an MIIM address operation
/* Set MIIM field register bits for an MIIM address operation */
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
// Set MIIM field register bits for an MIIM write operation
/* Set MIIM field register bits for an MIIM write operation */
WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
// Set MIIM command register bits to execute an MIIM command
/* Set MIIM command register bits to execute an MIIM command */
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
// Reset the command register command bit (in case it's not 0)
/* Reset the command register command bit (in case it's not 0) */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set the address of the specified MDIO register
/* MIIM write to set the address of the specified MDIO register */
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
// Write to MIIM Command Register to execute to address operation
/* Write to MIIM Command Register to execute to address operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Reset the command register command bit
/* Reset the command register command bit */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set up an MDIO write operation
/* MIIM write to set up an MDIO write operation */
WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
// Write to MIIM Command Register to execute the write operation
/* Write to MIIM Command Register to execute the write operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// DBG_ERROR("EXIT %s\n", __func__);
/* DBG_ERROR("EXIT %s\n", __func__); */
return (STATUS_SUCCESS);
}
......@@ -2591,78 +2591,78 @@ static int sxg_read_mdio_reg(p_adapter_t adapter,
u32 DevAddr, u32 RegAddr, u32 *pValue)
{
PSXG_HW_REGS HwRegs = adapter->HwRegs;
u32 AddrOp; // Address operation (written to MIIM field reg)
u32 ReadOp; // Read operation (written to MIIM field reg)
u32 Cmd; // Command (written to MIIM command reg)
u32 AddrOp; /* Address operation (written to MIIM field reg) */
u32 ReadOp; /* Read operation (written to MIIM field reg) */
u32 Cmd; /* Command (written to MIIM command reg) */
u32 ValueRead;
u32 Timeout;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
adapter, 0, 0, 0);
// DBG_ERROR("ENTER %s\n", __func__);
/* DBG_ERROR("ENTER %s\n", __func__); */
// Ensure values don't exceed field width
DevAddr &= 0x001F; // 5-bit field
RegAddr &= 0xFFFF; // 16-bit field
/* Ensure values don't exceed field width */
DevAddr &= 0x001F; /* 5-bit field */
RegAddr &= 0xFFFF; /* 16-bit field */
// Set MIIM field register bits for an MIIM address operation
/* Set MIIM field register bits for an MIIM address operation */
AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
// Set MIIM field register bits for an MIIM read operation
/* Set MIIM field register bits for an MIIM read operation */
ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
(DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
(MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
(MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
// Set MIIM command register bits to execute an MIIM command
/* Set MIIM command register bits to execute an MIIM command */
Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
// Reset the command register command bit (in case it's not 0)
/* Reset the command register command bit (in case it's not 0) */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set the address of the specified MDIO register
/* MIIM write to set the address of the specified MDIO register */
WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
// Write to MIIM Command Register to execute to address operation
/* Write to MIIM Command Register to execute to address operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Reset the command register command bit
/* Reset the command register command bit */
WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
// MIIM write to set up an MDIO register read operation
/* MIIM write to set up an MDIO register read operation */
WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
// Write to MIIM Command Register to execute the read operation
/* Write to MIIM Command Register to execute the read operation */
WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
// Poll AMIIM Indicator register to wait for completion
/* Poll AMIIM Indicator register to wait for completion */
Timeout = SXG_LINK_TIMEOUT;
do {
udelay(100); // Timeout in 100us units
udelay(100); /* Timeout in 100us units */
READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
if (--Timeout == 0) {
return (STATUS_FAILURE);
}
} while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
// Read the MDIO register data back from the field register
/* Read the MDIO register data back from the field register */
READ_REG(HwRegs->MacAmiimField, *pValue);
*pValue &= 0xFFFF; // data is in the lower 16 bits
*pValue &= 0xFFFF; /* data is in the lower 16 bits */
// DBG_ERROR("EXIT %s\n", __func__);
/* DBG_ERROR("EXIT %s\n", __func__); */
return (STATUS_SUCCESS);
}
......@@ -2852,10 +2852,10 @@ static void sxg_mcast_set_mask(p_adapter_t adapter)
* mode as well as ALLMCAST mode. It saves the Microcode from having
* to keep state about the MAC configuration.
*/
// DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n SLUT MODE!!!\n",__func__);
/* DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n SLUT MODE!!!\n",__func__); */
WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
// DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n",__func__, adapter->netdev->name);
/* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n",__func__, adapter->netdev->name); */
} else {
/* Commit our multicast mast to the SLIC by writing to the multicast
......@@ -2878,10 +2878,10 @@ static void sxg_mcast_set_mask(p_adapter_t adapter)
static void sxg_unmap_mmio_space(p_adapter_t adapter)
{
#if LINUX_FREES_ADAPTER_RESOURCES
// if (adapter->Regs) {
// iounmap(adapter->Regs);
// }
// adapter->slic_regs = NULL;
/* if (adapter->Regs) { */
/* iounmap(adapter->Regs); */
/* } */
/* adapter->slic_regs = NULL; */
#endif
}
......@@ -2909,8 +2909,8 @@ void SxgFreeResources(p_adapter_t adapter)
IsrCount = adapter->MsiEnabled ? RssIds : 1;
if (adapter->BasicAllocations == FALSE) {
// No allocations have been made, including spinlocks,
// or listhead initializations. Return.
/* No allocations have been made, including spinlocks, */
/* or listhead initializations. Return. */
return;
}
......@@ -2920,7 +2920,7 @@ void SxgFreeResources(p_adapter_t adapter)
if (!(IsListEmpty(&adapter->AllSglBuffers))) {
SxgFreeSglBuffers(adapter);
}
// Free event queues.
/* Free event queues. */
if (adapter->EventRings) {
pci_free_consistent(adapter->pcidev,
sizeof(SXG_EVENT_RING) * RssIds,
......@@ -2947,17 +2947,17 @@ void SxgFreeResources(p_adapter_t adapter)
SXG_FREE_PACKET_POOL(adapter->PacketPoolHandle);
SXG_FREE_BUFFER_POOL(adapter->BufferPoolHandle);
// Unmap register spaces
/* Unmap register spaces */
SxgUnmapResources(adapter);
// Deregister DMA
/* Deregister DMA */
if (adapter->DmaHandle) {
SXG_DEREGISTER_DMA(adapter->DmaHandle);
}
// Deregister interrupt
/* Deregister interrupt */
SxgDeregisterInterrupt(adapter);
// Possibly free system info (5.2 only)
/* Possibly free system info (5.2 only) */
SXG_RELEASE_SYSTEM_INFO(adapter);
SxgDiagFreeResources(adapter);
......@@ -3047,23 +3047,23 @@ static int sxg_allocate_buffer_memory(p_adapter_t adapter,
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
adapter, Size, BufferType, 0);
// Grab the adapter lock and check the state.
// If we're in anything other than INITIALIZING or
// RUNNING state, fail. This is to prevent
// allocations in an improper driver state
/* Grab the adapter lock and check the state. */
/* If we're in anything other than INITIALIZING or */
/* RUNNING state, fail. This is to prevent */
/* allocations in an improper driver state */
spin_lock(&adapter->AdapterLock);
// Increment the AllocationsPending count while holding
// the lock. Pause processing relies on this
/* Increment the AllocationsPending count while holding */
/* the lock. Pause processing relies on this */
++adapter->AllocationsPending;
spin_unlock(&adapter->AdapterLock);
// At initialization time allocate resources synchronously.
/* At initialization time allocate resources synchronously. */
Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
if (Buffer == NULL) {
spin_lock(&adapter->AdapterLock);
// Decrement the AllocationsPending count while holding
// the lock. Pause processing relies on this
/* Decrement the AllocationsPending count while holding */
/* the lock. Pause processing relies on this */
--adapter->AllocationsPending;
spin_unlock(&adapter->AdapterLock);
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
......@@ -3113,10 +3113,10 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
(BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
ASSERT(Length == SXG_RCV_BLOCK_SIZE(BufferSize));
// First, initialize the contained pool of receive data
// buffers. This initialization requires NBL/NB/MDL allocations,
// If any of them fail, free the block and return without
// queueing the shared memory
/* First, initialize the contained pool of receive data */
/* buffers. This initialization requires NBL/NB/MDL allocations, */
/* If any of them fail, free the block and return without */
/* queueing the shared memory */
RcvDataBuffer = RcvBlock;
#if 0
for (i = 0, Paddr = *PhysicalAddress;
......@@ -3126,14 +3126,14 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
for (i = 0, Paddr = PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
i++, Paddr += BufferSize, RcvDataBuffer += BufferSize) {
//
/* */
RcvDataBufferHdr =
(PSXG_RCV_DATA_BUFFER_HDR) (RcvDataBuffer +
SXG_RCV_DATA_BUFFER_HDR_OFFSET
(BufferSize));
RcvDataBufferHdr->VirtualAddress = RcvDataBuffer;
RcvDataBufferHdr->PhysicalAddress = Paddr;
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM; // For FREE macro assertion
RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM; /* For FREE macro assertion */
RcvDataBufferHdr->Size =
SXG_RCV_BUFFER_DATA_SIZE(BufferSize);
......@@ -3143,8 +3143,8 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
}
// Place this entire block of memory on the AllRcvBlocks queue so it can be
// free later
/* Place this entire block of memory on the AllRcvBlocks queue so it can be */
/* free later */
RcvBlockHdr =
(PSXG_RCV_BLOCK_HDR) ((unsigned char *)RcvBlock +
SXG_RCV_BLOCK_HDR_OFFSET(BufferSize));
......@@ -3155,7 +3155,7 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
spin_unlock(&adapter->RcvQLock);
// Now free the contained receive data buffers that we initialized above
/* Now free the contained receive data buffers that we initialized above */
RcvDataBuffer = RcvBlock;
for (i = 0, Paddr = PhysicalAddress;
i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
......@@ -3168,7 +3168,7 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
spin_unlock(&adapter->RcvQLock);
}
// Locate the descriptor block and put it on a separate free queue
/* Locate the descriptor block and put it on a separate free queue */
RcvDescriptorBlock =
(PSXG_RCV_DESCRIPTOR_BLOCK) ((unsigned char *)RcvBlock +
SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
......@@ -3186,7 +3186,7 @@ static void sxg_allocate_rcvblock_complete(p_adapter_t adapter,
adapter, RcvBlock, Length, 0);
return;
fail:
// Free any allocated resources
/* Free any allocated resources */
if (RcvBlock) {
RcvDataBuffer = RcvBlock;
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
......@@ -3230,7 +3230,7 @@ static void sxg_allocate_sgl_buffer_complete(p_adapter_t adapter,
adapter->AllSglBufferCount++;
memset(SxgSgl, 0, sizeof(SXG_SCATTER_GATHER));
SxgSgl->PhysicalAddress = PhysicalAddress; /* *PhysicalAddress; */
SxgSgl->adapter = adapter; // Initialize backpointer once
SxgSgl->adapter = adapter; /* Initialize backpointer once */
InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
spin_unlock(&adapter->SglQLock);
SxgSgl->State = SXG_BUFFER_BUSY;
......@@ -3244,14 +3244,14 @@ static unsigned char temp_mac_address[6] =
static void sxg_adapter_set_hwaddr(p_adapter_t adapter)
{
// DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __func__,
// card->config_set, adapter->port, adapter->physport, adapter->functionnumber);
//
// sxg_dbg_macaddrs(adapter);
/* DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __func__, */
/* card->config_set, adapter->port, adapter->physport, adapter->functionnumber); */
/* */
/* sxg_dbg_macaddrs(adapter); */
memcpy(adapter->macaddr, temp_mac_address, sizeof(SXG_CONFIG_MAC));
// DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n", __func__);
// sxg_dbg_macaddrs(adapter);
/* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n", __func__); */
/* sxg_dbg_macaddrs(adapter); */
if (!(adapter->currmacaddr[0] ||
adapter->currmacaddr[1] ||
adapter->currmacaddr[2] ||
......@@ -3262,7 +3262,7 @@ static void sxg_adapter_set_hwaddr(p_adapter_t adapter)
if (adapter->netdev) {
memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
}
// DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port);
/* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
sxg_dbg_macaddrs(adapter);
}
......@@ -3321,68 +3321,68 @@ static int sxg_initialize_adapter(p_adapter_t adapter)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
adapter, 0, 0, 0);
RssIds = 1; // XXXTODO SXG_RSS_CPU_COUNT(adapter);
RssIds = 1; /* XXXTODO SXG_RSS_CPU_COUNT(adapter); */
IsrCount = adapter->MsiEnabled ? RssIds : 1;
// Sanity check SXG_UCODE_REGS structure definition to
// make sure the length is correct
/* Sanity check SXG_UCODE_REGS structure definition to */
/* make sure the length is correct */
ASSERT(sizeof(SXG_UCODE_REGS) == SXG_REGISTER_SIZE_PER_CPU);
// Disable interrupts
/* Disable interrupts */
SXG_DISABLE_ALL_INTERRUPTS(adapter);
// Set MTU
/* Set MTU */
ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
(adapter->FrameSize == JUMBOMAXFRAME));
WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
// Set event ring base address and size
/* Set event ring base address and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
// Per-ISR initialization
/* Per-ISR initialization */
for (i = 0; i < IsrCount; i++) {
u64 Addr;
// Set interrupt status pointer
/* Set interrupt status pointer */
Addr = adapter->PIsr + (i * sizeof(u32));
WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
}
// XMT ring zero index
/* XMT ring zero index */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].SPSendIndex,
adapter->PXmtRingZeroIndex, 0);
// Per-RSS initialization
/* Per-RSS initialization */
for (i = 0; i < RssIds; i++) {
// Release all event ring entries to the Microcode
/* Release all event ring entries to the Microcode */
WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
TRUE);
}
// Transmit ring base and size
/* Transmit ring base and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
// Receive ring base and size
/* Receive ring base and size */
WRITE_REG64(adapter,
adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
WRITE_REG(adapter->UcodeRegs[0].RcvSize, SXG_RCV_RING_SIZE, TRUE);
// Populate the card with receive buffers
/* Populate the card with receive buffers */
sxg_stock_rcv_buffers(adapter);
// Initialize checksum offload capabilities. At the moment
// we always enable IP and TCP receive checksums on the card.
// Depending on the checksum configuration specified by the
// user, we can choose to report or ignore the checksum
// information provided by the card.
/* Initialize checksum offload capabilities. At the moment */
/* we always enable IP and TCP receive checksums on the card. */
/* Depending on the checksum configuration specified by the */
/* user, we can choose to report or ignore the checksum */
/* information provided by the card. */
WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
// Initialize the MAC, XAUI
/* Initialize the MAC, XAUI */
DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
status = sxg_initialize_link(adapter);
DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
......@@ -3390,8 +3390,8 @@ static int sxg_initialize_adapter(p_adapter_t adapter)
if (status != STATUS_SUCCESS) {
return (status);
}
// Initialize Dead to FALSE.
// SlicCheckForHang or SlicDumpThread will take it from here.
/* Initialize Dead to FALSE. */
/* SlicCheckForHang or SlicDumpThread will take it from here. */
adapter->Dead = FALSE;
adapter->PingOutstanding = FALSE;
......@@ -3428,14 +3428,14 @@ static int sxg_fill_descriptor_block(p_adapter_t adapter,
ASSERT(RcvDescriptorBlockHdr);
// If we don't have the resources to fill the descriptor block,
// return failure
/* If we don't have the resources to fill the descriptor block, */
/* return failure */
if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
SXG_RING_FULL(RcvRingInfo)) {
adapter->Stats.NoMem++;
return (STATUS_FAILURE);
}
// Get a ring descriptor command
/* Get a ring descriptor command */
SXG_GET_CMD(RingZero,
RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
ASSERT(RingDescriptorCmd);
......@@ -3443,7 +3443,7 @@ static int sxg_fill_descriptor_block(p_adapter_t adapter,
RcvDescriptorBlock =
(PSXG_RCV_DESCRIPTOR_BLOCK) RcvDescriptorBlockHdr->VirtualAddress;
// Fill in the descriptor block
/* Fill in the descriptor block */
for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
ASSERT(RcvDataBufferHdr);
......@@ -3454,13 +3454,13 @@ static int sxg_fill_descriptor_block(p_adapter_t adapter,
RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
RcvDataBufferHdr->PhysicalAddress;
}
// Add the descriptor block to receive descriptor ring 0
/* Add the descriptor block to receive descriptor ring 0 */
RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
// RcvBuffersOnCard is not protected via the receive lock (see
// sxg_process_event_queue) We don't want to grap a lock every time a
// buffer is returned to us, so we use atomic interlocked functions
// instead.
/* RcvBuffersOnCard is not protected via the receive lock (see */
/* sxg_process_event_queue) We don't want to grap a lock every time a */
/* buffer is returned to us, so we use atomic interlocked functions */
/* instead. */
adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
......@@ -3490,10 +3490,10 @@ static void sxg_stock_rcv_buffers(p_adapter_t adapter)
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
adapter, adapter->RcvBuffersOnCard,
adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
// First, see if we've got less than our minimum threshold of
// receive buffers, there isn't an allocation in progress, and
// we haven't exceeded our maximum.. get another block of buffers
// None of this needs to be SMP safe. It's round numbers.
/* First, see if we've got less than our minimum threshold of */
/* receive buffers, there isn't an allocation in progress, and */
/* we haven't exceeded our maximum.. get another block of buffers */
/* None of this needs to be SMP safe. It's round numbers. */
if ((adapter->FreeRcvBufferCount < SXG_MIN_RCV_DATA_BUFFERS) &&
(adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
(adapter->AllocationsPending == 0)) {
......@@ -3502,12 +3502,12 @@ static void sxg_stock_rcv_buffers(p_adapter_t adapter)
ReceiveBufferSize),
SXG_BUFFER_TYPE_RCV);
}
// Now grab the RcvQLock lock and proceed
/* Now grab the RcvQLock lock and proceed */
spin_lock(&adapter->RcvQLock);
while (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
PLIST_ENTRY _ple;
// Get a descriptor block
/* Get a descriptor block */
RcvDescriptorBlockHdr = NULL;
if (adapter->FreeRcvBlockCount) {
_ple = RemoveHeadList(&adapter->FreeRcvBlocks);
......@@ -3519,14 +3519,14 @@ static void sxg_stock_rcv_buffers(p_adapter_t adapter)
}
if (RcvDescriptorBlockHdr == NULL) {
// Bail out..
/* Bail out.. */
adapter->Stats.NoMem++;
break;
}
// Fill in the descriptor block and give it to the card
/* Fill in the descriptor block and give it to the card */
if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
STATUS_FAILURE) {
// Free the descriptor block
/* Free the descriptor block */
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
RcvDescriptorBlockHdr);
break;
......@@ -3560,15 +3560,15 @@ static void sxg_complete_descriptor_blocks(p_adapter_t adapter,
SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
// Now grab the RcvQLock lock and proceed
/* Now grab the RcvQLock lock and proceed */
spin_lock(&adapter->RcvQLock);
ASSERT(Index != RcvRingInfo->Tail);
while (RcvRingInfo->Tail != Index) {
//
// Locate the current Cmd (ring descriptor entry), and
// associated receive descriptor block, and advance
// the tail
//
/* */
/* Locate the current Cmd (ring descriptor entry), and */
/* associated receive descriptor block, and advance */
/* the tail */
/* */
SXG_RETURN_CMD(RingZero,
RcvRingInfo,
RingDescriptorCmd, RcvDescriptorBlockHdr);
......@@ -3576,12 +3576,12 @@ static void sxg_complete_descriptor_blocks(p_adapter_t adapter,
RcvRingInfo->Head, RcvRingInfo->Tail,
RingDescriptorCmd, RcvDescriptorBlockHdr);
// Clear the SGL field
/* Clear the SGL field */
RingDescriptorCmd->Sgl = 0;
// Attempt to refill it and hand it right back to the
// card. If we fail to refill it, free the descriptor block
// header. The card will be restocked later via the
// RcvBuffersOnCard test
/* Attempt to refill it and hand it right back to the */
/* card. If we fail to refill it, free the descriptor block */
/* header. The card will be restocked later via the */
/* RcvBuffersOnCard test */
if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
STATUS_FAILURE) {
SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
......
......@@ -13,11 +13,11 @@
/*******************************************************************************
* Configuration space
*******************************************************************************/
// PCI Vendor ID
#define SXG_VENDOR_ID 0x139A // Alacritech's Vendor ID
/* PCI Vendor ID */
#define SXG_VENDOR_ID 0x139A /* Alacritech's Vendor ID */
// PCI Device ID
#define SXG_DEVICE_ID 0x0009 // Sahara Device ID
#define SXG_DEVICE_ID 0x0009 /* Sahara Device ID */
//
// Subsystem IDs.
......@@ -623,48 +623,48 @@ typedef struct _RCV_BUF_HDR {
* Queue definitions
*****************************************************************************/
// Ingress (read only) queue numbers
#define PXY_BUF_Q 0 // Proxy Buffer Queue
#define HST_EVT_Q 1 // Host Event Queue
#define XMT_BUF_Q 2 // Transmit Buffer Queue
#define SKT_EVL_Q 3 // RcvSqr Socket Event Low Priority Queue
#define RCV_EVL_Q 4 // RcvSqr Rcv Event Low Priority Queue
#define SKT_EVH_Q 5 // RcvSqr Socket Event High Priority Queue
#define RCV_EVH_Q 6 // RcvSqr Rcv Event High Priority Queue
#define DMA_RSP_Q 7 // Dma Response Queue - one per CPU context
// Local (read/write) queue numbers
#define LOCAL_A_Q 8 // Spare local Queue
#define LOCAL_B_Q 9 // Spare local Queue
#define LOCAL_C_Q 10 // Spare local Queue
#define FSM_EVT_Q 11 // Finite-State-Machine Event Queue
#define SBF_PAL_Q 12 // System Buffer Physical Address (low) Queue
#define SBF_PAH_Q 13 // System Buffer Physical Address (high) Queue
#define SBF_VAL_Q 14 // System Buffer Virtual Address (low) Queue
#define SBF_VAH_Q 15 // System Buffer Virtual Address (high) Queue
// Egress (write only) queue numbers
#define H2G_CMD_Q 16 // Host to GlbRam DMA Command Queue
#define H2D_CMD_Q 17 // Host to DRAM DMA Command Queue
#define G2H_CMD_Q 18 // GlbRam to Host DMA Command Queue
#define G2D_CMD_Q 19 // GlbRam to DRAM DMA Command Queue
#define D2H_CMD_Q 20 // DRAM to Host DMA Command Queue
#define D2G_CMD_Q 21 // DRAM to GlbRam DMA Command Queue
#define D2D_CMD_Q 22 // DRAM to DRAM DMA Command Queue
#define PXL_CMD_Q 23 // Low Priority Proxy Command Queue
#define PXH_CMD_Q 24 // High Priority Proxy Command Queue
#define RSQ_CMD_Q 25 // Receive Sequencer Command Queue
#define RCV_BUF_Q 26 // Receive Buffer Queue
// Bit definitions for the Proxy Command queues (PXL_CMD_Q and PXH_CMD_Q)
#define PXY_COPY_EN 0x00200000 // enable copy of xmt descriptor to xmt command queue
#define PXY_SIZE_16 0x00000000 // copy 16 bytes
#define PXY_SIZE_32 0x00100000 // copy 32 bytes
/* Ingress (read only) queue numbers */
#define PXY_BUF_Q 0 /* Proxy Buffer Queue */
#define HST_EVT_Q 1 /* Host Event Queue */
#define XMT_BUF_Q 2 /* Transmit Buffer Queue */
#define SKT_EVL_Q 3 /* RcvSqr Socket Event Low Priority Queue */
#define RCV_EVL_Q 4 /* RcvSqr Rcv Event Low Priority Queue */
#define SKT_EVH_Q 5 /* RcvSqr Socket Event High Priority Queue */
#define RCV_EVH_Q 6 /* RcvSqr Rcv Event High Priority Queue */
#define DMA_RSP_Q 7 /* Dma Response Queue - one per CPU context */
/* Local (read/write) queue numbers */
#define LOCAL_A_Q 8 /* Spare local Queue */
#define LOCAL_B_Q 9 /* Spare local Queue */
#define LOCAL_C_Q 10 /* Spare local Queue */
#define FSM_EVT_Q 11 /* Finite-State-Machine Event Queue */
#define SBF_PAL_Q 12 /* System Buffer Physical Address (low) Queue */
#define SBF_PAH_Q 13 /* System Buffer Physical Address (high) Queue */
#define SBF_VAL_Q 14 /* System Buffer Virtual Address (low) Queue */
#define SBF_VAH_Q 15 /* System Buffer Virtual Address (high) Queue */
/* Egress (write only) queue numbers */
#define H2G_CMD_Q 16 /* Host to GlbRam DMA Command Queue */
#define H2D_CMD_Q 17 /* Host to DRAM DMA Command Queue */
#define G2H_CMD_Q 18 /* GlbRam to Host DMA Command Queue */
#define G2D_CMD_Q 19 /* GlbRam to DRAM DMA Command Queue */
#define D2H_CMD_Q 20 /* DRAM to Host DMA Command Queue */
#define D2G_CMD_Q 21 /* DRAM to GlbRam DMA Command Queue */
#define D2D_CMD_Q 22 /* DRAM to DRAM DMA Command Queue */
#define PXL_CMD_Q 23 /* Low Priority Proxy Command Queue */
#define PXH_CMD_Q 24 /* High Priority Proxy Command Queue */
#define RSQ_CMD_Q 25 /* Receive Sequencer Command Queue */
#define RCV_BUF_Q 26 /* Receive Buffer Queue */
/* Bit definitions for the Proxy Command queues (PXL_CMD_Q and PXH_CMD_Q) */
#define PXY_COPY_EN 0x00200000 /* enable copy of xmt descriptor to xmt command queue */
#define PXY_SIZE_16 0x00000000 /* copy 16 bytes */
#define PXY_SIZE_32 0x00100000 /* copy 32 bytes */
/*****************************************************************************
* SXG EEPROM/Flash Configuration Definitions
*****************************************************************************/
#pragma pack(push, 1)
//
/* */
typedef struct _HW_CFG_DATA {
ushort Addr;
union {
......@@ -673,22 +673,22 @@ typedef struct _HW_CFG_DATA {
};
} HW_CFG_DATA, *PHW_CFG_DATA;
//
/* */
#define NUM_HW_CFG_ENTRIES ((128/sizeof(HW_CFG_DATA)) - 4)
// MAC address
/* MAC address */
typedef struct _SXG_CONFIG_MAC {
unsigned char MacAddr[6]; // MAC Address
unsigned char MacAddr[6]; /* MAC Address */
} SXG_CONFIG_MAC, *PSXG_CONFIG_MAC;
//
/* */
typedef struct _ATK_FRU {
unsigned char PartNum[6];
unsigned char Revision[2];
unsigned char Serial[14];
} ATK_FRU, *PATK_FRU;
// OEM FRU Format types
/* OEM FRU Format types */
#define ATK_FRU_FORMAT 0x0000
#define CPQ_FRU_FORMAT 0x0001
#define DELL_FRU_FORMAT 0x0002
......@@ -697,24 +697,24 @@ typedef struct _ATK_FRU {
#define EMC_FRU_FORMAT 0x0005
#define NO_FRU_FORMAT 0xFFFF
// EEPROM/Flash Format
/* EEPROM/Flash Format */
typedef struct _SXG_CONFIG {
//
// Section 1 (128 bytes)
//
ushort MagicWord; // EEPROM/FLASH Magic code 'A5A5'
ushort SpiClks; // SPI bus clock dividers
/* */
/* Section 1 (128 bytes) */
/* */
ushort MagicWord; /* EEPROM/FLASH Magic code 'A5A5' */
ushort SpiClks; /* SPI bus clock dividers */
HW_CFG_DATA HwCfg[NUM_HW_CFG_ENTRIES];
//
//
//
ushort Version; // EEPROM format version
SXG_CONFIG_MAC MacAddr[4]; // space for 4 MAC addresses
ATK_FRU AtkFru; // FRU information
ushort OemFruFormat; // OEM FRU format type
unsigned char OemFru[76]; // OEM FRU information (optional)
ushort Checksum; // Checksum of section 2
// CS info XXXTODO
/* */
/* */
/* */
ushort Version; /* EEPROM format version */
SXG_CONFIG_MAC MacAddr[4]; /* space for 4 MAC addresses */
ATK_FRU AtkFru; /* FRU information */
ushort OemFruFormat; /* OEM FRU format type */
unsigned char OemFru[76]; /* OEM FRU information (optional) */
ushort Checksum; /* Checksum of section 2 */
/* CS info XXXTODO */
} SXG_CONFIG, *PSXG_CONFIG;
#pragma pack(pop)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment