Commit b54bf94b authored by Dominik Brodowski's avatar Dominik Brodowski

pcmcia: use pcmcia_loop_config in net pcmcia drivers

Use the config loop helper in (some) net pcmcia drivers.

CC: netdev@vger.kernel.org
Signed-off-by: default avatarDominik Brodowski <linux@dominikbrodowski.net>
parent 5fcd4da0
...@@ -284,58 +284,47 @@ static int try_io_port(struct pcmcia_device *link) ...@@ -284,58 +284,47 @@ static int try_io_port(struct pcmcia_device *link)
} }
} }
static int axnet_configcheck(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cfg,
void *priv_data)
{
int i;
cistpl_io_t *io = &cfg->io;
if (cfg->index == 0 || cfg->io.nwin == 0)
return -ENODEV;
p_dev->conf.ConfigIndex = 0x05;
/* For multifunction cards, by convention, we configure the
network function with window 0, and serial with window 1 */
if (io->nwin > 1) {
i = (io->win[1].len > io->win[0].len);
p_dev->io.BasePort2 = io->win[1-i].base;
p_dev->io.NumPorts2 = io->win[1-i].len;
} else {
i = p_dev->io.NumPorts2 = 0;
}
p_dev->io.BasePort1 = io->win[i].base;
p_dev->io.NumPorts1 = io->win[i].len;
p_dev->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
if (p_dev->io.NumPorts1 + p_dev->io.NumPorts2 >= 32)
return try_io_port(p_dev);
return -ENODEV;
}
static int axnet_config(struct pcmcia_device *link) static int axnet_config(struct pcmcia_device *link)
{ {
struct net_device *dev = link->priv; struct net_device *dev = link->priv;
axnet_dev_t *info = PRIV(dev); axnet_dev_t *info = PRIV(dev);
tuple_t tuple;
cisparse_t parse;
int i, j, last_ret, last_fn; int i, j, last_ret, last_fn;
u_short buf[64];
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
DEBUG(0, "axnet_config(0x%p)\n", link); DEBUG(0, "axnet_config(0x%p)\n", link);
tuple.Attributes = 0;
tuple.TupleData = (cisdata_t *)buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
/* don't trust the CIS on this; Linksys got it wrong */ /* don't trust the CIS on this; Linksys got it wrong */
link->conf.Present = 0x63; link->conf.Present = 0x63;
last_ret = pcmcia_loop_config(link, axnet_configcheck, NULL);
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
tuple.Attributes = 0;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (last_ret == CS_SUCCESS) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_io_t *io = &(parse.cftable_entry.io);
if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
pcmcia_parse_tuple(link, &tuple, &parse) != 0 ||
cfg->index == 0 || cfg->io.nwin == 0)
goto next_entry;
link->conf.ConfigIndex = 0x05;
/* For multifunction cards, by convention, we configure the
network function with window 0, and serial with window 1 */
if (io->nwin > 1) {
i = (io->win[1].len > io->win[0].len);
link->io.BasePort2 = io->win[1-i].base;
link->io.NumPorts2 = io->win[1-i].len;
} else {
i = link->io.NumPorts2 = 0;
}
link->io.BasePort1 = io->win[i].base;
link->io.NumPorts1 = io->win[i].len;
link->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
if (link->io.NumPorts1 + link->io.NumPorts2 >= 32) {
last_ret = try_io_port(link);
if (last_ret == CS_SUCCESS) break;
}
next_entry:
last_ret = pcmcia_get_next_tuple(link, &tuple);
}
if (last_ret != CS_SUCCESS) { if (last_ret != CS_SUCCESS) {
cs_error(link, RequestIO, last_ret); cs_error(link, RequestIO, last_ret);
goto failed; goto failed;
......
...@@ -512,58 +512,53 @@ static int try_io_port(struct pcmcia_device *link) ...@@ -512,58 +512,53 @@ static int try_io_port(struct pcmcia_device *link)
} }
} }
static int pcnet_config(struct pcmcia_device *link) static int pcnet_confcheck(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cfg,
void *priv_data)
{ {
struct net_device *dev = link->priv; int *has_shmem = priv_data;
pcnet_dev_t *info = PRIV(dev); int i;
tuple_t tuple; cistpl_io_t *io = &cfg->io;
cisparse_t parse;
int i, last_ret, last_fn, start_pg, stop_pg, cm_offset;
int has_shmem = 0;
u_short buf[64];
hw_info_t *local_hw_info;
DECLARE_MAC_BUF(mac);
DEBUG(0, "pcnet_config(0x%p)\n", link); if (cfg->index == 0 || cfg->io.nwin == 0)
return -EINVAL;
p_dev->conf.ConfigIndex = cfg->index;
tuple.TupleData = (cisdata_t *)buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
tuple.Attributes = 0;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (last_ret == CS_SUCCESS) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_io_t *io = &(parse.cftable_entry.io);
if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
pcmcia_parse_tuple(link, &tuple, &parse) != 0 ||
cfg->index == 0 || cfg->io.nwin == 0)
goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* For multifunction cards, by convention, we configure the /* For multifunction cards, by convention, we configure the
network function with window 0, and serial with window 1 */ network function with window 0, and serial with window 1 */
if (io->nwin > 1) { if (io->nwin > 1) {
i = (io->win[1].len > io->win[0].len); i = (io->win[1].len > io->win[0].len);
link->io.BasePort2 = io->win[1-i].base; p_dev->io.BasePort2 = io->win[1-i].base;
link->io.NumPorts2 = io->win[1-i].len; p_dev->io.NumPorts2 = io->win[1-i].len;
} else { } else {
i = link->io.NumPorts2 = 0; i = p_dev->io.NumPorts2 = 0;
} }
has_shmem = ((cfg->mem.nwin == 1) &&
*has_shmem = ((cfg->mem.nwin == 1) &&
(cfg->mem.win[0].len >= 0x4000)); (cfg->mem.win[0].len >= 0x4000));
link->io.BasePort1 = io->win[i].base; p_dev->io.BasePort1 = io->win[i].base;
link->io.NumPorts1 = io->win[i].len; p_dev->io.NumPorts1 = io->win[i].len;
link->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK; p_dev->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
if (link->io.NumPorts1 + link->io.NumPorts2 >= 32) { if (p_dev->io.NumPorts1 + p_dev->io.NumPorts2 >= 32)
last_ret = try_io_port(link); return try_io_port(p_dev);
if (last_ret == CS_SUCCESS) break;
} return 0;
next_entry: }
last_ret = pcmcia_get_next_tuple(link, &tuple);
} static int pcnet_config(struct pcmcia_device *link)
if (last_ret != CS_SUCCESS) { {
struct net_device *dev = link->priv;
pcnet_dev_t *info = PRIV(dev);
int last_ret, last_fn, start_pg, stop_pg, cm_offset;
int has_shmem = 0;
hw_info_t *local_hw_info;
DECLARE_MAC_BUF(mac);
DEBUG(0, "pcnet_config(0x%p)\n", link);
last_ret = pcmcia_loop_config(link, pcnet_confcheck, &has_shmem);
if (last_ret) {
cs_error(link, RequestIO, last_ret); cs_error(link, RequestIO, last_ret);
goto failed; goto failed;
} }
......
...@@ -459,28 +459,36 @@ static int mhz_3288_power(struct pcmcia_device *link) ...@@ -459,28 +459,36 @@ static int mhz_3288_power(struct pcmcia_device *link)
return 0; return 0;
} }
static int mhz_mfc_config_check(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cf,
void *priv_data)
{
int k;
p_dev->conf.ConfigIndex = cf->index;
p_dev->io.BasePort2 = cf->io.win[0].base;
for (k = 0; k < 0x400; k += 0x10) {
if (k & 0x80)
continue;
p_dev->io.BasePort1 = k ^ 0x300;
if (!pcmcia_request_io(p_dev, &p_dev->io))
return 0;
}
return -ENODEV;
}
static int mhz_mfc_config(struct pcmcia_device *link) static int mhz_mfc_config(struct pcmcia_device *link)
{ {
struct net_device *dev = link->priv; struct net_device *dev = link->priv;
struct smc_private *smc = netdev_priv(dev); struct smc_private *smc = netdev_priv(dev);
struct smc_cfg_mem *cfg_mem; struct smc_cfg_mem *cfg_mem;
tuple_t *tuple;
cisparse_t *parse;
cistpl_cftable_entry_t *cf;
u_char *buf;
win_req_t req; win_req_t req;
memreq_t mem; memreq_t mem;
int i, k; int i;
cfg_mem = kmalloc(sizeof(struct smc_cfg_mem), GFP_KERNEL); cfg_mem = kmalloc(sizeof(struct smc_cfg_mem), GFP_KERNEL);
if (!cfg_mem) if (!cfg_mem)
return CS_OUT_OF_RESOURCE; return CS_OUT_OF_RESOURCE;
tuple = &cfg_mem->tuple;
parse = &cfg_mem->parse;
cf = &parse->cftable_entry;
buf = cfg_mem->buf;
link->conf.Attributes |= CONF_ENABLE_SPKR; link->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA; link->conf.Status = CCSR_AUDIO_ENA;
link->irq.Attributes = link->irq.Attributes =
...@@ -489,27 +497,9 @@ static int mhz_mfc_config(struct pcmcia_device *link) ...@@ -489,27 +497,9 @@ static int mhz_mfc_config(struct pcmcia_device *link)
link->io.Attributes2 = IO_DATA_PATH_WIDTH_8; link->io.Attributes2 = IO_DATA_PATH_WIDTH_8;
link->io.NumPorts2 = 8; link->io.NumPorts2 = 8;
tuple->Attributes = tuple->TupleOffset = 0;
tuple->TupleData = (cisdata_t *)buf;
tuple->TupleDataMax = 255;
tuple->DesiredTuple = CISTPL_CFTABLE_ENTRY;
i = first_tuple(link, tuple, parse);
/* The Megahertz combo cards have modem-like CIS entries, so /* The Megahertz combo cards have modem-like CIS entries, so
we have to explicitly try a bunch of port combinations. */ we have to explicitly try a bunch of port combinations. */
while (i == CS_SUCCESS) { if (pcmcia_loop_config(link, mhz_mfc_config_check, NULL))
link->conf.ConfigIndex = cf->index;
link->io.BasePort2 = cf->io.win[0].base;
for (k = 0; k < 0x400; k += 0x10) {
if (k & 0x80) continue;
link->io.BasePort1 = k ^ 0x300;
i = pcmcia_request_io(link, &link->io);
if (i == CS_SUCCESS) break;
}
if (i == CS_SUCCESS) break;
i = next_tuple(link, tuple, parse);
}
if (i != CS_SUCCESS)
goto free_cfg_mem; goto free_cfg_mem;
dev->base_addr = link->io.BasePort1; dev->base_addr = link->io.BasePort1;
...@@ -533,7 +523,7 @@ static int mhz_mfc_config(struct pcmcia_device *link) ...@@ -533,7 +523,7 @@ static int mhz_mfc_config(struct pcmcia_device *link)
free_cfg_mem: free_cfg_mem:
kfree(cfg_mem); kfree(cfg_mem);
return i; return -ENODEV;
} }
static int mhz_setup(struct pcmcia_device *link) static int mhz_setup(struct pcmcia_device *link)
...@@ -660,46 +650,26 @@ static int mot_setup(struct pcmcia_device *link) ...@@ -660,46 +650,26 @@ static int mot_setup(struct pcmcia_device *link)
/*====================================================================*/ /*====================================================================*/
static int smc_configcheck(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cf,
void *priv_data)
{
p_dev->conf.ConfigIndex = cf->index;
p_dev->io.BasePort1 = cf->io.win[0].base;
p_dev->io.IOAddrLines = cf->io.flags & CISTPL_IO_LINES_MASK;
return pcmcia_request_io(p_dev, &p_dev->io);
}
static int smc_config(struct pcmcia_device *link) static int smc_config(struct pcmcia_device *link)
{ {
struct net_device *dev = link->priv; struct net_device *dev = link->priv;
struct smc_cfg_mem *cfg_mem;
tuple_t *tuple;
cisparse_t *parse;
cistpl_cftable_entry_t *cf;
u_char *buf;
int i; int i;
cfg_mem = kmalloc(sizeof(struct smc_cfg_mem), GFP_KERNEL);
if (!cfg_mem)
return CS_OUT_OF_RESOURCE;
tuple = &cfg_mem->tuple;
parse = &cfg_mem->parse;
cf = &parse->cftable_entry;
buf = cfg_mem->buf;
tuple->Attributes = tuple->TupleOffset = 0;
tuple->TupleData = (cisdata_t *)buf;
tuple->TupleDataMax = 255;
tuple->DesiredTuple = CISTPL_CFTABLE_ENTRY;
link->io.NumPorts1 = 16; link->io.NumPorts1 = 16;
i = first_tuple(link, tuple, parse); i = pcmcia_loop_config(link, smc_configcheck, NULL);
while (i != CS_NO_MORE_ITEMS) { if (!i)
if (i == CS_SUCCESS) {
link->conf.ConfigIndex = cf->index;
link->io.BasePort1 = cf->io.win[0].base;
link->io.IOAddrLines = cf->io.flags & CISTPL_IO_LINES_MASK;
i = pcmcia_request_io(link, &link->io);
if (i == CS_SUCCESS) break;
}
i = next_tuple(link, tuple, parse);
}
if (i == CS_SUCCESS)
dev->base_addr = link->io.BasePort1; dev->base_addr = link->io.BasePort1;
kfree(cfg_mem);
return i; return i;
} }
......
...@@ -715,6 +715,45 @@ has_ce2_string(struct pcmcia_device * p_dev) ...@@ -715,6 +715,45 @@ has_ce2_string(struct pcmcia_device * p_dev)
return 0; return 0;
} }
static int
xirc2ps_config_modem(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cf,
void *priv_data)
{
unsigned int ioaddr;
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8) {
for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) {
p_dev->conf.ConfigIndex = cf->index ;
p_dev->io.BasePort2 = cf->io.win[0].base;
p_dev->io.BasePort1 = ioaddr;
if (!pcmcia_request_io(p_dev, &p_dev->io))
return 0;
}
}
return -ENODEV;
}
static int
xirc2ps_config_check(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cf,
void *priv_data)
{
int *pass = priv_data;
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8) {
p_dev->conf.ConfigIndex = cf->index ;
p_dev->io.BasePort2 = cf->io.win[0].base;
p_dev->io.BasePort1 = p_dev->io.BasePort2
+ (*pass ? (cf->index & 0x20 ? -24:8)
: (cf->index & 0x20 ? 8:-24));
if (!pcmcia_request_io(p_dev, &p_dev->io))
return 0;
}
return -ENODEV;
}
/**************** /****************
* xirc2ps_config() is scheduled to run after a CARD_INSERTION event * xirc2ps_config() is scheduled to run after a CARD_INSERTION event
* is received, to configure the PCMCIA socket, and to make the * is received, to configure the PCMCIA socket, and to make the
...@@ -725,13 +764,12 @@ xirc2ps_config(struct pcmcia_device * link) ...@@ -725,13 +764,12 @@ xirc2ps_config(struct pcmcia_device * link)
{ {
struct net_device *dev = link->priv; struct net_device *dev = link->priv;
local_info_t *local = netdev_priv(dev); local_info_t *local = netdev_priv(dev);
unsigned int ioaddr;
tuple_t tuple; tuple_t tuple;
cisparse_t parse; cisparse_t parse;
unsigned int ioaddr;
int err, i; int err, i;
u_char buf[64]; u_char buf[64];
cistpl_lan_node_id_t *node_id = (cistpl_lan_node_id_t*)parse.funce.data; cistpl_lan_node_id_t *node_id = (cistpl_lan_node_id_t*)parse.funce.data;
cistpl_cftable_entry_t *cf = &parse.cftable_entry;
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
local->dingo_ccr = NULL; local->dingo_ccr = NULL;
...@@ -846,19 +884,8 @@ xirc2ps_config(struct pcmcia_device * link) ...@@ -846,19 +884,8 @@ xirc2ps_config(struct pcmcia_device * link)
/* Take the Modem IO port from the CIS and scan for a free /* Take the Modem IO port from the CIS and scan for a free
* Ethernet port */ * Ethernet port */
link->io.NumPorts1 = 16; /* no Mako stuff anymore */ link->io.NumPorts1 = 16; /* no Mako stuff anymore */
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; if (!pcmcia_loop_config(link, xirc2ps_config_modem, NULL))
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)) {
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8) {
for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) {
link->conf.ConfigIndex = cf->index ;
link->io.BasePort2 = cf->io.win[0].base;
link->io.BasePort1 = ioaddr;
if (!(err=pcmcia_request_io(link, &link->io)))
goto port_found; goto port_found;
}
}
}
} else { } else {
link->io.NumPorts1 = 18; link->io.NumPorts1 = 18;
/* We do 2 passes here: The first one uses the regular mapping and /* We do 2 passes here: The first one uses the regular mapping and
...@@ -866,21 +893,9 @@ xirc2ps_config(struct pcmcia_device * link) ...@@ -866,21 +893,9 @@ xirc2ps_config(struct pcmcia_device * link)
* mirrored every 32 bytes. Actually we use a mirrored port for * mirrored every 32 bytes. Actually we use a mirrored port for
* the Mako if (on the first pass) the COR bit 5 is set. * the Mako if (on the first pass) the COR bit 5 is set.
*/ */
for (pass=0; pass < 2; pass++) { for (pass=0; pass < 2; pass++)
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; if (!pcmcia_loop_config(link, xirc2ps_config_check, &pass))
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)){
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8){
link->conf.ConfigIndex = cf->index ;
link->io.BasePort2 = cf->io.win[0].base;
link->io.BasePort1 = link->io.BasePort2
+ (pass ? (cf->index & 0x20 ? -24:8)
: (cf->index & 0x20 ? 8:-24));
if (!(err=pcmcia_request_io(link, &link->io)))
goto port_found; goto port_found;
}
}
}
/* if special option: /* if special option:
* try to configure as Ethernet only. * try to configure as Ethernet only.
* .... */ * .... */
......
...@@ -206,89 +206,63 @@ static void airo_detach(struct pcmcia_device *link) ...@@ -206,89 +206,63 @@ static void airo_detach(struct pcmcia_device *link)
#define CS_CHECK(fn, ret) \ #define CS_CHECK(fn, ret) \
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0) do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
static int airo_config(struct pcmcia_device *link) struct airo_cs_config_data {
{ cistpl_cftable_entry_t dflt;
tuple_t tuple;
cisparse_t parse;
local_info_t *dev;
int last_fn, last_ret;
u_char buf[64];
win_req_t req; win_req_t req;
memreq_t map; };
dev = link->priv; static int airo_cs_config_check(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cfg,
void *priv_data)
{
struct airo_cs_config_data *cfg_mem = priv_data;
DEBUG(0, "airo_config(0x%p)\n", link); if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
cfg_mem->dflt = *cfg;
/* if (cfg->index == 0)
In this loop, we scan the CIS for configuration table entries, return -ENODEV;
each of which describes a valid card configuration, including
voltage, IO window, memory window, and interrupt settings. p_dev->conf.ConfigIndex = cfg->index;
We make no assumptions about the card to be configured: we use
just the information available in the CIS. In an ideal world,
this would work for any PCMCIA card, but it requires a complete
and accurate CIS. In practice, a driver usually "knows" most of
these things without consulting the CIS, and most client drivers
will only use the CIS to fill in implementation-defined details.
*/
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (1) {
cistpl_cftable_entry_t dflt = { 0 };
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
pcmcia_parse_tuple(link, &tuple, &parse) != 0)
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) dflt = *cfg;
if (cfg->index == 0) goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* Does this card need audio output? */ /* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) { if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
link->conf.Attributes |= CONF_ENABLE_SPKR; p_dev->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA; p_dev->conf.Status = CCSR_AUDIO_ENA;
} }
/* Use power settings for Vcc and Vpp if present */ /* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */ /* Note that the CIS values need to be rescaled */
if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM)) if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;
cfg->vpp1.param[CISTPL_POWER_VNOM]/10000; else if (cfg_mem->dflt.vpp1.present & (1<<CISTPL_POWER_VNOM))
else if (dflt.vpp1.present & (1<<CISTPL_POWER_VNOM)) p_dev->conf.Vpp = cfg_mem->dflt.vpp1.param[CISTPL_POWER_VNOM]/10000;
link->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM]/10000;
/* Do we need to allocate an interrupt? */ /* Do we need to allocate an interrupt? */
if (cfg->irq.IRQInfo1 || dflt.irq.IRQInfo1) if (cfg->irq.IRQInfo1 || cfg_mem->dflt.irq.IRQInfo1)
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */ /* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0; p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { if ((cfg->io.nwin > 0) || (cfg_mem->dflt.io.nwin > 0)) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io; cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &cfg_mem->dflt.io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT)) if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT)) if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_8; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
link->io.BasePort1 = io->win[0].base; p_dev->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len; p_dev->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) { if (io->nwin > 1) {
link->io.Attributes2 = link->io.Attributes1; p_dev->io.Attributes2 = p_dev->io.Attributes1;
link->io.BasePort2 = io->win[1].base; p_dev->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len; p_dev->io.NumPorts2 = io->win[1].len;
} }
} }
/* This reserves IO space but doesn't actually enable it */ /* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link, &link->io) != 0) if (pcmcia_request_io(p_dev, &p_dev->io) != 0)
goto next_entry; return -ENODEV;
/* /*
Now set up a common memory window, if needed. There is room Now set up a common memory window, if needed. There is room
...@@ -301,25 +275,56 @@ static int airo_config(struct pcmcia_device *link) ...@@ -301,25 +275,56 @@ static int airo_config(struct pcmcia_device *link)
needs to be mapped to virtual space with ioremap() before it needs to be mapped to virtual space with ioremap() before it
is used. is used.
*/ */
if ((cfg->mem.nwin > 0) || (dflt.mem.nwin > 0)) { if ((cfg->mem.nwin > 0) || (cfg_mem->dflt.mem.nwin > 0)) {
cistpl_mem_t *mem = cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &cfg_mem->dflt.mem;
(cfg->mem.nwin) ? &cfg->mem : &dflt.mem; memreq_t map;
req.Attributes = WIN_DATA_WIDTH_16|WIN_MEMORY_TYPE_CM; cfg_mem->req.Attributes = WIN_DATA_WIDTH_16|WIN_MEMORY_TYPE_CM;
req.Base = mem->win[0].host_addr; cfg_mem->req.Base = mem->win[0].host_addr;
req.Size = mem->win[0].len; cfg_mem->req.Size = mem->win[0].len;
req.AccessSpeed = 0; cfg_mem->req.AccessSpeed = 0;
if (pcmcia_request_window(&link, &req, &link->win) != 0) if (pcmcia_request_window(&p_dev, &cfg_mem->req, &p_dev->win) != 0)
goto next_entry; return -ENODEV;
map.Page = 0; map.CardOffset = mem->win[0].card_addr; map.Page = 0;
if (pcmcia_map_mem_page(link->win, &map) != 0) map.CardOffset = mem->win[0].card_addr;
goto next_entry; if (pcmcia_map_mem_page(p_dev->win, &map) != 0)
return -ENODEV;
} }
/* If we got this far, we're cool! */ /* If we got this far, we're cool! */
break; return 0;
}
next_entry:
CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple)); static int airo_config(struct pcmcia_device *link)
} {
local_info_t *dev;
struct airo_cs_config_data *cfg_mem;
int last_fn, last_ret;
dev = link->priv;
DEBUG(0, "airo_config(0x%p)\n", link);
cfg_mem = kzalloc(sizeof(struct airo_cs_config_data), GFP_KERNEL);
if (!cfg_mem)
return -ENOMEM;
/*
* In this loop, we scan the CIS for configuration table
* entries, each of which describes a valid card
* configuration, including voltage, IO window, memory window,
* and interrupt settings.
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
last_ret = pcmcia_loop_config(link, airo_cs_config_check, cfg_mem);
if (last_ret)
goto failed;
/* /*
Allocate an interrupt line. Note that this does not assign a Allocate an interrupt line. Note that this does not assign a
...@@ -362,14 +367,17 @@ static int airo_config(struct pcmcia_device *link) ...@@ -362,14 +367,17 @@ static int airo_config(struct pcmcia_device *link)
printk(" & 0x%04x-0x%04x", link->io.BasePort2, printk(" & 0x%04x-0x%04x", link->io.BasePort2,
link->io.BasePort2+link->io.NumPorts2-1); link->io.BasePort2+link->io.NumPorts2-1);
if (link->win) if (link->win)
printk(", mem 0x%06lx-0x%06lx", req.Base, printk(", mem 0x%06lx-0x%06lx", cfg_mem->req.Base,
req.Base+req.Size-1); cfg_mem->req.Base+cfg_mem->req.Size-1);
printk("\n"); printk("\n");
kfree(cfg_mem);
return 0; return 0;
cs_failed: cs_failed:
cs_error(link, last_fn, last_ret); cs_error(link, last_fn, last_ret);
failed:
airo_release(link); airo_release(link);
kfree(cfg_mem);
return -ENODEV; return -ENODEV;
} /* airo_config */ } /* airo_config */
......
...@@ -224,97 +224,83 @@ static int card_present(void *arg) ...@@ -224,97 +224,83 @@ static int card_present(void *arg)
return 0; return 0;
} }
static int atmel_config(struct pcmcia_device *link) static int atmel_config_check(struct pcmcia_device *p_dev,
cistpl_cftable_entry_t *cfg,
void *priv_data)
{ {
tuple_t tuple; cistpl_cftable_entry_t *dflt = priv_data;
cisparse_t parse;
local_info_t *dev;
int last_fn, last_ret;
u_char buf[64];
struct pcmcia_device_id *did;
dev = link->priv;
did = handle_to_dev(link).driver_data;
DEBUG(0, "atmel_config(0x%p)\n", link); if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
*dflt = *cfg;
tuple.Attributes = 0; if (cfg->index == 0)
tuple.TupleData = buf; return -ENODEV;
tuple.TupleDataMax = sizeof(buf); p_dev->conf.ConfigIndex = cfg->index;
tuple.TupleOffset = 0;
/*
In this loop, we scan the CIS for configuration table entries,
each of which describes a valid card configuration, including
voltage, IO window, memory window, and interrupt settings.
We make no assumptions about the card to be configured: we use
just the information available in the CIS. In an ideal world,
this would work for any PCMCIA card, but it requires a complete
and accurate CIS. In practice, a driver usually "knows" most of
these things without consulting the CIS, and most client drivers
will only use the CIS to fill in implementation-defined details.
*/
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (1) {
cistpl_cftable_entry_t dflt = { 0 };
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
if (pcmcia_get_tuple_data(link, &tuple) != 0 ||
pcmcia_parse_tuple(link, &tuple, &parse) != 0)
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) dflt = *cfg;
if (cfg->index == 0) goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* Does this card need audio output? */ /* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) { if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
link->conf.Attributes |= CONF_ENABLE_SPKR; p_dev->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA; p_dev->conf.Status = CCSR_AUDIO_ENA;
} }
/* Use power settings for Vcc and Vpp if present */ /* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */ /* Note that the CIS values need to be rescaled */
if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM)) if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;
cfg->vpp1.param[CISTPL_POWER_VNOM]/10000; else if (dflt->vpp1.present & (1<<CISTPL_POWER_VNOM))
else if (dflt.vpp1.present & (1<<CISTPL_POWER_VNOM)) p_dev->conf.Vpp = dflt->vpp1.param[CISTPL_POWER_VNOM]/10000;
link->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM]/10000;
/* Do we need to allocate an interrupt? */ /* Do we need to allocate an interrupt? */
if (cfg->irq.IRQInfo1 || dflt.irq.IRQInfo1) if (cfg->irq.IRQInfo1 || dflt->irq.IRQInfo1)
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */ /* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0; p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { if ((cfg->io.nwin > 0) || (dflt->io.nwin > 0)) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io; cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT)) if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT)) if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_8; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
link->io.BasePort1 = io->win[0].base; p_dev->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len; p_dev->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) { if (io->nwin > 1) {
link->io.Attributes2 = link->io.Attributes1; p_dev->io.Attributes2 = p_dev->io.Attributes1;
link->io.BasePort2 = io->win[1].base; p_dev->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len; p_dev->io.NumPorts2 = io->win[1].len;
} }
} }
/* This reserves IO space but doesn't actually enable it */ /* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link, &link->io) != 0) return pcmcia_request_io(p_dev, &p_dev->io);
goto next_entry; }
/* If we got this far, we're cool! */ static int atmel_config(struct pcmcia_device *link)
break; {
local_info_t *dev;
int last_fn, last_ret;
struct pcmcia_device_id *did;
cistpl_cftable_entry_t dflt = { 0 };
next_entry: dev = link->priv;
CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple)); did = handle_to_dev(link).driver_data;
}
DEBUG(0, "atmel_config(0x%p)\n", link);
/*
In this loop, we scan the CIS for configuration table entries,
each of which describes a valid card configuration, including
voltage, IO window, memory window, and interrupt settings.
We make no assumptions about the card to be configured: we use
just the information available in the CIS. In an ideal world,
this would work for any PCMCIA card, but it requires a complete
and accurate CIS. In practice, a driver usually "knows" most of
these things without consulting the CIS, and most client drivers
will only use the CIS to fill in implementation-defined details.
*/
if (pcmcia_loop_config(link, atmel_config_check, &dflt))
goto failed;
/* /*
Allocate an interrupt line. Note that this does not assign a Allocate an interrupt line. Note that this does not assign a
...@@ -360,6 +346,7 @@ static int atmel_config(struct pcmcia_device *link) ...@@ -360,6 +346,7 @@ static int atmel_config(struct pcmcia_device *link)
cs_failed: cs_failed:
cs_error(link, last_fn, last_ret); cs_error(link, last_fn, last_ret);
failed:
atmel_release(link); atmel_release(link);
return -ENODEV; return -ENODEV;
} }
......
...@@ -532,145 +532,134 @@ static void prism2_detach(struct pcmcia_device *link) ...@@ -532,145 +532,134 @@ static void prism2_detach(struct pcmcia_device *link)
#define CS_CHECK(fn, ret) \ #define CS_CHECK(fn, ret) \
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0) do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
#define CFG_CHECK2(fn, retf) \
do { int _ret = (retf); \
if (_ret != 0) { \
PDEBUG(DEBUG_EXTRA, "CardServices(" #fn ") returned %d\n", _ret); \
cs_error(link, fn, _ret); \
goto next_entry; \
} \
} while (0)
/* run after a CARD_INSERTION event is received to configure the PCMCIA /* run after a CARD_INSERTION event is received to configure the PCMCIA
* socket and make the device available to the system */ * socket and make the device available to the system */
static int prism2_config(struct pcmcia_device *link)
{
struct net_device *dev;
struct hostap_interface *iface;
local_info_t *local;
int ret = 1;
tuple_t tuple;
cisparse_t *parse;
int last_fn, last_ret;
u_char buf[64];
config_info_t conf;
cistpl_cftable_entry_t dflt = { 0 };
struct hostap_cs_priv *hw_priv;
PDEBUG(DEBUG_FLOW, "prism2_config()\n");
parse = kmalloc(sizeof(cisparse_t), GFP_KERNEL); struct prism2_config_data {
hw_priv = kzalloc(sizeof(*hw_priv), GFP_KERNEL); cistpl_cftable_entry_t dflt;
if (parse == NULL || hw_priv == NULL) { config_info_t conf;
ret = -ENOMEM; };
goto failed;
}
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(link, &conf));
/* Look for an appropriate configuration table entry in the CIS */ static int prism2_config_check(struct pcmcia_device *p_dev,
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY; cistpl_cftable_entry_t *cfg,
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple)); void *priv_data)
for (;;) { {
cistpl_cftable_entry_t *cfg = &(parse->cftable_entry); struct prism2_config_data *cfg_mem = priv_data;
CFG_CHECK2(GetTupleData,
pcmcia_get_tuple_data(link, &tuple));
CFG_CHECK2(ParseTuple,
pcmcia_parse_tuple(link, &tuple, parse));
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
dflt = *cfg; cfg_mem->dflt = *cfg;
if (cfg->index == 0) if (cfg->index == 0)
goto next_entry; return -ENODEV;
link->conf.ConfigIndex = cfg->index;
p_dev->conf.ConfigIndex = cfg->index;
PDEBUG(DEBUG_EXTRA, "Checking CFTABLE_ENTRY 0x%02X " PDEBUG(DEBUG_EXTRA, "Checking CFTABLE_ENTRY 0x%02X "
"(default 0x%02X)\n", cfg->index, dflt.index); "(default 0x%02X)\n", cfg->index, cfg_mem->dflt.index);
/* Does this card need audio output? */ /* Does this card need audio output? */
if (cfg->flags & CISTPL_CFTABLE_AUDIO) { if (cfg->flags & CISTPL_CFTABLE_AUDIO) {
link->conf.Attributes |= CONF_ENABLE_SPKR; p_dev->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status = CCSR_AUDIO_ENA; p_dev->conf.Status = CCSR_AUDIO_ENA;
} }
/* Use power settings for Vcc and Vpp if present */ /* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */ /* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / if (cfg_mem->conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] /
10000 && !ignore_cis_vcc) { 10000 && !ignore_cis_vcc) {
PDEBUG(DEBUG_EXTRA, " Vcc mismatch - skipping" PDEBUG(DEBUG_EXTRA, " Vcc mismatch - skipping"
" this entry\n"); " this entry\n");
goto next_entry; return -ENODEV;
} }
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) { } else if (cfg_mem->dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / if (cfg_mem->conf.Vcc != cfg_mem->dflt.vcc.param[CISTPL_POWER_VNOM] /
10000 && !ignore_cis_vcc) { 10000 && !ignore_cis_vcc) {
PDEBUG(DEBUG_EXTRA, " Vcc (default) mismatch " PDEBUG(DEBUG_EXTRA, " Vcc (default) mismatch "
"- skipping this entry\n"); "- skipping this entry\n");
goto next_entry; return -ENODEV;
} }
} }
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; else if (cfg_mem->dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM)) p_dev->conf.Vpp = cfg_mem->dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
link->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
/* Do we need to allocate an interrupt? */ /* Do we need to allocate an interrupt? */
if (cfg->irq.IRQInfo1 || dflt.irq.IRQInfo1) if (cfg->irq.IRQInfo1 || cfg_mem->dflt.irq.IRQInfo1)
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
else if (!(link->conf.Attributes & CONF_ENABLE_IRQ)) { else if (!(p_dev->conf.Attributes & CONF_ENABLE_IRQ)) {
/* At least Compaq WL200 does not have IRQInfo1 set, /* At least Compaq WL200 does not have IRQInfo1 set,
* but it does not work without interrupts.. */ * but it does not work without interrupts.. */
printk("Config has no IRQ info, but trying to enable " printk(KERN_WARNING "Config has no IRQ info, but trying to "
"IRQ anyway..\n"); "enable IRQ anyway..\n");
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
} }
/* IO window settings */ /* IO window settings */
PDEBUG(DEBUG_EXTRA, "IO window settings: cfg->io.nwin=%d " PDEBUG(DEBUG_EXTRA, "IO window settings: cfg->io.nwin=%d "
"dflt.io.nwin=%d\n", "cfg_mem->dflt.io.nwin=%d\n",
cfg->io.nwin, dflt.io.nwin); cfg->io.nwin, cfg_mem->dflt.io.nwin);
link->io.NumPorts1 = link->io.NumPorts2 = 0; p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { if ((cfg->io.nwin > 0) || (cfg_mem->dflt.io.nwin > 0)) {
cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io; cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &cfg_mem->dflt.io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
PDEBUG(DEBUG_EXTRA, "io->flags = 0x%04X, " PDEBUG(DEBUG_EXTRA, "io->flags = 0x%04X, "
"io.base=0x%04x, len=%d\n", io->flags, "io.base=0x%04x, len=%d\n", io->flags,
io->win[0].base, io->win[0].len); io->win[0].base, io->win[0].len);
if (!(io->flags & CISTPL_IO_8BIT)) if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT)) if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = IO_DATA_PATH_WIDTH_8; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
link->io.IOAddrLines = io->flags & p_dev->io.IOAddrLines = io->flags &
CISTPL_IO_LINES_MASK; CISTPL_IO_LINES_MASK;
link->io.BasePort1 = io->win[0].base; p_dev->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len; p_dev->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) { if (io->nwin > 1) {
link->io.Attributes2 = link->io.Attributes1; p_dev->io.Attributes2 = p_dev->io.Attributes1;
link->io.BasePort2 = io->win[1].base; p_dev->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len; p_dev->io.NumPorts2 = io->win[1].len;
} }
} }
/* This reserves IO space but doesn't actually enable it */ /* This reserves IO space but doesn't actually enable it */
CFG_CHECK2(RequestIO, return pcmcia_request_io(p_dev, &p_dev->io);
pcmcia_request_io(link, &link->io)); }
static int prism2_config(struct pcmcia_device *link)
{
struct net_device *dev;
struct hostap_interface *iface;
struct prism2_config_data *cfg_mem;
local_info_t *local;
int ret = 1;
int last_fn, last_ret;
struct hostap_cs_priv *hw_priv;
PDEBUG(DEBUG_FLOW, "prism2_config()\n");
cfg_mem = kzalloc(sizeof(struct prism2_config_data), GFP_KERNEL);
if (!cfg_mem)
return -ENOMEM;
hw_priv = kzalloc(sizeof(*hw_priv), GFP_KERNEL);
if (hw_priv == NULL) {
ret = -ENOMEM;
goto failed;
}
/* This configuration table entry is OK */ CS_CHECK(GetConfigurationInfo,
break; pcmcia_get_configuration_info(link, &cfg_mem->conf));
next_entry: /* Look for an appropriate configuration table entry in the CIS */
CS_CHECK(GetNextTuple, last_ret = pcmcia_loop_config(link, prism2_config_check, cfg_mem);
pcmcia_get_next_tuple(link, &tuple)); if (last_ret) {
if (!ignore_cis_vcc)
printk(KERN_ERR "GetNextTuple(): No matching "
"CIS configuration. Maybe you need the "
"ignore_cis_vcc=1 parameter.\n");
cs_error(link, RequestIO, last_ret);
goto failed;
} }
/* Need to allocate net_device before requesting IRQ handler */ /* Need to allocate net_device before requesting IRQ handler */
...@@ -738,15 +727,15 @@ static int prism2_config(struct pcmcia_device *link) ...@@ -738,15 +727,15 @@ static int prism2_config(struct pcmcia_device *link)
if (ret == 0 && local->ddev) if (ret == 0 && local->ddev)
strcpy(hw_priv->node.dev_name, local->ddev->name); strcpy(hw_priv->node.dev_name, local->ddev->name);
} }
kfree(parse); kfree(cfg_mem);
return ret; return ret;
cs_failed: cs_failed:
cs_error(link, last_fn, last_ret); cs_error(link, last_fn, last_ret);
failed: failed:
kfree(parse);
kfree(hw_priv); kfree(hw_priv);
kfree(cfg_mem);
prism2_release((u_long)link); prism2_release((u_long)link);
return ret; return ret;
} }
......
...@@ -164,126 +164,119 @@ static void orinoco_cs_detach(struct pcmcia_device *link) ...@@ -164,126 +164,119 @@ static void orinoco_cs_detach(struct pcmcia_device *link)
last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; \ last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; \
} while (0) } while (0)
static int struct orinoco_cs_config_data {
orinoco_cs_config(struct pcmcia_device *link) cistpl_cftable_entry_t dflt;
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
u_char buf[64];
config_info_t conf; config_info_t conf;
tuple_t tuple; };
cisparse_t parse;
void __iomem *mem;
/* Look up the current Vcc */
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(link, &conf));
/* static int orinoco_cs_config_check(struct pcmcia_device *p_dev,
* In this loop, we scan the CIS for configuration table cistpl_cftable_entry_t *cfg,
* entries, each of which describes a valid card void *priv_data)
* configuration, including voltage, IO window, memory window, {
* and interrupt settings. struct orinoco_cs_config_data *cfg_mem = priv_data;
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (1) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_cftable_entry_t dflt = { .index = 0 };
if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
|| (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
dflt = *cfg; cfg_mem->dflt = *cfg;
if (cfg->index == 0) if (cfg->index == 0)
goto next_entry; goto next_entry;
link->conf.ConfigIndex = cfg->index; p_dev->conf.ConfigIndex = cfg->index;
/* Use power settings for Vcc and Vpp if present */ /* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */ /* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) { if (cfg_mem->conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "orinoco_cs_config: Vcc mismatch (conf.Vcc = %d, cfg CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000); DEBUG(2, "spectrum_cs_config: Vcc mismatch (cfg_mem->conf.Vcc = %d, CIS = %d)\n", cfg_mem->conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
if (!ignore_cis_vcc) if (!ignore_cis_vcc)
goto next_entry; goto next_entry;
} }
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) { } else if (cfg_mem->dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) { if (cfg_mem->conf.Vcc != cfg_mem->dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "orinoco_cs_config: Vcc mismatch (conf.Vcc = %d, dflt CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000); DEBUG(2, "spectrum_cs_config: Vcc mismatch (cfg_mem->conf.Vcc = %d, CIS = %d)\n", cfg_mem->conf.Vcc, cfg_mem->dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
if(!ignore_cis_vcc) if (!ignore_cis_vcc)
goto next_entry; goto next_entry;
} }
} }
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp =
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM)) else if (cfg_mem->dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000; cfg_mem->dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
/* Do we need to allocate an interrupt? */ /* Do we need to allocate an interrupt? */
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */ /* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0; p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { if ((cfg->io.nwin > 0) || (cfg_mem->dflt.io.nwin > 0)) {
cistpl_io_t *io = cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &cfg_mem->dflt.io;
(cfg->io.nwin) ? &cfg->io : &dflt.io; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT)) if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT)) if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
IO_DATA_PATH_WIDTH_8; p_dev->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
link->io.IOAddrLines = p_dev->io.BasePort1 = io->win[0].base;
io->flags & CISTPL_IO_LINES_MASK; p_dev->io.NumPorts1 = io->win[0].len;
link->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) { if (io->nwin > 1) {
link->io.Attributes2 = p_dev->io.Attributes2 = p_dev->io.Attributes1;
link->io.Attributes1; p_dev->io.BasePort2 = io->win[1].base;
link->io.BasePort2 = io->win[1].base; p_dev->io.NumPorts2 = io->win[1].len;
link->io.NumPorts2 = io->win[1].len;
} }
/* This reserves IO space but doesn't actually enable it */ /* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link, &link->io) != 0) if (pcmcia_request_io(p_dev, &p_dev->io) != 0)
goto next_entry; goto next_entry;
} }
return 0;
next_entry:
pcmcia_disable_device(p_dev);
return -ENODEV;
};
static int
orinoco_cs_config(struct pcmcia_device *link)
{
struct orinoco_cs_config_data *cfg_mem;
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
void __iomem *mem;
/* If we got this far, we're cool! */ cfg_mem = kzalloc(sizeof(struct orinoco_cs_config_data), GFP_KERNEL);
if (!cfg_mem)
return -ENOMEM;
break; /* Look up the current Vcc */
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(link, &cfg_mem->conf));
next_entry: /*
pcmcia_disable_device(link); * In this loop, we scan the CIS for configuration table
last_ret = pcmcia_get_next_tuple(link, &tuple); * entries, each of which describes a valid card
if (last_ret == CS_NO_MORE_ITEMS) { * configuration, including voltage, IO window, memory window,
* and interrupt settings.
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
last_ret = pcmcia_loop_config(link, orinoco_cs_config_check, cfg_mem);
if (last_ret) {
if (!ignore_cis_vcc)
printk(KERN_ERR PFX "GetNextTuple(): No matching " printk(KERN_ERR PFX "GetNextTuple(): No matching "
"CIS configuration. Maybe you need the " "CIS configuration. Maybe you need the "
"ignore_cis_vcc=1 parameter.\n"); "ignore_cis_vcc=1 parameter.\n");
goto cs_failed; cs_error(link, RequestIO, last_ret);
} goto failed;
} }
/* /*
...@@ -334,7 +327,7 @@ orinoco_cs_config(struct pcmcia_device *link) ...@@ -334,7 +327,7 @@ orinoco_cs_config(struct pcmcia_device *link)
"0x%04x-0x%04x\n", dev->name, dev->dev.parent->bus_id, "0x%04x-0x%04x\n", dev->name, dev->dev.parent->bus_id,
link->irq.AssignedIRQ, link->io.BasePort1, link->irq.AssignedIRQ, link->io.BasePort1,
link->io.BasePort1 + link->io.NumPorts1 - 1); link->io.BasePort1 + link->io.NumPorts1 - 1);
kfree(cfg_mem);
return 0; return 0;
cs_failed: cs_failed:
...@@ -342,6 +335,7 @@ orinoco_cs_config(struct pcmcia_device *link) ...@@ -342,6 +335,7 @@ orinoco_cs_config(struct pcmcia_device *link)
failed: failed:
orinoco_cs_release(link); orinoco_cs_release(link);
kfree(cfg_mem);
return -ENODEV; return -ENODEV;
} /* orinoco_cs_config */ } /* orinoco_cs_config */
......
...@@ -633,126 +633,119 @@ static void spectrum_cs_detach(struct pcmcia_device *link) ...@@ -633,126 +633,119 @@ static void spectrum_cs_detach(struct pcmcia_device *link)
* device available to the system. * device available to the system.
*/ */
static int struct spectrum_cs_config_data {
spectrum_cs_config(struct pcmcia_device *link) cistpl_cftable_entry_t dflt;
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
u_char buf[64];
config_info_t conf; config_info_t conf;
tuple_t tuple; };
cisparse_t parse;
void __iomem *mem;
/* Look up the current Vcc */
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(link, &conf));
/* static int spectrum_cs_config_check(struct pcmcia_device *p_dev,
* In this loop, we scan the CIS for configuration table cistpl_cftable_entry_t *cfg,
* entries, each of which describes a valid card void *priv_data)
* configuration, including voltage, IO window, memory window, {
* and interrupt settings. struct spectrum_cs_config_data *cfg_mem = priv_data;
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (1) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_cftable_entry_t dflt = { .index = 0 };
if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
|| (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT) if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
dflt = *cfg; cfg_mem->dflt = *cfg;
if (cfg->index == 0) if (cfg->index == 0)
goto next_entry; goto next_entry;
link->conf.ConfigIndex = cfg->index; p_dev->conf.ConfigIndex = cfg->index;
/* Use power settings for Vcc and Vpp if present */ /* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */ /* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) { if (cfg_mem->conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000); DEBUG(2, "spectrum_cs_config: Vcc mismatch (cfg_mem->conf.Vcc = %d, CIS = %d)\n", cfg_mem->conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
if (!ignore_cis_vcc) if (!ignore_cis_vcc)
goto next_entry; goto next_entry;
} }
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) { } else if (cfg_mem->dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) { if (cfg_mem->conf.Vcc != cfg_mem->dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000); DEBUG(2, "spectrum_cs_config: Vcc mismatch (cfg_mem->conf.Vcc = %d, CIS = %d)\n", cfg_mem->conf.Vcc, cfg_mem->dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
if(!ignore_cis_vcc) if (!ignore_cis_vcc)
goto next_entry; goto next_entry;
} }
} }
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp =
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM)) else if (cfg_mem->dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp = p_dev->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000; cfg_mem->dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
/* Do we need to allocate an interrupt? */ /* Do we need to allocate an interrupt? */
link->conf.Attributes |= CONF_ENABLE_IRQ; p_dev->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */ /* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0; p_dev->io.NumPorts1 = p_dev->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) { if ((cfg->io.nwin > 0) || (cfg_mem->dflt.io.nwin > 0)) {
cistpl_io_t *io = cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &cfg_mem->dflt.io;
(cfg->io.nwin) ? &cfg->io : &dflt.io; p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT)) if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 = p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT)) if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 = p_dev->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
IO_DATA_PATH_WIDTH_8; p_dev->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
link->io.IOAddrLines = p_dev->io.BasePort1 = io->win[0].base;
io->flags & CISTPL_IO_LINES_MASK; p_dev->io.NumPorts1 = io->win[0].len;
link->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) { if (io->nwin > 1) {
link->io.Attributes2 = p_dev->io.Attributes2 = p_dev->io.Attributes1;
link->io.Attributes1; p_dev->io.BasePort2 = io->win[1].base;
link->io.BasePort2 = io->win[1].base; p_dev->io.NumPorts2 = io->win[1].len;
link->io.NumPorts2 = io->win[1].len;
} }
/* This reserves IO space but doesn't actually enable it */ /* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link, &link->io) != 0) if (pcmcia_request_io(p_dev, &p_dev->io) != 0)
goto next_entry; goto next_entry;
} }
return 0;
next_entry:
pcmcia_disable_device(p_dev);
return -ENODEV;
};
/* If we got this far, we're cool! */ static int
spectrum_cs_config(struct pcmcia_device *link)
{
struct spectrum_cs_config_data *cfg_mem;
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
void __iomem *mem;
break; cfg_mem = kzalloc(sizeof(struct spectrum_cs_config_data), GFP_KERNEL);
if (!cfg_mem)
return -ENOMEM;
next_entry: /* Look up the current Vcc */
pcmcia_disable_device(link); CS_CHECK(GetConfigurationInfo,
last_ret = pcmcia_get_next_tuple(link, &tuple); pcmcia_get_configuration_info(link, &cfg_mem->conf));
if (last_ret == CS_NO_MORE_ITEMS) {
/*
* In this loop, we scan the CIS for configuration table
* entries, each of which describes a valid card
* configuration, including voltage, IO window, memory window,
* and interrupt settings.
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
last_ret = pcmcia_loop_config(link, spectrum_cs_config_check, cfg_mem);
if (last_ret) {
if (!ignore_cis_vcc)
printk(KERN_ERR PFX "GetNextTuple(): No matching " printk(KERN_ERR PFX "GetNextTuple(): No matching "
"CIS configuration. Maybe you need the " "CIS configuration. Maybe you need the "
"ignore_cis_vcc=1 parameter.\n"); "ignore_cis_vcc=1 parameter.\n");
goto cs_failed; cs_error(link, RequestIO, last_ret);
} goto failed;
} }
/* /*
...@@ -809,6 +802,7 @@ spectrum_cs_config(struct pcmcia_device *link) ...@@ -809,6 +802,7 @@ spectrum_cs_config(struct pcmcia_device *link)
link->irq.AssignedIRQ, link->io.BasePort1, link->irq.AssignedIRQ, link->io.BasePort1,
link->io.BasePort1 + link->io.NumPorts1 - 1); link->io.BasePort1 + link->io.NumPorts1 - 1);
kfree(cfg_mem);
return 0; return 0;
cs_failed: cs_failed:
...@@ -816,6 +810,7 @@ spectrum_cs_config(struct pcmcia_device *link) ...@@ -816,6 +810,7 @@ spectrum_cs_config(struct pcmcia_device *link)
failed: failed:
spectrum_cs_release(link); spectrum_cs_release(link);
kfree(cfg_mem);
return -ENODEV; return -ENODEV;
} /* spectrum_cs_config */ } /* spectrum_cs_config */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment