Commit be69f70e authored by Jiri Kosina's avatar Jiri Kosina

Merge branches 'for-4.7/core', 'for-4.7/livepatching-doc' and...

Merge branches 'for-4.7/core', 'for-4.7/livepatching-doc' and 'for-4.7/livepatching-ppc64' into for-linus
=========
Livepatch
=========
This document outlines basic information about kernel livepatching.
Table of Contents:
1. Motivation
2. Kprobes, Ftrace, Livepatching
3. Consistency model
4. Livepatch module
4.1. New functions
4.2. Metadata
4.3. Livepatch module handling
5. Livepatch life-cycle
5.1. Registration
5.2. Enabling
5.3. Disabling
5.4. Unregistration
6. Sysfs
7. Limitations
1. Motivation
=============
There are many situations where users are reluctant to reboot a system. It may
be because their system is performing complex scientific computations or under
heavy load during peak usage. In addition to keeping systems up and running,
users want to also have a stable and secure system. Livepatching gives users
both by allowing for function calls to be redirected; thus, fixing critical
functions without a system reboot.
2. Kprobes, Ftrace, Livepatching
================================
There are multiple mechanisms in the Linux kernel that are directly related
to redirection of code execution; namely: kernel probes, function tracing,
and livepatching:
+ The kernel probes are the most generic. The code can be redirected by
putting a breakpoint instruction instead of any instruction.
+ The function tracer calls the code from a predefined location that is
close to the function entry point. This location is generated by the
compiler using the '-pg' gcc option.
+ Livepatching typically needs to redirect the code at the very beginning
of the function entry before the function parameters or the stack
are in any way modified.
All three approaches need to modify the existing code at runtime. Therefore
they need to be aware of each other and not step over each other's toes.
Most of these problems are solved by using the dynamic ftrace framework as
a base. A Kprobe is registered as a ftrace handler when the function entry
is probed, see CONFIG_KPROBES_ON_FTRACE. Also an alternative function from
a live patch is called with the help of a custom ftrace handler. But there are
some limitations, see below.
3. Consistency model
====================
Functions are there for a reason. They take some input parameters, get or
release locks, read, process, and even write some data in a defined way,
have return values. In other words, each function has a defined semantic.
Many fixes do not change the semantic of the modified functions. For
example, they add a NULL pointer or a boundary check, fix a race by adding
a missing memory barrier, or add some locking around a critical section.
Most of these changes are self contained and the function presents itself
the same way to the rest of the system. In this case, the functions might
be updated independently one by one.
But there are more complex fixes. For example, a patch might change
ordering of locking in multiple functions at the same time. Or a patch
might exchange meaning of some temporary structures and update
all the relevant functions. In this case, the affected unit
(thread, whole kernel) need to start using all new versions of
the functions at the same time. Also the switch must happen only
when it is safe to do so, e.g. when the affected locks are released
or no data are stored in the modified structures at the moment.
The theory about how to apply functions a safe way is rather complex.
The aim is to define a so-called consistency model. It attempts to define
conditions when the new implementation could be used so that the system
stays consistent. The theory is not yet finished. See the discussion at
http://thread.gmane.org/gmane.linux.kernel/1823033/focus=1828189
The current consistency model is very simple. It guarantees that either
the old or the new function is called. But various functions get redirected
one by one without any synchronization.
In other words, the current implementation _never_ modifies the behavior
in the middle of the call. It is because it does _not_ rewrite the entire
function in the memory. Instead, the function gets redirected at the
very beginning. But this redirection is used immediately even when
some other functions from the same patch have not been redirected yet.
See also the section "Limitations" below.
4. Livepatch module
===================
Livepatches are distributed using kernel modules, see
samples/livepatch/livepatch-sample.c.
The module includes a new implementation of functions that we want
to replace. In addition, it defines some structures describing the
relation between the original and the new implementation. Then there
is code that makes the kernel start using the new code when the livepatch
module is loaded. Also there is code that cleans up before the
livepatch module is removed. All this is explained in more details in
the next sections.
4.1. New functions
------------------
New versions of functions are typically just copied from the original
sources. A good practice is to add a prefix to the names so that they
can be distinguished from the original ones, e.g. in a backtrace. Also
they can be declared as static because they are not called directly
and do not need the global visibility.
The patch contains only functions that are really modified. But they
might want to access functions or data from the original source file
that may only be locally accessible. This can be solved by a special
relocation section in the generated livepatch module, see
Documentation/livepatch/module-elf-format.txt for more details.
4.2. Metadata
------------
The patch is described by several structures that split the information
into three levels:
+ struct klp_func is defined for each patched function. It describes
the relation between the original and the new implementation of a
particular function.
The structure includes the name, as a string, of the original function.
The function address is found via kallsyms at runtime.
Then it includes the address of the new function. It is defined
directly by assigning the function pointer. Note that the new
function is typically defined in the same source file.
As an optional parameter, the symbol position in the kallsyms database can
be used to disambiguate functions of the same name. This is not the
absolute position in the database, but rather the order it has been found
only for a particular object ( vmlinux or a kernel module ). Note that
kallsyms allows for searching symbols according to the object name.
+ struct klp_object defines an array of patched functions (struct
klp_func) in the same object. Where the object is either vmlinux
(NULL) or a module name.
The structure helps to group and handle functions for each object
together. Note that patched modules might be loaded later than
the patch itself and the relevant functions might be patched
only when they are available.
+ struct klp_patch defines an array of patched objects (struct
klp_object).
This structure handles all patched functions consistently and eventually,
synchronously. The whole patch is applied only when all patched
symbols are found. The only exception are symbols from objects
(kernel modules) that have not been loaded yet. Also if a more complex
consistency model is supported then a selected unit (thread,
kernel as a whole) will see the new code from the entire patch
only when it is in a safe state.
4.3. Livepatch module handling
------------------------------
The usual behavior is that the new functions will get used when
the livepatch module is loaded. For this, the module init() function
has to register the patch (struct klp_patch) and enable it. See the
section "Livepatch life-cycle" below for more details about these
two operations.
Module removal is only safe when there are no users of the underlying
functions. The immediate consistency model is not able to detect this;
therefore livepatch modules cannot be removed. See "Limitations" below.
5. Livepatch life-cycle
=======================
Livepatching defines four basic operations that define the life cycle of each
live patch: registration, enabling, disabling and unregistration. There are
several reasons why it is done this way.
First, the patch is applied only when all patched symbols for already
loaded objects are found. The error handling is much easier if this
check is done before particular functions get redirected.
Second, the immediate consistency model does not guarantee that anyone is not
sleeping in the new code after the patch is reverted. This means that the new
code needs to stay around "forever". If the code is there, one could apply it
again. Therefore it makes sense to separate the operations that might be done
once and those that need to be repeated when the patch is enabled (applied)
again.
Third, it might take some time until the entire system is migrated
when a more complex consistency model is used. The patch revert might
block the livepatch module removal for too long. Therefore it is useful
to revert the patch using a separate operation that might be called
explicitly. But it does not make sense to remove all information
until the livepatch module is really removed.
5.1. Registration
-----------------
Each patch first has to be registered using klp_register_patch(). This makes
the patch known to the livepatch framework. Also it does some preliminary
computing and checks.
In particular, the patch is added into the list of known patches. The
addresses of the patched functions are found according to their names.
The special relocations, mentioned in the section "New functions", are
applied. The relevant entries are created under
/sys/kernel/livepatch/<name>. The patch is rejected when any operation
fails.
5.2. Enabling
-------------
Registered patches might be enabled either by calling klp_enable_patch() or
by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will
start using the new implementation of the patched functions at this stage.
In particular, if an original function is patched for the first time, a
function specific struct klp_ops is created and an universal ftrace handler
is registered.
Functions might be patched multiple times. The ftrace handler is registered
only once for the given function. Further patches just add an entry to the
list (see field `func_stack`) of the struct klp_ops. The last added
entry is chosen by the ftrace handler and becomes the active function
replacement.
Note that the patches might be enabled in a different order than they were
registered.
5.3. Disabling
--------------
Enabled patches might get disabled either by calling klp_disable_patch() or
by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage
either the code from the previously enabled patch or even the original
code gets used.
Here all the functions (struct klp_func) associated with the to-be-disabled
patch are removed from the corresponding struct klp_ops. The ftrace handler
is unregistered and the struct klp_ops is freed when the func_stack list
becomes empty.
Patches must be disabled in exactly the reverse order in which they were
enabled. It makes the problem and the implementation much easier.
5.4. Unregistration
-------------------
Disabled patches might be unregistered by calling klp_unregister_patch().
This can be done only when the patch is disabled and the code is no longer
used. It must be called before the livepatch module gets unloaded.
At this stage, all the relevant sys-fs entries are removed and the patch
is removed from the list of known patches.
6. Sysfs
========
Information about the registered patches can be found under
/sys/kernel/livepatch. The patches could be enabled and disabled
by writing there.
See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
7. Limitations
==============
The current Livepatch implementation has several limitations:
+ The patch must not change the semantic of the patched functions.
The current implementation guarantees only that either the old
or the new function is called. The functions are patched one
by one. It means that the patch must _not_ change the semantic
of the function.
+ Data structures can not be patched.
There is no support to version data structures or anyhow migrate
one structure into another. Also the simple consistency model does
not allow to switch more functions atomically.
Once there is more complex consistency mode, it will be possible to
use some workarounds. For example, it will be possible to use a hole
for a new member because the data structure is aligned. Or it will
be possible to use an existing member for something else.
There are no plans to add more generic support for modified structures
at the moment.
+ Only functions that can be traced could be patched.
Livepatch is based on the dynamic ftrace. In particular, functions
implementing ftrace or the livepatch ftrace handler could not be
patched. Otherwise, the code would end up in an infinite loop. A
potential mistake is prevented by marking the problematic functions
by "notrace".
+ Anything inlined into __schedule() can not be patched.
The switch_to macro is inlined into __schedule(). It switches the
context between two processes in the middle of the macro. It does
not save RIP in x86_64 version (contrary to 32-bit version). Instead,
the currently used __schedule()/switch_to() handles both processes.
Now, let's have two different tasks. One calls the original
__schedule(), its registers are stored in a defined order and it
goes to sleep in the switch_to macro and some other task is restored
using the original __schedule(). Then there is the second task which
calls patched__schedule(), it goes to sleep there and the first task
is picked by the patched__schedule(). Its RSP is restored and now
the registers should be restored as well. But the order is different
in the new patched__schedule(), so...
There is work in progress to remove this limitation.
+ Livepatch modules can not be removed.
The current implementation just redirects the functions at the very
beginning. It does not check if the functions are in use. In other
words, it knows when the functions get called but it does not
know when the functions return. Therefore it can not decide when
the livepatch module can be safely removed.
This will get most likely solved once a more complex consistency model
is supported. The idea is that a safe state for patching should also
mean a safe state for removing the patch.
Note that the patch itself might get disabled by writing zero
to /sys/kernel/livepatch/<patch>/enabled. It causes that the new
code will not longer get called. But it does not guarantee
that anyone is not sleeping anywhere in the new code.
+ Livepatch works reliably only when the dynamic ftrace is located at
the very beginning of the function.
The function need to be redirected before the stack or the function
parameters are modified in any way. For example, livepatch requires
using -fentry gcc compiler option on x86_64.
One exception is the PPC port. It uses relative addressing and TOC.
Each function has to handle TOC and save LR before it could call
the ftrace handler. This operation has to be reverted on return.
Fortunately, the generic ftrace code has the same problem and all
this is is handled on the ftrace level.
+ Kretprobes using the ftrace framework conflict with the patched
functions.
Both kretprobes and livepatches use a ftrace handler that modifies
the return address. The first user wins. Either the probe or the patch
is rejected when the handler is already in use by the other.
+ Kprobes in the original function are ignored when the code is
redirected to the new implementation.
There is a work in progress to add warnings about this situation.
===========================
Livepatch module Elf format
===========================
This document outlines the Elf format requirements that livepatch modules must follow.
-----------------
Table of Contents
-----------------
0. Background and motivation
1. Livepatch modinfo field
2. Livepatch relocation sections
2.1 What are livepatch relocation sections?
2.2 Livepatch relocation section format
2.2.1 Required flags
2.2.2 Required name format
2.2.3 Example livepatch relocation section names
2.2.4 Example `readelf --sections` output
2.2.5 Example `readelf --relocs` output
3. Livepatch symbols
3.1 What are livepatch symbols?
3.2 A livepatch module's symbol table
3.3 Livepatch symbol format
3.3.1 Required flags
3.3.2 Required name format
3.3.3 Example livepatch symbol names
3.3.4 Example `readelf --symbols` output
4. Symbol table and Elf section access
----------------------------
0. Background and motivation
----------------------------
Formerly, livepatch required separate architecture-specific code to write
relocations. However, arch-specific code to write relocations already
exists in the module loader, so this former approach produced redundant
code. So, instead of duplicating code and re-implementing what the module
loader can already do, livepatch leverages existing code in the module
loader to perform the all the arch-specific relocation work. Specifically,
livepatch reuses the apply_relocate_add() function in the module loader to
write relocations. The patch module Elf format described in this document
enables livepatch to be able to do this. The hope is that this will make
livepatch more easily portable to other architectures and reduce the amount
of arch-specific code required to port livepatch to a particular
architecture.
Since apply_relocate_add() requires access to a module's section header
table, symbol table, and relocation section indices, Elf information is
preserved for livepatch modules (see section 4). Livepatch manages its own
relocation sections and symbols, which are described in this document. The
Elf constants used to mark livepatch symbols and relocation sections were
selected from OS-specific ranges according to the definitions from glibc.
0.1 Why does livepatch need to write its own relocations?
---------------------------------------------------------
A typical livepatch module contains patched versions of functions that can
reference non-exported global symbols and non-included local symbols.
Relocations referencing these types of symbols cannot be left in as-is
since the kernel module loader cannot resolve them and will therefore
reject the livepatch module. Furthermore, we cannot apply relocations that
affect modules not yet loaded at patch module load time (e.g. a patch to a
driver that is not loaded). Formerly, livepatch solved this problem by
embedding special "dynrela" (dynamic rela) sections in the resulting patch
module Elf output. Using these dynrela sections, livepatch could resolve
symbols while taking into account its scope and what module the symbol
belongs to, and then manually apply the dynamic relocations. However this
approach required livepatch to supply arch-specific code in order to write
these relocations. In the new format, livepatch manages its own SHT_RELA
relocation sections in place of dynrela sections, and the symbols that the
relas reference are special livepatch symbols (see section 2 and 3). The
arch-specific livepatch relocation code is replaced by a call to
apply_relocate_add().
================================
PATCH MODULE FORMAT REQUIREMENTS
================================
--------------------------
1. Livepatch modinfo field
--------------------------
Livepatch modules are required to have the "livepatch" modinfo attribute.
See the sample livepatch module in samples/livepatch/ for how this is done.
Livepatch modules can be identified by users by using the 'modinfo' command
and looking for the presence of the "livepatch" field. This field is also
used by the kernel module loader to identify livepatch modules.
Example modinfo output:
-----------------------
% modinfo livepatch-meminfo.ko
filename: livepatch-meminfo.ko
livepatch: Y
license: GPL
depends:
vermagic: 4.3.0+ SMP mod_unload
--------------------------------
2. Livepatch relocation sections
--------------------------------
-------------------------------------------
2.1 What are livepatch relocation sections?
-------------------------------------------
A livepatch module manages its own Elf relocation sections to apply
relocations to modules as well as to the kernel (vmlinux) at the
appropriate time. For example, if a patch module patches a driver that is
not currently loaded, livepatch will apply the corresponding livepatch
relocation section(s) to the driver once it loads.
Each "object" (e.g. vmlinux, or a module) within a patch module may have
multiple livepatch relocation sections associated with it (e.g. patches to
multiple functions within the same object). There is a 1-1 correspondence
between a livepatch relocation section and the target section (usually the
text section of a function) to which the relocation(s) apply. It is
also possible for a livepatch module to have no livepatch relocation
sections, as in the case of the sample livepatch module (see
samples/livepatch).
Since Elf information is preserved for livepatch modules (see Section 4), a
livepatch relocation section can be applied simply by passing in the
appropriate section index to apply_relocate_add(), which then uses it to
access the relocation section and apply the relocations.
Every symbol referenced by a rela in a livepatch relocation section is a
livepatch symbol. These must be resolved before livepatch can call
apply_relocate_add(). See Section 3 for more information.
---------------------------------------
2.2 Livepatch relocation section format
---------------------------------------
2.2.1 Required flags
--------------------
Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH
section flag. See include/uapi/linux/elf.h for the definition. The module
loader recognizes this flag and will avoid applying those relocation sections
at patch module load time. These sections must also be marked with SHF_ALLOC,
so that the module loader doesn't discard them on module load (i.e. they will
be copied into memory along with the other SHF_ALLOC sections).
2.2.2 Required name format
--------------------------
The name of a livepatch relocation section must conform to the following format:
.klp.rela.objname.section_name
^ ^^ ^ ^ ^
|________||_____| |__________|
[A] [B] [C]
[A] The relocation section name is prefixed with the string ".klp.rela."
[B] The name of the object (i.e. "vmlinux" or name of module) to
which the relocation section belongs follows immediately after the prefix.
[C] The actual name of the section to which this relocation section applies.
2.2.3 Example livepatch relocation section names:
-------------------------------------------------
.klp.rela.ext4.text.ext4_attr_store
.klp.rela.vmlinux.text.cmdline_proc_show
2.2.4 Example `readelf --sections` output for a patch
module that patches vmlinux and modules 9p, btrfs, ext4:
--------------------------------------------------------
Section Headers:
[Nr] Name Type Address Off Size ES Flg Lk Inf Al
[ snip ]
[29] .klp.rela.9p.text.caches.show RELA 0000000000000000 002d58 0000c0 18 AIo 64 9 8
[30] .klp.rela.btrfs.text.btrfs.feature.attr.show RELA 0000000000000000 002e18 000060 18 AIo 64 11 8
[ snip ]
[34] .klp.rela.ext4.text.ext4.attr.store RELA 0000000000000000 002fd8 0000d8 18 AIo 64 13 8
[35] .klp.rela.ext4.text.ext4.attr.show RELA 0000000000000000 0030b0 000150 18 AIo 64 15 8
[36] .klp.rela.vmlinux.text.cmdline.proc.show RELA 0000000000000000 003200 000018 18 AIo 64 17 8
[37] .klp.rela.vmlinux.text.meminfo.proc.show RELA 0000000000000000 003218 0000f0 18 AIo 64 19 8
[ snip ] ^ ^
| |
[*] [*]
[*] Livepatch relocation sections are SHT_RELA sections but with a few special
characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
not be discarded when the module is loaded into memory, as well as with the
SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
2.2.5 Example `readelf --relocs` output for a patch module:
-----------------------------------------------------------
Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0
0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4
000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
[ snip ] ^
|
[*]
[*] Every symbol referenced by a relocation is a livepatch symbol.
--------------------
3. Livepatch symbols
--------------------
-------------------------------
3.1 What are livepatch symbols?
-------------------------------
Livepatch symbols are symbols referred to by livepatch relocation sections.
These are symbols accessed from new versions of functions for patched
objects, whose addresses cannot be resolved by the module loader (because
they are local or unexported global syms). Since the module loader only
resolves exported syms, and not every symbol referenced by the new patched
functions is exported, livepatch symbols were introduced. They are used
also in cases where we cannot immediately know the address of a symbol when
a patch module loads. For example, this is the case when livepatch patches
a module that is not loaded yet. In this case, the relevant livepatch
symbols are resolved simply when the target module loads. In any case, for
any livepatch relocation section, all livepatch symbols referenced by that
section must be resolved before livepatch can call apply_relocate_add() for
that reloc section.
Livepatch symbols must be marked with SHN_LIVEPATCH so that the module
loader can identify and ignore them. Livepatch modules keep these symbols
in their symbol tables, and the symbol table is made accessible through
module->symtab.
-------------------------------------
3.2 A livepatch module's symbol table
-------------------------------------
Normally, a stripped down copy of a module's symbol table (containing only
"core" symbols) is made available through module->symtab (See layout_symtab()
in kernel/module.c). For livepatch modules, the symbol table copied into memory
on module load must be exactly the same as the symbol table produced when the
patch module was compiled. This is because the relocations in each livepatch
relocation section refer to their respective symbols with their symbol indices,
and the original symbol indices (and thus the symtab ordering) must be
preserved in order for apply_relocate_add() to find the right symbol.
For example, take this particular rela from a livepatch module:
Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
Offset Info Type Symbol's Value Symbol's Name + Addend
000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded
in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the
symbol index 94.
And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol:
[ snip ]
94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
[ snip ]
---------------------------
3.3 Livepatch symbol format
---------------------------
3.3.1 Required flags
--------------------
Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so
that the module loader can identify them and not attempt to resolve them.
See include/uapi/linux/elf.h for the actual definitions.
3.3.2 Required name format
--------------------------
Livepatch symbol names must conform to the following format:
.klp.sym.objname.symbol_name,sympos
^ ^^ ^ ^ ^ ^
|_______||_____| |_________| |
[A] [B] [C] [D]
[A] The symbol name is prefixed with the string ".klp.sym."
[B] The name of the object (i.e. "vmlinux" or name of module) to
which the symbol belongs follows immediately after the prefix.
[C] The actual name of the symbol.
[D] The position of the symbol in the object (as according to kallsyms)
This is used to differentiate duplicate symbols within the same
object. The symbol position is expressed numerically (0, 1, 2...).
The symbol position of a unique symbol is 0.
3.3.3 Example livepatch symbol names:
-------------------------------------
.klp.sym.vmlinux.snprintf,0
.klp.sym.vmlinux.printk,0
.klp.sym.btrfs.btrfs_ktype,0
3.3.4 Example `readelf --symbols` output for a patch module:
------------------------------------------------------------
Symbol table '.symtab' contains 127 entries:
Num: Value Size Type Bind Vis Ndx Name
[ snip ]
73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0
74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0
75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0
76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0
[ snip ] ^
|
[*]
[*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
"OS" means OS-specific.
--------------------------------------
4. Symbol table and Elf section access
--------------------------------------
A livepatch module's symbol table is accessible through module->symtab.
Since apply_relocate_add() requires access to a module's section headers,
symbol table, and relocation section indices, Elf information is preserved for
livepatch modules and is made accessible by the module loader through
module->klp_info, which is a klp_modinfo struct. When a livepatch module loads,
this struct is filled in by the module loader. Its fields are documented below:
struct klp_modinfo {
Elf_Ehdr hdr; /* Elf header */
Elf_Shdr *sechdrs; /* Section header table */
char *secstrings; /* String table for the section headers */
unsigned int symndx; /* The symbol table section index */
};
...@@ -6605,6 +6605,7 @@ F: kernel/livepatch/ ...@@ -6605,6 +6605,7 @@ F: kernel/livepatch/
F: include/linux/livepatch.h F: include/linux/livepatch.h
F: arch/x86/include/asm/livepatch.h F: arch/x86/include/asm/livepatch.h
F: arch/x86/kernel/livepatch.c F: arch/x86/kernel/livepatch.c
F: Documentation/livepatch/
F: Documentation/ABI/testing/sysfs-kernel-livepatch F: Documentation/ABI/testing/sysfs-kernel-livepatch
F: samples/livepatch/ F: samples/livepatch/
L: live-patching@vger.kernel.org L: live-patching@vger.kernel.org
......
...@@ -94,6 +94,7 @@ config PPC ...@@ -94,6 +94,7 @@ config PPC
select OF_RESERVED_MEM select OF_RESERVED_MEM
select HAVE_FTRACE_MCOUNT_RECORD select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_DYNAMIC_FTRACE select HAVE_DYNAMIC_FTRACE
select HAVE_DYNAMIC_FTRACE_WITH_REGS if MPROFILE_KERNEL
select HAVE_FUNCTION_TRACER select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_GRAPH_TRACER select HAVE_FUNCTION_GRAPH_TRACER
select SYSCTL_EXCEPTION_TRACE select SYSCTL_EXCEPTION_TRACE
...@@ -158,6 +159,7 @@ config PPC ...@@ -158,6 +159,7 @@ config PPC
select ARCH_HAS_DEVMEM_IS_ALLOWED select ARCH_HAS_DEVMEM_IS_ALLOWED
select HAVE_ARCH_SECCOMP_FILTER select HAVE_ARCH_SECCOMP_FILTER
select ARCH_HAS_UBSAN_SANITIZE_ALL select ARCH_HAS_UBSAN_SANITIZE_ALL
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
config GENERIC_CSUM config GENERIC_CSUM
def_bool CPU_LITTLE_ENDIAN def_bool CPU_LITTLE_ENDIAN
...@@ -373,6 +375,24 @@ config PPC_TRANSACTIONAL_MEM ...@@ -373,6 +375,24 @@ config PPC_TRANSACTIONAL_MEM
---help--- ---help---
Support user-mode Transactional Memory on POWERPC. Support user-mode Transactional Memory on POWERPC.
config DISABLE_MPROFILE_KERNEL
bool "Disable use of mprofile-kernel for kernel tracing"
depends on PPC64 && CPU_LITTLE_ENDIAN
default y
help
Selecting this options disables use of the mprofile-kernel ABI for
kernel tracing. That will cause options such as live patching
(CONFIG_LIVEPATCH) which depend on CONFIG_DYNAMIC_FTRACE_WITH_REGS to
be disabled also.
If you have a toolchain which supports mprofile-kernel, then you can
enable this. Otherwise leave it disabled. If you're not sure, say
"N".
config MPROFILE_KERNEL
depends on PPC64 && CPU_LITTLE_ENDIAN
def_bool !DISABLE_MPROFILE_KERNEL
config IOMMU_HELPER config IOMMU_HELPER
def_bool PPC64 def_bool PPC64
...@@ -1087,3 +1107,5 @@ config PPC_LIB_RHEAP ...@@ -1087,3 +1107,5 @@ config PPC_LIB_RHEAP
bool bool
source "arch/powerpc/kvm/Kconfig" source "arch/powerpc/kvm/Kconfig"
source "kernel/livepatch/Kconfig"
...@@ -133,6 +133,21 @@ else ...@@ -133,6 +133,21 @@ else
CFLAGS-$(CONFIG_GENERIC_CPU) += -mcpu=powerpc64 CFLAGS-$(CONFIG_GENERIC_CPU) += -mcpu=powerpc64
endif endif
ifdef CONFIG_MPROFILE_KERNEL
ifeq ($(shell $(srctree)/arch/powerpc/scripts/gcc-check-mprofile-kernel.sh $(CC) -I$(srctree)/include -D__KERNEL__),OK)
CC_FLAGS_FTRACE := -pg -mprofile-kernel
KBUILD_CPPFLAGS += -DCC_USING_MPROFILE_KERNEL
else
# If the user asked for mprofile-kernel but the toolchain doesn't
# support it, emit a warning and deliberately break the build later
# with mprofile-kernel-not-supported. We would prefer to make this an
# error right here, but then the user would never be able to run
# oldconfig to change their configuration.
$(warning Compiler does not support mprofile-kernel, set CONFIG_DISABLE_MPROFILE_KERNEL)
CC_FLAGS_FTRACE := -mprofile-kernel-not-supported
endif
endif
CFLAGS-$(CONFIG_CELL_CPU) += $(call cc-option,-mcpu=cell) CFLAGS-$(CONFIG_CELL_CPU) += $(call cc-option,-mcpu=cell)
CFLAGS-$(CONFIG_POWER4_CPU) += $(call cc-option,-mcpu=power4) CFLAGS-$(CONFIG_POWER4_CPU) += $(call cc-option,-mcpu=power4)
CFLAGS-$(CONFIG_POWER5_CPU) += $(call cc-option,-mcpu=power5) CFLAGS-$(CONFIG_POWER5_CPU) += $(call cc-option,-mcpu=power5)
......
...@@ -99,4 +99,25 @@ static inline unsigned long ppc_global_function_entry(void *func) ...@@ -99,4 +99,25 @@ static inline unsigned long ppc_global_function_entry(void *func)
#endif #endif
} }
#ifdef CONFIG_PPC64
/*
* Some instruction encodings commonly used in dynamic ftracing
* and function live patching.
*/
/* This must match the definition of STK_GOT in <asm/ppc_asm.h> */
#if defined(_CALL_ELF) && _CALL_ELF == 2
#define R2_STACK_OFFSET 24
#else
#define R2_STACK_OFFSET 40
#endif
#define PPC_INST_LD_TOC (PPC_INST_LD | ___PPC_RT(__REG_R2) | \
___PPC_RA(__REG_R1) | R2_STACK_OFFSET)
/* usually preceded by a mflr r0 */
#define PPC_INST_STD_LR (PPC_INST_STD | ___PPC_RS(__REG_R0) | \
___PPC_RA(__REG_R1) | PPC_LR_STKOFF)
#endif /* CONFIG_PPC64 */
#endif /* _ASM_POWERPC_CODE_PATCHING_H */ #endif /* _ASM_POWERPC_CODE_PATCHING_H */
...@@ -46,6 +46,8 @@ ...@@ -46,6 +46,8 @@
extern void _mcount(void); extern void _mcount(void);
#ifdef CONFIG_DYNAMIC_FTRACE #ifdef CONFIG_DYNAMIC_FTRACE
# define FTRACE_ADDR ((unsigned long)ftrace_caller)
# define FTRACE_REGS_ADDR FTRACE_ADDR
static inline unsigned long ftrace_call_adjust(unsigned long addr) static inline unsigned long ftrace_call_adjust(unsigned long addr)
{ {
/* reloction of mcount call site is the same as the address */ /* reloction of mcount call site is the same as the address */
...@@ -58,6 +60,9 @@ struct dyn_arch_ftrace { ...@@ -58,6 +60,9 @@ struct dyn_arch_ftrace {
#endif /* CONFIG_DYNAMIC_FTRACE */ #endif /* CONFIG_DYNAMIC_FTRACE */
#endif /* __ASSEMBLY__ */ #endif /* __ASSEMBLY__ */
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
#define ARCH_SUPPORTS_FTRACE_OPS 1
#endif
#endif #endif
#if defined(CONFIG_FTRACE_SYSCALLS) && defined(CONFIG_PPC64) && !defined(__ASSEMBLY__) #if defined(CONFIG_FTRACE_SYSCALLS) && defined(CONFIG_PPC64) && !defined(__ASSEMBLY__)
......
/* /*
* livepatch.c - x86-specific Kernel Live Patching Core * livepatch.h - powerpc-specific Kernel Live Patching Core
* *
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> * Copyright (C) 2015-2016, SUSE, IBM Corp.
* Copyright (C) 2014 SUSE
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License * modify it under the terms of the GNU General Public License
...@@ -17,54 +16,47 @@ ...@@ -17,54 +16,47 @@
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>. * along with this program; if not, see <http://www.gnu.org/licenses/>.
*/ */
#ifndef _ASM_POWERPC_LIVEPATCH_H
#define _ASM_POWERPC_LIVEPATCH_H
#include <linux/module.h> #include <linux/module.h>
#include <linux/uaccess.h> #include <linux/ftrace.h>
#include <asm/elf.h>
#include <asm/livepatch.h>
/** #ifdef CONFIG_LIVEPATCH
* klp_write_module_reloc() - write a relocation in a module static inline int klp_check_compiler_support(void)
* @mod: module in which the section to be modified is found {
* @type: ELF relocation type (see asm/elf.h) return 0;
* @loc: address that the relocation should be written to }
* @value: relocation value (sym address + addend)
* static inline int klp_write_module_reloc(struct module *mod, unsigned long
* This function writes a relocation to the specified location for type, unsigned long loc, unsigned long value)
* a particular module.
*/
int klp_write_module_reloc(struct module *mod, unsigned long type,
unsigned long loc, unsigned long value)
{ {
size_t size = 4; /* This requires infrastructure changes; we need the loadinfos. */
unsigned long val; return -ENOSYS;
unsigned long core = (unsigned long)mod->core_layout.base; }
unsigned long core_size = mod->core_layout.size;
switch (type) { static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
case R_X86_64_NONE: {
return 0; regs->nip = ip;
case R_X86_64_64: }
val = value;
size = 8;
break;
case R_X86_64_32:
val = (u32)value;
break;
case R_X86_64_32S:
val = (s32)value;
break;
case R_X86_64_PC32:
val = (u32)(value - loc);
break;
default:
/* unsupported relocation type */
return -EINVAL;
}
if (loc < core || loc >= core + core_size) #define klp_get_ftrace_location klp_get_ftrace_location
/* loc does not point to any symbol inside the module */ static inline unsigned long klp_get_ftrace_location(unsigned long faddr)
return -EINVAL; {
/*
* Live patch works only with -mprofile-kernel on PPC. In this case,
* the ftrace location is always within the first 16 bytes.
*/
return ftrace_location_range(faddr, faddr + 16);
}
return probe_kernel_write((void *)loc, &val, size); static inline void klp_init_thread_info(struct thread_info *ti)
{
/* + 1 to account for STACK_END_MAGIC */
ti->livepatch_sp = (unsigned long *)(ti + 1) + 1;
} }
#else
static void klp_init_thread_info(struct thread_info *ti) { }
#endif /* CONFIG_LIVEPATCH */
#endif /* _ASM_POWERPC_LIVEPATCH_H */
...@@ -78,10 +78,18 @@ struct mod_arch_specific { ...@@ -78,10 +78,18 @@ struct mod_arch_specific {
# endif /* MODULE */ # endif /* MODULE */
#endif #endif
bool is_module_trampoline(u32 *insns); int module_trampoline_target(struct module *mod, unsigned long trampoline,
int module_trampoline_target(struct module *mod, u32 *trampoline,
unsigned long *target); unsigned long *target);
#ifdef CONFIG_DYNAMIC_FTRACE
int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs);
#else
static inline int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs)
{
return 0;
}
#endif
struct exception_table_entry; struct exception_table_entry;
void sort_ex_table(struct exception_table_entry *start, void sort_ex_table(struct exception_table_entry *start,
struct exception_table_entry *finish); struct exception_table_entry *finish);
......
...@@ -22,6 +22,18 @@ static inline int in_kernel_text(unsigned long addr) ...@@ -22,6 +22,18 @@ static inline int in_kernel_text(unsigned long addr)
return 0; return 0;
} }
static inline unsigned long kernel_toc_addr(void)
{
/* Defined by the linker, see vmlinux.lds.S */
extern unsigned long __toc_start;
/*
* The TOC register (r2) points 32kB into the TOC, so that 64kB of
* the TOC can be addressed using a single machine instruction.
*/
return (unsigned long)(&__toc_start) + 0x8000UL;
}
static inline int overlaps_interrupt_vector_text(unsigned long start, static inline int overlaps_interrupt_vector_text(unsigned long start,
unsigned long end) unsigned long end)
{ {
......
...@@ -43,7 +43,9 @@ struct thread_info { ...@@ -43,7 +43,9 @@ struct thread_info {
int preempt_count; /* 0 => preemptable, int preempt_count; /* 0 => preemptable,
<0 => BUG */ <0 => BUG */
unsigned long local_flags; /* private flags for thread */ unsigned long local_flags; /* private flags for thread */
#ifdef CONFIG_LIVEPATCH
unsigned long *livepatch_sp;
#endif
/* low level flags - has atomic operations done on it */ /* low level flags - has atomic operations done on it */
unsigned long flags ____cacheline_aligned_in_smp; unsigned long flags ____cacheline_aligned_in_smp;
}; };
......
...@@ -16,14 +16,14 @@ endif ...@@ -16,14 +16,14 @@ endif
ifdef CONFIG_FUNCTION_TRACER ifdef CONFIG_FUNCTION_TRACER
# Do not trace early boot code # Do not trace early boot code
CFLAGS_REMOVE_cputable.o = -pg -mno-sched-epilog CFLAGS_REMOVE_cputable.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_prom_init.o = -pg -mno-sched-epilog CFLAGS_REMOVE_prom_init.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_btext.o = -pg -mno-sched-epilog CFLAGS_REMOVE_btext.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_prom.o = -pg -mno-sched-epilog CFLAGS_REMOVE_prom.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
# do not trace tracer code # do not trace tracer code
CFLAGS_REMOVE_ftrace.o = -pg -mno-sched-epilog CFLAGS_REMOVE_ftrace.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
# timers used by tracing # timers used by tracing
CFLAGS_REMOVE_time.o = -pg -mno-sched-epilog CFLAGS_REMOVE_time.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
endif endif
obj-y := cputable.o ptrace.o syscalls.o \ obj-y := cputable.o ptrace.o syscalls.o \
......
...@@ -86,6 +86,10 @@ int main(void) ...@@ -86,6 +86,10 @@ int main(void)
DEFINE(KSP_LIMIT, offsetof(struct thread_struct, ksp_limit)); DEFINE(KSP_LIMIT, offsetof(struct thread_struct, ksp_limit));
#endif /* CONFIG_PPC64 */ #endif /* CONFIG_PPC64 */
#ifdef CONFIG_LIVEPATCH
DEFINE(TI_livepatch_sp, offsetof(struct thread_info, livepatch_sp));
#endif
DEFINE(KSP, offsetof(struct thread_struct, ksp)); DEFINE(KSP, offsetof(struct thread_struct, ksp));
DEFINE(PT_REGS, offsetof(struct thread_struct, regs)); DEFINE(PT_REGS, offsetof(struct thread_struct, regs));
#ifdef CONFIG_BOOKE #ifdef CONFIG_BOOKE
......
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/magic.h>
#include <asm/unistd.h> #include <asm/unistd.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/page.h> #include <asm/page.h>
...@@ -1143,8 +1144,12 @@ _GLOBAL(enter_prom) ...@@ -1143,8 +1144,12 @@ _GLOBAL(enter_prom)
#ifdef CONFIG_DYNAMIC_FTRACE #ifdef CONFIG_DYNAMIC_FTRACE
_GLOBAL(mcount) _GLOBAL(mcount)
_GLOBAL(_mcount) _GLOBAL(_mcount)
blr mflr r12
mtctr r12
mtlr r0
bctr
#ifndef CC_USING_MPROFILE_KERNEL
_GLOBAL_TOC(ftrace_caller) _GLOBAL_TOC(ftrace_caller)
/* Taken from output of objdump from lib64/glibc */ /* Taken from output of objdump from lib64/glibc */
mflr r3 mflr r3
...@@ -1166,8 +1171,213 @@ _GLOBAL(ftrace_graph_stub) ...@@ -1166,8 +1171,213 @@ _GLOBAL(ftrace_graph_stub)
ld r0, 128(r1) ld r0, 128(r1)
mtlr r0 mtlr r0
addi r1, r1, 112 addi r1, r1, 112
#else /* CC_USING_MPROFILE_KERNEL */
/*
*
* ftrace_caller() is the function that replaces _mcount() when ftrace is
* active.
*
* We arrive here after a function A calls function B, and we are the trace
* function for B. When we enter r1 points to A's stack frame, B has not yet
* had a chance to allocate one yet.
*
* Additionally r2 may point either to the TOC for A, or B, depending on
* whether B did a TOC setup sequence before calling us.
*
* On entry the LR points back to the _mcount() call site, and r0 holds the
* saved LR as it was on entry to B, ie. the original return address at the
* call site in A.
*
* Our job is to save the register state into a struct pt_regs (on the stack)
* and then arrange for the ftrace function to be called.
*/
_GLOBAL(ftrace_caller)
/* Save the original return address in A's stack frame */
std r0,LRSAVE(r1)
/* Create our stack frame + pt_regs */
stdu r1,-SWITCH_FRAME_SIZE(r1)
/* Save all gprs to pt_regs */
SAVE_8GPRS(0,r1)
SAVE_8GPRS(8,r1)
SAVE_8GPRS(16,r1)
SAVE_8GPRS(24,r1)
/* Load special regs for save below */
mfmsr r8
mfctr r9
mfxer r10
mfcr r11
/* Get the _mcount() call site out of LR */
mflr r7
/* Save it as pt_regs->nip & pt_regs->link */
std r7, _NIP(r1)
std r7, _LINK(r1)
/* Save callee's TOC in the ABI compliant location */
std r2, 24(r1)
ld r2,PACATOC(r13) /* get kernel TOC in r2 */
addis r3,r2,function_trace_op@toc@ha
addi r3,r3,function_trace_op@toc@l
ld r5,0(r3)
#ifdef CONFIG_LIVEPATCH
mr r14,r7 /* remember old NIP */
#endif
/* Calculate ip from nip-4 into r3 for call below */
subi r3, r7, MCOUNT_INSN_SIZE
/* Put the original return address in r4 as parent_ip */
mr r4, r0
/* Save special regs */
std r8, _MSR(r1)
std r9, _CTR(r1)
std r10, _XER(r1)
std r11, _CCR(r1)
/* Load &pt_regs in r6 for call below */
addi r6, r1 ,STACK_FRAME_OVERHEAD
/* ftrace_call(r3, r4, r5, r6) */
.globl ftrace_call
ftrace_call:
bl ftrace_stub
nop
/* Load ctr with the possibly modified NIP */
ld r3, _NIP(r1)
mtctr r3
#ifdef CONFIG_LIVEPATCH
cmpd r14,r3 /* has NIP been altered? */
#endif
/* Restore gprs */
REST_8GPRS(0,r1)
REST_8GPRS(8,r1)
REST_8GPRS(16,r1)
REST_8GPRS(24,r1)
/* Restore callee's TOC */
ld r2, 24(r1)
/* Pop our stack frame */
addi r1, r1, SWITCH_FRAME_SIZE
/* Restore original LR for return to B */
ld r0, LRSAVE(r1)
mtlr r0
#ifdef CONFIG_LIVEPATCH
/* Based on the cmpd above, if the NIP was altered handle livepatch */
bne- livepatch_handler
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
stdu r1, -112(r1)
.globl ftrace_graph_call
ftrace_graph_call:
b ftrace_graph_stub
_GLOBAL(ftrace_graph_stub)
addi r1, r1, 112
#endif
ld r0,LRSAVE(r1) /* restore callee's lr at _mcount site */
mtlr r0
bctr /* jump after _mcount site */
#endif /* CC_USING_MPROFILE_KERNEL */
_GLOBAL(ftrace_stub) _GLOBAL(ftrace_stub)
blr blr
#ifdef CONFIG_LIVEPATCH
/*
* This function runs in the mcount context, between two functions. As
* such it can only clobber registers which are volatile and used in
* function linkage.
*
* We get here when a function A, calls another function B, but B has
* been live patched with a new function C.
*
* On entry:
* - we have no stack frame and can not allocate one
* - LR points back to the original caller (in A)
* - CTR holds the new NIP in C
* - r0 & r12 are free
*
* r0 can't be used as the base register for a DS-form load or store, so
* we temporarily shuffle r1 (stack pointer) into r0 and then put it back.
*/
livepatch_handler:
CURRENT_THREAD_INFO(r12, r1)
/* Save stack pointer into r0 */
mr r0, r1
/* Allocate 3 x 8 bytes */
ld r1, TI_livepatch_sp(r12)
addi r1, r1, 24
std r1, TI_livepatch_sp(r12)
/* Save toc & real LR on livepatch stack */
std r2, -24(r1)
mflr r12
std r12, -16(r1)
/* Store stack end marker */
lis r12, STACK_END_MAGIC@h
ori r12, r12, STACK_END_MAGIC@l
std r12, -8(r1)
/* Restore real stack pointer */
mr r1, r0
/* Put ctr in r12 for global entry and branch there */
mfctr r12
bctrl
/*
* Now we are returning from the patched function to the original
* caller A. We are free to use r0 and r12, and we can use r2 until we
* restore it.
*/
CURRENT_THREAD_INFO(r12, r1)
/* Save stack pointer into r0 */
mr r0, r1
ld r1, TI_livepatch_sp(r12)
/* Check stack marker hasn't been trashed */
lis r2, STACK_END_MAGIC@h
ori r2, r2, STACK_END_MAGIC@l
ld r12, -8(r1)
1: tdne r12, r2
EMIT_BUG_ENTRY 1b, __FILE__, __LINE__ - 1, 0
/* Restore LR & toc from livepatch stack */
ld r12, -16(r1)
mtlr r12
ld r2, -24(r1)
/* Pop livepatch stack frame */
CURRENT_THREAD_INFO(r12, r0)
subi r1, r1, 24
std r1, TI_livepatch_sp(r12)
/* Restore real stack pointer */
mr r1, r0
/* Return to original caller of live patched function */
blr
#endif
#else #else
_GLOBAL_TOC(_mcount) _GLOBAL_TOC(_mcount)
/* Taken from output of objdump from lib64/glibc */ /* Taken from output of objdump from lib64/glibc */
...@@ -1198,6 +1408,7 @@ _GLOBAL(ftrace_stub) ...@@ -1198,6 +1408,7 @@ _GLOBAL(ftrace_stub)
#endif /* CONFIG_DYNAMIC_FTRACE */ #endif /* CONFIG_DYNAMIC_FTRACE */
#ifdef CONFIG_FUNCTION_GRAPH_TRACER #ifdef CONFIG_FUNCTION_GRAPH_TRACER
#ifndef CC_USING_MPROFILE_KERNEL
_GLOBAL(ftrace_graph_caller) _GLOBAL(ftrace_graph_caller)
/* load r4 with local address */ /* load r4 with local address */
ld r4, 128(r1) ld r4, 128(r1)
...@@ -1222,6 +1433,56 @@ _GLOBAL(ftrace_graph_caller) ...@@ -1222,6 +1433,56 @@ _GLOBAL(ftrace_graph_caller)
addi r1, r1, 112 addi r1, r1, 112
blr blr
#else /* CC_USING_MPROFILE_KERNEL */
_GLOBAL(ftrace_graph_caller)
/* with -mprofile-kernel, parameter regs are still alive at _mcount */
std r10, 104(r1)
std r9, 96(r1)
std r8, 88(r1)
std r7, 80(r1)
std r6, 72(r1)
std r5, 64(r1)
std r4, 56(r1)
std r3, 48(r1)
/* Save callee's TOC in the ABI compliant location */
std r2, 24(r1)
ld r2, PACATOC(r13) /* get kernel TOC in r2 */
mfctr r4 /* ftrace_caller has moved local addr here */
std r4, 40(r1)
mflr r3 /* ftrace_caller has restored LR from stack */
subi r4, r4, MCOUNT_INSN_SIZE
bl prepare_ftrace_return
nop
/*
* prepare_ftrace_return gives us the address we divert to.
* Change the LR to this.
*/
mtlr r3
ld r0, 40(r1)
mtctr r0
ld r10, 104(r1)
ld r9, 96(r1)
ld r8, 88(r1)
ld r7, 80(r1)
ld r6, 72(r1)
ld r5, 64(r1)
ld r4, 56(r1)
ld r3, 48(r1)
/* Restore callee's TOC */
ld r2, 24(r1)
addi r1, r1, 112
mflr r0
std r0, LRSAVE(r1)
bctr
#endif /* CC_USING_MPROFILE_KERNEL */
_GLOBAL(return_to_handler) _GLOBAL(return_to_handler)
/* need to save return values */ /* need to save return values */
std r4, -32(r1) std r4, -32(r1)
......
...@@ -61,8 +61,11 @@ ftrace_modify_code(unsigned long ip, unsigned int old, unsigned int new) ...@@ -61,8 +61,11 @@ ftrace_modify_code(unsigned long ip, unsigned int old, unsigned int new)
return -EFAULT; return -EFAULT;
/* Make sure it is what we expect it to be */ /* Make sure it is what we expect it to be */
if (replaced != old) if (replaced != old) {
pr_err("%p: replaced (%#x) != old (%#x)",
(void *)ip, replaced, old);
return -EINVAL; return -EINVAL;
}
/* replace the text with the new text */ /* replace the text with the new text */
if (patch_instruction((unsigned int *)ip, new)) if (patch_instruction((unsigned int *)ip, new))
...@@ -106,14 +109,15 @@ static int ...@@ -106,14 +109,15 @@ static int
__ftrace_make_nop(struct module *mod, __ftrace_make_nop(struct module *mod,
struct dyn_ftrace *rec, unsigned long addr) struct dyn_ftrace *rec, unsigned long addr)
{ {
unsigned int op; unsigned long entry, ptr, tramp;
unsigned long entry, ptr;
unsigned long ip = rec->ip; unsigned long ip = rec->ip;
void *tramp; unsigned int op, pop;
/* read where this goes */ /* read where this goes */
if (probe_kernel_read(&op, (void *)ip, sizeof(int))) if (probe_kernel_read(&op, (void *)ip, sizeof(int))) {
pr_err("Fetching opcode failed.\n");
return -EFAULT; return -EFAULT;
}
/* Make sure that that this is still a 24bit jump */ /* Make sure that that this is still a 24bit jump */
if (!is_bl_op(op)) { if (!is_bl_op(op)) {
...@@ -122,14 +126,9 @@ __ftrace_make_nop(struct module *mod, ...@@ -122,14 +126,9 @@ __ftrace_make_nop(struct module *mod,
} }
/* lets find where the pointer goes */ /* lets find where the pointer goes */
tramp = (void *)find_bl_target(ip, op); tramp = find_bl_target(ip, op);
pr_devel("ip:%lx jumps to %p", ip, tramp);
if (!is_module_trampoline(tramp)) { pr_devel("ip:%lx jumps to %lx", ip, tramp);
pr_err("Not a trampoline\n");
return -EINVAL;
}
if (module_trampoline_target(mod, tramp, &ptr)) { if (module_trampoline_target(mod, tramp, &ptr)) {
pr_err("Failed to get trampoline target\n"); pr_err("Failed to get trampoline target\n");
...@@ -158,10 +157,42 @@ __ftrace_make_nop(struct module *mod, ...@@ -158,10 +157,42 @@ __ftrace_make_nop(struct module *mod,
* *
* Use a b +8 to jump over the load. * Use a b +8 to jump over the load.
*/ */
op = 0x48000008; /* b +8 */
if (patch_instruction((unsigned int *)ip, op)) pop = PPC_INST_BRANCH | 8; /* b +8 */
/*
* Check what is in the next instruction. We can see ld r2,40(r1), but
* on first pass after boot we will see mflr r0.
*/
if (probe_kernel_read(&op, (void *)(ip+4), MCOUNT_INSN_SIZE)) {
pr_err("Fetching op failed.\n");
return -EFAULT;
}
if (op != PPC_INST_LD_TOC) {
unsigned int inst;
if (probe_kernel_read(&inst, (void *)(ip - 4), 4)) {
pr_err("Fetching instruction at %lx failed.\n", ip - 4);
return -EFAULT;
}
/* We expect either a mlfr r0, or a std r0, LRSAVE(r1) */
if (inst != PPC_INST_MFLR && inst != PPC_INST_STD_LR) {
pr_err("Unexpected instructions around bl _mcount\n"
"when enabling dynamic ftrace!\t"
"(%08x,bl,%08x)\n", inst, op);
return -EINVAL;
}
/* When using -mkernel_profile there is no load to jump over */
pop = PPC_INST_NOP;
}
if (patch_instruction((unsigned int *)ip, pop)) {
pr_err("Patching NOP failed.\n");
return -EPERM; return -EPERM;
}
return 0; return 0;
} }
...@@ -287,16 +318,15 @@ int ftrace_make_nop(struct module *mod, ...@@ -287,16 +318,15 @@ int ftrace_make_nop(struct module *mod,
#ifdef CONFIG_MODULES #ifdef CONFIG_MODULES
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
/*
* Examine the existing instructions for __ftrace_make_call.
* They should effectively be a NOP, and follow formal constraints,
* depending on the ABI. Return false if they don't.
*/
#ifndef CC_USING_MPROFILE_KERNEL
static int static int
__ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) expected_nop_sequence(void *ip, unsigned int op0, unsigned int op1)
{ {
unsigned int op[2];
void *ip = (void *)rec->ip;
/* read where this goes */
if (probe_kernel_read(op, ip, sizeof(op)))
return -EFAULT;
/* /*
* We expect to see: * We expect to see:
* *
...@@ -306,8 +336,34 @@ __ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) ...@@ -306,8 +336,34 @@ __ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
* The load offset is different depending on the ABI. For simplicity * The load offset is different depending on the ABI. For simplicity
* just mask it out when doing the compare. * just mask it out when doing the compare.
*/ */
if ((op[0] != 0x48000008) || ((op[1] & 0xffff0000) != 0xe8410000)) { if ((op0 != 0x48000008) || ((op1 & 0xffff0000) != 0xe8410000))
pr_err("Unexpected call sequence: %x %x\n", op[0], op[1]); return 0;
return 1;
}
#else
static int
expected_nop_sequence(void *ip, unsigned int op0, unsigned int op1)
{
/* look for patched "NOP" on ppc64 with -mprofile-kernel */
if (op0 != PPC_INST_NOP)
return 0;
return 1;
}
#endif
static int
__ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
{
unsigned int op[2];
void *ip = (void *)rec->ip;
/* read where this goes */
if (probe_kernel_read(op, ip, sizeof(op)))
return -EFAULT;
if (!expected_nop_sequence(ip, op[0], op[1])) {
pr_err("Unexpected call sequence at %p: %x %x\n",
ip, op[0], op[1]);
return -EINVAL; return -EINVAL;
} }
...@@ -330,7 +386,16 @@ __ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) ...@@ -330,7 +386,16 @@ __ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
return 0; return 0;
} }
#else
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
unsigned long addr)
{
return ftrace_make_call(rec, addr);
}
#endif
#else /* !CONFIG_PPC64: */
static int static int
__ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) __ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
{ {
...@@ -455,20 +520,13 @@ void ftrace_replace_code(int enable) ...@@ -455,20 +520,13 @@ void ftrace_replace_code(int enable)
} }
} }
/*
* Use the default ftrace_modify_all_code, but without
* stop_machine().
*/
void arch_ftrace_update_code(int command) void arch_ftrace_update_code(int command)
{ {
if (command & FTRACE_UPDATE_CALLS) ftrace_modify_all_code(command);
ftrace_replace_code(1);
else if (command & FTRACE_DISABLE_CALLS)
ftrace_replace_code(0);
if (command & FTRACE_UPDATE_TRACE_FUNC)
ftrace_update_ftrace_func(ftrace_trace_function);
if (command & FTRACE_START_FUNC_RET)
ftrace_enable_ftrace_graph_caller();
else if (command & FTRACE_STOP_FUNC_RET)
ftrace_disable_ftrace_graph_caller();
} }
int __init ftrace_dyn_arch_init(void) int __init ftrace_dyn_arch_init(void)
......
...@@ -66,6 +66,7 @@ ...@@ -66,6 +66,7 @@
#include <asm/udbg.h> #include <asm/udbg.h>
#include <asm/smp.h> #include <asm/smp.h>
#include <asm/debug.h> #include <asm/debug.h>
#include <asm/livepatch.h>
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
#include <asm/paca.h> #include <asm/paca.h>
...@@ -607,10 +608,12 @@ void irq_ctx_init(void) ...@@ -607,10 +608,12 @@ void irq_ctx_init(void)
memset((void *)softirq_ctx[i], 0, THREAD_SIZE); memset((void *)softirq_ctx[i], 0, THREAD_SIZE);
tp = softirq_ctx[i]; tp = softirq_ctx[i];
tp->cpu = i; tp->cpu = i;
klp_init_thread_info(tp);
memset((void *)hardirq_ctx[i], 0, THREAD_SIZE); memset((void *)hardirq_ctx[i], 0, THREAD_SIZE);
tp = hardirq_ctx[i]; tp = hardirq_ctx[i];
tp->cpu = i; tp->cpu = i;
klp_init_thread_info(tp);
} }
} }
......
...@@ -47,6 +47,11 @@ int module_finalize(const Elf_Ehdr *hdr, ...@@ -47,6 +47,11 @@ int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs, struct module *me) const Elf_Shdr *sechdrs, struct module *me)
{ {
const Elf_Shdr *sect; const Elf_Shdr *sect;
int rc;
rc = module_finalize_ftrace(me, sechdrs);
if (rc)
return rc;
/* Apply feature fixups */ /* Apply feature fixups */
sect = find_section(hdr, sechdrs, "__ftr_fixup"); sect = find_section(hdr, sechdrs, "__ftr_fixup");
......
...@@ -181,7 +181,7 @@ static inline int entry_matches(struct ppc_plt_entry *entry, Elf32_Addr val) ...@@ -181,7 +181,7 @@ static inline int entry_matches(struct ppc_plt_entry *entry, Elf32_Addr val)
/* Set up a trampoline in the PLT to bounce us to the distant function */ /* Set up a trampoline in the PLT to bounce us to the distant function */
static uint32_t do_plt_call(void *location, static uint32_t do_plt_call(void *location,
Elf32_Addr val, Elf32_Addr val,
Elf32_Shdr *sechdrs, const Elf32_Shdr *sechdrs,
struct module *mod) struct module *mod)
{ {
struct ppc_plt_entry *entry; struct ppc_plt_entry *entry;
...@@ -294,11 +294,19 @@ int apply_relocate_add(Elf32_Shdr *sechdrs, ...@@ -294,11 +294,19 @@ int apply_relocate_add(Elf32_Shdr *sechdrs,
return -ENOEXEC; return -ENOEXEC;
} }
} }
return 0;
}
#ifdef CONFIG_DYNAMIC_FTRACE #ifdef CONFIG_DYNAMIC_FTRACE
module->arch.tramp = int module_finalize_ftrace(struct module *module, const Elf_Shdr *sechdrs)
do_plt_call(module->core_layout.base, {
(unsigned long)ftrace_caller, module->arch.tramp = do_plt_call(module->core_layout.base,
sechdrs, module); (unsigned long)ftrace_caller,
#endif sechdrs, module);
if (!module->arch.tramp)
return -ENOENT;
return 0; return 0;
} }
#endif
...@@ -31,6 +31,7 @@ ...@@ -31,6 +31,7 @@
#include <asm/code-patching.h> #include <asm/code-patching.h>
#include <linux/sort.h> #include <linux/sort.h>
#include <asm/setup.h> #include <asm/setup.h>
#include <asm/sections.h>
/* FIXME: We don't do .init separately. To do this, we'd need to have /* FIXME: We don't do .init separately. To do this, we'd need to have
a separate r2 value in the init and core section, and stub between a separate r2 value in the init and core section, and stub between
...@@ -41,7 +42,6 @@ ...@@ -41,7 +42,6 @@
--RR. */ --RR. */
#if defined(_CALL_ELF) && _CALL_ELF == 2 #if defined(_CALL_ELF) && _CALL_ELF == 2
#define R2_STACK_OFFSET 24
/* An address is simply the address of the function. */ /* An address is simply the address of the function. */
typedef unsigned long func_desc_t; typedef unsigned long func_desc_t;
...@@ -73,7 +73,6 @@ static unsigned int local_entry_offset(const Elf64_Sym *sym) ...@@ -73,7 +73,6 @@ static unsigned int local_entry_offset(const Elf64_Sym *sym)
return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other); return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other);
} }
#else #else
#define R2_STACK_OFFSET 40
/* An address is address of the OPD entry, which contains address of fn. */ /* An address is address of the OPD entry, which contains address of fn. */
typedef struct ppc64_opd_entry func_desc_t; typedef struct ppc64_opd_entry func_desc_t;
...@@ -96,6 +95,8 @@ static unsigned int local_entry_offset(const Elf64_Sym *sym) ...@@ -96,6 +95,8 @@ static unsigned int local_entry_offset(const Elf64_Sym *sym)
} }
#endif #endif
#define STUB_MAGIC 0x73747562 /* stub */
/* Like PPC32, we need little trampolines to do > 24-bit jumps (into /* Like PPC32, we need little trampolines to do > 24-bit jumps (into
the kernel itself). But on PPC64, these need to be used for every the kernel itself). But on PPC64, these need to be used for every
jump, actually, to reset r2 (TOC+0x8000). */ jump, actually, to reset r2 (TOC+0x8000). */
...@@ -105,7 +106,8 @@ struct ppc64_stub_entry ...@@ -105,7 +106,8 @@ struct ppc64_stub_entry
* need 6 instructions on ABIv2 but we always allocate 7 so * need 6 instructions on ABIv2 but we always allocate 7 so
* so we don't have to modify the trampoline load instruction. */ * so we don't have to modify the trampoline load instruction. */
u32 jump[7]; u32 jump[7];
u32 unused; /* Used by ftrace to identify stubs */
u32 magic;
/* Data for the above code */ /* Data for the above code */
func_desc_t funcdata; func_desc_t funcdata;
}; };
...@@ -139,70 +141,39 @@ static u32 ppc64_stub_insns[] = { ...@@ -139,70 +141,39 @@ static u32 ppc64_stub_insns[] = {
}; };
#ifdef CONFIG_DYNAMIC_FTRACE #ifdef CONFIG_DYNAMIC_FTRACE
int module_trampoline_target(struct module *mod, unsigned long addr,
static u32 ppc64_stub_mask[] = { unsigned long *target)
0xffff0000,
0xffff0000,
0xffffffff,
0xffffffff,
#if !defined(_CALL_ELF) || _CALL_ELF != 2
0xffffffff,
#endif
0xffffffff,
0xffffffff
};
bool is_module_trampoline(u32 *p)
{ {
unsigned int i; struct ppc64_stub_entry *stub;
u32 insns[ARRAY_SIZE(ppc64_stub_insns)]; func_desc_t funcdata;
u32 magic;
BUILD_BUG_ON(sizeof(ppc64_stub_insns) != sizeof(ppc64_stub_mask));
if (probe_kernel_read(insns, p, sizeof(insns))) if (!within_module_core(addr, mod)) {
pr_err("%s: stub %lx not in module %s\n", __func__, addr, mod->name);
return -EFAULT; return -EFAULT;
for (i = 0; i < ARRAY_SIZE(ppc64_stub_insns); i++) {
u32 insna = insns[i];
u32 insnb = ppc64_stub_insns[i];
u32 mask = ppc64_stub_mask[i];
if ((insna & mask) != (insnb & mask))
return false;
} }
return true; stub = (struct ppc64_stub_entry *)addr;
}
int module_trampoline_target(struct module *mod, u32 *trampoline,
unsigned long *target)
{
u32 buf[2];
u16 upper, lower;
long offset;
void *toc_entry;
if (probe_kernel_read(buf, trampoline, sizeof(buf))) if (probe_kernel_read(&magic, &stub->magic, sizeof(magic))) {
pr_err("%s: fault reading magic for stub %lx for %s\n", __func__, addr, mod->name);
return -EFAULT; return -EFAULT;
}
upper = buf[0] & 0xffff; if (magic != STUB_MAGIC) {
lower = buf[1] & 0xffff; pr_err("%s: bad magic for stub %lx for %s\n", __func__, addr, mod->name);
return -EFAULT;
/* perform the addis/addi, both signed */ }
offset = ((short)upper << 16) + (short)lower;
/* if (probe_kernel_read(&funcdata, &stub->funcdata, sizeof(funcdata))) {
* Now get the address this trampoline jumps to. This pr_err("%s: fault reading funcdata for stub %lx for %s\n", __func__, addr, mod->name);
* is always 32 bytes into our trampoline stub. return -EFAULT;
*/ }
toc_entry = (void *)mod->arch.toc + offset + 32;
if (probe_kernel_read(target, toc_entry, sizeof(*target))) *target = stub_func_addr(funcdata);
return -EFAULT;
return 0; return 0;
} }
#endif #endif
/* Count how many different 24-bit relocations (different symbol, /* Count how many different 24-bit relocations (different symbol,
...@@ -413,7 +384,7 @@ int module_frob_arch_sections(Elf64_Ehdr *hdr, ...@@ -413,7 +384,7 @@ int module_frob_arch_sections(Elf64_Ehdr *hdr,
/* r2 is the TOC pointer: it actually points 0x8000 into the TOC (this /* r2 is the TOC pointer: it actually points 0x8000 into the TOC (this
gives the value maximum span in an instruction which uses a signed gives the value maximum span in an instruction which uses a signed
offset) */ offset) */
static inline unsigned long my_r2(Elf64_Shdr *sechdrs, struct module *me) static inline unsigned long my_r2(const Elf64_Shdr *sechdrs, struct module *me)
{ {
return sechdrs[me->arch.toc_section].sh_addr + 0x8000; return sechdrs[me->arch.toc_section].sh_addr + 0x8000;
} }
...@@ -426,7 +397,7 @@ static inline unsigned long my_r2(Elf64_Shdr *sechdrs, struct module *me) ...@@ -426,7 +397,7 @@ static inline unsigned long my_r2(Elf64_Shdr *sechdrs, struct module *me)
#define PPC_HA(v) PPC_HI ((v) + 0x8000) #define PPC_HA(v) PPC_HI ((v) + 0x8000)
/* Patch stub to reference function and correct r2 value. */ /* Patch stub to reference function and correct r2 value. */
static inline int create_stub(Elf64_Shdr *sechdrs, static inline int create_stub(const Elf64_Shdr *sechdrs,
struct ppc64_stub_entry *entry, struct ppc64_stub_entry *entry,
unsigned long addr, unsigned long addr,
struct module *me) struct module *me)
...@@ -447,12 +418,14 @@ static inline int create_stub(Elf64_Shdr *sechdrs, ...@@ -447,12 +418,14 @@ static inline int create_stub(Elf64_Shdr *sechdrs,
entry->jump[0] |= PPC_HA(reladdr); entry->jump[0] |= PPC_HA(reladdr);
entry->jump[1] |= PPC_LO(reladdr); entry->jump[1] |= PPC_LO(reladdr);
entry->funcdata = func_desc(addr); entry->funcdata = func_desc(addr);
entry->magic = STUB_MAGIC;
return 1; return 1;
} }
/* Create stub to jump to function described in this OPD/ptr: we need the /* Create stub to jump to function described in this OPD/ptr: we need the
stub to set up the TOC ptr (r2) for the function. */ stub to set up the TOC ptr (r2) for the function. */
static unsigned long stub_for_addr(Elf64_Shdr *sechdrs, static unsigned long stub_for_addr(const Elf64_Shdr *sechdrs,
unsigned long addr, unsigned long addr,
struct module *me) struct module *me)
{ {
...@@ -476,17 +449,60 @@ static unsigned long stub_for_addr(Elf64_Shdr *sechdrs, ...@@ -476,17 +449,60 @@ static unsigned long stub_for_addr(Elf64_Shdr *sechdrs,
return (unsigned long)&stubs[i]; return (unsigned long)&stubs[i];
} }
#ifdef CC_USING_MPROFILE_KERNEL
static bool is_early_mcount_callsite(u32 *instruction)
{
/*
* Check if this is one of the -mprofile-kernel sequences.
*/
if (instruction[-1] == PPC_INST_STD_LR &&
instruction[-2] == PPC_INST_MFLR)
return true;
if (instruction[-1] == PPC_INST_MFLR)
return true;
return false;
}
/*
* In case of _mcount calls, do not save the current callee's TOC (in r2) into
* the original caller's stack frame. If we did we would clobber the saved TOC
* value of the original caller.
*/
static void squash_toc_save_inst(const char *name, unsigned long addr)
{
struct ppc64_stub_entry *stub = (struct ppc64_stub_entry *)addr;
/* Only for calls to _mcount */
if (strcmp("_mcount", name) != 0)
return;
stub->jump[2] = PPC_INST_NOP;
}
#else
static void squash_toc_save_inst(const char *name, unsigned long addr) { }
/* without -mprofile-kernel, mcount calls are never early */
static bool is_early_mcount_callsite(u32 *instruction)
{
return false;
}
#endif
/* We expect a noop next: if it is, replace it with instruction to /* We expect a noop next: if it is, replace it with instruction to
restore r2. */ restore r2. */
static int restore_r2(u32 *instruction, struct module *me) static int restore_r2(u32 *instruction, struct module *me)
{ {
if (*instruction != PPC_INST_NOP) { if (*instruction != PPC_INST_NOP) {
if (is_early_mcount_callsite(instruction - 1))
return 1;
pr_err("%s: Expect noop after relocate, got %08x\n", pr_err("%s: Expect noop after relocate, got %08x\n",
me->name, *instruction); me->name, *instruction);
return 0; return 0;
} }
/* ld r2,R2_STACK_OFFSET(r1) */ /* ld r2,R2_STACK_OFFSET(r1) */
*instruction = 0xe8410000 | R2_STACK_OFFSET; *instruction = PPC_INST_LD_TOC;
return 1; return 1;
} }
...@@ -611,6 +627,8 @@ int apply_relocate_add(Elf64_Shdr *sechdrs, ...@@ -611,6 +627,8 @@ int apply_relocate_add(Elf64_Shdr *sechdrs,
return -ENOENT; return -ENOENT;
if (!restore_r2((u32 *)location + 1, me)) if (!restore_r2((u32 *)location + 1, me))
return -ENOEXEC; return -ENOEXEC;
squash_toc_save_inst(strtab + sym->st_name, value);
} else } else
value += local_entry_offset(sym); value += local_entry_offset(sym);
...@@ -693,12 +711,84 @@ int apply_relocate_add(Elf64_Shdr *sechdrs, ...@@ -693,12 +711,84 @@ int apply_relocate_add(Elf64_Shdr *sechdrs,
} }
} }
return 0;
}
#ifdef CONFIG_DYNAMIC_FTRACE #ifdef CONFIG_DYNAMIC_FTRACE
me->arch.toc = my_r2(sechdrs, me);
me->arch.tramp = stub_for_addr(sechdrs, #ifdef CC_USING_MPROFILE_KERNEL
(unsigned long)ftrace_caller,
me); #define PACATOC offsetof(struct paca_struct, kernel_toc)
/*
* For mprofile-kernel we use a special stub for ftrace_caller() because we
* can't rely on r2 containing this module's TOC when we enter the stub.
*
* That can happen if the function calling us didn't need to use the toc. In
* that case it won't have setup r2, and the r2 value will be either the
* kernel's toc, or possibly another modules toc.
*
* To deal with that this stub uses the kernel toc, which is always accessible
* via the paca (in r13). The target (ftrace_caller()) is responsible for
* saving and restoring the toc before returning.
*/
static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, struct module *me)
{
struct ppc64_stub_entry *entry;
unsigned int i, num_stubs;
static u32 stub_insns[] = {
0xe98d0000 | PACATOC, /* ld r12,PACATOC(r13) */
0x3d8c0000, /* addis r12,r12,<high> */
0x398c0000, /* addi r12,r12,<low> */
0x7d8903a6, /* mtctr r12 */
0x4e800420, /* bctr */
};
long reladdr;
num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*entry);
/* Find the next available stub entry */
entry = (void *)sechdrs[me->arch.stubs_section].sh_addr;
for (i = 0; i < num_stubs && stub_func_addr(entry->funcdata); i++, entry++);
if (i >= num_stubs) {
pr_err("%s: Unable to find a free slot for ftrace stub.\n", me->name);
return 0;
}
memcpy(entry->jump, stub_insns, sizeof(stub_insns));
/* Stub uses address relative to kernel toc (from the paca) */
reladdr = (unsigned long)ftrace_caller - kernel_toc_addr();
if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
pr_err("%s: Address of ftrace_caller out of range of kernel_toc.\n", me->name);
return 0;
}
entry->jump[1] |= PPC_HA(reladdr);
entry->jump[2] |= PPC_LO(reladdr);
/* Eventhough we don't use funcdata in the stub, it's needed elsewhere. */
entry->funcdata = func_desc((unsigned long)ftrace_caller);
entry->magic = STUB_MAGIC;
return (unsigned long)entry;
}
#else
static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, struct module *me)
{
return stub_for_addr(sechdrs, (unsigned long)ftrace_caller, me);
}
#endif #endif
int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs)
{
mod->arch.toc = my_r2(sechdrs, mod);
mod->arch.tramp = create_ftrace_stub(sechdrs, mod);
if (!mod->arch.tramp)
return -ENOENT;
return 0; return 0;
} }
#endif
...@@ -17,10 +17,6 @@ ...@@ -17,10 +17,6 @@
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/kexec.h> #include <asm/kexec.h>
/* This symbol is provided by the linker - let it fill in the paca
* field correctly */
extern unsigned long __toc_start;
#ifdef CONFIG_PPC_BOOK3S #ifdef CONFIG_PPC_BOOK3S
/* /*
...@@ -149,11 +145,6 @@ EXPORT_SYMBOL(paca); ...@@ -149,11 +145,6 @@ EXPORT_SYMBOL(paca);
void __init initialise_paca(struct paca_struct *new_paca, int cpu) void __init initialise_paca(struct paca_struct *new_paca, int cpu)
{ {
/* The TOC register (GPR2) points 32kB into the TOC, so that 64kB
* of the TOC can be addressed using a single machine instruction.
*/
unsigned long kernel_toc = (unsigned long)(&__toc_start) + 0x8000UL;
#ifdef CONFIG_PPC_BOOK3S #ifdef CONFIG_PPC_BOOK3S
new_paca->lppaca_ptr = new_lppaca(cpu); new_paca->lppaca_ptr = new_lppaca(cpu);
#else #else
...@@ -161,7 +152,7 @@ void __init initialise_paca(struct paca_struct *new_paca, int cpu) ...@@ -161,7 +152,7 @@ void __init initialise_paca(struct paca_struct *new_paca, int cpu)
#endif #endif
new_paca->lock_token = 0x8000; new_paca->lock_token = 0x8000;
new_paca->paca_index = cpu; new_paca->paca_index = cpu;
new_paca->kernel_toc = kernel_toc; new_paca->kernel_toc = kernel_toc_addr();
new_paca->kernelbase = (unsigned long) _stext; new_paca->kernelbase = (unsigned long) _stext;
/* Only set MSR:IR/DR when MMU is initialized */ /* Only set MSR:IR/DR when MMU is initialized */
new_paca->kernel_msr = MSR_KERNEL & ~(MSR_IR | MSR_DR); new_paca->kernel_msr = MSR_KERNEL & ~(MSR_IR | MSR_DR);
......
...@@ -55,6 +55,8 @@ ...@@ -55,6 +55,8 @@
#include <asm/firmware.h> #include <asm/firmware.h>
#endif #endif
#include <asm/code-patching.h> #include <asm/code-patching.h>
#include <asm/livepatch.h>
#include <linux/kprobes.h> #include <linux/kprobes.h>
#include <linux/kdebug.h> #include <linux/kdebug.h>
...@@ -1267,13 +1269,15 @@ int copy_thread(unsigned long clone_flags, unsigned long usp, ...@@ -1267,13 +1269,15 @@ int copy_thread(unsigned long clone_flags, unsigned long usp,
extern void ret_from_kernel_thread(void); extern void ret_from_kernel_thread(void);
void (*f)(void); void (*f)(void);
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
struct thread_info *ti = task_thread_info(p);
klp_init_thread_info(ti);
/* Copy registers */ /* Copy registers */
sp -= sizeof(struct pt_regs); sp -= sizeof(struct pt_regs);
childregs = (struct pt_regs *) sp; childregs = (struct pt_regs *) sp;
if (unlikely(p->flags & PF_KTHREAD)) { if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */ /* kernel thread */
struct thread_info *ti = (void *)task_stack_page(p);
memset(childregs, 0, sizeof(struct pt_regs)); memset(childregs, 0, sizeof(struct pt_regs));
childregs->gpr[1] = sp + sizeof(struct pt_regs); childregs->gpr[1] = sp + sizeof(struct pt_regs);
/* function */ /* function */
......
...@@ -69,6 +69,7 @@ ...@@ -69,6 +69,7 @@
#include <asm/kvm_ppc.h> #include <asm/kvm_ppc.h>
#include <asm/hugetlb.h> #include <asm/hugetlb.h>
#include <asm/epapr_hcalls.h> #include <asm/epapr_hcalls.h>
#include <asm/livepatch.h>
#ifdef DEBUG #ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt) #define DBG(fmt...) udbg_printf(fmt)
...@@ -667,16 +668,16 @@ static void __init emergency_stack_init(void) ...@@ -667,16 +668,16 @@ static void __init emergency_stack_init(void)
limit = min(safe_stack_limit(), ppc64_rma_size); limit = min(safe_stack_limit(), ppc64_rma_size);
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
unsigned long sp; struct thread_info *ti;
sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
sp += THREAD_SIZE; klp_init_thread_info(ti);
paca[i].emergency_sp = __va(sp); paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
#ifdef CONFIG_PPC_BOOK3S_64 #ifdef CONFIG_PPC_BOOK3S_64
/* emergency stack for machine check exception handling. */ /* emergency stack for machine check exception handling. */
sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
sp += THREAD_SIZE; klp_init_thread_info(ti);
paca[i].mc_emergency_sp = __va(sp); paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
#endif #endif
} }
} }
...@@ -700,6 +701,8 @@ void __init setup_arch(char **cmdline_p) ...@@ -700,6 +701,8 @@ void __init setup_arch(char **cmdline_p)
if (ppc_md.panic) if (ppc_md.panic)
setup_panic(); setup_panic();
klp_init_thread_info(&init_thread_info);
init_mm.start_code = (unsigned long)_stext; init_mm.start_code = (unsigned long)_stext;
init_mm.end_code = (unsigned long) _etext; init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata; init_mm.end_data = (unsigned long) _edata;
......
...@@ -6,8 +6,8 @@ subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror ...@@ -6,8 +6,8 @@ subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC) ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC)
CFLAGS_REMOVE_code-patching.o = -pg CFLAGS_REMOVE_code-patching.o = $(CC_FLAGS_FTRACE)
CFLAGS_REMOVE_feature-fixups.o = -pg CFLAGS_REMOVE_feature-fixups.o = $(CC_FLAGS_FTRACE)
obj-y += string.o alloc.o crtsavres.o ppc_ksyms.o code-patching.o \ obj-y += string.o alloc.o crtsavres.o ppc_ksyms.o code-patching.o \
feature-fixups.o feature-fixups.o
......
...@@ -2,7 +2,7 @@ CFLAGS_bootx_init.o += -fPIC ...@@ -2,7 +2,7 @@ CFLAGS_bootx_init.o += -fPIC
ifdef CONFIG_FUNCTION_TRACER ifdef CONFIG_FUNCTION_TRACER
# Do not trace early boot code # Do not trace early boot code
CFLAGS_REMOVE_bootx_init.o = -pg -mno-sched-epilog CFLAGS_REMOVE_bootx_init.o = -mno-sched-epilog $(CC_FLAGS_FTRACE)
endif endif
obj-y += pic.o setup.o time.o feature.o pci.o \ obj-y += pic.o setup.o time.o feature.o pci.o \
......
#!/bin/bash
set -e
set -o pipefail
# To debug, uncomment the following line
# set -x
# Test whether the compile option -mprofile-kernel exists and generates
# profiling code (ie. a call to _mcount()).
echo "int func() { return 0; }" | \
$* -S -x c -O2 -p -mprofile-kernel - -o - 2> /dev/null | \
grep -q "_mcount"
# Test whether the notrace attribute correctly suppresses calls to _mcount().
echo -e "#include <linux/compiler.h>\nnotrace int func() { return 0; }" | \
$* -S -x c -O2 -p -mprofile-kernel - -o - 2> /dev/null | \
grep -q "_mcount" && \
exit 1
echo "OK"
exit 0
...@@ -24,13 +24,6 @@ static inline int klp_check_compiler_support(void) ...@@ -24,13 +24,6 @@ static inline int klp_check_compiler_support(void)
return 0; return 0;
} }
static inline int klp_write_module_reloc(struct module *mod, unsigned long
type, unsigned long loc, unsigned long value)
{
/* not supported yet */
return -ENOSYS;
}
static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip) static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
{ {
regs->psw.addr = ip; regs->psw.addr = ip;
......
...@@ -51,6 +51,10 @@ void *module_alloc(unsigned long size) ...@@ -51,6 +51,10 @@ void *module_alloc(unsigned long size)
void module_arch_freeing_init(struct module *mod) void module_arch_freeing_init(struct module *mod)
{ {
if (is_livepatch_module(mod) &&
mod->state == MODULE_STATE_LIVE)
return;
vfree(mod->arch.syminfo); vfree(mod->arch.syminfo);
mod->arch.syminfo = NULL; mod->arch.syminfo = NULL;
} }
...@@ -425,7 +429,5 @@ int module_finalize(const Elf_Ehdr *hdr, ...@@ -425,7 +429,5 @@ int module_finalize(const Elf_Ehdr *hdr,
struct module *me) struct module *me)
{ {
jump_label_apply_nops(me); jump_label_apply_nops(me);
vfree(me->arch.syminfo);
me->arch.syminfo = NULL;
return 0; return 0;
} }
...@@ -32,8 +32,6 @@ static inline int klp_check_compiler_support(void) ...@@ -32,8 +32,6 @@ static inline int klp_check_compiler_support(void)
#endif #endif
return 0; return 0;
} }
int klp_write_module_reloc(struct module *mod, unsigned long type,
unsigned long loc, unsigned long value);
static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip) static inline void klp_arch_set_pc(struct pt_regs *regs, unsigned long ip)
{ {
......
...@@ -67,7 +67,6 @@ obj-$(CONFIG_X86_MPPARSE) += mpparse.o ...@@ -67,7 +67,6 @@ obj-$(CONFIG_X86_MPPARSE) += mpparse.o
obj-y += apic/ obj-y += apic/
obj-$(CONFIG_X86_REBOOTFIXUPS) += reboot_fixups_32.o obj-$(CONFIG_X86_REBOOTFIXUPS) += reboot_fixups_32.o
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
obj-$(CONFIG_LIVEPATCH) += livepatch.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_FTRACE_SYSCALLS) += ftrace.o obj-$(CONFIG_FTRACE_SYSCALLS) += ftrace.o
obj-$(CONFIG_X86_TSC) += trace_clock.o obj-$(CONFIG_X86_TSC) += trace_clock.o
......
...@@ -455,6 +455,7 @@ int ftrace_update_record(struct dyn_ftrace *rec, int enable); ...@@ -455,6 +455,7 @@ int ftrace_update_record(struct dyn_ftrace *rec, int enable);
int ftrace_test_record(struct dyn_ftrace *rec, int enable); int ftrace_test_record(struct dyn_ftrace *rec, int enable);
void ftrace_run_stop_machine(int command); void ftrace_run_stop_machine(int command);
unsigned long ftrace_location(unsigned long ip); unsigned long ftrace_location(unsigned long ip);
unsigned long ftrace_location_range(unsigned long start, unsigned long end);
unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec); unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec);
unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec); unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec);
......
...@@ -64,28 +64,9 @@ struct klp_func { ...@@ -64,28 +64,9 @@ struct klp_func {
struct list_head stack_node; struct list_head stack_node;
}; };
/**
* struct klp_reloc - relocation structure for live patching
* @loc: address where the relocation will be written
* @sympos: position in kallsyms to disambiguate symbols (optional)
* @type: ELF relocation type
* @name: name of the referenced symbol (for lookup/verification)
* @addend: offset from the referenced symbol
* @external: symbol is either exported or within the live patch module itself
*/
struct klp_reloc {
unsigned long loc;
unsigned long sympos;
unsigned long type;
const char *name;
int addend;
int external;
};
/** /**
* struct klp_object - kernel object structure for live patching * struct klp_object - kernel object structure for live patching
* @name: module name (or NULL for vmlinux) * @name: module name (or NULL for vmlinux)
* @relocs: relocation entries to be applied at load time
* @funcs: function entries for functions to be patched in the object * @funcs: function entries for functions to be patched in the object
* @kobj: kobject for sysfs resources * @kobj: kobject for sysfs resources
* @mod: kernel module associated with the patched object * @mod: kernel module associated with the patched object
...@@ -95,7 +76,6 @@ struct klp_reloc { ...@@ -95,7 +76,6 @@ struct klp_reloc {
struct klp_object { struct klp_object {
/* external */ /* external */
const char *name; const char *name;
struct klp_reloc *relocs;
struct klp_func *funcs; struct klp_func *funcs;
/* internal */ /* internal */
......
...@@ -330,6 +330,15 @@ struct mod_kallsyms { ...@@ -330,6 +330,15 @@ struct mod_kallsyms {
char *strtab; char *strtab;
}; };
#ifdef CONFIG_LIVEPATCH
struct klp_modinfo {
Elf_Ehdr hdr;
Elf_Shdr *sechdrs;
char *secstrings;
unsigned int symndx;
};
#endif
struct module { struct module {
enum module_state state; enum module_state state;
...@@ -456,7 +465,11 @@ struct module { ...@@ -456,7 +465,11 @@ struct module {
#endif #endif
#ifdef CONFIG_LIVEPATCH #ifdef CONFIG_LIVEPATCH
bool klp; /* Is this a livepatch module? */
bool klp_alive; bool klp_alive;
/* Elf information */
struct klp_modinfo *klp_info;
#endif #endif
#ifdef CONFIG_MODULE_UNLOAD #ifdef CONFIG_MODULE_UNLOAD
...@@ -630,6 +643,18 @@ static inline bool module_requested_async_probing(struct module *module) ...@@ -630,6 +643,18 @@ static inline bool module_requested_async_probing(struct module *module)
return module && module->async_probe_requested; return module && module->async_probe_requested;
} }
#ifdef CONFIG_LIVEPATCH
static inline bool is_livepatch_module(struct module *mod)
{
return mod->klp;
}
#else /* !CONFIG_LIVEPATCH */
static inline bool is_livepatch_module(struct module *mod)
{
return false;
}
#endif /* CONFIG_LIVEPATCH */
#else /* !CONFIG_MODULES... */ #else /* !CONFIG_MODULES... */
/* Given an address, look for it in the exception tables. */ /* Given an address, look for it in the exception tables. */
......
...@@ -282,16 +282,18 @@ typedef struct elf64_phdr { ...@@ -282,16 +282,18 @@ typedef struct elf64_phdr {
#define SHT_HIUSER 0xffffffff #define SHT_HIUSER 0xffffffff
/* sh_flags */ /* sh_flags */
#define SHF_WRITE 0x1 #define SHF_WRITE 0x1
#define SHF_ALLOC 0x2 #define SHF_ALLOC 0x2
#define SHF_EXECINSTR 0x4 #define SHF_EXECINSTR 0x4
#define SHF_MASKPROC 0xf0000000 #define SHF_RELA_LIVEPATCH 0x00100000
#define SHF_MASKPROC 0xf0000000
/* special section indexes */ /* special section indexes */
#define SHN_UNDEF 0 #define SHN_UNDEF 0
#define SHN_LORESERVE 0xff00 #define SHN_LORESERVE 0xff00
#define SHN_LOPROC 0xff00 #define SHN_LOPROC 0xff00
#define SHN_HIPROC 0xff1f #define SHN_HIPROC 0xff1f
#define SHN_LIVEPATCH 0xff20
#define SHN_ABS 0xfff1 #define SHN_ABS 0xfff1
#define SHN_COMMON 0xfff2 #define SHN_COMMON 0xfff2
#define SHN_HIRESERVE 0xffff #define SHN_HIRESERVE 0xffff
......
...@@ -28,6 +28,8 @@ ...@@ -28,6 +28,8 @@
#include <linux/list.h> #include <linux/list.h>
#include <linux/kallsyms.h> #include <linux/kallsyms.h>
#include <linux/livepatch.h> #include <linux/livepatch.h>
#include <linux/elf.h>
#include <linux/moduleloader.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
/** /**
...@@ -204,75 +206,109 @@ static int klp_find_object_symbol(const char *objname, const char *name, ...@@ -204,75 +206,109 @@ static int klp_find_object_symbol(const char *objname, const char *name,
return -EINVAL; return -EINVAL;
} }
/* static int klp_resolve_symbols(Elf_Shdr *relasec, struct module *pmod)
* external symbols are located outside the parent object (where the parent
* object is either vmlinux or the kmod being patched).
*/
static int klp_find_external_symbol(struct module *pmod, const char *name,
unsigned long *addr)
{ {
const struct kernel_symbol *sym; int i, cnt, vmlinux, ret;
char objname[MODULE_NAME_LEN];
/* first, check if it's an exported symbol */ char symname[KSYM_NAME_LEN];
preempt_disable(); char *strtab = pmod->core_kallsyms.strtab;
sym = find_symbol(name, NULL, NULL, true, true); Elf_Rela *relas;
if (sym) { Elf_Sym *sym;
*addr = sym->value; unsigned long sympos, addr;
preempt_enable();
return 0;
}
preempt_enable();
/* /*
* Check if it's in another .o within the patch module. This also * Since the field widths for objname and symname in the sscanf()
* checks that the external symbol is unique. * call are hard-coded and correspond to MODULE_NAME_LEN and
* KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
* and KSYM_NAME_LEN have the values we expect them to have.
*
* Because the value of MODULE_NAME_LEN can differ among architectures,
* we use the smallest/strictest upper bound possible (56, based on
* the current definition of MODULE_NAME_LEN) to prevent overflows.
*/ */
return klp_find_object_symbol(pmod->name, name, 0, addr); BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
relas = (Elf_Rela *) relasec->sh_addr;
/* For each rela in this klp relocation section */
for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
sym = pmod->core_kallsyms.symtab + ELF_R_SYM(relas[i].r_info);
if (sym->st_shndx != SHN_LIVEPATCH) {
pr_err("symbol %s is not marked as a livepatch symbol",
strtab + sym->st_name);
return -EINVAL;
}
/* Format: .klp.sym.objname.symname,sympos */
cnt = sscanf(strtab + sym->st_name,
".klp.sym.%55[^.].%127[^,],%lu",
objname, symname, &sympos);
if (cnt != 3) {
pr_err("symbol %s has an incorrectly formatted name",
strtab + sym->st_name);
return -EINVAL;
}
/* klp_find_object_symbol() treats a NULL objname as vmlinux */
vmlinux = !strcmp(objname, "vmlinux");
ret = klp_find_object_symbol(vmlinux ? NULL : objname,
symname, sympos, &addr);
if (ret)
return ret;
sym->st_value = addr;
}
return 0;
} }
static int klp_write_object_relocations(struct module *pmod, static int klp_write_object_relocations(struct module *pmod,
struct klp_object *obj) struct klp_object *obj)
{ {
int ret = 0; int i, cnt, ret = 0;
unsigned long val; const char *objname, *secname;
struct klp_reloc *reloc; char sec_objname[MODULE_NAME_LEN];
Elf_Shdr *sec;
if (WARN_ON(!klp_is_object_loaded(obj))) if (WARN_ON(!klp_is_object_loaded(obj)))
return -EINVAL; return -EINVAL;
if (WARN_ON(!obj->relocs)) objname = klp_is_module(obj) ? obj->name : "vmlinux";
return -EINVAL;
module_disable_ro(pmod); module_disable_ro(pmod);
/* For each klp relocation section */
for (i = 1; i < pmod->klp_info->hdr.e_shnum; i++) {
sec = pmod->klp_info->sechdrs + i;
secname = pmod->klp_info->secstrings + sec->sh_name;
if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
continue;
for (reloc = obj->relocs; reloc->name; reloc++) { /*
/* discover the address of the referenced symbol */ * Format: .klp.rela.sec_objname.section_name
if (reloc->external) { * See comment in klp_resolve_symbols() for an explanation
if (reloc->sympos > 0) { * of the selected field width value.
pr_err("non-zero sympos for external reloc symbol '%s' is not supported\n", */
reloc->name); cnt = sscanf(secname, ".klp.rela.%55[^.]", sec_objname);
ret = -EINVAL; if (cnt != 1) {
goto out; pr_err("section %s has an incorrectly formatted name",
} secname);
ret = klp_find_external_symbol(pmod, reloc->name, &val); ret = -EINVAL;
} else break;
ret = klp_find_object_symbol(obj->name, }
reloc->name,
reloc->sympos, if (strcmp(objname, sec_objname))
&val); continue;
ret = klp_resolve_symbols(sec, pmod);
if (ret) if (ret)
goto out; break;
ret = klp_write_module_reloc(pmod, reloc->type, reloc->loc, ret = apply_relocate_add(pmod->klp_info->sechdrs,
val + reloc->addend); pmod->core_kallsyms.strtab,
if (ret) { pmod->klp_info->symndx, i, pmod);
pr_err("relocation failed for symbol '%s' at 0x%016lx (%d)\n", if (ret)
reloc->name, val, ret); break;
goto out;
}
} }
out:
module_enable_ro(pmod); module_enable_ro(pmod);
return ret; return ret;
} }
...@@ -298,6 +334,19 @@ static void notrace klp_ftrace_handler(unsigned long ip, ...@@ -298,6 +334,19 @@ static void notrace klp_ftrace_handler(unsigned long ip,
rcu_read_unlock(); rcu_read_unlock();
} }
/*
* Convert a function address into the appropriate ftrace location.
*
* Usually this is just the address of the function, but on some architectures
* it's more complicated so allow them to provide a custom behaviour.
*/
#ifndef klp_get_ftrace_location
static unsigned long klp_get_ftrace_location(unsigned long faddr)
{
return faddr;
}
#endif
static void klp_disable_func(struct klp_func *func) static void klp_disable_func(struct klp_func *func)
{ {
struct klp_ops *ops; struct klp_ops *ops;
...@@ -312,8 +361,14 @@ static void klp_disable_func(struct klp_func *func) ...@@ -312,8 +361,14 @@ static void klp_disable_func(struct klp_func *func)
return; return;
if (list_is_singular(&ops->func_stack)) { if (list_is_singular(&ops->func_stack)) {
unsigned long ftrace_loc;
ftrace_loc = klp_get_ftrace_location(func->old_addr);
if (WARN_ON(!ftrace_loc))
return;
WARN_ON(unregister_ftrace_function(&ops->fops)); WARN_ON(unregister_ftrace_function(&ops->fops));
WARN_ON(ftrace_set_filter_ip(&ops->fops, func->old_addr, 1, 0)); WARN_ON(ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0));
list_del_rcu(&func->stack_node); list_del_rcu(&func->stack_node);
list_del(&ops->node); list_del(&ops->node);
...@@ -338,6 +393,15 @@ static int klp_enable_func(struct klp_func *func) ...@@ -338,6 +393,15 @@ static int klp_enable_func(struct klp_func *func)
ops = klp_find_ops(func->old_addr); ops = klp_find_ops(func->old_addr);
if (!ops) { if (!ops) {
unsigned long ftrace_loc;
ftrace_loc = klp_get_ftrace_location(func->old_addr);
if (!ftrace_loc) {
pr_err("failed to find location for function '%s'\n",
func->old_name);
return -EINVAL;
}
ops = kzalloc(sizeof(*ops), GFP_KERNEL); ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops) if (!ops)
return -ENOMEM; return -ENOMEM;
...@@ -352,7 +416,7 @@ static int klp_enable_func(struct klp_func *func) ...@@ -352,7 +416,7 @@ static int klp_enable_func(struct klp_func *func)
INIT_LIST_HEAD(&ops->func_stack); INIT_LIST_HEAD(&ops->func_stack);
list_add_rcu(&func->stack_node, &ops->func_stack); list_add_rcu(&func->stack_node, &ops->func_stack);
ret = ftrace_set_filter_ip(&ops->fops, func->old_addr, 0, 0); ret = ftrace_set_filter_ip(&ops->fops, ftrace_loc, 0, 0);
if (ret) { if (ret) {
pr_err("failed to set ftrace filter for function '%s' (%d)\n", pr_err("failed to set ftrace filter for function '%s' (%d)\n",
func->old_name, ret); func->old_name, ret);
...@@ -363,7 +427,7 @@ static int klp_enable_func(struct klp_func *func) ...@@ -363,7 +427,7 @@ static int klp_enable_func(struct klp_func *func)
if (ret) { if (ret) {
pr_err("failed to register ftrace handler for function '%s' (%d)\n", pr_err("failed to register ftrace handler for function '%s' (%d)\n",
func->old_name, ret); func->old_name, ret);
ftrace_set_filter_ip(&ops->fops, func->old_addr, 1, 0); ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0);
goto err; goto err;
} }
...@@ -706,11 +770,9 @@ static int klp_init_object_loaded(struct klp_patch *patch, ...@@ -706,11 +770,9 @@ static int klp_init_object_loaded(struct klp_patch *patch,
struct klp_func *func; struct klp_func *func;
int ret; int ret;
if (obj->relocs) { ret = klp_write_object_relocations(patch->mod, obj);
ret = klp_write_object_relocations(patch->mod, obj); if (ret)
if (ret) return ret;
return ret;
}
klp_for_each_func(obj, func) { klp_for_each_func(obj, func) {
ret = klp_find_object_symbol(obj->name, func->old_name, ret = klp_find_object_symbol(obj->name, func->old_name,
...@@ -845,12 +907,18 @@ int klp_register_patch(struct klp_patch *patch) ...@@ -845,12 +907,18 @@ int klp_register_patch(struct klp_patch *patch)
{ {
int ret; int ret;
if (!klp_initialized())
return -ENODEV;
if (!patch || !patch->mod) if (!patch || !patch->mod)
return -EINVAL; return -EINVAL;
if (!is_livepatch_module(patch->mod)) {
pr_err("module %s is not marked as a livepatch module",
patch->mod->name);
return -EINVAL;
}
if (!klp_initialized())
return -ENODEV;
/* /*
* A reference is taken on the patch module to prevent it from being * A reference is taken on the patch module to prevent it from being
* unloaded. Right now, we don't allow patch modules to unload since * unloaded. Right now, we don't allow patch modules to unload since
......
...@@ -1973,6 +1973,83 @@ static void module_enable_nx(const struct module *mod) { } ...@@ -1973,6 +1973,83 @@ static void module_enable_nx(const struct module *mod) { }
static void module_disable_nx(const struct module *mod) { } static void module_disable_nx(const struct module *mod) { }
#endif #endif
#ifdef CONFIG_LIVEPATCH
/*
* Persist Elf information about a module. Copy the Elf header,
* section header table, section string table, and symtab section
* index from info to mod->klp_info.
*/
static int copy_module_elf(struct module *mod, struct load_info *info)
{
unsigned int size, symndx;
int ret;
size = sizeof(*mod->klp_info);
mod->klp_info = kmalloc(size, GFP_KERNEL);
if (mod->klp_info == NULL)
return -ENOMEM;
/* Elf header */
size = sizeof(mod->klp_info->hdr);
memcpy(&mod->klp_info->hdr, info->hdr, size);
/* Elf section header table */
size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
if (mod->klp_info->sechdrs == NULL) {
ret = -ENOMEM;
goto free_info;
}
memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
/* Elf section name string table */
size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
if (mod->klp_info->secstrings == NULL) {
ret = -ENOMEM;
goto free_sechdrs;
}
memcpy(mod->klp_info->secstrings, info->secstrings, size);
/* Elf symbol section index */
symndx = info->index.sym;
mod->klp_info->symndx = symndx;
/*
* For livepatch modules, core_kallsyms.symtab is a complete
* copy of the original symbol table. Adjust sh_addr to point
* to core_kallsyms.symtab since the copy of the symtab in module
* init memory is freed at the end of do_init_module().
*/
mod->klp_info->sechdrs[symndx].sh_addr = \
(unsigned long) mod->core_kallsyms.symtab;
return 0;
free_sechdrs:
kfree(mod->klp_info->sechdrs);
free_info:
kfree(mod->klp_info);
return ret;
}
static void free_module_elf(struct module *mod)
{
kfree(mod->klp_info->sechdrs);
kfree(mod->klp_info->secstrings);
kfree(mod->klp_info);
}
#else /* !CONFIG_LIVEPATCH */
static int copy_module_elf(struct module *mod, struct load_info *info)
{
return 0;
}
static void free_module_elf(struct module *mod)
{
}
#endif /* CONFIG_LIVEPATCH */
void __weak module_memfree(void *module_region) void __weak module_memfree(void *module_region)
{ {
vfree(module_region); vfree(module_region);
...@@ -2011,6 +2088,9 @@ static void free_module(struct module *mod) ...@@ -2011,6 +2088,9 @@ static void free_module(struct module *mod)
/* Free any allocated parameters. */ /* Free any allocated parameters. */
destroy_params(mod->kp, mod->num_kp); destroy_params(mod->kp, mod->num_kp);
if (is_livepatch_module(mod))
free_module_elf(mod);
/* Now we can delete it from the lists */ /* Now we can delete it from the lists */
mutex_lock(&module_mutex); mutex_lock(&module_mutex);
/* Unlink carefully: kallsyms could be walking list. */ /* Unlink carefully: kallsyms could be walking list. */
...@@ -2126,6 +2206,10 @@ static int simplify_symbols(struct module *mod, const struct load_info *info) ...@@ -2126,6 +2206,10 @@ static int simplify_symbols(struct module *mod, const struct load_info *info)
(long)sym[i].st_value); (long)sym[i].st_value);
break; break;
case SHN_LIVEPATCH:
/* Livepatch symbols are resolved by livepatch */
break;
case SHN_UNDEF: case SHN_UNDEF:
ksym = resolve_symbol_wait(mod, info, name); ksym = resolve_symbol_wait(mod, info, name);
/* Ok if resolved. */ /* Ok if resolved. */
...@@ -2174,6 +2258,10 @@ static int apply_relocations(struct module *mod, const struct load_info *info) ...@@ -2174,6 +2258,10 @@ static int apply_relocations(struct module *mod, const struct load_info *info)
if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
continue; continue;
/* Livepatch relocation sections are applied by livepatch */
if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
continue;
if (info->sechdrs[i].sh_type == SHT_REL) if (info->sechdrs[i].sh_type == SHT_REL)
err = apply_relocate(info->sechdrs, info->strtab, err = apply_relocate(info->sechdrs, info->strtab,
info->index.sym, i, mod); info->index.sym, i, mod);
...@@ -2469,7 +2557,7 @@ static void layout_symtab(struct module *mod, struct load_info *info) ...@@ -2469,7 +2557,7 @@ static void layout_symtab(struct module *mod, struct load_info *info)
/* Compute total space required for the core symbols' strtab. */ /* Compute total space required for the core symbols' strtab. */
for (ndst = i = 0; i < nsrc; i++) { for (ndst = i = 0; i < nsrc; i++) {
if (i == 0 || if (i == 0 || is_livepatch_module(mod) ||
is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum, is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
info->index.pcpu)) { info->index.pcpu)) {
strtab_size += strlen(&info->strtab[src[i].st_name])+1; strtab_size += strlen(&info->strtab[src[i].st_name])+1;
...@@ -2528,7 +2616,7 @@ static void add_kallsyms(struct module *mod, const struct load_info *info) ...@@ -2528,7 +2616,7 @@ static void add_kallsyms(struct module *mod, const struct load_info *info)
mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs; mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
src = mod->kallsyms->symtab; src = mod->kallsyms->symtab;
for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) { for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
if (i == 0 || if (i == 0 || is_livepatch_module(mod) ||
is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum, is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
info->index.pcpu)) { info->index.pcpu)) {
dst[ndst] = src[i]; dst[ndst] = src[i];
...@@ -2667,6 +2755,26 @@ static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned l ...@@ -2667,6 +2755,26 @@ static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned l
return 0; return 0;
} }
#ifdef CONFIG_LIVEPATCH
static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
{
mod->klp = get_modinfo(info, "livepatch") ? true : false;
return 0;
}
#else /* !CONFIG_LIVEPATCH */
static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
{
if (get_modinfo(info, "livepatch")) {
pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
mod->name);
return -ENOEXEC;
}
return 0;
}
#endif /* CONFIG_LIVEPATCH */
/* Sets info->hdr and info->len. */ /* Sets info->hdr and info->len. */
static int copy_module_from_user(const void __user *umod, unsigned long len, static int copy_module_from_user(const void __user *umod, unsigned long len,
struct load_info *info) struct load_info *info)
...@@ -2821,6 +2929,10 @@ static int check_modinfo(struct module *mod, struct load_info *info, int flags) ...@@ -2821,6 +2929,10 @@ static int check_modinfo(struct module *mod, struct load_info *info, int flags)
"is unknown, you have been warned.\n", mod->name); "is unknown, you have been warned.\n", mod->name);
} }
err = find_livepatch_modinfo(mod, info);
if (err)
return err;
/* Set up license info based on the info section */ /* Set up license info based on the info section */
set_license(mod, get_modinfo(info, "license")); set_license(mod, get_modinfo(info, "license"));
...@@ -3494,6 +3606,12 @@ static int load_module(struct load_info *info, const char __user *uargs, ...@@ -3494,6 +3606,12 @@ static int load_module(struct load_info *info, const char __user *uargs,
if (err < 0) if (err < 0)
goto coming_cleanup; goto coming_cleanup;
if (is_livepatch_module(mod)) {
err = copy_module_elf(mod, info);
if (err < 0)
goto sysfs_cleanup;
}
/* Get rid of temporary copy. */ /* Get rid of temporary copy. */
free_copy(info); free_copy(info);
...@@ -3502,11 +3620,12 @@ static int load_module(struct load_info *info, const char __user *uargs, ...@@ -3502,11 +3620,12 @@ static int load_module(struct load_info *info, const char __user *uargs,
return do_init_module(mod); return do_init_module(mod);
sysfs_cleanup:
mod_sysfs_teardown(mod);
coming_cleanup: coming_cleanup:
blocking_notifier_call_chain(&module_notify_list, blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod); MODULE_STATE_GOING, mod);
klp_module_going(mod); klp_module_going(mod);
bug_cleanup: bug_cleanup:
/* module_bug_cleanup needs module_mutex protection */ /* module_bug_cleanup needs module_mutex protection */
mutex_lock(&module_mutex); mutex_lock(&module_mutex);
......
...@@ -1533,7 +1533,19 @@ static int ftrace_cmp_recs(const void *a, const void *b) ...@@ -1533,7 +1533,19 @@ static int ftrace_cmp_recs(const void *a, const void *b)
return 0; return 0;
} }
static unsigned long ftrace_location_range(unsigned long start, unsigned long end) /**
* ftrace_location_range - return the first address of a traced location
* if it touches the given ip range
* @start: start of range to search.
* @end: end of range to search (inclusive). @end points to the last byte
* to check.
*
* Returns rec->ip if the related ftrace location is a least partly within
* the given address range. That is, the first address of the instruction
* that is either a NOP or call to the function tracer. It checks the ftrace
* internal tables to determine if the address belongs or not.
*/
unsigned long ftrace_location_range(unsigned long start, unsigned long end)
{ {
struct ftrace_page *pg; struct ftrace_page *pg;
struct dyn_ftrace *rec; struct dyn_ftrace *rec;
......
...@@ -89,3 +89,4 @@ static void livepatch_exit(void) ...@@ -89,3 +89,4 @@ static void livepatch_exit(void)
module_init(livepatch_init); module_init(livepatch_init);
module_exit(livepatch_exit); module_exit(livepatch_exit);
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment