Commit be9f1c4f authored by Eric Anholt's avatar Eric Anholt

Merge commit 'keithp/drm-intel-next' into drm-intel-next

parents 8c52da50 fb0f8fbf
...@@ -13,6 +13,8 @@ i915-y := i915_drv.o i915_dma.o i915_irq.o i915_mem.o \ ...@@ -13,6 +13,8 @@ i915-y := i915_drv.o i915_dma.o i915_irq.o i915_mem.o \
intel_crt.o \ intel_crt.o \
intel_lvds.o \ intel_lvds.o \
intel_bios.o \ intel_bios.o \
intel_dp.o \
intel_dp_i2c.o \
intel_hdmi.o \ intel_hdmi.o \
intel_sdvo.o \ intel_sdvo.o \
intel_modes.o \ intel_modes.o \
......
...@@ -37,7 +37,7 @@ struct intel_dvo_device { ...@@ -37,7 +37,7 @@ struct intel_dvo_device {
/* GPIO register used for i2c bus to control this device */ /* GPIO register used for i2c bus to control this device */
u32 gpio; u32 gpio;
int slave_addr; int slave_addr;
struct intel_i2c_chan *i2c_bus; struct i2c_adapter *i2c_bus;
const struct intel_dvo_dev_ops *dev_ops; const struct intel_dvo_dev_ops *dev_ops;
void *dev_priv; void *dev_priv;
...@@ -52,7 +52,7 @@ struct intel_dvo_dev_ops { ...@@ -52,7 +52,7 @@ struct intel_dvo_dev_ops {
* Returns NULL if the device does not exist. * Returns NULL if the device does not exist.
*/ */
bool (*init)(struct intel_dvo_device *dvo, bool (*init)(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus); struct i2c_adapter *i2cbus);
/* /*
* Called to allow the output a chance to create properties after the * Called to allow the output a chance to create properties after the
......
...@@ -176,19 +176,20 @@ static void ch7017_dpms(struct intel_dvo_device *dvo, int mode); ...@@ -176,19 +176,20 @@ static void ch7017_dpms(struct intel_dvo_device *dvo, int mode);
static bool ch7017_read(struct intel_dvo_device *dvo, int addr, uint8_t *val) static bool ch7017_read(struct intel_dvo_device *dvo, int addr, uint8_t *val)
{ {
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[2]; u8 out_buf[2];
u8 in_buf[2]; u8 in_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 1, .len = 1,
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 1, .len = 1,
.buf = in_buf, .buf = in_buf,
...@@ -208,10 +209,11 @@ static bool ch7017_read(struct intel_dvo_device *dvo, int addr, uint8_t *val) ...@@ -208,10 +209,11 @@ static bool ch7017_read(struct intel_dvo_device *dvo, int addr, uint8_t *val)
static bool ch7017_write(struct intel_dvo_device *dvo, int addr, uint8_t val) static bool ch7017_write(struct intel_dvo_device *dvo, int addr, uint8_t val)
{ {
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
uint8_t out_buf[2]; uint8_t out_buf[2];
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 2, .len = 2,
.buf = out_buf, .buf = out_buf,
...@@ -228,8 +230,9 @@ static bool ch7017_write(struct intel_dvo_device *dvo, int addr, uint8_t val) ...@@ -228,8 +230,9 @@ static bool ch7017_write(struct intel_dvo_device *dvo, int addr, uint8_t val)
/** Probes for a CH7017 on the given bus and slave address. */ /** Probes for a CH7017 on the given bus and slave address. */
static bool ch7017_init(struct intel_dvo_device *dvo, static bool ch7017_init(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus) struct i2c_adapter *adapter)
{ {
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
struct ch7017_priv *priv; struct ch7017_priv *priv;
uint8_t val; uint8_t val;
...@@ -237,8 +240,7 @@ static bool ch7017_init(struct intel_dvo_device *dvo, ...@@ -237,8 +240,7 @@ static bool ch7017_init(struct intel_dvo_device *dvo,
if (priv == NULL) if (priv == NULL)
return false; return false;
dvo->i2c_bus = i2cbus; dvo->i2c_bus = adapter;
dvo->i2c_bus->slave_addr = dvo->slave_addr;
dvo->dev_priv = priv; dvo->dev_priv = priv;
if (!ch7017_read(dvo, CH7017_DEVICE_ID, &val)) if (!ch7017_read(dvo, CH7017_DEVICE_ID, &val))
...@@ -248,7 +250,7 @@ static bool ch7017_init(struct intel_dvo_device *dvo, ...@@ -248,7 +250,7 @@ static bool ch7017_init(struct intel_dvo_device *dvo,
val != CH7018_DEVICE_ID_VALUE && val != CH7018_DEVICE_ID_VALUE &&
val != CH7019_DEVICE_ID_VALUE) { val != CH7019_DEVICE_ID_VALUE) {
DRM_DEBUG("ch701x not detected, got %d: from %s Slave %d.\n", DRM_DEBUG("ch701x not detected, got %d: from %s Slave %d.\n",
val, i2cbus->adapter.name,i2cbus->slave_addr); val, i2cbus->adapter.name,dvo->slave_addr);
goto fail; goto fail;
} }
......
...@@ -123,19 +123,20 @@ static char *ch7xxx_get_id(uint8_t vid) ...@@ -123,19 +123,20 @@ static char *ch7xxx_get_id(uint8_t vid)
static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
{ {
struct ch7xxx_priv *ch7xxx= dvo->dev_priv; struct ch7xxx_priv *ch7xxx= dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[2]; u8 out_buf[2];
u8 in_buf[2]; u8 in_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 1, .len = 1,
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 1, .len = 1,
.buf = in_buf, .buf = in_buf,
...@@ -152,7 +153,7 @@ static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -152,7 +153,7 @@ static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
if (!ch7xxx->quiet) { if (!ch7xxx->quiet) {
DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n", DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
} }
...@@ -161,10 +162,11 @@ static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -161,10 +162,11 @@ static bool ch7xxx_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
static bool ch7xxx_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) static bool ch7xxx_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
{ {
struct ch7xxx_priv *ch7xxx = dvo->dev_priv; struct ch7xxx_priv *ch7xxx = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
uint8_t out_buf[2]; uint8_t out_buf[2];
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 2, .len = 2,
.buf = out_buf, .buf = out_buf,
...@@ -178,14 +180,14 @@ static bool ch7xxx_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) ...@@ -178,14 +180,14 @@ static bool ch7xxx_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
if (!ch7xxx->quiet) { if (!ch7xxx->quiet) {
DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n", DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
} }
static bool ch7xxx_init(struct intel_dvo_device *dvo, static bool ch7xxx_init(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus) struct i2c_adapter *adapter)
{ {
/* this will detect the CH7xxx chip on the specified i2c bus */ /* this will detect the CH7xxx chip on the specified i2c bus */
struct ch7xxx_priv *ch7xxx; struct ch7xxx_priv *ch7xxx;
...@@ -196,8 +198,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo, ...@@ -196,8 +198,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo,
if (ch7xxx == NULL) if (ch7xxx == NULL)
return false; return false;
dvo->i2c_bus = i2cbus; dvo->i2c_bus = adapter;
dvo->i2c_bus->slave_addr = dvo->slave_addr;
dvo->dev_priv = ch7xxx; dvo->dev_priv = ch7xxx;
ch7xxx->quiet = true; ch7xxx->quiet = true;
...@@ -207,7 +208,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo, ...@@ -207,7 +208,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo,
name = ch7xxx_get_id(vendor); name = ch7xxx_get_id(vendor);
if (!name) { if (!name) {
DRM_DEBUG("ch7xxx not detected; got 0x%02x from %s slave %d.\n", DRM_DEBUG("ch7xxx not detected; got 0x%02x from %s slave %d.\n",
vendor, i2cbus->adapter.name, i2cbus->slave_addr); vendor, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
...@@ -217,7 +218,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo, ...@@ -217,7 +218,7 @@ static bool ch7xxx_init(struct intel_dvo_device *dvo,
if (device != CH7xxx_DID) { if (device != CH7xxx_DID) {
DRM_DEBUG("ch7xxx not detected; got 0x%02x from %s slave %d.\n", DRM_DEBUG("ch7xxx not detected; got 0x%02x from %s slave %d.\n",
vendor, i2cbus->adapter.name, i2cbus->slave_addr); vendor, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
......
...@@ -169,13 +169,14 @@ static void ivch_dump_regs(struct intel_dvo_device *dvo); ...@@ -169,13 +169,14 @@ static void ivch_dump_regs(struct intel_dvo_device *dvo);
static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data) static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data)
{ {
struct ivch_priv *priv = dvo->dev_priv; struct ivch_priv *priv = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[1]; u8 out_buf[1];
u8 in_buf[2]; u8 in_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 0, .len = 0,
}, },
...@@ -186,7 +187,7 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data) ...@@ -186,7 +187,7 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data)
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD | I2C_M_NOSTART, .flags = I2C_M_RD | I2C_M_NOSTART,
.len = 2, .len = 2,
.buf = in_buf, .buf = in_buf,
...@@ -202,7 +203,7 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data) ...@@ -202,7 +203,7 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data)
if (!priv->quiet) { if (!priv->quiet) {
DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n", DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
} }
...@@ -211,10 +212,11 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data) ...@@ -211,10 +212,11 @@ static bool ivch_read(struct intel_dvo_device *dvo, int addr, uint16_t *data)
static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data) static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data)
{ {
struct ivch_priv *priv = dvo->dev_priv; struct ivch_priv *priv = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[3]; u8 out_buf[3];
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 3, .len = 3,
.buf = out_buf, .buf = out_buf,
...@@ -229,7 +231,7 @@ static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data) ...@@ -229,7 +231,7 @@ static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data)
if (!priv->quiet) { if (!priv->quiet) {
DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n", DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
...@@ -237,7 +239,7 @@ static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data) ...@@ -237,7 +239,7 @@ static bool ivch_write(struct intel_dvo_device *dvo, int addr, uint16_t data)
/** Probes the given bus and slave address for an ivch */ /** Probes the given bus and slave address for an ivch */
static bool ivch_init(struct intel_dvo_device *dvo, static bool ivch_init(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus) struct i2c_adapter *adapter)
{ {
struct ivch_priv *priv; struct ivch_priv *priv;
uint16_t temp; uint16_t temp;
...@@ -246,8 +248,7 @@ static bool ivch_init(struct intel_dvo_device *dvo, ...@@ -246,8 +248,7 @@ static bool ivch_init(struct intel_dvo_device *dvo,
if (priv == NULL) if (priv == NULL)
return false; return false;
dvo->i2c_bus = i2cbus; dvo->i2c_bus = adapter;
dvo->i2c_bus->slave_addr = dvo->slave_addr;
dvo->dev_priv = priv; dvo->dev_priv = priv;
priv->quiet = true; priv->quiet = true;
......
...@@ -76,19 +76,20 @@ struct sil164_priv { ...@@ -76,19 +76,20 @@ struct sil164_priv {
static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
{ {
struct sil164_priv *sil = dvo->dev_priv; struct sil164_priv *sil = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[2]; u8 out_buf[2];
u8 in_buf[2]; u8 in_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 1, .len = 1,
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 1, .len = 1,
.buf = in_buf, .buf = in_buf,
...@@ -105,7 +106,7 @@ static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -105,7 +106,7 @@ static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
if (!sil->quiet) { if (!sil->quiet) {
DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n", DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
} }
...@@ -113,10 +114,11 @@ static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -113,10 +114,11 @@ static bool sil164_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
{ {
struct sil164_priv *sil= dvo->dev_priv; struct sil164_priv *sil= dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
uint8_t out_buf[2]; uint8_t out_buf[2];
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 2, .len = 2,
.buf = out_buf, .buf = out_buf,
...@@ -130,7 +132,7 @@ static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) ...@@ -130,7 +132,7 @@ static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
if (!sil->quiet) { if (!sil->quiet) {
DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n", DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
...@@ -138,7 +140,7 @@ static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) ...@@ -138,7 +140,7 @@ static bool sil164_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
/* Silicon Image 164 driver for chip on i2c bus */ /* Silicon Image 164 driver for chip on i2c bus */
static bool sil164_init(struct intel_dvo_device *dvo, static bool sil164_init(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus) struct i2c_adapter *adapter)
{ {
/* this will detect the SIL164 chip on the specified i2c bus */ /* this will detect the SIL164 chip on the specified i2c bus */
struct sil164_priv *sil; struct sil164_priv *sil;
...@@ -148,8 +150,7 @@ static bool sil164_init(struct intel_dvo_device *dvo, ...@@ -148,8 +150,7 @@ static bool sil164_init(struct intel_dvo_device *dvo,
if (sil == NULL) if (sil == NULL)
return false; return false;
dvo->i2c_bus = i2cbus; dvo->i2c_bus = adapter;
dvo->i2c_bus->slave_addr = dvo->slave_addr;
dvo->dev_priv = sil; dvo->dev_priv = sil;
sil->quiet = true; sil->quiet = true;
...@@ -158,7 +159,7 @@ static bool sil164_init(struct intel_dvo_device *dvo, ...@@ -158,7 +159,7 @@ static bool sil164_init(struct intel_dvo_device *dvo,
if (ch != (SIL164_VID & 0xff)) { if (ch != (SIL164_VID & 0xff)) {
DRM_DEBUG("sil164 not detected got %d: from %s Slave %d.\n", DRM_DEBUG("sil164 not detected got %d: from %s Slave %d.\n",
ch, i2cbus->adapter.name, i2cbus->slave_addr); ch, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
...@@ -167,7 +168,7 @@ static bool sil164_init(struct intel_dvo_device *dvo, ...@@ -167,7 +168,7 @@ static bool sil164_init(struct intel_dvo_device *dvo,
if (ch != (SIL164_DID & 0xff)) { if (ch != (SIL164_DID & 0xff)) {
DRM_DEBUG("sil164 not detected got %d: from %s Slave %d.\n", DRM_DEBUG("sil164 not detected got %d: from %s Slave %d.\n",
ch, i2cbus->adapter.name, i2cbus->slave_addr); ch, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
sil->quiet = false; sil->quiet = false;
......
...@@ -101,19 +101,20 @@ struct tfp410_priv { ...@@ -101,19 +101,20 @@ struct tfp410_priv {
static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
{ {
struct tfp410_priv *tfp = dvo->dev_priv; struct tfp410_priv *tfp = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
u8 out_buf[2]; u8 out_buf[2];
u8 in_buf[2]; u8 in_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 1, .len = 1,
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 1, .len = 1,
.buf = in_buf, .buf = in_buf,
...@@ -130,7 +131,7 @@ static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -130,7 +131,7 @@ static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
if (!tfp->quiet) { if (!tfp->quiet) {
DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n", DRM_DEBUG("Unable to read register 0x%02x from %s:%02x.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
} }
...@@ -138,10 +139,11 @@ static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch) ...@@ -138,10 +139,11 @@ static bool tfp410_readb(struct intel_dvo_device *dvo, int addr, uint8_t *ch)
static bool tfp410_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) static bool tfp410_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
{ {
struct tfp410_priv *tfp = dvo->dev_priv; struct tfp410_priv *tfp = dvo->dev_priv;
struct intel_i2c_chan *i2cbus = dvo->i2c_bus; struct i2c_adapter *adapter = dvo->i2c_bus;
struct intel_i2c_chan *i2cbus = container_of(adapter, struct intel_i2c_chan, adapter);
uint8_t out_buf[2]; uint8_t out_buf[2];
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = i2cbus->slave_addr, .addr = dvo->slave_addr,
.flags = 0, .flags = 0,
.len = 2, .len = 2,
.buf = out_buf, .buf = out_buf,
...@@ -155,7 +157,7 @@ static bool tfp410_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch) ...@@ -155,7 +157,7 @@ static bool tfp410_writeb(struct intel_dvo_device *dvo, int addr, uint8_t ch)
if (!tfp->quiet) { if (!tfp->quiet) {
DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n", DRM_DEBUG("Unable to write register 0x%02x to %s:%d.\n",
addr, i2cbus->adapter.name, i2cbus->slave_addr); addr, i2cbus->adapter.name, dvo->slave_addr);
} }
return false; return false;
...@@ -174,7 +176,7 @@ static int tfp410_getid(struct intel_dvo_device *dvo, int addr) ...@@ -174,7 +176,7 @@ static int tfp410_getid(struct intel_dvo_device *dvo, int addr)
/* Ti TFP410 driver for chip on i2c bus */ /* Ti TFP410 driver for chip on i2c bus */
static bool tfp410_init(struct intel_dvo_device *dvo, static bool tfp410_init(struct intel_dvo_device *dvo,
struct intel_i2c_chan *i2cbus) struct i2c_adapter *adapter)
{ {
/* this will detect the tfp410 chip on the specified i2c bus */ /* this will detect the tfp410 chip on the specified i2c bus */
struct tfp410_priv *tfp; struct tfp410_priv *tfp;
...@@ -184,20 +186,19 @@ static bool tfp410_init(struct intel_dvo_device *dvo, ...@@ -184,20 +186,19 @@ static bool tfp410_init(struct intel_dvo_device *dvo,
if (tfp == NULL) if (tfp == NULL)
return false; return false;
dvo->i2c_bus = i2cbus; dvo->i2c_bus = adapter;
dvo->i2c_bus->slave_addr = dvo->slave_addr;
dvo->dev_priv = tfp; dvo->dev_priv = tfp;
tfp->quiet = true; tfp->quiet = true;
if ((id = tfp410_getid(dvo, TFP410_VID_LO)) != TFP410_VID) { if ((id = tfp410_getid(dvo, TFP410_VID_LO)) != TFP410_VID) {
DRM_DEBUG("tfp410 not detected got VID %X: from %s Slave %d.\n", DRM_DEBUG("tfp410 not detected got VID %X: from %s Slave %d.\n",
id, i2cbus->adapter.name, i2cbus->slave_addr); id, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
if ((id = tfp410_getid(dvo, TFP410_DID_LO)) != TFP410_DID) { if ((id = tfp410_getid(dvo, TFP410_DID_LO)) != TFP410_DID) {
DRM_DEBUG("tfp410 not detected got DID %X: from %s Slave %d.\n", DRM_DEBUG("tfp410 not detected got DID %X: from %s Slave %d.\n",
id, i2cbus->adapter.name, i2cbus->slave_addr); id, adapter->name, dvo->slave_addr);
goto out; goto out;
} }
tfp->quiet = false; tfp->quiet = false;
......
...@@ -306,6 +306,17 @@ typedef struct drm_i915_private { ...@@ -306,6 +306,17 @@ typedef struct drm_i915_private {
u32 saveCURBPOS; u32 saveCURBPOS;
u32 saveCURBBASE; u32 saveCURBBASE;
u32 saveCURSIZE; u32 saveCURSIZE;
u32 saveDP_B;
u32 saveDP_C;
u32 saveDP_D;
u32 savePIPEA_GMCH_DATA_M;
u32 savePIPEB_GMCH_DATA_M;
u32 savePIPEA_GMCH_DATA_N;
u32 savePIPEB_GMCH_DATA_N;
u32 savePIPEA_DP_LINK_M;
u32 savePIPEB_DP_LINK_M;
u32 savePIPEA_DP_LINK_N;
u32 savePIPEB_DP_LINK_N;
struct { struct {
struct drm_mm gtt_space; struct drm_mm gtt_space;
...@@ -857,6 +868,7 @@ extern int i915_wait_ring(struct drm_device * dev, int n, const char *caller); ...@@ -857,6 +868,7 @@ extern int i915_wait_ring(struct drm_device * dev, int n, const char *caller);
#define HAS_128_BYTE_Y_TILING(dev) (IS_I9XX(dev) && !(IS_I915G(dev) || \ #define HAS_128_BYTE_Y_TILING(dev) (IS_I9XX(dev) && !(IS_I915G(dev) || \
IS_I915GM(dev))) IS_I915GM(dev)))
#define SUPPORTS_INTEGRATED_HDMI(dev) (IS_G4X(dev) || IS_IGDNG(dev)) #define SUPPORTS_INTEGRATED_HDMI(dev) (IS_G4X(dev) || IS_IGDNG(dev))
#define SUPPORTS_INTEGRATED_DP(dev) (IS_G4X(dev) || IS_IGDNG(dev))
#define I915_HAS_HOTPLUG(dev) (IS_I945G(dev) || IS_I945GM(dev) || IS_I965G(dev)) #define I915_HAS_HOTPLUG(dev) (IS_I945G(dev) || IS_I945GM(dev) || IS_I965G(dev))
#define PRIMARY_RINGBUFFER_SIZE (128*1024) #define PRIMARY_RINGBUFFER_SIZE (128*1024)
......
...@@ -114,11 +114,13 @@ intel_alloc_mchbar_resource(struct drm_device *dev) ...@@ -114,11 +114,13 @@ intel_alloc_mchbar_resource(struct drm_device *dev)
mchbar_addr = ((u64)temp_hi << 32) | temp_lo; mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
/* If ACPI doesn't have it, assume we need to allocate it ourselves */ /* If ACPI doesn't have it, assume we need to allocate it ourselves */
#ifdef CONFIG_PNP
if (mchbar_addr && if (mchbar_addr &&
pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) { pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE)) {
ret = 0; ret = 0;
goto out_put; goto out_put;
} }
#endif
/* Get some space for it */ /* Get some space for it */
ret = pci_bus_alloc_resource(bridge_dev->bus, &dev_priv->mch_res, ret = pci_bus_alloc_resource(bridge_dev->bus, &dev_priv->mch_res,
......
...@@ -232,7 +232,17 @@ static void i915_hotplug_work_func(struct work_struct *work) ...@@ -232,7 +232,17 @@ static void i915_hotplug_work_func(struct work_struct *work)
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
hotplug_work); hotplug_work);
struct drm_device *dev = dev_priv->dev; struct drm_device *dev = dev_priv->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
if (mode_config->num_connector) {
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (intel_output->hot_plug)
(*intel_output->hot_plug) (intel_output);
}
}
/* Just fire off a uevent and let userspace tell us what to do */ /* Just fire off a uevent and let userspace tell us what to do */
drm_sysfs_hotplug_event(dev); drm_sysfs_hotplug_event(dev);
} }
......
...@@ -569,6 +569,19 @@ ...@@ -569,6 +569,19 @@
#define C0DRB3 0x10206 #define C0DRB3 0x10206
#define C1DRB3 0x10606 #define C1DRB3 0x10606
/* Clocking configuration register */
#define CLKCFG 0x10c00
#define CLKCFG_FSB_400 (0 << 0) /* hrawclk 100 */
#define CLKCFG_FSB_533 (1 << 0) /* hrawclk 133 */
#define CLKCFG_FSB_667 (3 << 0) /* hrawclk 166 */
#define CLKCFG_FSB_800 (2 << 0) /* hrawclk 200 */
#define CLKCFG_FSB_1067 (6 << 0) /* hrawclk 266 */
#define CLKCFG_FSB_1333 (7 << 0) /* hrawclk 333 */
/* this is a guess, could be 5 as well */
#define CLKCFG_FSB_1600 (4 << 0) /* hrawclk 400 */
#define CLKCFG_FSB_1600_ALT (5 << 0) /* hrawclk 400 */
#define CLKCFG_FSB_MASK (7 << 0)
/** GM965 GM45 render standby register */ /** GM965 GM45 render standby register */
#define MCHBAR_RENDER_STANDBY 0x111B8 #define MCHBAR_RENDER_STANDBY 0x111B8
......
...@@ -322,6 +322,20 @@ int i915_save_state(struct drm_device *dev) ...@@ -322,6 +322,20 @@ int i915_save_state(struct drm_device *dev)
dev_priv->savePP_OFF_DELAYS = I915_READ(PP_OFF_DELAYS); dev_priv->savePP_OFF_DELAYS = I915_READ(PP_OFF_DELAYS);
dev_priv->savePP_DIVISOR = I915_READ(PP_DIVISOR); dev_priv->savePP_DIVISOR = I915_READ(PP_DIVISOR);
/* Display Port state */
if (SUPPORTS_INTEGRATED_DP(dev)) {
dev_priv->saveDP_B = I915_READ(DP_B);
dev_priv->saveDP_C = I915_READ(DP_C);
dev_priv->saveDP_D = I915_READ(DP_D);
dev_priv->savePIPEA_GMCH_DATA_M = I915_READ(PIPEA_GMCH_DATA_M);
dev_priv->savePIPEB_GMCH_DATA_M = I915_READ(PIPEB_GMCH_DATA_M);
dev_priv->savePIPEA_GMCH_DATA_N = I915_READ(PIPEA_GMCH_DATA_N);
dev_priv->savePIPEB_GMCH_DATA_N = I915_READ(PIPEB_GMCH_DATA_N);
dev_priv->savePIPEA_DP_LINK_M = I915_READ(PIPEA_DP_LINK_M);
dev_priv->savePIPEB_DP_LINK_M = I915_READ(PIPEB_DP_LINK_M);
dev_priv->savePIPEA_DP_LINK_N = I915_READ(PIPEA_DP_LINK_N);
dev_priv->savePIPEB_DP_LINK_N = I915_READ(PIPEB_DP_LINK_N);
}
/* FIXME: save TV & SDVO state */ /* FIXME: save TV & SDVO state */
/* FBC state */ /* FBC state */
...@@ -405,6 +419,18 @@ int i915_restore_state(struct drm_device *dev) ...@@ -405,6 +419,18 @@ int i915_restore_state(struct drm_device *dev)
I915_WRITE(FENCE_REG_945_8 + (i * 4), dev_priv->saveFENCE[i+8]); I915_WRITE(FENCE_REG_945_8 + (i * 4), dev_priv->saveFENCE[i+8]);
} }
/* Display port ratios (must be done before clock is set) */
if (SUPPORTS_INTEGRATED_DP(dev)) {
I915_WRITE(PIPEA_GMCH_DATA_M, dev_priv->savePIPEA_GMCH_DATA_M);
I915_WRITE(PIPEB_GMCH_DATA_M, dev_priv->savePIPEB_GMCH_DATA_M);
I915_WRITE(PIPEA_GMCH_DATA_N, dev_priv->savePIPEA_GMCH_DATA_N);
I915_WRITE(PIPEB_GMCH_DATA_N, dev_priv->savePIPEB_GMCH_DATA_N);
I915_WRITE(PIPEA_DP_LINK_M, dev_priv->savePIPEA_DP_LINK_M);
I915_WRITE(PIPEB_DP_LINK_M, dev_priv->savePIPEB_DP_LINK_M);
I915_WRITE(PIPEA_DP_LINK_N, dev_priv->savePIPEA_DP_LINK_N);
I915_WRITE(PIPEB_DP_LINK_N, dev_priv->savePIPEB_DP_LINK_N);
}
/* Pipe & plane A info */ /* Pipe & plane A info */
/* Prime the clock */ /* Prime the clock */
if (dev_priv->saveDPLL_A & DPLL_VCO_ENABLE) { if (dev_priv->saveDPLL_A & DPLL_VCO_ENABLE) {
...@@ -518,6 +544,12 @@ int i915_restore_state(struct drm_device *dev) ...@@ -518,6 +544,12 @@ int i915_restore_state(struct drm_device *dev)
I915_WRITE(PP_DIVISOR, dev_priv->savePP_DIVISOR); I915_WRITE(PP_DIVISOR, dev_priv->savePP_DIVISOR);
I915_WRITE(PP_CONTROL, dev_priv->savePP_CONTROL); I915_WRITE(PP_CONTROL, dev_priv->savePP_CONTROL);
/* Display Port state */
if (SUPPORTS_INTEGRATED_DP(dev)) {
I915_WRITE(DP_B, dev_priv->saveDP_B);
I915_WRITE(DP_C, dev_priv->saveDP_C);
I915_WRITE(DP_D, dev_priv->saveDP_D);
}
/* FIXME: restore TV & SDVO state */ /* FIXME: restore TV & SDVO state */
/* FBC info */ /* FBC info */
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include "intel_drv.h" #include "intel_drv.h"
#include "i915_drm.h" #include "i915_drm.h"
#include "i915_drv.h" #include "i915_drv.h"
#include "intel_dp.h"
#include "drm_crtc_helper.h" #include "drm_crtc_helper.h"
...@@ -127,19 +128,6 @@ struct intel_limit { ...@@ -127,19 +128,6 @@ struct intel_limit {
#define I9XX_P2_LVDS_FAST 7 #define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
#define INTEL_LIMIT_I8XX_DVO_DAC 0
#define INTEL_LIMIT_I8XX_LVDS 1
#define INTEL_LIMIT_I9XX_SDVO_DAC 2
#define INTEL_LIMIT_I9XX_LVDS 3
#define INTEL_LIMIT_G4X_SDVO 4
#define INTEL_LIMIT_G4X_HDMI_DAC 5
#define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
#define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
#define INTEL_LIMIT_IGD_SDVO_DAC 8
#define INTEL_LIMIT_IGD_LVDS 9
#define INTEL_LIMIT_IGDNG_SDVO_DAC 10
#define INTEL_LIMIT_IGDNG_LVDS 11
/*The parameter is for SDVO on G4x platform*/ /*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN 25000 #define G4X_DOT_SDVO_MIN 25000
#define G4X_DOT_SDVO_MAX 270000 #define G4X_DOT_SDVO_MAX 270000
...@@ -218,6 +206,25 @@ struct intel_limit { ...@@ -218,6 +206,25 @@ struct intel_limit {
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN 161670
#define G4X_DOT_DISPLAY_PORT_MAX 227000
#define G4X_N_DISPLAY_PORT_MIN 1
#define G4X_N_DISPLAY_PORT_MAX 2
#define G4X_M_DISPLAY_PORT_MIN 97
#define G4X_M_DISPLAY_PORT_MAX 108
#define G4X_M1_DISPLAY_PORT_MIN 0x10
#define G4X_M1_DISPLAY_PORT_MAX 0x12
#define G4X_M2_DISPLAY_PORT_MIN 0x05
#define G4X_M2_DISPLAY_PORT_MAX 0x06
#define G4X_P_DISPLAY_PORT_MIN 10
#define G4X_P_DISPLAY_PORT_MAX 20
#define G4X_P1_DISPLAY_PORT_MIN 1
#define G4X_P1_DISPLAY_PORT_MAX 2
#define G4X_P2_DISPLAY_PORT_SLOW 10
#define G4X_P2_DISPLAY_PORT_FAST 10
#define G4X_P2_DISPLAY_PORT_LIMIT 0
/* IGDNG */ /* IGDNG */
/* as we calculate clock using (register_value + 2) for /* as we calculate clock using (register_value + 2) for
N/M1/M2, so here the range value for them is (actual_value-2). N/M1/M2, so here the range value for them is (actual_value-2).
...@@ -256,8 +263,11 @@ static bool ...@@ -256,8 +263,11 @@ static bool
intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock); int target, int refclk, intel_clock_t *best_clock);
static const intel_limit_t intel_limits[] = { static bool
{ /* INTEL_LIMIT_I8XX_DVO_DAC */ intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
...@@ -269,8 +279,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -269,8 +279,9 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST }, .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
{ /* INTEL_LIMIT_I8XX_LVDS */
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX }, .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX }, .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX }, .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
...@@ -282,8 +293,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -282,8 +293,9 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT, .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST }, .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
{ /* INTEL_LIMIT_I9XX_SDVO_DAC */
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
...@@ -295,8 +307,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -295,8 +307,9 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
{ /* INTEL_LIMIT_I9XX_LVDS */
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX }, .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX }, .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
...@@ -311,9 +324,10 @@ static const intel_limit_t intel_limits[] = { ...@@ -311,9 +324,10 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST }, .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
/* below parameter and function is for G4X Chipset Family*/ /* below parameter and function is for G4X Chipset Family*/
{ /* INTEL_LIMIT_G4X_SDVO */ static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX }, .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX }, .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
...@@ -327,8 +341,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -327,8 +341,9 @@ static const intel_limit_t intel_limits[] = {
.p2_fast = G4X_P2_SDVO_FAST .p2_fast = G4X_P2_SDVO_FAST
}, },
.find_pll = intel_g4x_find_best_PLL, .find_pll = intel_g4x_find_best_PLL,
}, };
{ /* INTEL_LIMIT_G4X_HDMI_DAC */
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX }, .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX}, .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX }, .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
...@@ -342,8 +357,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -342,8 +357,9 @@ static const intel_limit_t intel_limits[] = {
.p2_fast = G4X_P2_HDMI_DAC_FAST .p2_fast = G4X_P2_HDMI_DAC_FAST
}, },
.find_pll = intel_g4x_find_best_PLL, .find_pll = intel_g4x_find_best_PLL,
}, };
{ /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN, .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX }, .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN, .vco = { .min = G4X_VCO_MIN,
...@@ -365,8 +381,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -365,8 +381,9 @@ static const intel_limit_t intel_limits[] = {
.p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
}, },
.find_pll = intel_g4x_find_best_PLL, .find_pll = intel_g4x_find_best_PLL,
}, };
{ /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN, .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX }, .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN, .vco = { .min = G4X_VCO_MIN,
...@@ -388,8 +405,32 @@ static const intel_limit_t intel_limits[] = { ...@@ -388,8 +405,32 @@ static const intel_limit_t intel_limits[] = {
.p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
}, },
.find_pll = intel_g4x_find_best_PLL, .find_pll = intel_g4x_find_best_PLL,
}, };
{ /* INTEL_LIMIT_IGD_SDVO */
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
.max = G4X_DOT_DISPLAY_PORT_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX},
.n = { .min = G4X_N_DISPLAY_PORT_MIN,
.max = G4X_N_DISPLAY_PORT_MAX },
.m = { .min = G4X_M_DISPLAY_PORT_MIN,
.max = G4X_M_DISPLAY_PORT_MAX },
.m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
.max = G4X_M1_DISPLAY_PORT_MAX },
.m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
.max = G4X_M2_DISPLAY_PORT_MAX },
.p = { .min = G4X_P_DISPLAY_PORT_MIN,
.max = G4X_P_DISPLAY_PORT_MAX },
.p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
.max = G4X_P1_DISPLAY_PORT_MAX},
.p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
.p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
.p2_fast = G4X_P2_DISPLAY_PORT_FAST },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_igd_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX}, .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
.vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX }, .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
.n = { .min = IGD_N_MIN, .max = IGD_N_MAX }, .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
...@@ -401,8 +442,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -401,8 +442,9 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT, .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST }, .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
{ /* INTEL_LIMIT_IGD_LVDS */
static const intel_limit_t intel_limits_igd_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX }, .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX }, .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
.n = { .min = IGD_N_MIN, .max = IGD_N_MAX }, .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
...@@ -415,8 +457,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -415,8 +457,9 @@ static const intel_limit_t intel_limits[] = {
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT, .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW }, .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
.find_pll = intel_find_best_PLL, .find_pll = intel_find_best_PLL,
}, };
{ /* INTEL_LIMIT_IGDNG_SDVO_DAC */
static const intel_limit_t intel_limits_igdng_sdvo = {
.dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX }, .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
.vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX }, .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
.n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX }, .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
...@@ -429,8 +472,9 @@ static const intel_limit_t intel_limits[] = { ...@@ -429,8 +472,9 @@ static const intel_limit_t intel_limits[] = {
.p2_slow = IGDNG_P2_SDVO_DAC_SLOW, .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
.p2_fast = IGDNG_P2_SDVO_DAC_FAST }, .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
.find_pll = intel_igdng_find_best_PLL, .find_pll = intel_igdng_find_best_PLL,
}, };
{ /* INTEL_LIMIT_IGDNG_LVDS */
static const intel_limit_t intel_limits_igdng_lvds = {
.dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX }, .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
.vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX }, .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
.n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX }, .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
...@@ -443,16 +487,15 @@ static const intel_limit_t intel_limits[] = { ...@@ -443,16 +487,15 @@ static const intel_limit_t intel_limits[] = {
.p2_slow = IGDNG_P2_LVDS_SLOW, .p2_slow = IGDNG_P2_LVDS_SLOW,
.p2_fast = IGDNG_P2_LVDS_FAST }, .p2_fast = IGDNG_P2_LVDS_FAST },
.find_pll = intel_igdng_find_best_PLL, .find_pll = intel_igdng_find_best_PLL,
},
}; };
static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc) static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
{ {
const intel_limit_t *limit; const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_IGDNG_LVDS]; limit = &intel_limits_igdng_lvds;
else else
limit = &intel_limits[INTEL_LIMIT_IGDNG_SDVO_DAC]; limit = &intel_limits_igdng_sdvo;
return limit; return limit;
} }
...@@ -467,19 +510,19 @@ static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) ...@@ -467,19 +510,19 @@ static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) == if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP) LVDS_CLKB_POWER_UP)
/* LVDS with dual channel */ /* LVDS with dual channel */
limit = &intel_limits limit = &intel_limits_g4x_dual_channel_lvds;
[INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
else else
/* LVDS with dual channel */ /* LVDS with dual channel */
limit = &intel_limits limit = &intel_limits_g4x_single_channel_lvds;
[INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC]; limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits[INTEL_LIMIT_G4X_SDVO]; limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */ } else /* The option is for other outputs */
limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; limit = &intel_limits_i9xx_sdvo;
return limit; return limit;
} }
...@@ -495,19 +538,19 @@ static const intel_limit_t *intel_limit(struct drm_crtc *crtc) ...@@ -495,19 +538,19 @@ static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
limit = intel_g4x_limit(crtc); limit = intel_g4x_limit(crtc);
} else if (IS_I9XX(dev) && !IS_IGD(dev)) { } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS]; limit = &intel_limits_i9xx_lvds;
else else
limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC]; limit = &intel_limits_i9xx_sdvo;
} else if (IS_IGD(dev)) { } else if (IS_IGD(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_IGD_LVDS]; limit = &intel_limits_igd_lvds;
else else
limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC]; limit = &intel_limits_igd_sdvo;
} else { } else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS]; limit = &intel_limits_i8xx_lvds;
else else
limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC]; limit = &intel_limits_i8xx_dvo;
} }
return limit; return limit;
} }
...@@ -764,6 +807,35 @@ intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, ...@@ -764,6 +807,35 @@ intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
return found; return found;
} }
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.dot = 161670;
clock.p = 20;
clock.p1 = 2;
clock.p2 = 10;
clock.n = 0x01;
clock.m = 97;
clock.m1 = 0x10;
clock.m2 = 0x05;
} else {
clock.dot = 270000;
clock.p = 10;
clock.p1 = 1;
clock.p2 = 10;
clock.n = 0x02;
clock.m = 108;
clock.m1 = 0x12;
clock.m2 = 0x06;
}
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
void void
intel_wait_for_vblank(struct drm_device *dev) intel_wait_for_vblank(struct drm_device *dev)
{ {
...@@ -1541,7 +1613,7 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc, ...@@ -1541,7 +1613,7 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc,
intel_clock_t clock; intel_clock_t clock;
u32 dpll = 0, fp = 0, dspcntr, pipeconf; u32 dpll = 0, fp = 0, dspcntr, pipeconf;
bool ok, is_sdvo = false, is_dvo = false; bool ok, is_sdvo = false, is_dvo = false;
bool is_crt = false, is_lvds = false, is_tv = false; bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct drm_mode_config *mode_config = &dev->mode_config; struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector; struct drm_connector *connector;
const intel_limit_t *limit; const intel_limit_t *limit;
...@@ -1585,6 +1657,9 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc, ...@@ -1585,6 +1657,9 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc,
case INTEL_OUTPUT_ANALOG: case INTEL_OUTPUT_ANALOG:
is_crt = true; is_crt = true;
break; break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
} }
num_outputs++; num_outputs++;
...@@ -1601,6 +1676,7 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc, ...@@ -1601,6 +1676,7 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc,
refclk = 48000; refclk = 48000;
} }
/* /*
* Returns a set of divisors for the desired target clock with the given * Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation: * refclk, or FALSE. The returned values represent the clock equation:
...@@ -1662,6 +1738,8 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc, ...@@ -1662,6 +1738,8 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc,
else if (IS_IGDNG(dev)) else if (IS_IGDNG(dev))
dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
} }
if (is_dp)
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */ /* compute bitmask from p1 value */
if (IS_IGD(dev)) if (IS_IGD(dev))
...@@ -1809,6 +1887,8 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc, ...@@ -1809,6 +1887,8 @@ static int intel_crtc_mode_set(struct drm_crtc *crtc,
I915_WRITE(lvds_reg, lvds); I915_WRITE(lvds_reg, lvds);
I915_READ(lvds_reg); I915_READ(lvds_reg);
} }
if (is_dp)
intel_dp_set_m_n(crtc, mode, adjusted_mode);
I915_WRITE(fp_reg, fp); I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll); I915_WRITE(dpll_reg, dpll);
...@@ -2475,6 +2555,8 @@ static void intel_setup_outputs(struct drm_device *dev) ...@@ -2475,6 +2555,8 @@ static void intel_setup_outputs(struct drm_device *dev)
found = intel_sdvo_init(dev, SDVOB); found = intel_sdvo_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
intel_hdmi_init(dev, SDVOB); intel_hdmi_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_B);
} }
/* Before G4X SDVOC doesn't have its own detect register */ /* Before G4X SDVOC doesn't have its own detect register */
...@@ -2487,7 +2569,11 @@ static void intel_setup_outputs(struct drm_device *dev) ...@@ -2487,7 +2569,11 @@ static void intel_setup_outputs(struct drm_device *dev)
found = intel_sdvo_init(dev, SDVOC); found = intel_sdvo_init(dev, SDVOC);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
intel_hdmi_init(dev, SDVOC); intel_hdmi_init(dev, SDVOC);
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_C);
} }
if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev, DP_D);
} else } else
intel_dvo_init(dev); intel_dvo_init(dev);
...@@ -2530,6 +2616,11 @@ static void intel_setup_outputs(struct drm_device *dev) ...@@ -2530,6 +2616,11 @@ static void intel_setup_outputs(struct drm_device *dev)
(1 << 1)); (1 << 1));
clone_mask = (1 << INTEL_OUTPUT_TVOUT); clone_mask = (1 << INTEL_OUTPUT_TVOUT);
break; break;
case INTEL_OUTPUT_DISPLAYPORT:
crtc_mask = ((1 << 0) |
(1 << 1));
clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
break;
} }
encoder->possible_crtcs = crtc_mask; encoder->possible_crtcs = crtc_mask;
encoder->possible_clones = intel_connector_clones(dev, clone_mask); encoder->possible_clones = intel_connector_clones(dev, clone_mask);
......
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_dp.h"
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
struct intel_dp_priv {
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
uint32_t save_DP;
uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int dpms_mode;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct intel_output *intel_output;
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
};
static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
static int
intel_dp_max_lane_count(struct intel_output *intel_output)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
int max_lane_count = 4;
if (dp_priv->dpcd[0] >= 0x11) {
max_lane_count = dp_priv->dpcd[2] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
intel_dp_max_link_bw(struct intel_output *intel_output)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
int max_link_bw = dp_priv->dpcd[1];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
/* I think this is a fiction */
static int
intel_dp_link_required(int pixel_clock)
{
return pixel_clock * 3;
}
static int
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_output *intel_output = to_intel_output(connector);
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
int max_lanes = intel_dp_max_lane_count(intel_output);
if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
static int
intel_dp_aux_ch(struct intel_output *intel_output,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
uint32_t output_reg = dp_priv->output_reg;
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t ctl;
uint32_t status;
uint32_t aux_clock_divider;
int try;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
*/
aux_clock_divider = intel_hrawclk(dev) / 2;
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4) {
uint32_t d = pack_aux(send + i, send_bytes - i);;
I915_WRITE(ch_data + i, d);
}
ctl = (DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, ctl);
(void) I915_READ(ch_ctl);
for (;;) {
udelay(100);
status = I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
}
/* Clear done status and any errors */
I915_WRITE(ch_ctl, (ctl |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR));
(void) I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
printk(KERN_ERR "dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
printk(KERN_ERR "dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4) {
uint32_t d = I915_READ(ch_data + i);
unpack_aux(d, recv + i, recv_bytes - i);
}
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_output *intel_output,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_output *intel_output,
uint16_t address, uint8_t byte)
{
return intel_dp_aux_native_write(intel_output, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_output *intel_output,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_bytes)
{
struct intel_dp_priv *dp_priv = container_of(adapter,
struct intel_dp_priv,
adapter);
struct intel_output *intel_output = dp_priv->intel_output;
return intel_dp_aux_ch(intel_output,
send, send_bytes, recv, recv_bytes);
}
static int
intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
DRM_ERROR("i2c_init %s\n", name);
dp_priv->algo.running = false;
dp_priv->algo.address = 0;
dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
dp_priv->adapter.owner = THIS_MODULE;
dp_priv->adapter.class = I2C_CLASS_DDC;
strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
dp_priv->adapter.algo_data = &dp_priv->algo;
dp_priv->adapter.dev.parent = &intel_output->base.kdev;
return i2c_dp_aux_add_bus(&dp_priv->adapter);
}
static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
int lane_count, clock;
int max_lane_count = intel_dp_max_lane_count(intel_output);
int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = 0; clock <= max_clock; clock++) {
int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
if (intel_dp_link_required(mode->clock) <= link_avail) {
dp_priv->link_bw = bws[clock];
dp_priv->lane_count = lane_count;
adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
dp_priv->link_bw, dp_priv->lane_count,
adjusted_mode->clock);
return true;
}
}
}
return false;
}
struct intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
intel_dp_compute_m_n(int bytes_per_pixel,
int nlanes,
int pixel_clock,
int link_clock,
struct intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = pixel_clock * bytes_per_pixel;
m_n->gmch_n = link_clock * nlanes;
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int lane_count = 4;
struct intel_dp_m_n m_n;
/*
* Find the lane count in the intel_output private
*/
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
if (!connector->encoder || connector->encoder->crtc != crtc)
continue;
if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = dp_priv->lane_count;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
intel_dp_compute_m_n(3, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
if (intel_crtc->pipe == 0) {
I915_WRITE(PIPEA_GMCH_DATA_M,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(PIPEA_GMCH_DATA_N,
m_n.gmch_n);
I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
} else {
I915_WRITE(PIPEB_GMCH_DATA_M,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(PIPEB_GMCH_DATA_N,
m_n.gmch_n);
I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
}
}
static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
struct drm_crtc *crtc = intel_output->enc.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dp_priv->DP = (DP_LINK_TRAIN_OFF |
DP_VOLTAGE_0_4 |
DP_PRE_EMPHASIS_0 |
DP_SYNC_VS_HIGH |
DP_SYNC_HS_HIGH);
switch (dp_priv->lane_count) {
case 1:
dp_priv->DP |= DP_PORT_WIDTH_1;
break;
case 2:
dp_priv->DP |= DP_PORT_WIDTH_2;
break;
case 4:
dp_priv->DP |= DP_PORT_WIDTH_4;
break;
}
if (dp_priv->has_audio)
dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
dp_priv->link_configuration[0] = dp_priv->link_bw;
dp_priv->link_configuration[1] = dp_priv->lane_count;
/*
* Check for DPCD version > 1.1,
* enable enahanced frame stuff in that case
*/
if (dp_priv->dpcd[0] >= 0x11) {
dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
dp_priv->DP |= DP_ENHANCED_FRAMING;
}
if (intel_crtc->pipe == 1)
dp_priv->DP |= DP_PIPEB_SELECT;
}
static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct intel_output *intel_output = enc_to_intel_output(encoder);
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dp_reg = I915_READ(dp_priv->output_reg);
if (mode != DRM_MODE_DPMS_ON) {
if (dp_reg & DP_PORT_EN)
intel_dp_link_down(intel_output, dp_priv->DP);
} else {
if (!(dp_reg & DP_PORT_EN))
intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
}
dp_priv->dpms_mode = mode;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_output *intel_output,
uint8_t link_status[DP_LINK_STATUS_SIZE])
{
int ret;
ret = intel_dp_aux_native_read(intel_output,
DP_LANE0_1_STATUS,
link_status, DP_LINK_STATUS_SIZE);
if (ret != DP_LINK_STATUS_SIZE)
return false;
return true;
}
static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static void
intel_dp_save(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
dp_priv->save_DP = I915_READ(dp_priv->output_reg);
intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
dp_priv->save_link_configuration,
sizeof (dp_priv->save_link_configuration));
}
static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
static void
intel_get_adjust_train(struct intel_output *intel_output,
uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane_count,
uint8_t train_set[4])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= I830_DP_VOLTAGE_MAX)
v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p >= intel_dp_pre_emphasis_max(v))
p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = intel_dp_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
intel_dp_set_link_train(struct intel_output *intel_output,
uint32_t dp_reg_value,
uint8_t dp_train_pat,
uint8_t train_set[4],
bool first)
{
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
int ret;
I915_WRITE(dp_priv->output_reg, dp_reg_value);
POSTING_READ(dp_priv->output_reg);
if (first)
intel_wait_for_vblank(dev);
intel_dp_aux_native_write_1(intel_output,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
ret = intel_dp_aux_native_write(intel_output,
DP_TRAINING_LANE0_SET, train_set, 4);
if (ret != 4)
return false;
return true;
}
static void
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
int i;
uint8_t voltage;
bool clock_recovery = false;
bool channel_eq = false;
bool first = true;
int tries;
/* Write the link configuration data */
intel_dp_aux_native_write(intel_output, 0x100,
link_configuration, DP_LINK_CONFIGURATION_SIZE);
DP |= DP_PORT_EN;
DP &= ~DP_LINK_TRAIN_MASK;
memset(train_set, 0, 4);
voltage = 0xff;
tries = 0;
clock_recovery = false;
for (;;) {
/* Use train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
DP_TRAINING_PATTERN_1, train_set, first))
break;
first = false;
/* Set training pattern 1 */
udelay(100);
if (!intel_dp_get_link_status(intel_output, link_status))
break;
if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < dp_priv->lane_count; i++)
if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == dp_priv->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by target */
intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
}
/* channel equalization */
tries = 0;
channel_eq = false;
for (;;) {
/* Use train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
/* channel eq pattern */
if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
DP_TRAINING_PATTERN_2, train_set,
false))
break;
udelay(400);
if (!intel_dp_get_link_status(intel_output, link_status))
break;
if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times */
if (tries > 5)
break;
/* Compute new train_set as requested by target */
intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
++tries;
}
I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
POSTING_READ(dp_priv->output_reg);
intel_dp_aux_native_write_1(intel_output,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
{
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(dp_priv->output_reg);
}
static void
intel_dp_restore(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
if (dp_priv->save_DP & DP_PORT_EN)
intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
else
intel_dp_link_down(intel_output, dp_priv->save_DP);
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
static void
intel_dp_check_link_status(struct intel_output *intel_output)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (!intel_output->enc.crtc)
return;
if (!intel_dp_get_link_status(intel_output, link_status)) {
intel_dp_link_down(intel_output, dp_priv->DP);
return;
}
if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
struct drm_device *dev = intel_output->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
uint32_t temp, bit;
enum drm_connector_status status;
dp_priv->has_audio = false;
temp = I915_READ(PORT_HOTPLUG_EN);
I915_WRITE(PORT_HOTPLUG_EN,
temp |
DPB_HOTPLUG_INT_EN |
DPC_HOTPLUG_INT_EN |
DPD_HOTPLUG_INT_EN);
POSTING_READ(PORT_HOTPLUG_EN);
switch (dp_priv->output_reg) {
case DP_B:
bit = DPB_HOTPLUG_INT_STATUS;
break;
case DP_C:
bit = DPC_HOTPLUG_INT_STATUS;
break;
case DP_D:
bit = DPD_HOTPLUG_INT_STATUS;
break;
default:
return connector_status_unknown;
}
temp = I915_READ(PORT_HOTPLUG_STAT);
if ((temp & bit) == 0)
return connector_status_disconnected;
status = connector_status_disconnected;
if (intel_dp_aux_native_read(intel_output,
0x000, dp_priv->dpcd,
sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
{
if (dp_priv->dpcd[0] != 0)
status = connector_status_connected;
}
return status;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
/* We should parse the EDID data and find out if it has an audio sink
*/
return intel_ddc_get_modes(intel_output);
}
static void
intel_dp_destroy (struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
if (intel_output->i2c_bus)
intel_i2c_destroy(intel_output->i2c_bus);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(intel_output);
}
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
.dpms = intel_dp_dpms,
.mode_fixup = intel_dp_mode_fixup,
.prepare = intel_encoder_prepare,
.mode_set = intel_dp_mode_set,
.commit = intel_encoder_commit,
};
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.save = intel_dp_save,
.restore = intel_dp_restore,
.detect = intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = intel_dp_destroy,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.destroy = intel_dp_enc_destroy,
};
void
intel_dp_hot_plug(struct intel_output *intel_output)
{
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
intel_dp_check_link_status(intel_output);
}
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
struct intel_output *intel_output;
struct intel_dp_priv *dp_priv;
intel_output = kcalloc(sizeof(struct intel_output) +
sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
if (!intel_output)
return;
dp_priv = (struct intel_dp_priv *)(intel_output + 1);
connector = &intel_output->base;
drm_connector_init(dev, connector, &intel_dp_connector_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
dp_priv->intel_output = intel_output;
dp_priv->output_reg = output_reg;
dp_priv->has_audio = false;
dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
intel_output->dev_priv = dp_priv;
drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
drm_mode_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
intel_dp_i2c_init(intel_output,
(output_reg == DP_B) ? "DPDDC-B" :
(output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
intel_output->ddc_bus = &dp_priv->adapter;
intel_output->hot_plug = intel_dp_hot_plug;
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
}
/*
* Copyright © 2008 Keith Packard
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#ifndef _INTEL_DP_H_
#define _INTEL_DP_H_
/* From the VESA DisplayPort spec */
#define AUX_NATIVE_WRITE 0x8
#define AUX_NATIVE_READ 0x9
#define AUX_I2C_WRITE 0x0
#define AUX_I2C_READ 0x1
#define AUX_I2C_STATUS 0x2
#define AUX_I2C_MOT 0x4
#define AUX_NATIVE_REPLY_ACK (0x0 << 4)
#define AUX_NATIVE_REPLY_NACK (0x1 << 4)
#define AUX_NATIVE_REPLY_DEFER (0x2 << 4)
#define AUX_NATIVE_REPLY_MASK (0x3 << 4)
#define AUX_I2C_REPLY_ACK (0x0 << 6)
#define AUX_I2C_REPLY_NACK (0x1 << 6)
#define AUX_I2C_REPLY_DEFER (0x2 << 6)
#define AUX_I2C_REPLY_MASK (0x3 << 6)
/* AUX CH addresses */
#define DP_LINK_BW_SET 0x100
# define DP_LINK_BW_1_62 0x06
# define DP_LINK_BW_2_7 0x0a
#define DP_LANE_COUNT_SET 0x101
# define DP_LANE_COUNT_MASK 0x0f
# define DP_LANE_COUNT_ENHANCED_FRAME_EN (1 << 7)
#define DP_TRAINING_PATTERN_SET 0x102
# define DP_TRAINING_PATTERN_DISABLE 0
# define DP_TRAINING_PATTERN_1 1
# define DP_TRAINING_PATTERN_2 2
# define DP_TRAINING_PATTERN_MASK 0x3
# define DP_LINK_QUAL_PATTERN_DISABLE (0 << 2)
# define DP_LINK_QUAL_PATTERN_D10_2 (1 << 2)
# define DP_LINK_QUAL_PATTERN_ERROR_RATE (2 << 2)
# define DP_LINK_QUAL_PATTERN_PRBS7 (3 << 2)
# define DP_LINK_QUAL_PATTERN_MASK (3 << 2)
# define DP_RECOVERED_CLOCK_OUT_EN (1 << 4)
# define DP_LINK_SCRAMBLING_DISABLE (1 << 5)
# define DP_SYMBOL_ERROR_COUNT_BOTH (0 << 6)
# define DP_SYMBOL_ERROR_COUNT_DISPARITY (1 << 6)
# define DP_SYMBOL_ERROR_COUNT_SYMBOL (2 << 6)
# define DP_SYMBOL_ERROR_COUNT_MASK (3 << 6)
#define DP_TRAINING_LANE0_SET 0x103
#define DP_TRAINING_LANE1_SET 0x104
#define DP_TRAINING_LANE2_SET 0x105
#define DP_TRAINING_LANE3_SET 0x106
# define DP_TRAIN_VOLTAGE_SWING_MASK 0x3
# define DP_TRAIN_VOLTAGE_SWING_SHIFT 0
# define DP_TRAIN_MAX_SWING_REACHED (1 << 2)
# define DP_TRAIN_VOLTAGE_SWING_400 (0 << 0)
# define DP_TRAIN_VOLTAGE_SWING_600 (1 << 0)
# define DP_TRAIN_VOLTAGE_SWING_800 (2 << 0)
# define DP_TRAIN_VOLTAGE_SWING_1200 (3 << 0)
# define DP_TRAIN_PRE_EMPHASIS_MASK (3 << 3)
# define DP_TRAIN_PRE_EMPHASIS_0 (0 << 3)
# define DP_TRAIN_PRE_EMPHASIS_3_5 (1 << 3)
# define DP_TRAIN_PRE_EMPHASIS_6 (2 << 3)
# define DP_TRAIN_PRE_EMPHASIS_9_5 (3 << 3)
# define DP_TRAIN_PRE_EMPHASIS_SHIFT 3
# define DP_TRAIN_MAX_PRE_EMPHASIS_REACHED (1 << 5)
#define DP_DOWNSPREAD_CTRL 0x107
# define DP_SPREAD_AMP_0_5 (1 << 4)
#define DP_MAIN_LINK_CHANNEL_CODING_SET 0x108
# define DP_SET_ANSI_8B10B (1 << 0)
#define DP_LANE0_1_STATUS 0x202
#define DP_LANE2_3_STATUS 0x203
# define DP_LANE_CR_DONE (1 << 0)
# define DP_LANE_CHANNEL_EQ_DONE (1 << 1)
# define DP_LANE_SYMBOL_LOCKED (1 << 2)
#define DP_LANE_ALIGN_STATUS_UPDATED 0x204
#define DP_INTERLANE_ALIGN_DONE (1 << 0)
#define DP_DOWNSTREAM_PORT_STATUS_CHANGED (1 << 6)
#define DP_LINK_STATUS_UPDATED (1 << 7)
#define DP_SINK_STATUS 0x205
#define DP_RECEIVE_PORT_0_STATUS (1 << 0)
#define DP_RECEIVE_PORT_1_STATUS (1 << 1)
#define DP_ADJUST_REQUEST_LANE0_1 0x206
#define DP_ADJUST_REQUEST_LANE2_3 0x207
#define DP_ADJUST_VOLTAGE_SWING_LANE0_MASK 0x03
#define DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT 0
#define DP_ADJUST_PRE_EMPHASIS_LANE0_MASK 0x0c
#define DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT 2
#define DP_ADJUST_VOLTAGE_SWING_LANE1_MASK 0x30
#define DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT 4
#define DP_ADJUST_PRE_EMPHASIS_LANE1_MASK 0xc0
#define DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT 6
struct i2c_algo_dp_aux_data {
bool running;
u16 address;
int (*aux_ch) (struct i2c_adapter *adapter,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_bytes);
};
int
i2c_dp_aux_add_bus(struct i2c_adapter *adapter);
#endif /* _INTEL_DP_H_ */
/*
* Copyright © 2009 Keith Packard
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/i2c.h>
#include "intel_dp.h"
/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
#define MODE_I2C_START 1
#define MODE_I2C_WRITE 2
#define MODE_I2C_READ 4
#define MODE_I2C_STOP 8
static int
i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (;;) {
ret = (*algo_data->aux_ch)(adapter,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
printk(KERN_ERR "aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
printk(KERN_ERR "aux_ch nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
printk(KERN_ERR "aux_ch defer\n");
udelay(100);
break;
default:
printk(KERN_ERR "aux_ch invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
}
/*
* I2C over AUX CH
*/
/*
* Send the address. If the I2C link is running, this 'restarts'
* the connection with the new address, this is used for doing
* a write followed by a read (as needed for DDC)
*/
static int
i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
int mode = MODE_I2C_START;
int ret;
if (reading)
mode |= MODE_I2C_READ;
else
mode |= MODE_I2C_WRITE;
algo_data->address = address;
algo_data->running = true;
ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
return ret;
}
/*
* Stop the I2C transaction. This closes out the link, sending
* a bare address packet with the MOT bit turned off
*/
static void
i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
int mode = MODE_I2C_STOP;
if (reading)
mode |= MODE_I2C_READ;
else
mode |= MODE_I2C_WRITE;
if (algo_data->running) {
(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
algo_data->running = false;
}
}
/*
* Write a single byte to the current I2C address, the
* the I2C link must be running or this returns -EIO
*/
static int
i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
int ret;
if (!algo_data->running)
return -EIO;
ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
return ret;
}
/*
* Read a single byte from the current I2C address, the
* I2C link must be running or this returns -EIO
*/
static int
i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
int ret;
if (!algo_data->running)
return -EIO;
ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
return ret;
}
static int
i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
struct i2c_msg *msgs,
int num)
{
int ret = 0;
bool reading = false;
int m;
int b;
for (m = 0; m < num; m++) {
u16 len = msgs[m].len;
u8 *buf = msgs[m].buf;
reading = (msgs[m].flags & I2C_M_RD) != 0;
ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
if (ret < 0)
break;
if (reading) {
for (b = 0; b < len; b++) {
ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
if (ret < 0)
break;
}
} else {
for (b = 0; b < len; b++) {
ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
if (ret < 0)
break;
}
}
if (ret < 0)
break;
}
if (ret >= 0)
ret = num;
i2c_algo_dp_aux_stop(adapter, reading);
printk(KERN_ERR "dp_aux_xfer return %d\n", ret);
return ret;
}
static u32
i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
I2C_FUNC_10BIT_ADDR;
}
static const struct i2c_algorithm i2c_dp_aux_algo = {
.master_xfer = i2c_algo_dp_aux_xfer,
.functionality = i2c_algo_dp_aux_functionality,
};
static void
i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
{
(void) i2c_algo_dp_aux_address(adapter, 0, false);
(void) i2c_algo_dp_aux_stop(adapter, false);
}
static int
i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
{
adapter->algo = &i2c_dp_aux_algo;
adapter->retries = 3;
i2c_dp_aux_reset_bus(adapter);
return 0;
}
int
i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
{
int error;
error = i2c_dp_aux_prepare_bus(adapter);
if (error)
return error;
error = i2c_add_adapter(adapter);
return error;
}
EXPORT_SYMBOL(i2c_dp_aux_add_bus);
...@@ -54,6 +54,7 @@ ...@@ -54,6 +54,7 @@
#define INTEL_OUTPUT_LVDS 4 #define INTEL_OUTPUT_LVDS 4
#define INTEL_OUTPUT_TVOUT 5 #define INTEL_OUTPUT_TVOUT 5
#define INTEL_OUTPUT_HDMI 6 #define INTEL_OUTPUT_HDMI 6
#define INTEL_OUTPUT_DISPLAYPORT 7
#define INTEL_DVO_CHIP_NONE 0 #define INTEL_DVO_CHIP_NONE 0
#define INTEL_DVO_CHIP_LVDS 1 #define INTEL_DVO_CHIP_LVDS 1
...@@ -65,7 +66,6 @@ struct intel_i2c_chan { ...@@ -65,7 +66,6 @@ struct intel_i2c_chan {
u32 reg; /* GPIO reg */ u32 reg; /* GPIO reg */
struct i2c_adapter adapter; struct i2c_adapter adapter;
struct i2c_algo_bit_data algo; struct i2c_algo_bit_data algo;
u8 slave_addr;
}; };
struct intel_framebuffer { struct intel_framebuffer {
...@@ -79,11 +79,12 @@ struct intel_output { ...@@ -79,11 +79,12 @@ struct intel_output {
struct drm_encoder enc; struct drm_encoder enc;
int type; int type;
struct intel_i2c_chan *i2c_bus; /* for control functions */ struct i2c_adapter *i2c_bus;
struct intel_i2c_chan *ddc_bus; /* for DDC only stuff */ struct i2c_adapter *ddc_bus;
bool load_detect_temp; bool load_detect_temp;
bool needs_tv_clock; bool needs_tv_clock;
void *dev_priv; void *dev_priv;
void (*hot_plug)(struct intel_output *);
}; };
struct intel_crtc { struct intel_crtc {
...@@ -104,9 +105,9 @@ struct intel_crtc { ...@@ -104,9 +105,9 @@ struct intel_crtc {
#define enc_to_intel_output(x) container_of(x, struct intel_output, enc) #define enc_to_intel_output(x) container_of(x, struct intel_output, enc)
#define to_intel_framebuffer(x) container_of(x, struct intel_framebuffer, base) #define to_intel_framebuffer(x) container_of(x, struct intel_framebuffer, base)
struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg, struct i2c_adapter *intel_i2c_create(struct drm_device *dev, const u32 reg,
const char *name); const char *name);
void intel_i2c_destroy(struct intel_i2c_chan *chan); void intel_i2c_destroy(struct i2c_adapter *adapter);
int intel_ddc_get_modes(struct intel_output *intel_output); int intel_ddc_get_modes(struct intel_output *intel_output);
extern bool intel_ddc_probe(struct intel_output *intel_output); extern bool intel_ddc_probe(struct intel_output *intel_output);
void intel_i2c_quirk_set(struct drm_device *dev, bool enable); void intel_i2c_quirk_set(struct drm_device *dev, bool enable);
...@@ -116,6 +117,10 @@ extern bool intel_sdvo_init(struct drm_device *dev, int output_device); ...@@ -116,6 +117,10 @@ extern bool intel_sdvo_init(struct drm_device *dev, int output_device);
extern void intel_dvo_init(struct drm_device *dev); extern void intel_dvo_init(struct drm_device *dev);
extern void intel_tv_init(struct drm_device *dev); extern void intel_tv_init(struct drm_device *dev);
extern void intel_lvds_init(struct drm_device *dev); extern void intel_lvds_init(struct drm_device *dev);
extern void intel_dp_init(struct drm_device *dev, int dp_reg);
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode);
extern void intel_crtc_load_lut(struct drm_crtc *crtc); extern void intel_crtc_load_lut(struct drm_crtc *crtc);
extern void intel_encoder_prepare (struct drm_encoder *encoder); extern void intel_encoder_prepare (struct drm_encoder *encoder);
......
...@@ -384,10 +384,9 @@ void intel_dvo_init(struct drm_device *dev) ...@@ -384,10 +384,9 @@ void intel_dvo_init(struct drm_device *dev)
{ {
struct intel_output *intel_output; struct intel_output *intel_output;
struct intel_dvo_device *dvo; struct intel_dvo_device *dvo;
struct intel_i2c_chan *i2cbus = NULL; struct i2c_adapter *i2cbus = NULL;
int ret = 0; int ret = 0;
int i; int i;
int gpio_inited = 0;
int encoder_type = DRM_MODE_ENCODER_NONE; int encoder_type = DRM_MODE_ENCODER_NONE;
intel_output = kzalloc (sizeof(struct intel_output), GFP_KERNEL); intel_output = kzalloc (sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output) if (!intel_output)
...@@ -420,15 +419,12 @@ void intel_dvo_init(struct drm_device *dev) ...@@ -420,15 +419,12 @@ void intel_dvo_init(struct drm_device *dev)
* It appears that everything is on GPIOE except for panels * It appears that everything is on GPIOE except for panels
* on i830 laptops, which are on GPIOB (DVOA). * on i830 laptops, which are on GPIOB (DVOA).
*/ */
if (gpio_inited != gpio) {
if (i2cbus != NULL) if (i2cbus != NULL)
intel_i2c_destroy(i2cbus); intel_i2c_destroy(i2cbus);
if (!(i2cbus = intel_i2c_create(dev, gpio, if (!(i2cbus = intel_i2c_create(dev, gpio,
gpio == GPIOB ? "DVOI2C_B" : "DVOI2C_E"))) { gpio == GPIOB ? "DVOI2C_B" : "DVOI2C_E"))) {
continue; continue;
} }
gpio_inited = gpio;
}
if (dvo->dev_ops!= NULL) if (dvo->dev_ops!= NULL)
ret = dvo->dev_ops->init(dvo, i2cbus); ret = dvo->dev_ops->init(dvo, i2cbus);
......
...@@ -31,6 +31,7 @@ ...@@ -31,6 +31,7 @@
#include "drmP.h" #include "drmP.h"
#include "drm.h" #include "drm.h"
#include "drm_crtc.h" #include "drm_crtc.h"
#include "drm_edid.h"
#include "intel_drv.h" #include "intel_drv.h"
#include "i915_drm.h" #include "i915_drm.h"
#include "i915_drv.h" #include "i915_drv.h"
...@@ -129,20 +130,26 @@ static bool intel_hdmi_mode_fixup(struct drm_encoder *encoder, ...@@ -129,20 +130,26 @@ static bool intel_hdmi_mode_fixup(struct drm_encoder *encoder,
return true; return true;
} }
static void static enum drm_connector_status
intel_hdmi_sink_detect(struct drm_connector *connector) intel_hdmi_edid_detect(struct drm_connector *connector)
{ {
struct intel_output *intel_output = to_intel_output(connector); struct intel_output *intel_output = to_intel_output(connector);
struct intel_hdmi_priv *hdmi_priv = intel_output->dev_priv; struct intel_hdmi_priv *hdmi_priv = intel_output->dev_priv;
struct edid *edid = NULL; struct edid *edid = NULL;
enum drm_connector_status status = connector_status_disconnected;
edid = drm_get_edid(&intel_output->base, edid = drm_get_edid(&intel_output->base,
&intel_output->ddc_bus->adapter); intel_output->ddc_bus);
if (edid != NULL) { hdmi_priv->has_hdmi_sink = false;
if (edid) {
if (edid->input & DRM_EDID_INPUT_DIGITAL) {
status = connector_status_connected;
hdmi_priv->has_hdmi_sink = drm_detect_hdmi_monitor(edid); hdmi_priv->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
kfree(edid); }
intel_output->base.display_info.raw_edid = NULL; intel_output->base.display_info.raw_edid = NULL;
kfree(edid);
} }
return status;
} }
static enum drm_connector_status static enum drm_connector_status
...@@ -154,11 +161,7 @@ igdng_hdmi_detect(struct drm_connector *connector) ...@@ -154,11 +161,7 @@ igdng_hdmi_detect(struct drm_connector *connector)
/* FIXME hotplug detect */ /* FIXME hotplug detect */
hdmi_priv->has_hdmi_sink = false; hdmi_priv->has_hdmi_sink = false;
intel_hdmi_sink_detect(connector); return intel_hdmi_edid_detect(connector);
if (hdmi_priv->has_hdmi_sink)
return connector_status_connected;
else
return connector_status_disconnected;
} }
static enum drm_connector_status static enum drm_connector_status
...@@ -201,10 +204,9 @@ intel_hdmi_detect(struct drm_connector *connector) ...@@ -201,10 +204,9 @@ intel_hdmi_detect(struct drm_connector *connector)
return connector_status_unknown; return connector_status_unknown;
} }
if ((I915_READ(PORT_HOTPLUG_STAT) & bit) != 0) { if ((I915_READ(PORT_HOTPLUG_STAT) & bit) != 0)
intel_hdmi_sink_detect(connector); return intel_hdmi_edid_detect(connector);
return connector_status_connected; else
} else
return connector_status_disconnected; return connector_status_disconnected;
} }
......
...@@ -124,6 +124,7 @@ static void set_data(void *data, int state_high) ...@@ -124,6 +124,7 @@ static void set_data(void *data, int state_high)
* @output: driver specific output device * @output: driver specific output device
* @reg: GPIO reg to use * @reg: GPIO reg to use
* @name: name for this bus * @name: name for this bus
* @slave_addr: slave address (if fixed)
* *
* Creates and registers a new i2c bus with the Linux i2c layer, for use * Creates and registers a new i2c bus with the Linux i2c layer, for use
* in output probing and control (e.g. DDC or SDVO control functions). * in output probing and control (e.g. DDC or SDVO control functions).
...@@ -139,7 +140,7 @@ static void set_data(void *data, int state_high) ...@@ -139,7 +140,7 @@ static void set_data(void *data, int state_high)
* %GPIOH * %GPIOH
* see PRM for details on how these different busses are used. * see PRM for details on how these different busses are used.
*/ */
struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg, struct i2c_adapter *intel_i2c_create(struct drm_device *dev, const u32 reg,
const char *name) const char *name)
{ {
struct intel_i2c_chan *chan; struct intel_i2c_chan *chan;
...@@ -174,7 +175,7 @@ struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg, ...@@ -174,7 +175,7 @@ struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg,
intel_i2c_quirk_set(dev, false); intel_i2c_quirk_set(dev, false);
udelay(20); udelay(20);
return chan; return &chan->adapter;
out_free: out_free:
kfree(chan); kfree(chan);
...@@ -187,11 +188,16 @@ struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg, ...@@ -187,11 +188,16 @@ struct intel_i2c_chan *intel_i2c_create(struct drm_device *dev, const u32 reg,
* *
* Unregister the adapter from the i2c layer, then free the structure. * Unregister the adapter from the i2c layer, then free the structure.
*/ */
void intel_i2c_destroy(struct intel_i2c_chan *chan) void intel_i2c_destroy(struct i2c_adapter *adapter)
{ {
if (!chan) struct intel_i2c_chan *chan;
if (!adapter)
return; return;
chan = container_of(adapter,
struct intel_i2c_chan,
adapter);
i2c_del_adapter(&chan->adapter); i2c_del_adapter(&chan->adapter);
kfree(chan); kfree(chan);
} }
...@@ -456,7 +456,7 @@ static const struct dmi_system_id intel_no_lvds[] = { ...@@ -456,7 +456,7 @@ static const struct dmi_system_id intel_no_lvds[] = {
.callback = intel_no_lvds_dmi_callback, .callback = intel_no_lvds_dmi_callback,
.ident = "Apple Mac Mini (Core series)", .ident = "Apple Mac Mini (Core series)",
.matches = { .matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."), DMI_MATCH(DMI_SYS_VENDOR, "Apple"),
DMI_MATCH(DMI_PRODUCT_NAME, "Macmini1,1"), DMI_MATCH(DMI_PRODUCT_NAME, "Macmini1,1"),
}, },
}, },
...@@ -464,7 +464,7 @@ static const struct dmi_system_id intel_no_lvds[] = { ...@@ -464,7 +464,7 @@ static const struct dmi_system_id intel_no_lvds[] = {
.callback = intel_no_lvds_dmi_callback, .callback = intel_no_lvds_dmi_callback,
.ident = "Apple Mac Mini (Core 2 series)", .ident = "Apple Mac Mini (Core 2 series)",
.matches = { .matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."), DMI_MATCH(DMI_SYS_VENDOR, "Apple"),
DMI_MATCH(DMI_PRODUCT_NAME, "Macmini2,1"), DMI_MATCH(DMI_PRODUCT_NAME, "Macmini2,1"),
}, },
}, },
......
...@@ -53,10 +53,9 @@ bool intel_ddc_probe(struct intel_output *intel_output) ...@@ -53,10 +53,9 @@ bool intel_ddc_probe(struct intel_output *intel_output)
} }
}; };
intel_i2c_quirk_set(intel_output->ddc_bus->drm_dev, true); intel_i2c_quirk_set(intel_output->base.dev, true);
ret = i2c_transfer(&intel_output->ddc_bus->adapter, msgs, 2); ret = i2c_transfer(intel_output->ddc_bus, msgs, 2);
intel_i2c_quirk_set(intel_output->ddc_bus->drm_dev, false); intel_i2c_quirk_set(intel_output->base.dev, false);
if (ret == 2) if (ret == 2)
return true; return true;
...@@ -74,10 +73,9 @@ int intel_ddc_get_modes(struct intel_output *intel_output) ...@@ -74,10 +73,9 @@ int intel_ddc_get_modes(struct intel_output *intel_output)
struct edid *edid; struct edid *edid;
int ret = 0; int ret = 0;
intel_i2c_quirk_set(intel_output->ddc_bus->drm_dev, true); intel_i2c_quirk_set(intel_output->base.dev, true);
edid = drm_get_edid(&intel_output->base, edid = drm_get_edid(&intel_output->base, intel_output->ddc_bus);
&intel_output->ddc_bus->adapter); intel_i2c_quirk_set(intel_output->base.dev, false);
intel_i2c_quirk_set(intel_output->ddc_bus->drm_dev, false);
if (edid) { if (edid) {
drm_mode_connector_update_edid_property(&intel_output->base, drm_mode_connector_update_edid_property(&intel_output->base,
edid); edid);
......
...@@ -38,8 +38,7 @@ ...@@ -38,8 +38,7 @@
#undef SDVO_DEBUG #undef SDVO_DEBUG
#define I915_SDVO "i915_sdvo" #define I915_SDVO "i915_sdvo"
struct intel_sdvo_priv { struct intel_sdvo_priv {
struct intel_i2c_chan *i2c_bus; u8 slave_addr;
int slaveaddr;
/* Register for the SDVO device: SDVOB or SDVOC */ /* Register for the SDVO device: SDVOB or SDVOC */
int output_device; int output_device;
...@@ -146,13 +145,13 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr, ...@@ -146,13 +145,13 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = sdvo_priv->i2c_bus->slave_addr, .addr = sdvo_priv->slave_addr >> 1,
.flags = 0, .flags = 0,
.len = 1, .len = 1,
.buf = out_buf, .buf = out_buf,
}, },
{ {
.addr = sdvo_priv->i2c_bus->slave_addr, .addr = sdvo_priv->slave_addr >> 1,
.flags = I2C_M_RD, .flags = I2C_M_RD,
.len = 1, .len = 1,
.buf = buf, .buf = buf,
...@@ -162,7 +161,7 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr, ...@@ -162,7 +161,7 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
out_buf[0] = addr; out_buf[0] = addr;
out_buf[1] = 0; out_buf[1] = 0;
if ((ret = i2c_transfer(&sdvo_priv->i2c_bus->adapter, msgs, 2)) == 2) if ((ret = i2c_transfer(intel_output->i2c_bus, msgs, 2)) == 2)
{ {
*ch = buf[0]; *ch = buf[0];
return true; return true;
...@@ -175,10 +174,11 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr, ...@@ -175,10 +174,11 @@ static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr,
static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr, static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
u8 ch) u8 ch)
{ {
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
u8 out_buf[2]; u8 out_buf[2];
struct i2c_msg msgs[] = { struct i2c_msg msgs[] = {
{ {
.addr = intel_output->i2c_bus->slave_addr, .addr = sdvo_priv->slave_addr >> 1,
.flags = 0, .flags = 0,
.len = 2, .len = 2,
.buf = out_buf, .buf = out_buf,
...@@ -188,7 +188,7 @@ static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr, ...@@ -188,7 +188,7 @@ static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr,
out_buf[0] = addr; out_buf[0] = addr;
out_buf[1] = ch; out_buf[1] = ch;
if (i2c_transfer(&intel_output->i2c_bus->adapter, msgs, 1) == 1) if (i2c_transfer(intel_output->i2c_bus, msgs, 1) == 1)
{ {
return true; return true;
} }
...@@ -1369,9 +1369,8 @@ intel_sdvo_hdmi_sink_detect(struct drm_connector *connector) ...@@ -1369,9 +1369,8 @@ intel_sdvo_hdmi_sink_detect(struct drm_connector *connector)
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
struct edid *edid = NULL; struct edid *edid = NULL;
intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
edid = drm_get_edid(&intel_output->base, edid = drm_get_edid(&intel_output->base,
&intel_output->ddc_bus->adapter); intel_output->ddc_bus);
if (edid != NULL) { if (edid != NULL) {
sdvo_priv->is_hdmi = drm_detect_hdmi_monitor(edid); sdvo_priv->is_hdmi = drm_detect_hdmi_monitor(edid);
kfree(edid); kfree(edid);
...@@ -1549,7 +1548,6 @@ static void intel_sdvo_get_tv_modes(struct drm_connector *connector) ...@@ -1549,7 +1548,6 @@ static void intel_sdvo_get_tv_modes(struct drm_connector *connector)
static void intel_sdvo_get_lvds_modes(struct drm_connector *connector) static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
{ {
struct intel_output *intel_output = to_intel_output(connector); struct intel_output *intel_output = to_intel_output(connector);
struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv;
struct drm_i915_private *dev_priv = connector->dev->dev_private; struct drm_i915_private *dev_priv = connector->dev->dev_private;
/* /*
...@@ -1557,8 +1555,6 @@ static void intel_sdvo_get_lvds_modes(struct drm_connector *connector) ...@@ -1557,8 +1555,6 @@ static void intel_sdvo_get_lvds_modes(struct drm_connector *connector)
* Assume that the preferred modes are * Assume that the preferred modes are
* arranged in priority order. * arranged in priority order.
*/ */
/* set the bus switch and get the modes */
intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
intel_ddc_get_modes(intel_output); intel_ddc_get_modes(intel_output);
if (list_empty(&connector->probed_modes) == false) if (list_empty(&connector->probed_modes) == false)
return; return;
...@@ -1709,7 +1705,7 @@ intel_sdvo_chan_to_intel_output(struct intel_i2c_chan *chan) ...@@ -1709,7 +1705,7 @@ intel_sdvo_chan_to_intel_output(struct intel_i2c_chan *chan)
list_for_each_entry(connector, list_for_each_entry(connector,
&dev->mode_config.connector_list, head) { &dev->mode_config.connector_list, head) {
if (to_intel_output(connector)->ddc_bus == chan) { if (to_intel_output(connector)->ddc_bus == &chan->adapter) {
intel_output = to_intel_output(connector); intel_output = to_intel_output(connector);
break; break;
} }
...@@ -1723,7 +1719,7 @@ static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap, ...@@ -1723,7 +1719,7 @@ static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap,
struct intel_output *intel_output; struct intel_output *intel_output;
struct intel_sdvo_priv *sdvo_priv; struct intel_sdvo_priv *sdvo_priv;
struct i2c_algo_bit_data *algo_data; struct i2c_algo_bit_data *algo_data;
struct i2c_algorithm *algo; const struct i2c_algorithm *algo;
algo_data = (struct i2c_algo_bit_data *)i2c_adap->algo_data; algo_data = (struct i2c_algo_bit_data *)i2c_adap->algo_data;
intel_output = intel_output =
...@@ -1733,7 +1729,7 @@ static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap, ...@@ -1733,7 +1729,7 @@ static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap,
return -EINVAL; return -EINVAL;
sdvo_priv = intel_output->dev_priv; sdvo_priv = intel_output->dev_priv;
algo = (struct i2c_algorithm *)intel_output->i2c_bus->adapter.algo; algo = intel_output->i2c_bus->algo;
intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus); intel_sdvo_set_control_bus_switch(intel_output, sdvo_priv->ddc_bus);
return algo->master_xfer(i2c_adap, msgs, num); return algo->master_xfer(i2c_adap, msgs, num);
...@@ -1785,13 +1781,11 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device) ...@@ -1785,13 +1781,11 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device)
struct drm_connector *connector; struct drm_connector *connector;
struct intel_output *intel_output; struct intel_output *intel_output;
struct intel_sdvo_priv *sdvo_priv; struct intel_sdvo_priv *sdvo_priv;
struct intel_i2c_chan *i2cbus = NULL;
struct intel_i2c_chan *ddcbus = NULL;
int connector_type; int connector_type;
u8 ch[0x40]; u8 ch[0x40];
int i; int i;
int encoder_type, output_id; int encoder_type;
u8 slave_addr;
intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL); intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL);
if (!intel_output) { if (!intel_output) {
...@@ -1799,29 +1793,24 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device) ...@@ -1799,29 +1793,24 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device)
} }
sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1); sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1);
sdvo_priv->output_device = output_device;
intel_output->dev_priv = sdvo_priv;
intel_output->type = INTEL_OUTPUT_SDVO; intel_output->type = INTEL_OUTPUT_SDVO;
/* setup the DDC bus. */ /* setup the DDC bus. */
if (output_device == SDVOB) if (output_device == SDVOB)
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB"); intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB");
else else
i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC"); intel_output->i2c_bus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC");
if (!i2cbus) if (!intel_output->i2c_bus)
goto err_inteloutput; goto err_inteloutput;
slave_addr = intel_sdvo_get_slave_addr(dev, output_device); sdvo_priv->slave_addr = intel_sdvo_get_slave_addr(dev, output_device);
sdvo_priv->i2c_bus = i2cbus;
if (output_device == SDVOB) { /* Save the bit-banging i2c functionality for use by the DDC wrapper */
output_id = 1; intel_sdvo_i2c_bit_algo.functionality = intel_output->i2c_bus->algo->functionality;
} else {
output_id = 2;
}
sdvo_priv->i2c_bus->slave_addr = slave_addr >> 1;
sdvo_priv->output_device = output_device;
intel_output->i2c_bus = i2cbus;
intel_output->dev_priv = sdvo_priv;
/* Read the regs to test if we can talk to the device */ /* Read the regs to test if we can talk to the device */
for (i = 0; i < 0x40; i++) { for (i = 0; i < 0x40; i++) {
...@@ -1835,17 +1824,15 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device) ...@@ -1835,17 +1824,15 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device)
/* setup the DDC bus. */ /* setup the DDC bus. */
if (output_device == SDVOB) if (output_device == SDVOB)
ddcbus = intel_i2c_create(dev, GPIOE, "SDVOB DDC BUS"); intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOB DDC BUS");
else else
ddcbus = intel_i2c_create(dev, GPIOE, "SDVOC DDC BUS"); intel_output->ddc_bus = intel_i2c_create(dev, GPIOE, "SDVOC DDC BUS");
if (ddcbus == NULL) if (intel_output->ddc_bus == NULL)
goto err_i2c; goto err_i2c;
intel_sdvo_i2c_bit_algo.functionality = /* Wrap with our custom algo which switches to DDC mode */
intel_output->i2c_bus->adapter.algo->functionality; intel_output->ddc_bus->algo = &intel_sdvo_i2c_bit_algo;
ddcbus->adapter.algo = &intel_sdvo_i2c_bit_algo;
intel_output->ddc_bus = ddcbus;
/* In defaut case sdvo lvds is false */ /* In defaut case sdvo lvds is false */
sdvo_priv->is_lvds = false; sdvo_priv->is_lvds = false;
...@@ -1965,8 +1952,9 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device) ...@@ -1965,8 +1952,9 @@ bool intel_sdvo_init(struct drm_device *dev, int output_device)
return true; return true;
err_i2c: err_i2c:
if (ddcbus != NULL) if (intel_output->ddc_bus != NULL)
intel_i2c_destroy(intel_output->ddc_bus); intel_i2c_destroy(intel_output->ddc_bus);
if (intel_output->i2c_bus != NULL)
intel_i2c_destroy(intel_output->i2c_bus); intel_i2c_destroy(intel_output->i2c_bus);
err_inteloutput: err_inteloutput:
kfree(intel_output); kfree(intel_output);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment