Commit cd671c16 authored by Manuel Lauss's avatar Manuel Lauss Committed by Ralf Baechle

net/irda: convert au1k_ir to platform driver.

Moderate driver cleanup:
convert to platform driver, get rid of board-specific code.

Driver loads and runs on a DB1100 board.  But since I have no other
IrDA hardware to exchange data with I can't say whether it really sends
and receives.
Signed-off-by: default avatarManuel Lauss <manuel.lauss@googlemail.com>
Cc: Samuel Ortiz <samuel@sortiz.org>
Cc: netdev@vger.kernel.org
To: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/2877/Signed-off-by: default avatarRalf Baechle <ralf@linux-mips.org>
parent 4d2216af
......@@ -1265,44 +1265,20 @@ enum soc_au1200_ints {
#define SSI_ENABLE_CD (1 << 1)
#define SSI_ENABLE_E (1 << 0)
/* IrDA Controller */
#define IRDA_BASE 0xB0300000
#define IR_RING_PTR_STATUS (IRDA_BASE + 0x00)
#define IR_RING_BASE_ADDR_H (IRDA_BASE + 0x04)
#define IR_RING_BASE_ADDR_L (IRDA_BASE + 0x08)
#define IR_RING_SIZE (IRDA_BASE + 0x0C)
#define IR_RING_PROMPT (IRDA_BASE + 0x10)
#define IR_RING_ADDR_CMPR (IRDA_BASE + 0x14)
#define IR_INT_CLEAR (IRDA_BASE + 0x18)
#define IR_CONFIG_1 (IRDA_BASE + 0x20)
# define IR_RX_INVERT_LED (1 << 0)
# define IR_TX_INVERT_LED (1 << 1)
# define IR_ST (1 << 2)
# define IR_SF (1 << 3)
# define IR_SIR (1 << 4)
# define IR_MIR (1 << 5)
# define IR_FIR (1 << 6)
# define IR_16CRC (1 << 7)
# define IR_TD (1 << 8)
# define IR_RX_ALL (1 << 9)
# define IR_DMA_ENABLE (1 << 10)
# define IR_RX_ENABLE (1 << 11)
# define IR_TX_ENABLE (1 << 12)
# define IR_LOOPBACK (1 << 14)
# define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
IR_RX_ALL | IR_RX_ENABLE | IR_SF | IR_16CRC)
#define IR_SIR_FLAGS (IRDA_BASE + 0x24)
#define IR_ENABLE (IRDA_BASE + 0x28)
# define IR_RX_STATUS (1 << 9)
# define IR_TX_STATUS (1 << 10)
#define IR_READ_PHY_CONFIG (IRDA_BASE + 0x2C)
#define IR_WRITE_PHY_CONFIG (IRDA_BASE + 0x30)
#define IR_MAX_PKT_LEN (IRDA_BASE + 0x34)
#define IR_RX_BYTE_CNT (IRDA_BASE + 0x38)
#define IR_CONFIG_2 (IRDA_BASE + 0x3C)
# define IR_MODE_INV (1 << 0)
# define IR_ONE_PIN (1 << 1)
#define IR_INTERFACE_CONFIG (IRDA_BASE + 0x40)
/*
* The IrDA peripheral has an IRFIRSEL pin, but on the DB/PB boards it's not
* used to select FIR/SIR mode on the transceiver but as a GPIO. Instead a
* CPLD has to be told about the mode.
*/
#define AU1000_IRDA_PHY_MODE_OFF 0
#define AU1000_IRDA_PHY_MODE_SIR 1
#define AU1000_IRDA_PHY_MODE_FIR 2
struct au1k_irda_platform_data {
void(*set_phy_mode)(int mode);
};
/* GPIO */
#define SYS_PINFUNC 0xB190002C
......
......@@ -313,8 +313,12 @@ config TOSHIBA_FIR
donauboe.
config AU1000_FIR
tristate "Alchemy Au1000 SIR/FIR"
tristate "Alchemy IrDA SIR/FIR"
depends on IRDA && MIPS_ALCHEMY
help
Say Y/M here to build suppor the the IrDA peripheral on the
Alchemy Au1000 and Au1100 SoCs.
Say M to build a module; it will be called au1k_ir.ko
config SMC_IRCC_FIR
tristate "SMSC IrCC (EXPERIMENTAL)"
......
/*
*
* BRIEF MODULE DESCRIPTION
* Au1000 IrDA driver.
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef AU1000_IRCC_H
#define AU1000_IRCC_H
#include <linux/time.h>
#include <linux/spinlock.h>
#include <linux/pm.h>
#include <asm/io.h>
#define NUM_IR_IFF 1
#define NUM_IR_DESC 64
#define RING_SIZE_4 0x0
#define RING_SIZE_16 0x3
#define RING_SIZE_64 0xF
#define MAX_NUM_IR_DESC 64
#define MAX_BUF_SIZE 2048
#define BPS_115200 0
#define BPS_57600 1
#define BPS_38400 2
#define BPS_19200 5
#define BPS_9600 11
#define BPS_2400 47
/* Ring descriptor flags */
#define AU_OWN (1<<7) /* tx,rx */
#define IR_DIS_CRC (1<<6) /* tx */
#define IR_BAD_CRC (1<<5) /* tx */
#define IR_NEED_PULSE (1<<4) /* tx */
#define IR_FORCE_UNDER (1<<3) /* tx */
#define IR_DISABLE_TX (1<<2) /* tx */
#define IR_HW_UNDER (1<<0) /* tx */
#define IR_TX_ERROR (IR_DIS_CRC|IR_BAD_CRC|IR_HW_UNDER)
#define IR_PHY_ERROR (1<<6) /* rx */
#define IR_CRC_ERROR (1<<5) /* rx */
#define IR_MAX_LEN (1<<4) /* rx */
#define IR_FIFO_OVER (1<<3) /* rx */
#define IR_SIR_ERROR (1<<2) /* rx */
#define IR_RX_ERROR (IR_PHY_ERROR|IR_CRC_ERROR| \
IR_MAX_LEN|IR_FIFO_OVER|IR_SIR_ERROR)
typedef struct db_dest {
struct db_dest *pnext;
volatile u32 *vaddr;
dma_addr_t dma_addr;
} db_dest_t;
typedef struct ring_desc {
u8 count_0; /* 7:0 */
u8 count_1; /* 12:8 */
u8 reserved;
u8 flags;
u8 addr_0; /* 7:0 */
u8 addr_1; /* 15:8 */
u8 addr_2; /* 23:16 */
u8 addr_3; /* 31:24 */
} ring_dest_t;
/* Private data for each instance */
struct au1k_private {
db_dest_t *pDBfree;
db_dest_t db[2*NUM_IR_DESC];
volatile ring_dest_t *rx_ring[NUM_IR_DESC];
volatile ring_dest_t *tx_ring[NUM_IR_DESC];
db_dest_t *rx_db_inuse[NUM_IR_DESC];
db_dest_t *tx_db_inuse[NUM_IR_DESC];
u32 rx_head;
u32 tx_head;
u32 tx_tail;
u32 tx_full;
iobuff_t rx_buff;
struct net_device *netdev;
struct timeval stamp;
struct timeval now;
struct qos_info qos;
struct irlap_cb *irlap;
u8 open;
u32 speed;
u32 newspeed;
u32 intr_work_done; /* number of Rx and Tx pkts processed in the isr */
struct timer_list timer;
spinlock_t lock; /* For serializing operations */
};
#endif /* AU1000_IRCC_H */
......@@ -18,101 +18,220 @@
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/au1000.h>
#if defined(CONFIG_MIPS_DB1000)
#include <asm/mach-db1x00/bcsr.h>
#else
#error au1k_ir: unsupported board
#endif
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/types.h>
#include <net/irda/irda.h>
#include <net/irda/irmod.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#include "au1000_ircc.h"
#include <asm/mach-au1x00/au1000.h>
/* registers */
#define IR_RING_PTR_STATUS 0x00
#define IR_RING_BASE_ADDR_H 0x04
#define IR_RING_BASE_ADDR_L 0x08
#define IR_RING_SIZE 0x0C
#define IR_RING_PROMPT 0x10
#define IR_RING_ADDR_CMPR 0x14
#define IR_INT_CLEAR 0x18
#define IR_CONFIG_1 0x20
#define IR_SIR_FLAGS 0x24
#define IR_STATUS 0x28
#define IR_READ_PHY_CONFIG 0x2C
#define IR_WRITE_PHY_CONFIG 0x30
#define IR_MAX_PKT_LEN 0x34
#define IR_RX_BYTE_CNT 0x38
#define IR_CONFIG_2 0x3C
#define IR_ENABLE 0x40
/* Config1 */
#define IR_RX_INVERT_LED (1 << 0)
#define IR_TX_INVERT_LED (1 << 1)
#define IR_ST (1 << 2)
#define IR_SF (1 << 3)
#define IR_SIR (1 << 4)
#define IR_MIR (1 << 5)
#define IR_FIR (1 << 6)
#define IR_16CRC (1 << 7)
#define IR_TD (1 << 8)
#define IR_RX_ALL (1 << 9)
#define IR_DMA_ENABLE (1 << 10)
#define IR_RX_ENABLE (1 << 11)
#define IR_TX_ENABLE (1 << 12)
#define IR_LOOPBACK (1 << 14)
#define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \
IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
IR_16CRC)
/* ir_status */
#define IR_RX_STATUS (1 << 9)
#define IR_TX_STATUS (1 << 10)
#define IR_PHYEN (1 << 15)
/* ir_write_phy_config */
#define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */
#define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */
#define IR_P(x) ((x) & 0x1f) /* preamble bits */
/* Config2 */
#define IR_MODE_INV (1 << 0)
#define IR_ONE_PIN (1 << 1)
#define IR_PHYCLK_40MHZ (0 << 2)
#define IR_PHYCLK_48MHZ (1 << 2)
#define IR_PHYCLK_56MHZ (2 << 2)
#define IR_PHYCLK_64MHZ (3 << 2)
#define IR_DP (1 << 4)
#define IR_DA (1 << 5)
#define IR_FLT_HIGH (0 << 6)
#define IR_FLT_MEDHI (1 << 6)
#define IR_FLT_MEDLO (2 << 6)
#define IR_FLT_LO (3 << 6)
#define IR_IEN (1 << 8)
/* ir_enable */
#define IR_HC (1 << 3) /* divide SBUS clock by 2 */
#define IR_CE (1 << 2) /* clock enable */
#define IR_C (1 << 1) /* coherency bit */
#define IR_BE (1 << 0) /* set in big endian mode */
#define NUM_IR_DESC 64
#define RING_SIZE_4 0x0
#define RING_SIZE_16 0x3
#define RING_SIZE_64 0xF
#define MAX_NUM_IR_DESC 64
#define MAX_BUF_SIZE 2048
/* Ring descriptor flags */
#define AU_OWN (1 << 7) /* tx,rx */
#define IR_DIS_CRC (1 << 6) /* tx */
#define IR_BAD_CRC (1 << 5) /* tx */
#define IR_NEED_PULSE (1 << 4) /* tx */
#define IR_FORCE_UNDER (1 << 3) /* tx */
#define IR_DISABLE_TX (1 << 2) /* tx */
#define IR_HW_UNDER (1 << 0) /* tx */
#define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
#define IR_PHY_ERROR (1 << 6) /* rx */
#define IR_CRC_ERROR (1 << 5) /* rx */
#define IR_MAX_LEN (1 << 4) /* rx */
#define IR_FIFO_OVER (1 << 3) /* rx */
#define IR_SIR_ERROR (1 << 2) /* rx */
#define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \
IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
struct db_dest {
struct db_dest *pnext;
volatile u32 *vaddr;
dma_addr_t dma_addr;
};
struct ring_dest {
u8 count_0; /* 7:0 */
u8 count_1; /* 12:8 */
u8 reserved;
u8 flags;
u8 addr_0; /* 7:0 */
u8 addr_1; /* 15:8 */
u8 addr_2; /* 23:16 */
u8 addr_3; /* 31:24 */
};
/* Private data for each instance */
struct au1k_private {
void __iomem *iobase;
int irq_rx, irq_tx;
struct db_dest *pDBfree;
struct db_dest db[2 * NUM_IR_DESC];
volatile struct ring_dest *rx_ring[NUM_IR_DESC];
volatile struct ring_dest *tx_ring[NUM_IR_DESC];
struct db_dest *rx_db_inuse[NUM_IR_DESC];
struct db_dest *tx_db_inuse[NUM_IR_DESC];
u32 rx_head;
u32 tx_head;
u32 tx_tail;
u32 tx_full;
iobuff_t rx_buff;
struct net_device *netdev;
struct timeval stamp;
struct timeval now;
struct qos_info qos;
struct irlap_cb *irlap;
u8 open;
u32 speed;
u32 newspeed;
static int au1k_irda_net_init(struct net_device *);
static int au1k_irda_start(struct net_device *);
static int au1k_irda_stop(struct net_device *dev);
static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
static int au1k_irda_rx(struct net_device *);
static void au1k_irda_interrupt(int, void *);
static void au1k_tx_timeout(struct net_device *);
static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
static int au1k_irda_set_speed(struct net_device *dev, int speed);
struct timer_list timer;
static void *dma_alloc(size_t, dma_addr_t *);
static void dma_free(void *, size_t);
struct resource *ioarea;
struct au1k_irda_platform_data *platdata;
};
static int qos_mtt_bits = 0x07; /* 1 ms or more */
static struct net_device *ir_devs[NUM_IR_IFF];
static char version[] __devinitdata =
"au1k_ircc:1.2 ppopov@mvista.com\n";
#define RUN_AT(x) (jiffies + (x))
static DEFINE_SPINLOCK(ir_lock);
static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
{
if (p->platdata && p->platdata->set_phy_mode)
p->platdata->set_phy_mode(mode);
}
/*
* IrDA peripheral bug. You have to read the register
* twice to get the right value.
*/
u32 read_ir_reg(u32 addr)
{
readl(addr);
return readl(addr);
static inline unsigned long irda_read(struct au1k_private *p,
unsigned long ofs)
{
/*
* IrDA peripheral bug. You have to read the register
* twice to get the right value.
*/
(void)__raw_readl(p->iobase + ofs);
return __raw_readl(p->iobase + ofs);
}
static inline void irda_write(struct au1k_private *p, unsigned long ofs,
unsigned long val)
{
__raw_writel(val, p->iobase + ofs);
wmb();
}
/*
* Buffer allocation/deallocation routines. The buffer descriptor returned
* has the virtual and dma address of a buffer suitable for
* has the virtual and dma address of a buffer suitable for
* both, receive and transmit operations.
*/
static db_dest_t *GetFreeDB(struct au1k_private *aup)
static struct db_dest *GetFreeDB(struct au1k_private *aup)
{
db_dest_t *pDB;
pDB = aup->pDBfree;
if (pDB) {
aup->pDBfree = pDB->pnext;
}
return pDB;
}
struct db_dest *db;
db = aup->pDBfree;
static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
{
db_dest_t *pDBfree = aup->pDBfree;
if (pDBfree)
pDBfree->pnext = pDB;
aup->pDBfree = pDB;
if (db)
aup->pDBfree = db->pnext;
return db;
}
/*
DMA memory allocation, derived from pci_alloc_consistent.
However, the Au1000 data cache is coherent (when programmed
so), therefore we return KSEG0 address, not KSEG1.
*/
static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
{
void *ret;
int gfp = GFP_ATOMIC | GFP_DMA;
ret = (void *) __get_free_pages(gfp, get_order(size));
ret = (void *)__get_free_pages(gfp, get_order(size));
if (ret != NULL) {
memset(ret, 0, size);
......@@ -122,7 +241,6 @@ static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
return ret;
}
static void dma_free(void *vaddr, size_t size)
{
vaddr = (void *)KSEG0ADDR(vaddr);
......@@ -130,206 +248,306 @@ static void dma_free(void *vaddr, size_t size)
}
static void
setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
{
int i;
for (i=0; i<NUM_IR_DESC; i++) {
aup->rx_ring[i] = (volatile ring_dest_t *)
(rx_base + sizeof(ring_dest_t)*i);
for (i = 0; i < NUM_IR_DESC; i++) {
aup->rx_ring[i] = (volatile struct ring_dest *)
(rx_base + sizeof(struct ring_dest) * i);
}
for (i=0; i<NUM_IR_DESC; i++) {
aup->tx_ring[i] = (volatile ring_dest_t *)
(tx_base + sizeof(ring_dest_t)*i);
for (i = 0; i < NUM_IR_DESC; i++) {
aup->tx_ring[i] = (volatile struct ring_dest *)
(tx_base + sizeof(struct ring_dest) * i);
}
}
static int au1k_irda_init(void)
{
static unsigned version_printed = 0;
struct au1k_private *aup;
struct net_device *dev;
int err;
if (version_printed++ == 0) printk(version);
dev = alloc_irdadev(sizeof(struct au1k_private));
if (!dev)
return -ENOMEM;
dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
err = au1k_irda_net_init(dev);
if (err)
goto out;
err = register_netdev(dev);
if (err)
goto out1;
ir_devs[0] = dev;
printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
return 0;
out1:
aup = netdev_priv(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2*NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
kfree(aup->rx_buff.head);
out:
free_netdev(dev);
return err;
}
static int au1k_irda_init_iobuf(iobuff_t *io, int size)
{
io->head = kmalloc(size, GFP_KERNEL);
if (io->head != NULL) {
io->truesize = size;
io->in_frame = FALSE;
io->state = OUTSIDE_FRAME;
io->data = io->head;
io->truesize = size;
io->in_frame = FALSE;
io->state = OUTSIDE_FRAME;
io->data = io->head;
}
return io->head ? 0 : -ENOMEM;
}
static const struct net_device_ops au1k_irda_netdev_ops = {
.ndo_open = au1k_irda_start,
.ndo_stop = au1k_irda_stop,
.ndo_start_xmit = au1k_irda_hard_xmit,
.ndo_tx_timeout = au1k_tx_timeout,
.ndo_do_ioctl = au1k_irda_ioctl,
};
static int au1k_irda_net_init(struct net_device *dev)
/*
* Set the IrDA communications speed.
*/
static int au1k_irda_set_speed(struct net_device *dev, int speed)
{
struct au1k_private *aup = netdev_priv(dev);
int i, retval = 0, err;
db_dest_t *pDB, *pDBfree;
dma_addr_t temp;
volatile struct ring_dest *ptxd;
unsigned long control;
int ret = 0, timeout = 10, i;
err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
if (err)
goto out1;
if (speed == aup->speed)
return ret;
dev->netdev_ops = &au1k_irda_netdev_ops;
/* disable PHY first */
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
irda_init_max_qos_capabilies(&aup->qos);
/* disable RX/TX */
irda_write(aup, IR_CONFIG_1,
irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
msleep(20);
while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
msleep(20);
if (!timeout--) {
printk(KERN_ERR "%s: rx/tx disable timeout\n",
dev->name);
break;
}
}
/* The only value we must override it the baudrate */
aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
IR_115200|IR_576000 |(IR_4000000 << 8);
aup->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&aup->qos);
/* disable DMA */
irda_write(aup, IR_CONFIG_1,
irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
msleep(20);
retval = -ENOMEM;
/* After we disable tx/rx. the index pointers go back to zero. */
aup->tx_head = aup->tx_tail = aup->rx_head = 0;
for (i = 0; i < NUM_IR_DESC; i++) {
ptxd = aup->tx_ring[i];
ptxd->flags = 0;
ptxd->count_0 = 0;
ptxd->count_1 = 0;
}
/* Tx ring follows rx ring + 512 bytes */
/* we need a 1k aligned buffer */
aup->rx_ring[0] = (ring_dest_t *)
dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
if (!aup->rx_ring[0])
goto out2;
for (i = 0; i < NUM_IR_DESC; i++) {
ptxd = aup->rx_ring[i];
ptxd->count_0 = 0;
ptxd->count_1 = 0;
ptxd->flags = AU_OWN;
}
/* allocate the data buffers */
aup->db[0].vaddr =
(void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
if (!aup->db[0].vaddr)
goto out3;
if (speed == 4000000)
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
else
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
switch (speed) {
case 9600:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
break;
case 19200:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
break;
case 38400:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
break;
case 57600:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
break;
case 115200:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
break;
case 4000000:
irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
IR_RX_ENABLE);
break;
default:
printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
ret = -EINVAL;
break;
}
pDBfree = NULL;
pDB = aup->db;
for (i=0; i<(2*NUM_IR_DESC); i++) {
pDB->pnext = pDBfree;
pDBfree = pDB;
pDB->vaddr =
(u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
pDB++;
aup->speed = speed;
irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
control = irda_read(aup, IR_STATUS);
irda_write(aup, IR_RING_PROMPT, 0);
if (control & (1 << 14)) {
printk(KERN_ERR "%s: configuration error\n", dev->name);
} else {
if (control & (1 << 11))
printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
if (control & (1 << 12))
printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
if (control & (1 << 13))
printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
if (control & (1 << 10))
printk(KERN_DEBUG "%s TX enabled\n", dev->name);
if (control & (1 << 9))
printk(KERN_DEBUG "%s RX enabled\n", dev->name);
}
aup->pDBfree = pDBfree;
/* attach a data buffer to each descriptor */
for (i=0; i<NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB) goto out;
aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
aup->rx_db_inuse[i] = pDB;
return ret;
}
static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
{
struct net_device_stats *ps = &dev->stats;
ps->rx_packets++;
if (status & IR_RX_ERROR) {
ps->rx_errors++;
if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
ps->rx_missed_errors++;
if (status & IR_MAX_LEN)
ps->rx_length_errors++;
if (status & IR_CRC_ERROR)
ps->rx_crc_errors++;
} else
ps->rx_bytes += count;
}
static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
struct net_device_stats *ps = &dev->stats;
ps->tx_packets++;
ps->tx_bytes += pkt_len;
if (status & IR_TX_ERROR) {
ps->tx_errors++;
ps->tx_aborted_errors++;
}
for (i=0; i<NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB) goto out;
aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
aup->tx_ring[i]->count_0 = 0;
aup->tx_ring[i]->count_1 = 0;
aup->tx_ring[i]->flags = 0;
aup->tx_db_inuse[i] = pDB;
}
static void au1k_tx_ack(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
volatile struct ring_dest *ptxd;
ptxd = aup->tx_ring[aup->tx_tail];
while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
update_tx_stats(dev, ptxd->flags,
(ptxd->count_1 << 8) | ptxd->count_0);
ptxd->count_0 = 0;
ptxd->count_1 = 0;
wmb();
aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
ptxd = aup->tx_ring[aup->tx_tail];
if (aup->tx_full) {
aup->tx_full = 0;
netif_wake_queue(dev);
}
}
#if defined(CONFIG_MIPS_DB1000)
/* power on */
bcsr_mod(BCSR_RESETS, BCSR_RESETS_IRDA_MODE_MASK,
BCSR_RESETS_IRDA_MODE_FULL);
#endif
if (aup->tx_tail == aup->tx_head) {
if (aup->newspeed) {
au1k_irda_set_speed(dev, aup->newspeed);
aup->newspeed = 0;
} else {
irda_write(aup, IR_CONFIG_1,
irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
irda_write(aup, IR_CONFIG_1,
irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
irda_write(aup, IR_RING_PROMPT, 0);
}
}
}
return 0;
static int au1k_irda_rx(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
volatile struct ring_dest *prxd;
struct sk_buff *skb;
struct db_dest *pDB;
u32 flags, count;
out3:
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
out2:
kfree(aup->rx_buff.head);
out1:
printk(KERN_ERR "au1k_init_module failed. Returns %d\n", retval);
return retval;
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
while (!(flags & AU_OWN)) {
pDB = aup->rx_db_inuse[aup->rx_head];
count = (prxd->count_1 << 8) | prxd->count_0;
if (!(flags & IR_RX_ERROR)) {
/* good frame */
update_rx_stats(dev, flags, count);
skb = alloc_skb(count + 1, GFP_ATOMIC);
if (skb == NULL) {
dev->stats.rx_dropped++;
continue;
}
skb_reserve(skb, 1);
if (aup->speed == 4000000)
skb_put(skb, count);
else
skb_put(skb, count - 2);
skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
count - 2);
skb->dev = dev;
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
prxd->count_0 = 0;
prxd->count_1 = 0;
}
prxd->flags |= AU_OWN;
aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
irda_write(aup, IR_RING_PROMPT, 0);
/* next descriptor */
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
}
return 0;
}
static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
{
struct net_device *dev = dev_id;
struct au1k_private *aup = netdev_priv(dev);
irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
au1k_irda_rx(dev);
au1k_tx_ack(dev);
return IRQ_HANDLED;
}
static int au1k_init(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
u32 enable, ring_address;
int i;
u32 control;
u32 ring_address;
/* bring the device out of reset */
control = 0xe; /* coherent, clock enable, one half system clock */
enable = IR_HC | IR_CE | IR_C;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
control |= 1;
enable |= IR_BE;
#endif
aup->tx_head = 0;
aup->tx_tail = 0;
aup->rx_head = 0;
for (i=0; i<NUM_IR_DESC; i++) {
for (i = 0; i < NUM_IR_DESC; i++)
aup->rx_ring[i]->flags = AU_OWN;
}
writel(control, IR_INTERFACE_CONFIG);
au_sync_delay(10);
irda_write(aup, IR_ENABLE, enable);
msleep(20);
writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
au_sync_delay(1);
/* disable PHY */
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
msleep(20);
writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
irda_write(aup, IR_RING_SIZE,
(RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
writel(0, IR_RING_ADDR_CMPR);
irda_write(aup, IR_CONFIG_2, IR_PHYCLK_48MHZ | IR_ONE_PIN);
irda_write(aup, IR_RING_ADDR_CMPR, 0);
au1k_irda_set_speed(dev, 9600);
return 0;
......@@ -337,25 +555,28 @@ static int au1k_init(struct net_device *dev)
static int au1k_irda_start(struct net_device *dev)
{
int retval;
char hwname[32];
struct au1k_private *aup = netdev_priv(dev);
char hwname[32];
int retval;
if ((retval = au1k_init(dev))) {
retval = au1k_init(dev);
if (retval) {
printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
return retval;
}
if ((retval = request_irq(AU1000_IRDA_TX_INT, au1k_irda_interrupt,
0, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
dev->name, dev);
if (retval) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
return retval;
}
if ((retval = request_irq(AU1000_IRDA_RX_INT, au1k_irda_interrupt,
0, dev->name, dev))) {
free_irq(AU1000_IRDA_TX_INT, dev);
printk(KERN_ERR "%s: unable to get IRQ %d\n",
retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
dev->name, dev);
if (retval) {
free_irq(aup->irq_tx, dev);
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
return retval;
}
......@@ -365,9 +586,13 @@ static int au1k_irda_start(struct net_device *dev)
aup->irlap = irlap_open(dev, &aup->qos, hwname);
netif_start_queue(dev);
writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
/* int enable */
irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
aup->timer.expires = RUN_AT((3*HZ));
/* power up */
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
aup->timer.expires = RUN_AT((3 * HZ));
aup->timer.data = (unsigned long)dev;
return 0;
}
......@@ -376,11 +601,12 @@ static int au1k_irda_stop(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
/* disable interrupts */
writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
writel(0, IR_CONFIG_1);
writel(0, IR_INTERFACE_CONFIG); /* disable clock */
au_sync();
irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
irda_write(aup, IR_CONFIG_1, 0);
irda_write(aup, IR_ENABLE, 0); /* disable clock */
if (aup->irlap) {
irlap_close(aup->irlap);
......@@ -391,83 +617,12 @@ static int au1k_irda_stop(struct net_device *dev)
del_timer(&aup->timer);
/* disable the interrupt */
free_irq(AU1000_IRDA_TX_INT, dev);
free_irq(AU1000_IRDA_RX_INT, dev);
return 0;
}
static void __exit au1k_irda_exit(void)
{
struct net_device *dev = ir_devs[0];
struct au1k_private *aup = netdev_priv(dev);
unregister_netdev(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2*NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
kfree(aup->rx_buff.head);
free_netdev(dev);
}
static inline void
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->tx_packets++;
ps->tx_bytes += pkt_len;
if (status & IR_TX_ERROR) {
ps->tx_errors++;
ps->tx_aborted_errors++;
}
}
static void au1k_tx_ack(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
volatile ring_dest_t *ptxd;
ptxd = aup->tx_ring[aup->tx_tail];
while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
update_tx_stats(dev, ptxd->flags,
ptxd->count_1<<8 | ptxd->count_0);
ptxd->count_0 = 0;
ptxd->count_1 = 0;
au_sync();
aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
ptxd = aup->tx_ring[aup->tx_tail];
if (aup->tx_full) {
aup->tx_full = 0;
netif_wake_queue(dev);
}
}
free_irq(aup->irq_tx, dev);
free_irq(aup->irq_rx, dev);
if (aup->tx_tail == aup->tx_head) {
if (aup->newspeed) {
au1k_irda_set_speed(dev, aup->newspeed);
aup->newspeed = 0;
}
else {
writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
IR_CONFIG_1);
au_sync();
writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
IR_CONFIG_1);
writel(0, IR_RING_PROMPT);
au_sync();
}
}
return 0;
}
/*
* Au1000 transmit routine.
*/
......@@ -475,15 +630,12 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
int speed = irda_get_next_speed(skb);
volatile ring_dest_t *ptxd;
u32 len;
u32 flags;
db_dest_t *pDB;
volatile struct ring_dest *ptxd;
struct db_dest *pDB;
u32 len, flags;
if (speed != aup->speed && speed != -1) {
if (speed != aup->speed && speed != -1)
aup->newspeed = speed;
}
if ((skb->len == 0) && (aup->newspeed)) {
if (aup->tx_tail == aup->tx_head) {
......@@ -501,138 +653,47 @@ static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return NETDEV_TX_BUSY;
}
else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
return 1;
} else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
printk(KERN_DEBUG "%s: tx_full\n", dev->name);
netif_stop_queue(dev);
aup->tx_full = 1;
return NETDEV_TX_BUSY;
return 1;
}
pDB = aup->tx_db_inuse[aup->tx_head];
#if 0
if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
printk("tx warning: rx byte cnt %x\n",
read_ir_reg(IR_RX_BYTE_CNT));
if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
irda_read(aup, IR_RX_BYTE_CNT));
}
#endif
if (aup->speed == 4000000) {
/* FIR */
skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
ptxd->count_0 = skb->len & 0xff;
ptxd->count_1 = (skb->len >> 8) & 0xff;
}
else {
} else {
/* SIR */
len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
ptxd->count_0 = len & 0xff;
ptxd->count_1 = (len >> 8) & 0xff;
ptxd->flags |= IR_DIS_CRC;
au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
}
ptxd->flags |= AU_OWN;
au_sync();
wmb();
writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
writel(0, IR_RING_PROMPT);
au_sync();
irda_write(aup, IR_CONFIG_1,
irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
irda_write(aup, IR_RING_PROMPT, 0);
dev_kfree_skb(skb);
aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
return NETDEV_TX_OK;
}
static inline void
update_rx_stats(struct net_device *dev, u32 status, u32 count)
{
struct au1k_private *aup = netdev_priv(dev);
struct net_device_stats *ps = &aup->stats;
ps->rx_packets++;
if (status & IR_RX_ERROR) {
ps->rx_errors++;
if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
ps->rx_missed_errors++;
if (status & IR_MAX_LEN)
ps->rx_length_errors++;
if (status & IR_CRC_ERROR)
ps->rx_crc_errors++;
}
else
ps->rx_bytes += count;
}
/*
* Au1000 receive routine.
*/
static int au1k_irda_rx(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
struct sk_buff *skb;
volatile ring_dest_t *prxd;
u32 flags, count;
db_dest_t *pDB;
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
while (!(flags & AU_OWN)) {
pDB = aup->rx_db_inuse[aup->rx_head];
count = prxd->count_1<<8 | prxd->count_0;
if (!(flags & IR_RX_ERROR)) {
/* good frame */
update_rx_stats(dev, flags, count);
skb=alloc_skb(count+1,GFP_ATOMIC);
if (skb == NULL) {
aup->netdev->stats.rx_dropped++;
continue;
}
skb_reserve(skb, 1);
if (aup->speed == 4000000)
skb_put(skb, count);
else
skb_put(skb, count-2);
skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
skb->dev = dev;
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
prxd->count_0 = 0;
prxd->count_1 = 0;
}
prxd->flags |= AU_OWN;
aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
writel(0, IR_RING_PROMPT);
au_sync();
/* next descriptor */
prxd = aup->rx_ring[aup->rx_head];
flags = prxd->flags;
}
return 0;
}
static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
{
struct net_device *dev = dev_id;
writel(0, IR_INT_CLEAR); /* ack irda interrupts */
au1k_irda_rx(dev);
au1k_tx_ack(dev);
return IRQ_HANDLED;
}
/*
* The Tx ring has been full longer than the watchdog timeout
* value. The transmitter must be hung?
......@@ -650,142 +711,7 @@ static void au1k_tx_timeout(struct net_device *dev)
netif_wake_queue(dev);
}
/*
* Set the IrDA communications speed.
*/
static int
au1k_irda_set_speed(struct net_device *dev, int speed)
{
unsigned long flags;
struct au1k_private *aup = netdev_priv(dev);
u32 control;
int ret = 0, timeout = 10, i;
volatile ring_dest_t *ptxd;
#if defined(CONFIG_MIPS_DB1000)
unsigned long irda_resets;
#endif
if (speed == aup->speed)
return ret;
spin_lock_irqsave(&ir_lock, flags);
/* disable PHY first */
writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
/* disable RX/TX */
writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
IR_CONFIG_1);
au_sync_delay(1);
while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
mdelay(1);
if (!timeout--) {
printk(KERN_ERR "%s: rx/tx disable timeout\n",
dev->name);
break;
}
}
/* disable DMA */
writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
au_sync_delay(1);
/*
* After we disable tx/rx. the index pointers
* go back to zero.
*/
aup->tx_head = aup->tx_tail = aup->rx_head = 0;
for (i=0; i<NUM_IR_DESC; i++) {
ptxd = aup->tx_ring[i];
ptxd->flags = 0;
ptxd->count_0 = 0;
ptxd->count_1 = 0;
}
for (i=0; i<NUM_IR_DESC; i++) {
ptxd = aup->rx_ring[i];
ptxd->count_0 = 0;
ptxd->count_1 = 0;
ptxd->flags = AU_OWN;
}
if (speed == 4000000) {
#if defined(CONFIG_MIPS_DB1000)
bcsr_mod(BCSR_RESETS, 0, BCSR_RESETS_FIR_SEL);
#else /* Pb1000 and Pb1100 */
writel(1<<13, CPLD_AUX1);
#endif
}
else {
#if defined(CONFIG_MIPS_DB1000)
bcsr_mod(BCSR_RESETS, BCSR_RESETS_FIR_SEL, 0);
#else /* Pb1000 and Pb1100 */
writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
#endif
}
switch (speed) {
case 9600:
writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 19200:
writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 38400:
writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 57600:
writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 115200:
writel(12<<5, IR_WRITE_PHY_CONFIG);
writel(IR_SIR_MODE, IR_CONFIG_1);
break;
case 4000000:
writel(0xF, IR_WRITE_PHY_CONFIG);
writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
break;
default:
printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
ret = -EINVAL;
break;
}
aup->speed = speed;
writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
au_sync();
control = read_ir_reg(IR_ENABLE);
writel(0, IR_RING_PROMPT);
au_sync();
if (control & (1<<14)) {
printk(KERN_ERR "%s: configuration error\n", dev->name);
}
else {
if (control & (1<<11))
printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
if (control & (1<<12))
printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
if (control & (1<<13))
printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
if (control & (1<<10))
printk(KERN_DEBUG "%s TX enabled\n", dev->name);
if (control & (1<<9))
printk(KERN_DEBUG "%s RX enabled\n", dev->name);
}
spin_unlock_irqrestore(&ir_lock, flags);
return ret;
}
static int
au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
struct au1k_private *aup = netdev_priv(dev);
......@@ -826,8 +752,218 @@ au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
return ret;
}
static const struct net_device_ops au1k_irda_netdev_ops = {
.ndo_open = au1k_irda_start,
.ndo_stop = au1k_irda_stop,
.ndo_start_xmit = au1k_irda_hard_xmit,
.ndo_tx_timeout = au1k_tx_timeout,
.ndo_do_ioctl = au1k_irda_ioctl,
};
static int __devinit au1k_irda_net_init(struct net_device *dev)
{
struct au1k_private *aup = netdev_priv(dev);
struct db_dest *pDB, *pDBfree;
int i, err, retval = 0;
dma_addr_t temp;
err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
if (err)
goto out1;
dev->netdev_ops = &au1k_irda_netdev_ops;
irda_init_max_qos_capabilies(&aup->qos);
/* The only value we must override it the baudrate */
aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
aup->qos.min_turn_time.bits = qos_mtt_bits;
irda_qos_bits_to_value(&aup->qos);
retval = -ENOMEM;
/* Tx ring follows rx ring + 512 bytes */
/* we need a 1k aligned buffer */
aup->rx_ring[0] = (struct ring_dest *)
dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
&temp);
if (!aup->rx_ring[0])
goto out2;
/* allocate the data buffers */
aup->db[0].vaddr =
(void *)dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
if (!aup->db[0].vaddr)
goto out3;
setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
pDBfree = NULL;
pDB = aup->db;
for (i = 0; i < (2 * NUM_IR_DESC); i++) {
pDB->pnext = pDBfree;
pDBfree = pDB;
pDB->vaddr =
(u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
pDB++;
}
aup->pDBfree = pDBfree;
/* attach a data buffer to each descriptor */
for (i = 0; i < NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB)
goto out3;
aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
aup->rx_db_inuse[i] = pDB;
}
for (i = 0; i < NUM_IR_DESC; i++) {
pDB = GetFreeDB(aup);
if (!pDB)
goto out3;
aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff);
aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
aup->tx_ring[i]->count_0 = 0;
aup->tx_ring[i]->count_1 = 0;
aup->tx_ring[i]->flags = 0;
aup->tx_db_inuse[i] = pDB;
}
return 0;
out3:
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
out2:
kfree(aup->rx_buff.head);
out1:
printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval);
return retval;
}
static int __devinit au1k_irda_probe(struct platform_device *pdev)
{
struct au1k_private *aup;
struct net_device *dev;
struct resource *r;
int err;
dev = alloc_irdadev(sizeof(struct au1k_private));
if (!dev)
return -ENOMEM;
aup = netdev_priv(dev);
aup->platdata = pdev->dev.platform_data;
err = -EINVAL;
r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!r)
goto out;
aup->irq_tx = r->start;
r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
if (!r)
goto out;
aup->irq_rx = r->start;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r)
goto out;
err = -EBUSY;
aup->ioarea = request_mem_region(r->start, r->end - r->start + 1,
pdev->name);
if (!aup->ioarea)
goto out;
aup->iobase = ioremap_nocache(r->start, r->end - r->start + 1);
if (!aup->iobase)
goto out2;
dev->irq = aup->irq_rx;
err = au1k_irda_net_init(dev);
if (err)
goto out3;
err = register_netdev(dev);
if (err)
goto out4;
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
return 0;
out4:
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2 * NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
kfree(aup->rx_buff.head);
out3:
iounmap(aup->iobase);
out2:
release_resource(aup->ioarea);
kfree(aup->ioarea);
out:
free_netdev(dev);
return err;
}
static int __devexit au1k_irda_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct au1k_private *aup = netdev_priv(dev);
unregister_netdev(dev);
dma_free((void *)aup->db[0].vaddr,
MAX_BUF_SIZE * 2 * NUM_IR_DESC);
dma_free((void *)aup->rx_ring[0],
2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
kfree(aup->rx_buff.head);
iounmap(aup->iobase);
release_resource(aup->ioarea);
kfree(aup->ioarea);
free_netdev(dev);
return 0;
}
static struct platform_driver au1k_irda_driver = {
.driver = {
.name = "au1000-irda",
.owner = THIS_MODULE,
},
.probe = au1k_irda_probe,
.remove = __devexit_p(au1k_irda_remove),
};
static int __init au1k_irda_load(void)
{
return platform_driver_register(&au1k_irda_driver);
}
static void __exit au1k_irda_unload(void)
{
return platform_driver_unregister(&au1k_irda_driver);
}
MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
module_init(au1k_irda_init);
module_exit(au1k_irda_exit);
module_init(au1k_irda_load);
module_exit(au1k_irda_unload);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment