Commit d136641e authored by Tony Luck's avatar Tony Luck

[IA64] ptrace.c: Format to make it fit in 80 cols.

David thinks this might make Jesse and Willy happy (or
at least happier).  If they can cope with line breaks
before a binary operator, rather than after, then maybe
it will :-)
Signed-off-by: default avatarDavid Mosberger-Tang <davidm@hpl.hp.com>
Signed-off-by: default avatarTony Luck <tony.luck@intel.com>
parent c461916b
/*
* Kernel support for the ptrace() and syscall tracing interfaces.
*
* Copyright (C) 1999-2004 Hewlett-Packard Co
* Copyright (C) 1999-2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Derived from the x86 and Alpha versions. Most of the code in here
* could actually be factored into a common set of routines.
* Derived from the x86 and Alpha versions.
*/
#include <linux/config.h>
#include <linux/kernel.h>
......@@ -40,9 +39,11 @@
* ri (restart instruction; two bits)
* is (instruction set; one bit)
*/
#define IPSR_WRITE_MASK \
(IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define IPSR_READ_MASK IPSR_WRITE_MASK
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
| IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
#define PFM_MASK MASK(38)
#define PTRACE_DEBUG 0
......@@ -68,23 +69,24 @@ in_syscall (struct pt_regs *pt)
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
# define GET_BITS(first, last, unat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long mask = ((1UL << (last - first + 1)) - 1) << first; \
unsigned long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotr(unat, dist) & mask; \
# define GET_BITS(first, last, unat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
unsigned long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotr(unat, dist) & mask; \
})
unsigned long val;
/*
* Registers that are stored consecutively in struct pt_regs can be handled in
* parallel. If the register order in struct_pt_regs changes, this code MUST be
* updated.
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
val = GET_BITS( 1, 1, scratch_unat);
val |= GET_BITS( 2, 3, scratch_unat);
......@@ -106,23 +108,24 @@ ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
# define PUT_BITS(first, last, nat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long mask = ((1UL << (last - first + 1)) - 1) << first; \
long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotl(nat & mask, dist); \
# define PUT_BITS(first, last, nat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotl(nat & mask, dist); \
})
unsigned long scratch_unat;
/*
* Registers that are stored consecutively in struct pt_regs can be handled in
* parallel. If the register order in struct_pt_regs changes, this code MUST be
* updated.
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
scratch_unat = PUT_BITS( 1, 1, nat);
scratch_unat |= PUT_BITS( 2, 3, nat);
......@@ -185,10 +188,12 @@ ia64_decrement_ip (struct pt_regs *regs)
}
/*
* This routine is used to read an rnat bits that are stored on the kernel backing store.
* Since, in general, the alignment of the user and kernel are different, this is not
* completely trivial. In essence, we need to construct the user RNAT based on up to two
* kernel RNAT values and/or the RNAT value saved in the child's pt_regs.
* This routine is used to read an rnat bits that are stored on the
* kernel backing store. Since, in general, the alignment of the user
* and kernel are different, this is not completely trivial. In
* essence, we need to construct the user RNAT based on up to two
* kernel RNAT values and/or the RNAT value saved in the child's
* pt_regs.
*
* user rbs
*
......@@ -221,24 +226,28 @@ ia64_decrement_ip (struct pt_regs *regs)
* +--------+
* <--- child_stack->ar_bspstore
*
* The way to think of this code is as follows: bit 0 in the user rnat corresponds to some
* bit N (0 <= N <= 62) in one of the kernel rnat value. The kernel rnat value holding
* this bit is stored in variable rnat0. rnat1 is loaded with the kernel rnat value that
* The way to think of this code is as follows: bit 0 in the user rnat
* corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
* value. The kernel rnat value holding this bit is stored in
* variable rnat0. rnat1 is loaded with the kernel rnat value that
* form the upper bits of the user rnat value.
*
* Boundary cases:
*
* o when reading the rnat "below" the first rnat slot on the kernel backing store,
* rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat.
* o when reading the rnat "below" the first rnat slot on the kernel
* backing store, rnat0/rnat1 are set to 0 and the low order bits are
* merged in from pt->ar_rnat.
*
* o when reading the rnat "above" the last rnat slot on the kernel backing store,
* rnat0/rnat1 gets its value from sw->ar_rnat.
* o when reading the rnat "above" the last rnat slot on the kernel
* backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
*/
static unsigned long
get_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr, unsigned long *urbs_end)
unsigned long *krbs, unsigned long *urnat_addr,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, umask = 0, mask, m;
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
unsigned long umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
......@@ -251,11 +260,12 @@ get_rnat (struct task_struct *task, struct switch_stack *sw,
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
else
nbits = 63;
mask = (1UL << nbits) - 1;
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps to in the kernel
* rnat. Do this by figuring out how many register slots we're beyond the user's
* backingstore and then computing the equivalent address in kernel space.
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
......@@ -265,7 +275,7 @@ get_rnat (struct task_struct *task, struct switch_stack *sw,
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be merged in from pt->ar_rnat */
umask = ((1UL << ia64_rse_slot_num(ubspstore)) - 1) & mask;
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
urnat = (pt->ar_rnat & umask);
mask &= ~umask;
if (!mask)
......@@ -323,12 +333,13 @@ put_rnat (struct task_struct *task, struct switch_stack *sw,
return;
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
}
mask = (1UL << nbits) - 1;
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps to in the kernel
* rnat. Do this by figuring out how many register slots we're beyond the user's
* backingstore and then computing the equivalent address in kernel space.
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
......@@ -338,7 +349,7 @@ put_rnat (struct task_struct *task, struct switch_stack *sw,
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be place in pt->ar_rnat: */
umask = ((1UL << ia64_rse_slot_num(ubspstore)) - 1) & mask;
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
mask &= ~umask;
if (!mask)
......@@ -364,25 +375,28 @@ put_rnat (struct task_struct *task, struct switch_stack *sw,
}
static inline int
on_kernel_rbs (unsigned long addr, unsigned long bspstore, unsigned long urbs_end)
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
unsigned long urbs_end)
{
return (addr >= bspstore
&& addr <= (unsigned long) ia64_rse_rnat_addr((unsigned long *) urbs_end));
unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
urbs_end);
return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
}
/*
* Read a word from the user-level backing store of task CHILD. ADDR is the user-level
* address to read the word from, VAL a pointer to the return value, and USER_BSP gives
* the end of the user-level backing store (i.e., it's the address that would be in ar.bsp
* after the user executed a "cover" instruction).
* Read a word from the user-level backing store of task CHILD. ADDR
* is the user-level address to read the word from, VAL a pointer to
* the return value, and USER_BSP gives the end of the user-level
* backing store (i.e., it's the address that would be in ar.bsp after
* the user executed a "cover" instruction).
*
* This routine takes care of accessing the kernel register backing store for those
* registers that got spilled there. It also takes care of calculating the appropriate
* RNaT collection words.
* This routine takes care of accessing the kernel register backing
* store for those registers that got spilled there. It also takes
* care of calculating the appropriate RNaT collection words.
*/
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
unsigned long addr, long *val)
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long *val)
{
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
struct pt_regs *child_regs;
......@@ -394,10 +408,13 @@ ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned
child_regs = ia64_task_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore, (unsigned long) urbs_end)) {
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to read the RBS in an area that's actually on the kernel RBS =>
* read the corresponding bits in the kernel RBS.
* Attempt to read the RBS in an area that's actually
* on the kernel RBS => read the corresponding bits in
* the kernel RBS.
*/
rnat_addr = ia64_rse_rnat_addr(laddr);
ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
......@@ -410,18 +427,23 @@ ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned
if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
/*
* It is implementation dependent whether the data portion of a
* NaT value gets saved on a st8.spill or RSE spill (e.g., see
* EAS 2.6, 4.4.4.6 Register Spill and Fill). To get consistent
* behavior across all possible IA-64 implementations, we return
* zero in this case.
* It is implementation dependent whether the
* data portion of a NaT value gets saved on a
* st8.spill or RSE spill (e.g., see EAS 2.6,
* 4.4.4.6 Register Spill and Fill). To get
* consistent behavior across all possible
* IA-64 implementations, we return zero in
* this case.
*/
*val = 0;
return 0;
}
if (laddr < urbs_end) {
/* the desired word is on the kernel RBS and is not a NaT */
/*
* The desired word is on the kernel RBS and
* is not a NaT.
*/
regnum = ia64_rse_num_regs(bspstore, laddr);
*val = *ia64_rse_skip_regs(krbs, regnum);
return 0;
......@@ -435,43 +457,51 @@ ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned
}
long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
unsigned long addr, long val)
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long val)
{
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end;
unsigned long *bspstore, *krbs, regnum, *laddr;
unsigned long *urbs_end = (long *) user_rbs_end;
struct pt_regs *child_regs;
laddr = (unsigned long *) addr;
child_regs = ia64_task_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore, (unsigned long) urbs_end)) {
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to write the RBS in an area that's actually on the kernel RBS
* => write the corresponding bits in the kernel RBS.
* Attempt to write the RBS in an area that's actually
* on the kernel RBS => write the corresponding bits
* in the kernel RBS.
*/
if (ia64_rse_is_rnat_slot(laddr))
put_rnat(child, child_stack, krbs, laddr, val, urbs_end);
put_rnat(child, child_stack, krbs, laddr, val,
urbs_end);
else {
if (laddr < urbs_end) {
regnum = ia64_rse_num_regs(bspstore, laddr);
*ia64_rse_skip_regs(krbs, regnum) = val;
}
}
} else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) {
} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
}
return 0;
}
/*
* Calculate the address of the end of the user-level register backing store. This is the
* address that would have been stored in ar.bsp if the user had executed a "cover"
* instruction right before entering the kernel. If CFMP is not NULL, it is used to
* return the "current frame mask" that was active at the time the kernel was entered.
* Calculate the address of the end of the user-level register backing
* store. This is the address that would have been stored in ar.bsp
* if the user had executed a "cover" instruction right before
* entering the kernel. If CFMP is not NULL, it is used to return the
* "current frame mask" that was active at the time the kernel was
* entered.
*/
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp)
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
unsigned long *cfmp)
{
unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
long ndirty;
......@@ -491,9 +521,11 @@ ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned l
}
/*
* Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the
* CHILD task. SW and PT are the pointers to the switch_stack and pt_regs structures,
* respectively. USER_RBS_END is the user-level address at which the backing store ends.
* Synchronize (i.e, write) the RSE backing store living in kernel
* space to the VM of the CHILD task. SW and PT are the pointers to
* the switch_stack and pt_regs structures, respectively.
* USER_RBS_END is the user-level address at which the backing store
* ends.
*/
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
......@@ -507,7 +539,8 @@ ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
if (ret < 0)
return ret;
if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
}
return 0;
......@@ -521,13 +554,14 @@ thread_matches (struct task_struct *thread, unsigned long addr)
if (ptrace_check_attach(thread, 0) < 0)
/*
* If the thread is not in an attachable state, we'll ignore it.
* The net effect is that if ADDR happens to overlap with the
* portion of the thread's register backing store that is
* currently residing on the thread's kernel stack, then ptrace()
* may end up accessing a stale value. But if the thread isn't
* stopped, that's a problem anyhow, so we're doing as well as we
* can...
* If the thread is not in an attachable state, we'll
* ignore it. The net effect is that if ADDR happens
* to overlap with the portion of the thread's
* register backing store that is currently residing
* on the thread's kernel stack, then ptrace() may end
* up accessing a stale value. But if the thread
* isn't stopped, that's a problem anyhow, so we're
* doing as well as we can...
*/
return 0;
......@@ -540,10 +574,11 @@ thread_matches (struct task_struct *thread, unsigned long addr)
}
/*
* GDB apparently wants to be able to read the register-backing store of any thread when
* attached to a given process. If we are peeking or poking an address that happens to
* reside in the kernel-backing store of another thread, we need to attach to that thread,
* because otherwise we end up accessing stale data.
* GDB apparently wants to be able to read the register-backing store
* of any thread when attached to a given process. If we are peeking
* or poking an address that happens to reside in the kernel-backing
* store of another thread, we need to attach to that thread, because
* otherwise we end up accessing stale data.
*
* task_list_lock must be read-locked before calling this routine!
*/
......@@ -557,7 +592,8 @@ find_thread_for_addr (struct task_struct *child, unsigned long addr)
if (!(mm = get_task_mm(child)))
return child;
mm_users = atomic_read(&mm->mm_users) - 1; /* -1 because of our get_task_mm()... */
/* -1 because of our get_task_mm(): */
mm_users = atomic_read(&mm->mm_users) - 1;
if (mm_users <= 1)
goto out; /* not multi-threaded */
......@@ -627,7 +663,8 @@ ia64_sync_fph (struct task_struct *task)
}
static int
access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data, int write_access)
access_fr (struct unw_frame_info *info, int regnum, int hi,
unsigned long *data, int write_access)
{
struct ia64_fpreg fpval;
int ret;
......@@ -649,7 +686,8 @@ access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data,
* kernel exit-path, rather than the syscall-exit path.
*/
static void
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, unsigned long cfm)
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
unsigned long cfm)
{
struct unw_frame_info info, prev_info;
unsigned long ip, pr;
......@@ -674,11 +712,51 @@ convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, unsigned
}
static int
access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access)
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
struct unw_frame_info *info,
unsigned long *data, int write_access)
{
unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
char nat = 0;
if (write_access) {
nat_bits = *data;
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
dprintk("ptrace: failed to set ar.unat\n");
return -1;
}
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
unw_set_gr(info, regnum, dummy,
(nat_bits >> regnum) & 1);
}
} else {
if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
dprintk("ptrace: failed to read ar.unat\n");
return -1;
}
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
nat_bits |= (nat != 0) << regnum;
}
*data = nat_bits;
}
return 0;
}
static int
access_uarea (struct task_struct *child, unsigned long addr,
unsigned long *data, int write_access)
{
unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
struct switch_stack *sw;
struct pt_regs *pt;
# define pt_reg_addr(pt, reg) ((void *) \
((unsigned long) (pt) \
+ offsetof(struct pt_regs, reg)))
pt = ia64_task_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
......@@ -694,17 +772,20 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
ia64_sync_fph(child);
else
ia64_flush_fph(child);
ptr = (unsigned long *) ((unsigned long) &child->thread.fph + addr);
ptr = (unsigned long *)
((unsigned long) &child->thread.fph + addr);
} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
/* scratch registers untouched by kernel (saved in pt_regs) */
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, f10) + addr - PT_F10);
ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
/* scratch registers untouched by kernel (saved in switch_stack) */
ptr = (unsigned long *) ((long) sw + (addr - PT_NAT_BITS - 32));
/*
* Scratch registers untouched by kernel (saved in
* switch_stack).
*/
ptr = (unsigned long *) ((long) sw
+ (addr - PT_NAT_BITS - 32));
} else if (addr < PT_AR_LC + 8) {
/* preserved state: */
unsigned long nat_bits, scratch_unat, dummy = 0;
struct unw_frame_info info;
char nat = 0;
int ret;
......@@ -715,62 +796,48 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
switch (addr) {
case PT_NAT_BITS:
if (write_access) {
nat_bits = *data;
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
if (unw_set_ar(&info, UNW_AR_UNAT, scratch_unat) < 0) {
dprintk("ptrace: failed to set ar.unat\n");
return -1;
}
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(&info, regnum, &dummy, &nat);
unw_set_gr(&info, regnum, dummy, (nat_bits >> regnum) & 1);
}
} else {
if (unw_get_ar(&info, UNW_AR_UNAT, &scratch_unat) < 0) {
dprintk("ptrace: failed to read ar.unat\n");
return -1;
}
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(&info, regnum, &dummy, &nat);
nat_bits |= (nat != 0) << regnum;
}
*data = nat_bits;
}
return 0;
return access_nat_bits(child, pt, &info,
data, write_access);
case PT_R4: case PT_R5: case PT_R6: case PT_R7:
if (write_access) {
/* read NaT bit first: */
unsigned long dummy;
ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, &dummy, &nat);
ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
&dummy, &nat);
if (ret < 0)
return ret;
}
return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, &nat,
write_access);
return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
&nat, write_access);
case PT_B1: case PT_B2: case PT_B3: case PT_B4: case PT_B5:
return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, write_access);
case PT_B1: case PT_B2: case PT_B3:
case PT_B4: case PT_B5:
return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
write_access);
case PT_AR_EC:
return unw_access_ar(&info, UNW_AR_EC, data, write_access);
return unw_access_ar(&info, UNW_AR_EC, data,
write_access);
case PT_AR_LC:
return unw_access_ar(&info, UNW_AR_LC, data, write_access);
return unw_access_ar(&info, UNW_AR_LC, data,
write_access);
default:
if (addr >= PT_F2 && addr < PT_F5 + 16)
return access_fr(&info, (addr - PT_F2)/16 + 2, (addr & 8) != 0,
data, write_access);
return access_fr(&info, (addr - PT_F2)/16 + 2,
(addr & 8) != 0, data,
write_access);
else if (addr >= PT_F16 && addr < PT_F31 + 16)
return access_fr(&info, (addr - PT_F16)/16 + 16, (addr & 8) != 0,
return access_fr(&info,
(addr - PT_F16)/16 + 16,
(addr & 8) != 0,
data, write_access);
else {
dprintk("ptrace: rejecting access to register address 0x%lx\n",
addr);
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
}
......@@ -779,34 +846,49 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
switch (addr) {
case PT_AR_BSP:
/*
* By convention, we use PT_AR_BSP to refer to the end of the user-level
* backing store. Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) to get
* the real value of ar.bsp at the time the kernel was entered.
* By convention, we use PT_AR_BSP to refer to
* the end of the user-level backing store.
* Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
* to get the real value of ar.bsp at the time
* the kernel was entered.
*
* Furthermore, when changing the contents of PT_AR_BSP (or
* PT_CFM) we MUST copy any users-level stacked registers that are
* stored on the kernel stack back to user-space because
* otherwise, we might end up clobbering kernel stacked registers.
* Also, if this happens while the task is blocked in a system
* call, which convert the state such that the non-system-call
* exit path is used. This ensures that the proper state will be
* picked up when resuming execution. However, it *also* means
* that once we write PT_AR_BSP/PT_CFM, it won't be possible to
* modify the syscall arguments of the pending system call any
* longer. This shouldn't be an issue because modifying
* PT_AR_BSP/PT_CFM generally implies that we're either abandoning
* the pending system call or that we defer it's re-execution
* (e.g., due to GDB doing an inferior function call).
* Furthermore, when changing the contents of
* PT_AR_BSP (or PT_CFM) we MUST copy any
* users-level stacked registers that are
* stored on the kernel stack back to
* user-space because otherwise, we might end
* up clobbering kernel stacked registers.
* Also, if this happens while the task is
* blocked in a system call, which convert the
* state such that the non-system-call exit
* path is used. This ensures that the proper
* state will be picked up when resuming
* execution. However, it *also* means that
* once we write PT_AR_BSP/PT_CFM, it won't be
* possible to modify the syscall arguments of
* the pending system call any longer. This
* shouldn't be an issue because modifying
* PT_AR_BSP/PT_CFM generally implies that
* we're either abandoning the pending system
* call or that we defer it's re-execution
* (e.g., due to GDB doing an inferior
* function call).
*/
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (*data != urbs_end) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore, urbs_end) < 0)
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child, pt, cfm);
/* simulate user-level write of ar.bsp: */
convert_to_non_syscall(child,
pt,
cfm);
/*
* Simulate user-level write
* of ar.bsp:
*/
pt->loadrs = 0;
pt->ar_bspstore = *data;
}
......@@ -817,14 +899,17 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
case PT_CFM:
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (((cfm ^ *data) & 0x3fffffffffUL) != 0) {
if (((cfm ^ *data) & PFM_MASK) != 0) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore, urbs_end) < 0)
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child, pt, cfm);
pt->cr_ifs = ((pt->cr_ifs & ~0x3fffffffffUL)
| (*data & 0x3fffffffffUL));
convert_to_non_syscall(child,
pt,
cfm);
pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
| (*data & PFM_MASK));
}
} else
*data = cfm;
......@@ -832,99 +917,94 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
case PT_CR_IPSR:
if (write_access)
pt->cr_ipsr = ((*data & IPSR_WRITE_MASK)
| (pt->cr_ipsr & ~IPSR_WRITE_MASK));
pt->cr_ipsr = ((*data & IPSR_MASK)
| (pt->cr_ipsr & ~IPSR_MASK));
else
*data = (pt->cr_ipsr & IPSR_READ_MASK);
*data = (pt->cr_ipsr & IPSR_MASK);
return 0;
case PT_AR_RNAT:
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
rnat_addr = (long) ia64_rse_rnat_addr((long *) urbs_end);
rnat_addr = (long) ia64_rse_rnat_addr((long *)
urbs_end);
if (write_access)
return ia64_poke(child, sw, urbs_end, rnat_addr, *data);
return ia64_poke(child, sw, urbs_end,
rnat_addr, *data);
else
return ia64_peek(child, sw, urbs_end, rnat_addr, data);
return ia64_peek(child, sw, urbs_end,
rnat_addr, data);
case PT_R1:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, r1));
ptr = pt_reg_addr(pt, r1);
break;
case PT_R2: case PT_R3:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, r2) + addr - PT_R2);
ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
break;
case PT_R8: case PT_R9: case PT_R10: case PT_R11:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, r8)+ addr - PT_R8);
ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
break;
case PT_R12: case PT_R13:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, r12)+ addr - PT_R12);
ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
break;
case PT_R14:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, r14));
ptr = pt_reg_addr(pt, r14);
break;
case PT_R15:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, r15));
ptr = pt_reg_addr(pt, r15);
break;
case PT_R16: case PT_R17: case PT_R18: case PT_R19:
case PT_R20: case PT_R21: case PT_R22: case PT_R23:
case PT_R24: case PT_R25: case PT_R26: case PT_R27:
case PT_R28: case PT_R29: case PT_R30: case PT_R31:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, r16) + addr - PT_R16);
ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
break;
case PT_B0:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, b0));
ptr = pt_reg_addr(pt, b0);
break;
case PT_B6:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, b6));
ptr = pt_reg_addr(pt, b6);
break;
case PT_B7:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, b7));
ptr = pt_reg_addr(pt, b7);
break;
case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, f6) + addr - PT_F6);
ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
break;
case PT_AR_BSPSTORE:
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, ar_bspstore));
ptr = pt_reg_addr(pt, ar_bspstore);
break;
case PT_AR_RSC:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, ar_rsc));
ptr = pt_reg_addr(pt, ar_rsc);
break;
case PT_AR_UNAT:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, ar_unat));
ptr = pt_reg_addr(pt, ar_unat);
break;
case PT_AR_PFS:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, ar_pfs));
ptr = pt_reg_addr(pt, ar_pfs);
break;
case PT_AR_CCV:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, ar_ccv));
ptr = pt_reg_addr(pt, ar_ccv);
break;
case PT_AR_FPSR:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, ar_fpsr));
ptr = pt_reg_addr(pt, ar_fpsr);
break;
case PT_CR_IIP:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, cr_iip));
ptr = pt_reg_addr(pt, cr_iip);
break;
case PT_PR:
ptr = (unsigned long *) ((long) pt + offsetof(struct pt_regs, pr));
ptr = pt_reg_addr(pt, pr);
break;
/* scratch register */
default:
/* disallow accessing anything else... */
dprintk("ptrace: rejecting access to register address 0x%lx\n",
addr);
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
} else if (addr <= PT_AR_SSD) {
ptr = (unsigned long *)
((long) pt + offsetof(struct pt_regs, ar_csd) + addr - PT_AR_CSD);
ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
} else {
/* access debug registers */
......@@ -937,37 +1017,43 @@ access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data
}
if (regnum >= 8) {
dprintk("ptrace: rejecting access to register address 0x%lx\n", addr);
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
#ifdef CONFIG_PERFMON
/*
* Check if debug registers are used by perfmon. This test must be done
* once we know that we can do the operation, i.e. the arguments are all
* valid, but before we start modifying the state.
* Check if debug registers are used by perfmon. This
* test must be done once we know that we can do the
* operation, i.e. the arguments are all valid, but
* before we start modifying the state.
*
* Perfmon needs to keep a count of how many processes are trying to
* modify the debug registers for system wide monitoring sessions.
* Perfmon needs to keep a count of how many processes
* are trying to modify the debug registers for system
* wide monitoring sessions.
*
* We also include read access here, because they may cause the
* PMU-installed debug register state (dbr[], ibr[]) to be reset. The two
* arrays are also used by perfmon, but we do not use
* IA64_THREAD_DBG_VALID. The registers are restored by the PMU context
* switch code.
* We also include read access here, because they may
* cause the PMU-installed debug register state
* (dbr[], ibr[]) to be reset. The two arrays are also
* used by perfmon, but we do not use
* IA64_THREAD_DBG_VALID. The registers are restored
* by the PMU context switch code.
*/
if (pfm_use_debug_registers(child)) return -1;
#endif
if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
child->thread.flags |= IA64_THREAD_DBG_VALID;
memset(child->thread.dbr, 0, sizeof(child->thread.dbr));
memset(child->thread.ibr, 0, sizeof(child->thread.ibr));
memset(child->thread.dbr, 0,
sizeof(child->thread.dbr));
memset(child->thread.ibr, 0,
sizeof(child->thread.ibr));
}
ptr += regnum;
if (write_access)
/* don't let the user set kernel-level breakpoints... */
/* don't let the user set kernel-level breakpoints: */
*ptr = *data & ~(7UL << 56);
else
*data = *ptr;
......@@ -992,7 +1078,8 @@ ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
char nat = 0;
int i;
retval = verify_area(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs));
retval = verify_area(VERIFY_WRITE, ppr,
sizeof(struct pt_all_user_regs));
if (retval != 0) {
return -EIO;
}
......@@ -1094,11 +1181,13 @@ ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
/* fr6-fr11 */
retval |= __copy_to_user(&ppr->fr[6], &pt->f6, sizeof(struct ia64_fpreg) * 6);
retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
sizeof(struct ia64_fpreg) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_to_user(&ppr->fr[12], &sw->f12, sizeof(struct ia64_fpreg) * 4);
retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
sizeof(struct ia64_fpreg) * 4);
/* fr16-fr31 */
......@@ -1111,7 +1200,8 @@ ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
/* fph */
ia64_flush_fph(child);
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, sizeof(ppr->fr[32]) * 96);
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
sizeof(ppr->fr[32]) * 96);
/* preds */
......@@ -1138,7 +1228,8 @@ ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
memset(&fpval, 0, sizeof(fpval));
retval = verify_area(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs));
retval = verify_area(VERIFY_READ, ppr,
sizeof(struct pt_all_user_regs));
if (retval != 0) {
return -EIO;
}
......@@ -1186,7 +1277,8 @@ ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
for (i = 4; i < 8; i++) {
retval |= __get_user(val, &ppr->gr[i]);
if (unw_set_gr(&info, i, val, 0) < 0) /* NaT bit will be set via PT_NAT_BITS */
/* NaT bit will be set via PT_NAT_BITS: */
if (unw_set_gr(&info, i, val, 0) < 0)
return -EIO;
}
......@@ -1230,16 +1322,19 @@ ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
/* fr6-fr11 */
retval |= __copy_from_user(&pt->f6, &ppr->fr[6], sizeof(ppr->fr[6]) * 6);
retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
sizeof(ppr->fr[6]) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_from_user(&sw->f12, &ppr->fr[12], sizeof(ppr->fr[12]) * 4);
retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
sizeof(ppr->fr[12]) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
retval |= __copy_from_user(&fpval, &ppr->fr[i],
sizeof(fpval));
if (unw_set_fr(&info, i, fpval) < 0)
return -EIO;
}
......@@ -1247,7 +1342,8 @@ ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
/* fph */
ia64_sync_fph(child);
retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], sizeof(ppr->fr[32]) * 96);
retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
sizeof(ppr->fr[32]) * 96);
/* preds */
......@@ -1308,8 +1404,10 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
goto out;
}
peek_or_poke = (request == PTRACE_PEEKTEXT || request == PTRACE_PEEKDATA
|| request == PTRACE_POKETEXT || request == PTRACE_POKEDATA);
peek_or_poke = (request == PTRACE_PEEKTEXT
|| request == PTRACE_PEEKDATA
|| request == PTRACE_POKETEXT
|| request == PTRACE_POKEDATA);
ret = -ESRCH;
read_lock(&tasklist_lock);
{
......@@ -1341,31 +1439,37 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
switch (request) {
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA: /* read word at location addr */
case PTRACE_PEEKDATA:
/* read word at location addr */
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
ret = ia64_peek(child, sw, urbs_end, addr, &data);
if (ret == 0) {
ret = data;
regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */
/* ensure "ret" is not mistaken as an error code: */
regs->r8 = 0;
}
goto out_tsk;
case PTRACE_POKETEXT:
case PTRACE_POKEDATA: /* write the word at location addr */
case PTRACE_POKEDATA:
/* write the word at location addr */
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
ret = ia64_poke(child, sw, urbs_end, addr, data);
goto out_tsk;
case PTRACE_PEEKUSR: /* read the word at addr in the USER area */
case PTRACE_PEEKUSR:
/* read the word at addr in the USER area */
if (access_uarea(child, addr, &data, 0) < 0) {
ret = -EIO;
goto out_tsk;
}
ret = data;
regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */
/* ensure "ret" is not mistaken as an error code */
regs->r8 = 0;
goto out_tsk;
case PTRACE_POKEUSR: /* write the word at addr in the USER area */
case PTRACE_POKEUSR:
/* write the word at addr in the USER area */
if (access_uarea(child, addr, &data, 1) < 0) {
ret = -EIO;
goto out_tsk;
......@@ -1373,16 +1477,20 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
ret = 0;
goto out_tsk;
case PTRACE_OLD_GETSIGINFO: /* for backwards-compatibility */
case PTRACE_OLD_GETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_OLD_SETSIGINFO: /* for backwards-compatibility */
case PTRACE_OLD_SETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */
case PTRACE_CONT: /* restart after signal. */
case PTRACE_SYSCALL:
/* continue and stop at next (return from) syscall */
case PTRACE_CONT:
/* restart after signal. */
ret = -EIO;
if (data > _NSIG)
goto out_tsk;
......@@ -1392,7 +1500,10 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
child->exit_code = data;
/* make sure the single step/taken-branch trap bits are not set: */
/*
* Make sure the single step/taken-branch trap bits
* are not set:
*/
ia64_psr(pt)->ss = 0;
ia64_psr(pt)->tb = 0;
......@@ -1406,11 +1517,15 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
* sigkill. Perhaps it should be put in the status
* that it wants to exit.
*/
if (child->exit_state == EXIT_ZOMBIE) /* already dead */
if (child->exit_state == EXIT_ZOMBIE)
/* already dead */
goto out_tsk;
child->exit_code = SIGKILL;
/* make sure the single step/take-branch tra bits are not set: */
/*
* Make sure the single step/take-branch trap bits are
* not set:
*/
ia64_psr(pt)->ss = 0;
ia64_psr(pt)->tb = 0;
......@@ -1418,7 +1533,8 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
ret = 0;
goto out_tsk;
case PTRACE_SINGLESTEP: /* let child execute for one instruction */
case PTRACE_SINGLESTEP:
/* let child execute for one instruction */
case PTRACE_SINGLEBLOCK:
ret = -EIO;
if (data > _NSIG)
......@@ -1437,16 +1553,19 @@ sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
ret = 0;
goto out_tsk;
case PTRACE_DETACH: /* detach a process that was attached. */
case PTRACE_DETACH:
/* detach a process that was attached. */
ret = ptrace_detach(child, data);
goto out_tsk;
case PTRACE_GETREGS:
ret = ptrace_getregs(child, (struct pt_all_user_regs __user *) data);
ret = ptrace_getregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
case PTRACE_SETREGS:
ret = ptrace_setregs(child, (struct pt_all_user_regs __user *) data);
ret = ptrace_setregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
default:
......@@ -1469,15 +1588,16 @@ syscall_trace (void)
if (!(current->ptrace & PT_PTRACED))
return;
/*
* The 0x80 provides a way for the tracing parent to distinguish between a syscall
* stop and SIGTRAP delivery.
* The 0x80 provides a way for the tracing parent to
* distinguish between a syscall stop and SIGTRAP delivery.
*/
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
ptrace_notify(SIGTRAP
| ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
/*
* This isn't the same as continuing with a signal, but it will do for normal use.
* strace only continues with a signal if the stopping signal is not SIGTRAP.
* -brl
* This isn't the same as continuing with a signal, but it
* will do for normal use. strace only continues with a
* signal if the stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
......@@ -1503,7 +1623,8 @@ syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
audit_syscall_entry(current, syscall, arg0, arg1, arg2, arg3);
}
if (test_thread_flag(TIF_SYSCALL_TRACE) && (current->ptrace & PT_PTRACED))
if (test_thread_flag(TIF_SYSCALL_TRACE)
&& (current->ptrace & PT_PTRACED))
syscall_trace();
}
......@@ -1516,6 +1637,7 @@ syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
if (unlikely(current->audit_context))
audit_syscall_exit(current, ((struct pt_regs *) &stack)->r8);
if (test_thread_flag(TIF_SYSCALL_TRACE) && (current->ptrace & PT_PTRACED))
if (test_thread_flag(TIF_SYSCALL_TRACE)
&& (current->ptrace & PT_PTRACED))
syscall_trace();
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment