Commit d37ea5d5 authored by Auke Kok's avatar Auke Kok Committed by Auke Kok

e1000: add ich8lan core functions

This implements the core new functions needed for ich8's internal
NIC. This includes:

* ich8 specific read/write code
* flash/nvm access code
* software semaphore flag functions
* 10/100 PHY (fe - no gigabit speed) support for low-end versions
* A workaround for a powerdown sequence problem discovered that
affects a small number of motherboard.
Signed-off-by: default avatarJesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: default avatarAuke Kok <auke-jan.h.kok@intel.com>
parent ab7bc0ad
...@@ -3616,12 +3616,121 @@ e1000_phy_reset(struct e1000_hw *hw) ...@@ -3616,12 +3616,121 @@ e1000_phy_reset(struct e1000_hw *hw)
return E1000_SUCCESS; return E1000_SUCCESS;
} }
/******************************************************************************
* Work-around for 82566 power-down: on D3 entry-
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* if successful continue, else issue LCD reset and repeat
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_powerdown_workaround(struct e1000_hw *hw)
{
int32_t reg;
uint16_t phy_data;
int32_t retry = 0;
DEBUGFUNC("e1000_phy_powerdown_workaround");
if (hw->phy_type != e1000_phy_igp_3)
return;
do {
/* Disable link */
reg = E1000_READ_REG(hw, PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* Write VR power-down enable */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
IGP3_VR_CTRL_MODE_SHUT);
/* Read it back and test */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
reg = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
return;
}
/******************************************************************************
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
*
* hw - struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
{
int32_t ret_val;
int32_t reg;
int32_t cnt;
uint16_t phy_data;
if (hw->kmrn_lock_loss_workaround_disabled)
return E1000_SUCCESS;
/* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouls up link
* stability */
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (phy_data & MII_SR_LINK_STATUS) {
for (cnt = 0; cnt < 10; cnt++) {
/* read once to clear */
ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
if (ret_val)
return ret_val;
/* and again to get new status */
ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
if (ret_val)
return ret_val;
/* check for PCS lock */
if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
return E1000_SUCCESS;
/* Issue PHY reset */
e1000_phy_hw_reset(hw);
msec_delay_irq(5);
}
/* Disable GigE link negotiation */
reg = E1000_READ_REG(hw, PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* unable to acquire PCS lock */
return E1000_ERR_PHY;
}
return E1000_SUCCESS;
}
/****************************************************************************** /******************************************************************************
* Probes the expected PHY address for known PHY IDs * Probes the expected PHY address for known PHY IDs
* *
* hw - Struct containing variables accessed by shared code * hw - Struct containing variables accessed by shared code
******************************************************************************/ ******************************************************************************/
static int32_t int32_t
e1000_detect_gig_phy(struct e1000_hw *hw) e1000_detect_gig_phy(struct e1000_hw *hw)
{ {
int32_t phy_init_status, ret_val; int32_t phy_init_status, ret_val;
...@@ -3803,6 +3912,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, ...@@ -3803,6 +3912,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
return E1000_SUCCESS; return E1000_SUCCESS;
} }
/******************************************************************************
* Get PHY information from various PHY registers for ife PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_ife_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
uint16_t phy_data, polarity;
DEBUGFUNC("e1000_phy_ife_get_info");
phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_info->polarity_correction =
(phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
ret_val = e1000_check_polarity(hw, &polarity);
if (ret_val)
return ret_val;
} else {
/* Polarity is forced. */
polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
IFE_PSC_FORCE_POLARITY_SHIFT;
}
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_info->mdix_mode =
(phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
IFE_PMC_MDIX_MODE_SHIFT;
return E1000_SUCCESS;
}
/****************************************************************************** /******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only. * Get PHY information from various PHY registers fot m88 PHY only.
* *
...@@ -7630,4 +7786,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw) ...@@ -7630,4 +7786,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
} }
/******************************************************************************
* Configure PCI-Ex no-snoop
*
* hw - Struct containing variables accessed by shared code.
* no_snoop - Bitmap of no-snoop events.
*
* returns: E1000_SUCCESS
*
*****************************************************************************/
int32_t
e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
{
uint32_t gcr_reg = 0;
DEBUGFUNC("e1000_set_pci_ex_no_snoop");
if (hw->bus_type == e1000_bus_type_unknown)
e1000_get_bus_info(hw);
if (hw->bus_type != e1000_bus_type_pci_express)
return E1000_SUCCESS;
if (no_snoop) {
gcr_reg = E1000_READ_REG(hw, GCR);
gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
gcr_reg |= no_snoop;
E1000_WRITE_REG(hw, GCR, gcr_reg);
}
if (hw->mac_type == e1000_ich8lan) {
uint32_t ctrl_ext;
E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Get software semaphore FLAG bit (SWFLAG).
* SWFLAG is used to synchronize the access to all shared resource between
* SW, FW and HW.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_get_software_flag(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t extcnf_ctrl;
DEBUGFUNC("e1000_get_software_flag");
if (hw->mac_type == e1000_ich8lan) {
while (timeout) {
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break;
msec_delay_irq(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("FW or HW locks the resource too long.\n");
return -E1000_ERR_CONFIG;
}
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Release software semaphore FLAG bit (SWFLAG).
* SWFLAG is used to synchronize the access to all shared resource between
* SW, FW and HW.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
void
e1000_release_software_flag(struct e1000_hw *hw)
{
uint32_t extcnf_ctrl;
DEBUGFUNC("e1000_release_software_flag");
if (hw->mac_type == e1000_ich8lan) {
extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
}
return;
}
/***************************************************************************
*
* Disable dynamic power down mode in ife PHY.
* It can be used to workaround band-gap problem.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
{
uint16_t phy_data;
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
}
return ret_val;
}
/***************************************************************************
*
* Enable dynamic power down mode in ife PHY.
* It can be used to workaround band-gap problem.
*
* hw: Struct containing variables accessed by shared code
*
***************************************************************************/
int32_t
e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
{
uint16_t phy_data;
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
}
return ret_val;
}
/******************************************************************************
* Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
* register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
uint16_t *data)
{
int32_t error = E1000_SUCCESS;
uint32_t flash_bank = 0;
uint32_t act_offset = 0;
uint32_t bank_offset = 0;
uint16_t word = 0;
uint16_t i = 0;
/* We need to know which is the valid flash bank. In the event
* that we didn't allocate eeprom_shadow_ram, we may not be
* managing flash_bank. So it cannot be trusted and needs
* to be updated with each read.
*/
/* Value of bit 22 corresponds to the flash bank we're on. */
flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
/* Adjust offset appropriately if we're on bank 1 - adjust for word size */
bank_offset = flash_bank * (hw->flash_bank_size * 2);
error = e1000_get_software_flag(hw);
if (error != E1000_SUCCESS)
return error;
for (i = 0; i < words; i++) {
if (hw->eeprom_shadow_ram != NULL &&
hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
} else {
/* The NVM part needs a byte offset, hence * 2 */
act_offset = bank_offset + ((offset + i) * 2);
error = e1000_read_ich8_word(hw, act_offset, &word);
if (error != E1000_SUCCESS)
break;
data[i] = word;
}
}
e1000_release_software_flag(hw);
return error;
}
/******************************************************************************
* Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
* register. Actually, writes are written to the shadow ram cache in the hw
* structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
* the NVM, which occurs when the NVM checksum is updated.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to write
* words - number of words to write
* data - words to write to the EEPROM
*****************************************************************************/
int32_t
e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
uint16_t *data)
{
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
error = e1000_get_software_flag(hw);
if (error != E1000_SUCCESS)
return error;
/* A driver can write to the NVM only if it has eeprom_shadow_ram
* allocated. Subsequent reads to the modified words are read from
* this cached structure as well. Writes will only go into this
* cached structure unless it's followed by a call to
* e1000_update_eeprom_checksum() where it will commit the changes
* and clear the "modified" field.
*/
if (hw->eeprom_shadow_ram != NULL) {
for (i = 0; i < words; i++) {
if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
hw->eeprom_shadow_ram[offset+i].modified = TRUE;
hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
} else {
error = -E1000_ERR_EEPROM;
break;
}
}
} else {
/* Drivers have the option to not allocate eeprom_shadow_ram as long
* as they don't perform any NVM writes. An attempt in doing so
* will result in this error.
*/
error = -E1000_ERR_EEPROM;
}
e1000_release_software_flag(hw);
return error;
}
/******************************************************************************
* This function does initial flash setup so that a new read/write/erase cycle
* can be started.
*
* hw - The pointer to the hw structure
****************************************************************************/
int32_t
e1000_ich8_cycle_init(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
int32_t error = E1000_ERR_EEPROM;
int32_t i = 0;
DEBUGFUNC("e1000_ich8_cycle_init");
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
/* May be check the Flash Des Valid bit in Hw status */
if (hsfsts.hsf_status.fldesvalid == 0) {
DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
return error;
}
/* Clear FCERR in Hw status by writing 1 */
/* Clear DAEL in Hw status by writing a 1 */
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
/* Either we should have a hardware SPI cycle in progress bit to check
* against, in order to start a new cycle or FDONE bit should be changed
* in the hardware so that it is 1 after harware reset, which can then be
* used as an indication whether a cycle is in progress or has been
* completed .. we should also have some software semaphore mechanism to
* guard FDONE or the cycle in progress bit so that two threads access to
* those bits can be sequentiallized or a way so that 2 threads dont
* start the cycle at the same time */
if (hsfsts.hsf_status.flcinprog == 0) {
/* There is no cycle running at present, so we can start a cycle */
/* Begin by setting Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
error = E1000_SUCCESS;
} else {
/* otherwise poll for sometime so the current cycle has a chance
* to end before giving up. */
for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) {
error = E1000_SUCCESS;
break;
}
udelay(1);
}
if (error == E1000_SUCCESS) {
/* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
} else {
DEBUGOUT("Flash controller busy, cannot get access");
}
}
return error;
}
/******************************************************************************
* This function starts a flash cycle and waits for its completion
*
* hw - The pointer to the hw structure
****************************************************************************/
int32_t
e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
int32_t error = E1000_ERR_EEPROM;
uint32_t i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone == 1)
break;
udelay(1);
i++;
} while (i < timeout);
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
error = E1000_SUCCESS;
}
return error;
}
/******************************************************************************
* Reads a byte or word from the NVM using the ICH8 flash access registers.
*
* hw - The pointer to the hw structure
* index - The index of the byte or word to read.
* size - Size of data to read, 1=byte 2=word
* data - Pointer to the word to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
uint32_t size, uint16_t* data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
uint32_t flash_data = 0;
int32_t error = -E1000_ERR_EEPROM;
int32_t count = 0;
DEBUGFUNC("e1000_read_ich8_data");
if (size < 1 || size > 2 || data == 0x0 ||
index > ICH8_FLASH_LINEAR_ADDR_MASK)
return error;
flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
udelay(1);
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS)
break;
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
/* TODO: TBD maybe check the index against the size of flash */
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it and try the whole
* sequence a few more times, else read in (shift in) the Flash Data0,
* the order is least significant byte first msb to lsb */
if (error == E1000_SUCCESS) {
flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
if (size == 1) {
*data = (uint8_t)(flash_data & 0x000000FF);
} else if (size == 2) {
*data = (uint16_t)(flash_data & 0x0000FFFF);
}
break;
} else {
/* If we've gotten here, then things are probably completely hosed,
* but if the error condition is detected, it won't hurt to give
* it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
DEBUGOUT("Timeout error - flash cycle did not complete.");
break;
}
}
} while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
/******************************************************************************
* Writes One /two bytes to the NVM using the ICH8 flash access registers.
*
* hw - The pointer to the hw structure
* index - The index of the byte/word to read.
* size - Size of data to read, 1=byte 2=word
* data - The byte(s) to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
uint16_t data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
uint32_t flash_data = 0;
int32_t error = -E1000_ERR_EEPROM;
int32_t count = 0;
DEBUGFUNC("e1000_write_ich8_data");
if (size < 1 || size > 2 || data > size * 0xff ||
index > ICH8_FLASH_LINEAR_ADDR_MASK)
return error;
flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
udelay(1);
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS)
break;
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size -1;
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
if (size == 1)
flash_data = (uint32_t)data & 0x00FF;
else
flash_data = (uint32_t)data;
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
/* check if FCERR is set to 1 , if set to 1, clear it and try the whole
* sequence a few more times else done */
error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
if (error == E1000_SUCCESS) {
break;
} else {
/* If we're here, then things are most likely completely hosed,
* but if the error condition is detected, it won't hurt to give
* it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
DEBUGOUT("Timeout error - flash cycle did not complete.");
break;
}
}
} while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
/******************************************************************************
* Reads a single byte from the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to read.
* data - Pointer to a byte to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
{
int32_t status = E1000_SUCCESS;
uint16_t word = 0;
status = e1000_read_ich8_data(hw, index, 1, &word);
if (status == E1000_SUCCESS) {
*data = (uint8_t)word;
}
return status;
}
/******************************************************************************
* Writes a single byte to the NVM using the ICH8 flash access registers.
* Performs verification by reading back the value and then going through
* a retry algorithm before giving up.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to write.
* byte - The byte to write to the NVM.
*****************************************************************************/
int32_t
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
{
int32_t error = E1000_SUCCESS;
int32_t program_retries;
uint8_t temp_byte;
e1000_write_ich8_byte(hw, index, byte);
udelay(100);
for (program_retries = 0; program_retries < 100; program_retries++) {
e1000_read_ich8_byte(hw, index, &temp_byte);
if (temp_byte == byte)
break;
udelay(10);
e1000_write_ich8_byte(hw, index, byte);
udelay(100);
}
if (program_retries == 100)
error = E1000_ERR_EEPROM;
return error;
}
/******************************************************************************
* Writes a single byte to the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The index of the byte to read.
* data - The byte to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
{
int32_t status = E1000_SUCCESS;
uint16_t word = (uint16_t)data;
status = e1000_write_ich8_data(hw, index, 1, word);
return status;
}
/******************************************************************************
* Reads a word from the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The starting byte index of the word to read.
* data - Pointer to a word to store the value read.
*****************************************************************************/
int32_t
e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
{
int32_t status = E1000_SUCCESS;
status = e1000_read_ich8_data(hw, index, 2, data);
return status;
}
/******************************************************************************
* Writes a word to the NVM using the ICH8 flash access registers.
*
* hw - pointer to e1000_hw structure
* index - The starting byte index of the word to read.
* data - The word to write to the NVM.
*****************************************************************************/
int32_t
e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
{
int32_t status = E1000_SUCCESS;
status = e1000_write_ich8_data(hw, index, 2, data);
return status;
}
/******************************************************************************
* Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
* segment N is 4096 * N + flash_reg_addr.
*
* hw - pointer to e1000_hw structure
* segment - 0 for first segment, 1 for second segment, etc.
*****************************************************************************/
int32_t
e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
int32_t count = 0;
int32_t error = E1000_ERR_EEPROM;
int32_t iteration, seg_size;
int32_t sector_size;
int32_t j = 0;
int32_t error_flag = 0;
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
/* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
/* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector can be
* calculated as = segment * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
* as = segment * 4096
* 10: Error condition
* 11: The Hw sector size is much bigger than the size asked to
* erase...error condition */
if (hsfsts.hsf_status.berasesz == 0x0) {
/* Hw sector size 256 */
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
} else if (hsfsts.hsf_status.berasesz == 0x1) {
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
iteration = 1;
} else if (hsfsts.hsf_status.berasesz == 0x3) {
sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
iteration = 1;
} else {
return error;
}
for (j = 0; j < iteration ; j++) {
do {
count++;
/* Steps */
error = e1000_ich8_cycle_init(hw);
if (error != E1000_SUCCESS) {
error_flag = 1;
break;
}
/* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
* Control */
hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of an index within the block into Flash
* Linear address field in Flash Address. This probably needs to
* be calculated here based off the on-chip segment size and the
* software segment size assumed (4K) */
/* TBD */
flash_linear_address = segment * sector_size + j * seg_size;
flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
flash_linear_address += hw->flash_base_addr;
E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
error = e1000_ich8_flash_cycle(hw, 1000000);
/* Check if FCERR is set to 1. If 1, clear it and try the whole
* sequence a few more times else Done */
if (error == E1000_SUCCESS) {
break;
} else {
hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* repeat for some time before giving up */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
error_flag = 1;
break;
}
}
} while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
if (error_flag == 1)
break;
}
if (error_flag != 1)
error = E1000_SUCCESS;
return error;
}
/******************************************************************************
*
* Reverse duplex setting without breaking the link.
*
* hw: Struct containing variables accessed by shared code
*
*****************************************************************************/
int32_t
e1000_duplex_reversal(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
if (hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data ^= MII_CR_FULL_DUPLEX;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
return ret_val;
}
int32_t
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
uint32_t cnf_base_addr, uint32_t cnf_size)
{
uint32_t ret_val = E1000_SUCCESS;
uint16_t word_addr, reg_data, reg_addr;
uint16_t i;
/* cnf_base_addr is in DWORD */
word_addr = (uint16_t)(cnf_base_addr << 1);
/* cnf_size is returned in size of dwords */
for (i = 0; i < cnf_size; i++) {
ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
if (ret_val)
return ret_val;
ret_val = e1000_get_software_flag(hw);
if (ret_val != E1000_SUCCESS)
return ret_val;
ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
e1000_release_software_flag(hw);
}
return ret_val;
}
int32_t
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
{
uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
if (hw->phy_type != e1000_phy_igp_3)
return E1000_SUCCESS;
/* Check if SW needs configure the PHY */
reg_data = E1000_READ_REG(hw, FEXTNVM);
if (!(reg_data & FEXTNVM_SW_CONFIG))
return E1000_SUCCESS;
/* Wait for basic configuration completes before proceeding*/
loop = 0;
do {
reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
udelay(100);
loop++;
} while ((!reg_data) && (loop < 50));
/* Clear the Init Done bit for the next init event */
reg_data = E1000_READ_REG(hw, STATUS);
reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
E1000_WRITE_REG(hw, STATUS, reg_data);
/* Make sure HW does not configure LCD from PHY extended configuration
before SW configuration */
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
cnf_size >>= 16;
if (cnf_size) {
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
/* cnf_base_addr is in DWORD */
cnf_base_addr >>= 16;
/* Configure LCD from extended configuration region. */
ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
cnf_size);
if (ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
...@@ -62,6 +62,7 @@ typedef enum { ...@@ -62,6 +62,7 @@ typedef enum {
e1000_82572, e1000_82572,
e1000_82573, e1000_82573,
e1000_80003es2lan, e1000_80003es2lan,
e1000_ich8lan,
e1000_num_macs e1000_num_macs
} e1000_mac_type; } e1000_mac_type;
...@@ -70,6 +71,7 @@ typedef enum { ...@@ -70,6 +71,7 @@ typedef enum {
e1000_eeprom_spi, e1000_eeprom_spi,
e1000_eeprom_microwire, e1000_eeprom_microwire,
e1000_eeprom_flash, e1000_eeprom_flash,
e1000_eeprom_ich8,
e1000_eeprom_none, /* No NVM support */ e1000_eeprom_none, /* No NVM support */
e1000_num_eeprom_types e1000_num_eeprom_types
} e1000_eeprom_type; } e1000_eeprom_type;
...@@ -98,6 +100,11 @@ typedef enum { ...@@ -98,6 +100,11 @@ typedef enum {
e1000_fc_default = 0xFF e1000_fc_default = 0xFF
} e1000_fc_type; } e1000_fc_type;
struct e1000_shadow_ram {
uint16_t eeprom_word;
boolean_t modified;
};
/* PCI bus types */ /* PCI bus types */
typedef enum { typedef enum {
e1000_bus_type_unknown = 0, e1000_bus_type_unknown = 0,
...@@ -218,6 +225,8 @@ typedef enum { ...@@ -218,6 +225,8 @@ typedef enum {
e1000_phy_igp, e1000_phy_igp,
e1000_phy_igp_2, e1000_phy_igp_2,
e1000_phy_gg82563, e1000_phy_gg82563,
e1000_phy_igp_3,
e1000_phy_ife,
e1000_phy_undefined = 0xFF e1000_phy_undefined = 0xFF
} e1000_phy_type; } e1000_phy_type;
...@@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy ...@@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy
int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
int32_t e1000_phy_hw_reset(struct e1000_hw *hw); int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
int32_t e1000_phy_reset(struct e1000_hw *hw); int32_t e1000_phy_reset(struct e1000_hw *hw);
void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
...@@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); ...@@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
#define E1000_MNG_IAMT_MODE 0x3 #define E1000_MNG_IAMT_MODE 0x3
#define E1000_MNG_ICH_IAMT_MODE 0x2
#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
...@@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); ...@@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
int32_t e1000_read_mac_addr(struct e1000_hw * hw); int32_t e1000_read_mac_addr(struct e1000_hw * hw);
int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
void e1000_release_software_flag(struct e1000_hw *hw);
int32_t e1000_get_software_flag(struct e1000_hw *hw);
/* Filters (multicast, vlan, receive) */ /* Filters (multicast, vlan, receive) */
void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
...@@ -423,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw); ...@@ -423,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
int32_t e1000_get_software_semaphore(struct e1000_hw *hw); int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
void e1000_release_software_semaphore(struct e1000_hw *hw); void e1000_release_software_semaphore(struct e1000_hw *hw);
int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t *data);
int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t byte);
int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
uint8_t byte);
int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
uint16_t *data);
int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
uint32_t size, uint16_t *data);
int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment);
#define E1000_READ_REG_IO(a, reg) \
e1000_read_reg_io((a), E1000_##reg)
#define E1000_WRITE_REG_IO(a, reg, val) \
e1000_write_reg_io((a), E1000_##reg, val)
/* PCI Device IDs */ /* PCI Device IDs */
#define E1000_DEV_ID_82542 0x1000 #define E1000_DEV_ID_82542 0x1000
...@@ -447,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); ...@@ -447,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D #define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
#define E1000_DEV_ID_82541EI 0x1013 #define E1000_DEV_ID_82541EI 0x1013
#define E1000_DEV_ID_82541EI_MOBILE 0x1018 #define E1000_DEV_ID_82541EI_MOBILE 0x1018
#define E1000_DEV_ID_82541ER_LOM 0x1014
#define E1000_DEV_ID_82541ER 0x1078 #define E1000_DEV_ID_82541ER 0x1078
#define E1000_DEV_ID_82547GI 0x1075 #define E1000_DEV_ID_82547GI 0x1075
#define E1000_DEV_ID_82541GI 0x1076 #define E1000_DEV_ID_82541GI 0x1076
...@@ -458,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); ...@@ -458,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
#define E1000_DEV_ID_82546GB_PCIE 0x108A #define E1000_DEV_ID_82546GB_PCIE 0x108A
#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
#define E1000_DEV_ID_82547EI 0x1019 #define E1000_DEV_ID_82547EI 0x1019
#define E1000_DEV_ID_82547EI_MOBILE 0x101A
#define E1000_DEV_ID_82571EB_COPPER 0x105E #define E1000_DEV_ID_82571EB_COPPER 0x105E
#define E1000_DEV_ID_82571EB_FIBER 0x105F #define E1000_DEV_ID_82571EB_FIBER 0x105F
#define E1000_DEV_ID_82571EB_SERDES 0x1060 #define E1000_DEV_ID_82571EB_SERDES 0x1060
#define E1000_DEV_ID_82572EI_COPPER 0x107D #define E1000_DEV_ID_82572EI_COPPER 0x107D
#define E1000_DEV_ID_82572EI_FIBER 0x107E #define E1000_DEV_ID_82572EI_FIBER 0x107E
#define E1000_DEV_ID_82572EI_SERDES 0x107F #define E1000_DEV_ID_82572EI_SERDES 0x107F
#define E1000_DEV_ID_82572EI 0x10B9
#define E1000_DEV_ID_82573E 0x108B #define E1000_DEV_ID_82573E 0x108B
#define E1000_DEV_ID_82573E_IAMT 0x108C #define E1000_DEV_ID_82573E_IAMT 0x108C
#define E1000_DEV_ID_82573L 0x109A #define E1000_DEV_ID_82573L 0x109A
#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 #define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
#define E1000_DEV_ID_ICH8_IGP_C 0x104B
#define E1000_DEV_ID_ICH8_IFE 0x104C
#define E1000_DEV_ID_ICH8_IGP_M 0x104D
#define NODE_ADDRESS_SIZE 6 #define NODE_ADDRESS_SIZE 6
...@@ -540,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); ...@@ -540,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
E1000_IMS_RXSEQ | \ E1000_IMS_RXSEQ | \
E1000_IMS_LSC) E1000_IMS_LSC)
/* Additional interrupts need to be handled for e1000_ich8lan:
DSW = The FW changed the status of the DISSW bit in FWSM
PHYINT = The LAN connected device generates an interrupt
EPRST = Manageability reset event */
#define IMS_ICH8LAN_ENABLE_MASK (\
E1000_IMS_DSW | \
E1000_IMS_PHYINT | \
E1000_IMS_EPRST)
/* Number of high/low register pairs in the RAR. The RAR (Receive Address /* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor. We * Registers) holds the directed and multicast addresses that we monitor. We
...@@ -547,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); ...@@ -547,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
* E1000_RAR_ENTRIES - 1 multicast addresses. * E1000_RAR_ENTRIES - 1 multicast addresses.
*/ */
#define E1000_RAR_ENTRIES 15 #define E1000_RAR_ENTRIES 15
#define E1000_RAR_ENTRIES_ICH8LAN 7
#define MIN_NUMBER_OF_DESCRIPTORS 8 #define MIN_NUMBER_OF_DESCRIPTORS 8
#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 #define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
...@@ -768,6 +827,9 @@ struct e1000_data_desc { ...@@ -768,6 +827,9 @@ struct e1000_data_desc {
#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ #define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
#define E1000_NUM_UNICAST_ICH8LAN 7
#define E1000_MC_TBL_SIZE_ICH8LAN 32
/* Receive Address Register */ /* Receive Address Register */
struct e1000_rar { struct e1000_rar {
...@@ -777,6 +839,7 @@ struct e1000_rar { ...@@ -777,6 +839,7 @@ struct e1000_rar {
/* Number of entries in the Multicast Table Array (MTA). */ /* Number of entries in the Multicast Table Array (MTA). */
#define E1000_NUM_MTA_REGISTERS 128 #define E1000_NUM_MTA_REGISTERS 128
#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
/* IPv4 Address Table Entry */ /* IPv4 Address Table Entry */
struct e1000_ipv4_at_entry { struct e1000_ipv4_at_entry {
...@@ -787,6 +850,7 @@ struct e1000_ipv4_at_entry { ...@@ -787,6 +850,7 @@ struct e1000_ipv4_at_entry {
/* Four wakeup IP addresses are supported */ /* Four wakeup IP addresses are supported */
#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 #define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX #define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
#define E1000_IP4AT_SIZE_ICH8LAN 3
#define E1000_IP6AT_SIZE 1 #define E1000_IP6AT_SIZE 1
/* IPv6 Address Table Entry */ /* IPv6 Address Table Entry */
...@@ -845,6 +909,7 @@ struct e1000_ffvt_entry { ...@@ -845,6 +909,7 @@ struct e1000_ffvt_entry {
#define E1000_FLA 0x0001C /* Flash Access - RW */ #define E1000_FLA 0x0001C /* Flash Access - RW */
#define E1000_MDIC 0x00020 /* MDI Control - RW */ #define E1000_MDIC 0x00020 /* MDI Control - RW */
#define E1000_SCTL 0x00024 /* SerDes Control - RW */ #define E1000_SCTL 0x00024 /* SerDes Control - RW */
#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
#define E1000_FCT 0x00030 /* Flow Control Type - RW */ #define E1000_FCT 0x00030 /* Flow Control Type - RW */
...@@ -873,6 +938,8 @@ struct e1000_ffvt_entry { ...@@ -873,6 +938,8 @@ struct e1000_ffvt_entry {
#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ #define E1000_LEDCTL 0x00E00 /* LED Control - RW */
#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
#define FEXTNVM_SW_CONFIG 0x0001
#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
#define E1000_PBS 0x01008 /* Packet Buffer Size */ #define E1000_PBS 0x01008 /* Packet Buffer Size */
#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
...@@ -900,11 +967,13 @@ struct e1000_ffvt_entry { ...@@ -900,11 +967,13 @@ struct e1000_ffvt_entry {
#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ #define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ #define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ #define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ #define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
...@@ -1051,6 +1120,7 @@ struct e1000_ffvt_entry { ...@@ -1051,6 +1120,7 @@ struct e1000_ffvt_entry {
#define E1000_82542_FLA E1000_FLA #define E1000_82542_FLA E1000_FLA
#define E1000_82542_MDIC E1000_MDIC #define E1000_82542_MDIC E1000_MDIC
#define E1000_82542_SCTL E1000_SCTL #define E1000_82542_SCTL E1000_SCTL
#define E1000_82542_FEXTNVM E1000_FEXTNVM
#define E1000_82542_FCAL E1000_FCAL #define E1000_82542_FCAL E1000_FCAL
#define E1000_82542_FCAH E1000_FCAH #define E1000_82542_FCAH E1000_FCAH
#define E1000_82542_FCT E1000_FCT #define E1000_82542_FCT E1000_FCT
...@@ -1074,6 +1144,19 @@ struct e1000_ffvt_entry { ...@@ -1074,6 +1144,19 @@ struct e1000_ffvt_entry {
#define E1000_82542_RDLEN0 E1000_82542_RDLEN #define E1000_82542_RDLEN0 E1000_82542_RDLEN
#define E1000_82542_RDH0 E1000_82542_RDH #define E1000_82542_RDH0 E1000_82542_RDH
#define E1000_82542_RDT0 E1000_82542_RDT #define E1000_82542_RDT0 E1000_82542_RDT
#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
* RX Control - RW */
#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
#define E1000_82542_RDTR1 0x00130 #define E1000_82542_RDTR1 0x00130
#define E1000_82542_RDBAL1 0x00138 #define E1000_82542_RDBAL1 0x00138
#define E1000_82542_RDBAH1 0x0013C #define E1000_82542_RDBAH1 0x0013C
...@@ -1111,11 +1194,14 @@ struct e1000_ffvt_entry { ...@@ -1111,11 +1194,14 @@ struct e1000_ffvt_entry {
#define E1000_82542_FLOP E1000_FLOP #define E1000_82542_FLOP E1000_FLOP
#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
#define E1000_82542_ERT E1000_ERT #define E1000_82542_ERT E1000_ERT
#define E1000_82542_RXDCTL E1000_RXDCTL #define E1000_82542_RXDCTL E1000_RXDCTL
#define E1000_82542_RXDCTL1 E1000_RXDCTL1
#define E1000_82542_RADV E1000_RADV #define E1000_82542_RADV E1000_RADV
#define E1000_82542_RSRPD E1000_RSRPD #define E1000_82542_RSRPD E1000_RSRPD
#define E1000_82542_TXDMAC E1000_TXDMAC #define E1000_82542_TXDMAC E1000_TXDMAC
#define E1000_82542_KABGTXD E1000_KABGTXD
#define E1000_82542_TDFHS E1000_TDFHS #define E1000_82542_TDFHS E1000_TDFHS
#define E1000_82542_TDFTS E1000_TDFTS #define E1000_82542_TDFTS E1000_TDFTS
#define E1000_82542_TDFPC E1000_TDFPC #define E1000_82542_TDFPC E1000_TDFPC
...@@ -1311,13 +1397,16 @@ struct e1000_hw_stats { ...@@ -1311,13 +1397,16 @@ struct e1000_hw_stats {
/* Structure containing variables used by the shared code (e1000_hw.c) */ /* Structure containing variables used by the shared code (e1000_hw.c) */
struct e1000_hw { struct e1000_hw {
uint8_t __iomem *hw_addr; uint8_t *hw_addr;
uint8_t *flash_address; uint8_t *flash_address;
e1000_mac_type mac_type; e1000_mac_type mac_type;
e1000_phy_type phy_type; e1000_phy_type phy_type;
uint32_t phy_init_script; uint32_t phy_init_script;
e1000_media_type media_type; e1000_media_type media_type;
void *back; void *back;
struct e1000_shadow_ram *eeprom_shadow_ram;
uint32_t flash_bank_size;
uint32_t flash_base_addr;
e1000_fc_type fc; e1000_fc_type fc;
e1000_bus_speed bus_speed; e1000_bus_speed bus_speed;
e1000_bus_width bus_width; e1000_bus_width bus_width;
...@@ -1329,6 +1418,7 @@ struct e1000_hw { ...@@ -1329,6 +1418,7 @@ struct e1000_hw {
uint32_t asf_firmware_present; uint32_t asf_firmware_present;
uint32_t eeprom_semaphore_present; uint32_t eeprom_semaphore_present;
uint32_t swfw_sync_present; uint32_t swfw_sync_present;
uint32_t swfwhw_semaphore_present;
unsigned long io_base; unsigned long io_base;
uint32_t phy_id; uint32_t phy_id;
uint32_t phy_revision; uint32_t phy_revision;
...@@ -1388,6 +1478,7 @@ struct e1000_hw { ...@@ -1388,6 +1478,7 @@ struct e1000_hw {
boolean_t in_ifs_mode; boolean_t in_ifs_mode;
boolean_t mng_reg_access_disabled; boolean_t mng_reg_access_disabled;
boolean_t leave_av_bit_off; boolean_t leave_av_bit_off;
boolean_t kmrn_lock_loss_workaround_disabled;
}; };
...@@ -1436,6 +1527,7 @@ struct e1000_hw { ...@@ -1436,6 +1527,7 @@ struct e1000_hw {
#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ #define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
/* Device Status */ /* Device Status */
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
...@@ -1450,6 +1542,8 @@ struct e1000_hw { ...@@ -1450,6 +1542,8 @@ struct e1000_hw {
#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
by EEPROM/Flash */
#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
...@@ -1507,6 +1601,10 @@ struct e1000_hw { ...@@ -1507,6 +1601,10 @@ struct e1000_hw {
#define E1000_STM_OPCODE 0xDB00 #define E1000_STM_OPCODE 0xDB00
#define E1000_HICR_FW_RESET 0xC0 #define E1000_HICR_FW_RESET 0xC0
#define E1000_SHADOW_RAM_WORDS 2048
#define E1000_ICH8_NVM_SIG_WORD 0x13
#define E1000_ICH8_NVM_SIG_MASK 0xC0
/* EEPROM Read */ /* EEPROM Read */
#define E1000_EERD_START 0x00000001 /* Start Read */ #define E1000_EERD_START 0x00000001 /* Start Read */
#define E1000_EERD_DONE 0x00000010 /* Read Done */ #define E1000_EERD_DONE 0x00000010 /* Read Done */
...@@ -1552,7 +1650,6 @@ struct e1000_hw { ...@@ -1552,7 +1650,6 @@ struct e1000_hw {
#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
...@@ -1592,12 +1689,31 @@ struct e1000_hw { ...@@ -1592,12 +1689,31 @@ struct e1000_hw {
#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 #define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
/* In-Band Control */ /* In-Band Control */
#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 #define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
/* Half-Duplex Control */ /* Half-Duplex Control */
#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 #define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 #define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
#define E1000_KABGTXD_BGSQLBIAS 0x00050000
#define E1000_PHY_CTRL_SPD_EN 0x00000001
#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
#define E1000_PHY_CTRL_B2B_EN 0x00000080
/* LED Control */ /* LED Control */
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0 #define E1000_LEDCTL_LED0_MODE_SHIFT 0
...@@ -1667,6 +1783,9 @@ struct e1000_hw { ...@@ -1667,6 +1783,9 @@ struct e1000_hw {
#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ #define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
/* Interrupt Cause Set */ /* Interrupt Cause Set */
#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
...@@ -1693,6 +1812,9 @@ struct e1000_hw { ...@@ -1693,6 +1812,9 @@ struct e1000_hw {
#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_ICS_DSW E1000_ICR_DSW
#define E1000_ICS_PHYINT E1000_ICR_PHYINT
#define E1000_ICS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Set */ /* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
...@@ -1719,6 +1841,9 @@ struct e1000_hw { ...@@ -1719,6 +1841,9 @@ struct e1000_hw {
#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMS_DSW E1000_ICR_DSW
#define E1000_IMS_PHYINT E1000_ICR_PHYINT
#define E1000_IMS_EPRST E1000_ICR_EPRST
/* Interrupt Mask Clear */ /* Interrupt Mask Clear */
#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
...@@ -1745,6 +1870,9 @@ struct e1000_hw { ...@@ -1745,6 +1870,9 @@ struct e1000_hw {
#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ #define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ #define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
#define E1000_IMC_DSW E1000_ICR_DSW
#define E1000_IMC_PHYINT E1000_ICR_PHYINT
#define E1000_IMC_EPRST E1000_ICR_EPRST
/* Receive Control */ /* Receive Control */
#define E1000_RCTL_RST 0x00000001 /* Software reset */ #define E1000_RCTL_RST 0x00000001 /* Software reset */
...@@ -1919,9 +2047,10 @@ struct e1000_hw { ...@@ -1919,9 +2047,10 @@ struct e1000_hw {
#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 #define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000 #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 #define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
/* Definitions for power management and wakeup registers */ /* Definitions for power management and wakeup registers */
/* Wake Up Control */ /* Wake Up Control */
...@@ -2011,6 +2140,15 @@ struct e1000_hw { ...@@ -2011,6 +2140,15 @@ struct e1000_hw {
#define E1000_FWSM_MODE_SHIFT 1 #define E1000_FWSM_MODE_SHIFT 1
#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
#define E1000_FWSM_SKUEL_SHIFT 29
#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
/* FFLT Debug Register */ /* FFLT Debug Register */
#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
...@@ -2083,6 +2221,8 @@ struct e1000_host_command_info { ...@@ -2083,6 +2221,8 @@ struct e1000_host_command_info {
E1000_GCR_TXDSCW_NO_SNOOP | \ E1000_GCR_TXDSCW_NO_SNOOP | \
E1000_GCR_TXDSCR_NO_SNOOP) E1000_GCR_TXDSCR_NO_SNOOP)
#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
/* Function Active and Power State to MNG */ /* Function Active and Power State to MNG */
#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
...@@ -2141,8 +2281,10 @@ struct e1000_host_command_info { ...@@ -2141,8 +2281,10 @@ struct e1000_host_command_info {
#define EEPROM_PHY_CLASS_WORD 0x0007 #define EEPROM_PHY_CLASS_WORD 0x0007
#define EEPROM_INIT_CONTROL1_REG 0x000A #define EEPROM_INIT_CONTROL1_REG 0x000A
#define EEPROM_INIT_CONTROL2_REG 0x000F #define EEPROM_INIT_CONTROL2_REG 0x000F
#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 #define EEPROM_INIT_CONTROL3_PORT_B 0x0014
#define EEPROM_INIT_3GIO_3 0x001A #define EEPROM_INIT_3GIO_3 0x001A
#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 #define EEPROM_INIT_CONTROL3_PORT_A 0x0024
#define EEPROM_CFG 0x0012 #define EEPROM_CFG 0x0012
#define EEPROM_FLASH_VERSION 0x0032 #define EEPROM_FLASH_VERSION 0x0032
...@@ -2154,10 +2296,16 @@ struct e1000_host_command_info { ...@@ -2154,10 +2296,16 @@ struct e1000_host_command_info {
/* Word definitions for ID LED Settings */ /* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000 #define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF #define ID_LED_RESERVED_FFFF 0xFFFF
#define ID_LED_RESERVED_82573 0xF746
#define ID_LED_DEFAULT_82573 0x1811
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \ (ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \ (ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2)) (ID_LED_DEF1_DEF2))
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_DEF1_OFF2 << 8) | \
(ID_LED_DEF1_ON2 << 4) | \
(ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1 #define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2 #define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3 #define ID_LED_DEF1_OFF2 0x3
...@@ -2192,6 +2340,11 @@ struct e1000_host_command_info { ...@@ -2192,6 +2340,11 @@ struct e1000_host_command_info {
#define EEPROM_WORD0F_ASM_DIR 0x2000 #define EEPROM_WORD0F_ASM_DIR 0x2000
#define EEPROM_WORD0F_ANE 0x0800 #define EEPROM_WORD0F_ANE 0x0800
#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 #define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
#define EEPROM_WORD0F_LPLU 0x0001
/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
/* Mask bits for fields in Word 0x1a of the EEPROM */ /* Mask bits for fields in Word 0x1a of the EEPROM */
#define EEPROM_WORD1A_ASPM_MASK 0x000C #define EEPROM_WORD1A_ASPM_MASK 0x000C
...@@ -2266,23 +2419,29 @@ struct e1000_host_command_info { ...@@ -2266,23 +2419,29 @@ struct e1000_host_command_info {
#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
/* PBA constants */ /* PBA constants */
#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
#define E1000_PBA_22K 0x0016 #define E1000_PBA_22K 0x0016
#define E1000_PBA_24K 0x0018 #define E1000_PBA_24K 0x0018
#define E1000_PBA_30K 0x001E #define E1000_PBA_30K 0x001E
#define E1000_PBA_32K 0x0020 #define E1000_PBA_32K 0x0020
#define E1000_PBA_34K 0x0022
#define E1000_PBA_38K 0x0026 #define E1000_PBA_38K 0x0026
#define E1000_PBA_40K 0x0028 #define E1000_PBA_40K 0x0028
#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ #define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
#define E1000_PBS_16K E1000_PBA_16K
/* Flow Control Constants */ /* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
...@@ -2337,7 +2496,7 @@ struct e1000_host_command_info { ...@@ -2337,7 +2496,7 @@ struct e1000_host_command_info {
/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
#define AUTO_READ_DONE_TIMEOUT 10 #define AUTO_READ_DONE_TIMEOUT 10
/* Number of milliseconds we wait for PHY configuration done after MAC reset */ /* Number of milliseconds we wait for PHY configuration done after MAC reset */
#define PHY_CFG_TIMEOUT 40 #define PHY_CFG_TIMEOUT 100
#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) #define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
...@@ -3002,6 +3161,221 @@ struct e1000_host_command_info { ...@@ -3002,6 +3161,221 @@ struct e1000_host_command_info {
#define L1LXT971A_PHY_ID 0x001378E0 #define L1LXT971A_PHY_ID 0x001378E0
#define GG82563_E_PHY_ID 0x01410CA0 #define GG82563_E_PHY_ID 0x01410CA0
/* Bits...
* 15-5: page
* 4-0: register offset
*/
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) \
(((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_PHY_PORT_CTRL \
PHY_REG(769, 17) /* Port General Configuration */
#define IGP3_PHY_RATE_ADAPT_CTRL \
PHY_REG(769, 25) /* Rate Adapter Control Register */
#define IGP3_KMRN_FIFO_CTRL_STATS \
PHY_REG(770, 16) /* KMRN FIFO's control/status register */
#define IGP3_KMRN_POWER_MNG_CTRL \
PHY_REG(770, 17) /* KMRN Power Management Control Register */
#define IGP3_KMRN_INBAND_CTRL \
PHY_REG(770, 18) /* KMRN Inband Control Register */
#define IGP3_KMRN_DIAG \
PHY_REG(770, 19) /* KMRN Diagnostic register */
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
#define IGP3_KMRN_ACK_TIMEOUT \
PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
#define IGP3_VR_CTRL \
PHY_REG(776, 18) /* Voltage regulator control register */
#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
#define IGP3_CAPABILITY \
PHY_REG(776, 19) /* IGP3 Capability Register */
/* Capabilities for SKU Control */
#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
#define IGP3_CAP_ASF 0x0004 /* Support ASF */
#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
#define IGP3_CAP_RSS 0x0080 /* Support RSS */
#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
#define IGP3_PPC_JORDAN_EN 0x0001
#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
#define IGP3_KMRN_EC_DIS_INBAND 0x0080
#define IGP03E1000_E_PHY_ID 0x02A80390
#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
#define IFE_PLUS_E_PHY_ID 0x02A80320
#define IFE_C_E_PHY_ID 0x02A80310
#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
#define IFE_PSC_FORCE_POLARITY_SHIFT 5
#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */
#define IFE_PMC_MDIX_MODE_SHIFT 6
#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
#define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */
#define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */
#define ICH8_FLASH_SEG_SIZE_256 256
#define ICH8_FLASH_SEG_SIZE_4K 4096
#define ICH8_FLASH_SEG_SIZE_64K 65536
#define ICH8_CYCLE_READ 0x0
#define ICH8_CYCLE_RESERVED 0x1
#define ICH8_CYCLE_WRITE 0x2
#define ICH8_CYCLE_ERASE 0x3
#define ICH8_FLASH_GFPREG 0x0000
#define ICH8_FLASH_HSFSTS 0x0004
#define ICH8_FLASH_HSFCTL 0x0006
#define ICH8_FLASH_FADDR 0x0008
#define ICH8_FLASH_FDATA0 0x0010
#define ICH8_FLASH_FRACC 0x0050
#define ICH8_FLASH_FREG0 0x0054
#define ICH8_FLASH_FREG1 0x0058
#define ICH8_FLASH_FREG2 0x005C
#define ICH8_FLASH_FREG3 0x0060
#define ICH8_FLASH_FPR0 0x0074
#define ICH8_FLASH_FPR1 0x0078
#define ICH8_FLASH_SSFSTS 0x0090
#define ICH8_FLASH_SSFCTL 0x0092
#define ICH8_FLASH_PREOP 0x0094
#define ICH8_FLASH_OPTYPE 0x0096
#define ICH8_FLASH_OPMENU 0x0098
#define ICH8_FLASH_REG_MAPSIZE 0x00A0
#define ICH8_FLASH_SECTOR_SIZE 4096
#define ICH8_GFPREG_BASE_MASK 0x1FFF
#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
#ifdef E1000_BIG_ENDIAN
uint16_t reserved2 :6;
uint16_t fldesvalid :1;
uint16_t flockdn :1;
uint16_t flcdone :1;
uint16_t flcerr :1;
uint16_t dael :1;
uint16_t berasesz :2;
uint16_t flcinprog :1;
uint16_t reserved1 :2;
#else
uint16_t flcdone :1; /* bit 0 Flash Cycle Done */
uint16_t flcerr :1; /* bit 1 Flash Cycle Error */
uint16_t dael :1; /* bit 2 Direct Access error Log */
uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */
uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */
uint16_t reserved1 :2; /* bit 13:6 Reserved */
uint16_t reserved2 :6; /* bit 13:6 Reserved */
uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */
uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */
#endif
} hsf_status;
uint16_t regval;
};
/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
#ifdef E1000_BIG_ENDIAN
uint16_t fldbcount :2;
uint16_t flockdn :6;
uint16_t flcgo :1;
uint16_t flcycle :2;
uint16_t reserved :5;
#else
uint16_t flcgo :1; /* 0 Flash Cycle Go */
uint16_t flcycle :2; /* 2:1 Flash Cycle */
uint16_t reserved :5; /* 7:3 Reserved */
uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */
uint16_t flockdn :6; /* 15:10 Reserved */
#endif
} hsf_ctrl;
uint16_t regval;
};
/* ICH8 Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
#ifdef E1000_BIG_ENDIAN
uint32_t gmwag :8;
uint32_t gmrag :8;
uint32_t grwa :8;
uint32_t grra :8;
#else
uint32_t grra :8; /* 0:7 GbE region Read Access */
uint32_t grwa :8; /* 8:15 GbE region Write Access */
uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */
uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */
#endif
} hsf_flregacc;
uint16_t regval;
};
/* Miscellaneous PHY bit definitions. */ /* Miscellaneous PHY bit definitions. */
#define PHY_PREAMBLE 0xFFFFFFFF #define PHY_PREAMBLE 0xFFFFFFFF
#define PHY_SOF 0x01 #define PHY_SOF 0x01
......
...@@ -127,4 +127,17 @@ typedef enum { ...@@ -127,4 +127,17 @@ typedef enum {
#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
#define E1000_WRITE_ICH8_REG(a, reg, value) ( \
writel((value), ((a)->flash_address + reg)))
#define E1000_READ_ICH8_REG(a, reg) ( \
readl((a)->flash_address + reg))
#define E1000_WRITE_ICH8_REG16(a, reg, value) ( \
writew((value), ((a)->flash_address + reg)))
#define E1000_READ_ICH8_REG16(a, reg) ( \
readw((a)->flash_address + reg))
#endif /* _E1000_OSDEP_H_ */ #endif /* _E1000_OSDEP_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment