Commit d6ff268c authored by Linus Torvalds's avatar Linus Torvalds

Merge bk://kernel.bkbits.net/davem/sparc-2.6

into ppc970.osdl.org:/home/torvalds/v2.6/linux
parents 8756f2ef cb8b9b70
# #
# Automatically generated make config: don't edit # Automatically generated make config: don't edit
# Linux kernel version: 2.6.9-rc2 # Linux kernel version: 2.6.9-rc3
# Fri Sep 24 12:34:43 2004 # Sun Oct 3 14:28:53 2004
# #
CONFIG_64BIT=y CONFIG_64BIT=y
CONFIG_MMU=y CONFIG_MMU=y
...@@ -561,6 +561,7 @@ CONFIG_IP_NF_MATCH_PHYSDEV=m ...@@ -561,6 +561,7 @@ CONFIG_IP_NF_MATCH_PHYSDEV=m
CONFIG_IP_NF_MATCH_ADDRTYPE=m CONFIG_IP_NF_MATCH_ADDRTYPE=m
CONFIG_IP_NF_MATCH_REALM=m CONFIG_IP_NF_MATCH_REALM=m
CONFIG_IP_NF_MATCH_SCTP=m CONFIG_IP_NF_MATCH_SCTP=m
CONFIG_IP_NF_MATCH_COMMENT=m
CONFIG_IP_NF_FILTER=m CONFIG_IP_NF_FILTER=m
CONFIG_IP_NF_TARGET_REJECT=m CONFIG_IP_NF_TARGET_REJECT=m
CONFIG_IP_NF_TARGET_LOG=m CONFIG_IP_NF_TARGET_LOG=m
...@@ -1784,7 +1785,7 @@ CONFIG_CRYPTO_MD5=y ...@@ -1784,7 +1785,7 @@ CONFIG_CRYPTO_MD5=y
CONFIG_CRYPTO_SHA1=y CONFIG_CRYPTO_SHA1=y
CONFIG_CRYPTO_SHA256=m CONFIG_CRYPTO_SHA256=m
CONFIG_CRYPTO_SHA512=m CONFIG_CRYPTO_SHA512=m
CONFIG_CRYPTO_WHIRLPOOL=m CONFIG_CRYPTO_WP512=m
CONFIG_CRYPTO_DES=y CONFIG_CRYPTO_DES=y
CONFIG_CRYPTO_BLOWFISH=m CONFIG_CRYPTO_BLOWFISH=m
CONFIG_CRYPTO_TWOFISH=m CONFIG_CRYPTO_TWOFISH=m
......
...@@ -10,84 +10,69 @@ ...@@ -10,84 +10,69 @@
#include <asm/kdebug.h> #include <asm/kdebug.h>
#include <asm/signal.h> #include <asm/signal.h>
/* We do not have hardware single-stepping, so in order /* We do not have hardware single-stepping on sparc64.
* to implement post handlers correctly we use two breakpoint * So we implement software single-stepping with breakpoint
* instructions. * traps. The top-level scheme is similar to that used
* in the x86 kprobes implementation.
* *
* 1) ta 0x70 --> 0x91d02070 * In the kprobe->insn[] array we store the original
* 2) ta 0x71 --> 0x91d02071 * instruction at index zero and a break instruction at
* index one.
* *
* When these are hit, control is transferred to kprobe_trap() * When we hit a kprobe we:
* below. The arg 'level' tells us which of the two traps occurred. * - Run the pre-handler
* - Remember "regs->tnpc" and interrupt level stored in
* "regs->tstate" so we can restore them later
* - Disable PIL interrupts
* - Set regs->tpc to point to kprobe->insn[0]
* - Set regs->tnpc to point to kprobe->insn[1]
* - Mark that we are actively in a kprobe
* *
* Initially, the instruction at p->addr gets set to "ta 0x70" * At this point we wait for the second breakpoint at
* by code in register_kprobe() by setting that memory address * kprobe->insn[1] to hit. When it does we:
* to BREAKPOINT_INSTRUCTION. When this breakpoint is hit * - Run the post-handler
* the following happens: * - Set regs->tpc to "remembered" regs->tnpc stored above,
* * restore the PIL interrupt level in "regs->tstate" as well
* 1) We run the pre-handler * - Make any adjustments necessary to regs->tnpc in order
* 2) We replace p->addr with the original opcode * to handle relative branches correctly. See below.
* 3) We set the instruction at "regs->npc" to "ta 0x71" * - Mark that we are no longer actively in a kprobe.
* 4) We mark that we are waiting for the second breakpoint
* to hit and return from the trap.
*
* At this point we wait for the second breakpoint to hit.
* When it does:
*
* 1) We run the post-handler
* 2) We re-install "ta 0x70" at p->addr
* 3) We restore the opcode at the "ta 0x71" breakpoint
* 4) We reset our "waiting for "ta 0x71" state
* 5) We return from the trap
*
* We could use the trick used by the i386 kprobe code but I
* think that scheme has problems with exception tables. On i386
* they single-step over the original instruction stored at
* kprobe->insn. So they set the processor to single step, and
* set the program counter to kprobe->insn.
*
* But that explodes if the original opcode is a user space
* access instruction and that faults. It will go wrong because
* since the location of the instruction being executed is
* different from that recorded in the exception tables, the
* kernel will not find it and this will cause an erroneous
* kernel OOPS.
*/ */
void arch_prepare_kprobe(struct kprobe *p) void arch_prepare_kprobe(struct kprobe *p)
{ {
p->insn[0] = *p->addr; p->insn[0] = *p->addr;
p->insn[1] = 0xdeadbeef; p->insn[1] = BREAKPOINT_INSTRUCTION_2;
} }
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) /* kprobe_status settings */
{ #define KPROBE_HIT_ACTIVE 0x00000001
u32 *insn2 = (u32 *) regs->tpc; #define KPROBE_HIT_SS 0x00000002
p->insn[1] = *insn2;
*insn2 = BREAKPOINT_INSTRUCTION_2; static struct kprobe *current_kprobe;
flushi(insn2); static unsigned long current_kprobe_orig_tnpc;
} static unsigned long current_kprobe_orig_tstate_pil;
static unsigned int kprobe_status;
static void undo_singlestep(struct kprobe *p, struct pt_regs *regs) static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{ {
u32 *insn2 = (u32 *) regs->tpc; current_kprobe_orig_tnpc = regs->tnpc;
current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
BUG_ON(p->insn[1] == 0xdeadbeef); regs->tstate |= TSTATE_PIL;
*insn2 = p->insn[1]; regs->tpc = (unsigned long) &p->insn[0];
flushi(insn2); regs->tnpc = (unsigned long) &p->insn[1];
p->insn[1] = 0xdeadbeef;
} }
/* kprobe_status settings */ static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
#define KPROBE_HIT_ACTIVE 0x00000001 {
#define KPROBE_HIT_SS 0x00000002 *p->addr = p->opcode;
flushi(p->addr);
static struct kprobe *current_kprobe; regs->tpc = (unsigned long) p->addr;
static unsigned int kprobe_status; regs->tnpc = current_kprobe_orig_tnpc;
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
static int kprobe_handler(struct pt_regs *regs) static int kprobe_handler(struct pt_regs *regs)
{ {
...@@ -98,16 +83,19 @@ static int kprobe_handler(struct pt_regs *regs) ...@@ -98,16 +83,19 @@ static int kprobe_handler(struct pt_regs *regs)
preempt_disable(); preempt_disable();
if (kprobe_running()) { if (kprobe_running()) {
/* We *are* holding lock here, so this is safe.
* Disarm the probe we just hit, and ignore it.
*/
p = get_kprobe(addr); p = get_kprobe(addr);
if (p) { if (p) {
*p->addr = p->opcode; disarm_kprobe(p, regs);
flushi(p->addr);
ret = 1; ret = 1;
} else { } else {
p = current_kprobe; p = current_kprobe;
if (p->break_handler && p->break_handler(p, regs)) if (p->break_handler && p->break_handler(p, regs))
goto ss_probe; goto ss_probe;
} }
/* If it's not ours, can't be delete race, (we hold lock). */
goto no_kprobe; goto no_kprobe;
} }
...@@ -115,8 +103,17 @@ static int kprobe_handler(struct pt_regs *regs) ...@@ -115,8 +103,17 @@ static int kprobe_handler(struct pt_regs *regs)
p = get_kprobe(addr); p = get_kprobe(addr);
if (!p) { if (!p) {
unlock_kprobes(); unlock_kprobes();
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1; ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe; goto no_kprobe;
} }
...@@ -135,17 +132,102 @@ static int kprobe_handler(struct pt_regs *regs) ...@@ -135,17 +132,102 @@ static int kprobe_handler(struct pt_regs *regs)
return ret; return ret;
} }
static int post_kprobe_handler(struct pt_regs *regs) /* If INSN is a relative control transfer instruction,
* return the corrected branch destination value.
*
* The original INSN location was REAL_PC, it actually
* executed at PC and produced destination address NPC.
*/
static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc,
unsigned long pc, unsigned long npc)
{ {
u32 *insn_p = (u32 *) regs->tpc; /* Branch not taken, no mods necessary. */
if (npc == pc + 0x4UL)
return real_pc + 0x4UL;
if (!kprobe_running() || (*insn_p != BREAKPOINT_INSTRUCTION_2)) /* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (npc - pc));
}
return real_pc + 0x4UL;
}
/* If INSN is an instruction which writes it's PC location
* into a destination register, fix that up.
*/
static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc)
{
unsigned long *slot = NULL;
/* Simplest cast is call, which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000) {
slot = &regs->u_regs[UREG_I7];
}
/* Jmpl encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = &regs->u_regs[rd];
} else {
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
slot = (unsigned long *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
slot += rd;
}
}
if (slot != NULL)
*slot = real_pc;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the breakpoint
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap.
*/
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
{
u32 insn = p->insn[0];
regs->tpc = current_kprobe_orig_tnpc;
regs->tnpc = relbranch_fixup(insn,
(unsigned long) p->addr,
(unsigned long) &p->insn[0],
regs->tnpc);
retpc_fixup(regs, insn, (unsigned long) p->addr);
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
static inline int post_kprobe_handler(struct pt_regs *regs)
{
if (!kprobe_running())
return 0; return 0;
if (current_kprobe->post_handler) if (current_kprobe->post_handler)
current_kprobe->post_handler(current_kprobe, regs, 0); current_kprobe->post_handler(current_kprobe, regs, 0);
undo_singlestep(current_kprobe, regs); resume_execution(current_kprobe, regs);
unlock_kprobes(); unlock_kprobes();
preempt_enable_no_resched(); preempt_enable_no_resched();
...@@ -161,7 +243,7 @@ static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) ...@@ -161,7 +243,7 @@ static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
return 1; return 1;
if (kprobe_status & KPROBE_HIT_SS) { if (kprobe_status & KPROBE_HIT_SS) {
undo_singlestep(current_kprobe, regs); resume_execution(current_kprobe, regs);
unlock_kprobes(); unlock_kprobes();
preempt_enable_no_resched(); preempt_enable_no_resched();
...@@ -222,12 +304,14 @@ asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs) ...@@ -222,12 +304,14 @@ asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs)
/* Jprobes support. */ /* Jprobes support. */
static struct pt_regs jprobe_saved_regs; static struct pt_regs jprobe_saved_regs;
static struct pt_regs *jprobe_saved_regs_location;
static struct sparc_stackf jprobe_saved_stack; static struct sparc_stackf jprobe_saved_stack;
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{ {
struct jprobe *jp = container_of(p, struct jprobe, kp); struct jprobe *jp = container_of(p, struct jprobe, kp);
jprobe_saved_regs_location = regs;
memcpy(&jprobe_saved_regs, regs, sizeof(*regs)); memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
/* Save a whole stack frame, this gets arguments /* Save a whole stack frame, this gets arguments
...@@ -240,6 +324,7 @@ int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) ...@@ -240,6 +324,7 @@ int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
regs->tpc = (unsigned long) jp->entry; regs->tpc = (unsigned long) jp->entry;
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL; regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
regs->tstate |= TSTATE_PIL;
return 1; return 1;
} }
...@@ -255,11 +340,23 @@ void jprobe_return(void) ...@@ -255,11 +340,23 @@ void jprobe_return(void)
extern void jprobe_return_trap_instruction(void); extern void jprobe_return_trap_instruction(void);
extern void __show_regs(struct pt_regs * regs);
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{ {
u32 *addr = (u32 *) regs->tpc; u32 *addr = (u32 *) regs->tpc;
if (addr == (u32 *) jprobe_return_trap_instruction) { if (addr == (u32 *) jprobe_return_trap_instruction) {
if (jprobe_saved_regs_location != regs) {
printk("JPROBE: Current regs (%p) does not match "
"saved regs (%p).\n",
regs, jprobe_saved_regs_location);
printk("JPROBE: Saved registers\n");
__show_regs(jprobe_saved_regs_location);
printk("JPROBE: Current registers\n");
__show_regs(regs);
BUG();
}
/* Restore old register state. Do pt_regs /* Restore old register state. Do pt_regs
* first so that UREG_FP is the original one for * first so that UREG_FP is the original one for
* the stack frame restore. * the stack frame restore.
......
...@@ -181,7 +181,7 @@ int copy_siginfo_to_user32(struct siginfo32 __user *to, siginfo_t *from) ...@@ -181,7 +181,7 @@ int copy_siginfo_to_user32(struct siginfo32 __user *to, siginfo_t *from)
case __SI_TIMER >> 16: case __SI_TIMER >> 16:
err |= __put_user(from->si_tid, &to->si_tid); err |= __put_user(from->si_tid, &to->si_tid);
err |= __put_user(from->si_overrun, &to->si_overrun); err |= __put_user(from->si_overrun, &to->si_overrun);
err |= __put_user((u32)(u64)from->si_ptr, &to->si_ptr); err |= __put_user(from->si_int, &to->si_int);
break; break;
case __SI_CHLD >> 16: case __SI_CHLD >> 16:
err |= __put_user(from->si_utime, &to->si_utime); err |= __put_user(from->si_utime, &to->si_utime);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment