Commit d7965152 authored by Robert Bragg's avatar Robert Bragg Committed by Daniel Vetter

drm/i915: Enable i915 perf stream for Haswell OA unit

Gen graphics hardware can be set up to periodically write snapshots of
performance counters into a circular buffer via its Observation
Architecture and this patch exposes that capability to userspace via the
i915 perf interface.

v2:
   Make sure to initialize ->specific_ctx_id when opening, without
   relying on _pin_notify hook, in case ctx already pinned.
v3:
   Revert back to pinning ctx upfront when opening stream, removing
   need to hook in to pinning and to update OACONTROL on the fly.
Signed-off-by: default avatarRobert Bragg <robert@sixbynine.org>
Signed-off-by: default avatarZhenyu Wang <zhenyuw@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: default avatarMatthew Auld <matthew.auld@intel.com>
Reviewed-by: default avatarSourab Gupta <sourab.gupta@intel.com>
Signed-off-by: default avatarDaniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/20161107194957.3385-7-robert@sixbynine.org
parent 8a3003dd
......@@ -1797,6 +1797,11 @@ struct intel_wm_config {
bool sprites_scaled;
};
struct i915_oa_format {
u32 format;
int size;
};
struct i915_oa_reg {
i915_reg_t addr;
u32 value;
......@@ -1817,11 +1822,6 @@ struct i915_perf_stream_ops {
*/
void (*disable)(struct i915_perf_stream *stream);
/* Return: true if any i915 perf records are ready to read()
* for this stream.
*/
bool (*can_read)(struct i915_perf_stream *stream);
/* Call poll_wait, passing a wait queue that will be woken
* once there is something ready to read() for the stream
*/
......@@ -1831,9 +1831,7 @@ struct i915_perf_stream_ops {
/* For handling a blocking read, wait until there is something
* to ready to read() for the stream. E.g. wait on the same
* wait queue that would be passed to poll_wait() until
* ->can_read() returns true (if its safe to call ->can_read()
* without the i915 perf lock held).
* wait queue that would be passed to poll_wait().
*/
int (*wait_unlocked)(struct i915_perf_stream *stream);
......@@ -1873,11 +1871,28 @@ struct i915_perf_stream {
struct list_head link;
u32 sample_flags;
int sample_size;
struct i915_gem_context *ctx;
bool enabled;
struct i915_perf_stream_ops *ops;
const struct i915_perf_stream_ops *ops;
};
struct i915_oa_ops {
void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
int (*enable_metric_set)(struct drm_i915_private *dev_priv);
void (*disable_metric_set)(struct drm_i915_private *dev_priv);
void (*oa_enable)(struct drm_i915_private *dev_priv);
void (*oa_disable)(struct drm_i915_private *dev_priv);
void (*update_oacontrol)(struct drm_i915_private *dev_priv);
void (*update_hw_ctx_id_locked)(struct drm_i915_private *dev_priv,
u32 ctx_id);
int (*read)(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset);
bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv);
};
struct drm_i915_private {
......@@ -2177,16 +2192,47 @@ struct drm_i915_private {
struct {
bool initialized;
struct mutex lock;
struct list_head streams;
spinlock_t hook_lock;
struct {
u32 metrics_set;
struct i915_perf_stream *exclusive_stream;
u32 specific_ctx_id;
struct i915_vma *pinned_rcs_vma;
struct hrtimer poll_check_timer;
wait_queue_head_t poll_wq;
bool pollin;
bool periodic;
int period_exponent;
int timestamp_frequency;
int tail_margin;
int metrics_set;
const struct i915_oa_reg *mux_regs;
int mux_regs_len;
const struct i915_oa_reg *b_counter_regs;
int b_counter_regs_len;
struct {
struct i915_vma *vma;
u8 *vaddr;
int format;
int format_size;
} oa_buffer;
u32 gen7_latched_oastatus1;
struct i915_oa_ops ops;
const struct i915_oa_format *oa_formats;
int n_builtin_sets;
} oa;
} perf;
......
......@@ -25,16 +25,899 @@
*/
#include <linux/anon_inodes.h>
#include <linux/sizes.h>
#include "i915_drv.h"
#include "i915_oa_hsw.h"
/* HW requires this to be a power of two, between 128k and 16M, though driver
* is currently generally designed assuming the largest 16M size is used such
* that the overflow cases are unlikely in normal operation.
*/
#define OA_BUFFER_SIZE SZ_16M
#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
/* There's a HW race condition between OA unit tail pointer register updates and
* writes to memory whereby the tail pointer can sometimes get ahead of what's
* been written out to the OA buffer so far.
*
* Although this can be observed explicitly by checking for a zeroed report-id
* field in tail reports, it seems preferable to account for this earlier e.g.
* as part of the _oa_buffer_is_empty checks to minimize -EAGAIN polling cycles
* in this situation.
*
* To give time for the most recent reports to land before they may be copied to
* userspace, the driver operates as if the tail pointer effectively lags behind
* the HW tail pointer by 'tail_margin' bytes. The margin in bytes is calculated
* based on this constant in nanoseconds, the current OA sampling exponent
* and current report size.
*
* There is also a fallback check while reading to simply skip over reports with
* a zeroed report-id.
*/
#define OA_TAIL_MARGIN_NSEC 100000ULL
/* frequency for checking whether the OA unit has written new reports to the
* circular OA buffer...
*/
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
* of the 64bit timestamp bits to trigger reports from) but there's currently
* no known use case for sampling as infrequently as once per 47 thousand years.
*
* Since the timestamps included in OA reports are only 32bits it seems
* reasonable to limit the OA exponent where it's still possible to account for
* overflow in OA report timestamps.
*/
#define OA_EXPONENT_MAX 31
#define INVALID_CTX_ID 0xffffffff
/* XXX: beware if future OA HW adds new report formats that the current
* code assumes all reports have a power-of-two size and ~(size - 1) can
* be used as a mask to align the OA tail pointer.
*/
static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
[I915_OA_FORMAT_A13] = { 0, 64 },
[I915_OA_FORMAT_A29] = { 1, 128 },
[I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
[I915_OA_FORMAT_B4_C8] = { 4, 64 },
[I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
[I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
[I915_OA_FORMAT_C4_B8] = { 7, 64 },
};
#define SAMPLE_OA_REPORT (1<<0)
struct perf_open_properties {
u32 sample_flags;
u64 single_context:1;
u64 ctx_handle;
/* OA sampling state */
int metrics_set;
int oa_format;
bool oa_periodic;
int oa_period_exponent;
};
/* NB: This is either called via fops or the poll check hrtimer (atomic ctx)
*
* It's safe to read OA config state here unlocked, assuming that this is only
* called while the stream is enabled, while the global OA configuration can't
* be modified.
*
* Note: we don't lock around the head/tail reads even though there's the slim
* possibility of read() fop errors forcing a re-init of the OA buffer
* pointers. A race here could result in a false positive !empty status which
* is acceptable.
*/
static bool gen7_oa_buffer_is_empty_fop_unlocked(struct drm_i915_private *dev_priv)
{
int report_size = dev_priv->perf.oa.oa_buffer.format_size;
u32 oastatus2 = I915_READ(GEN7_OASTATUS2);
u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
u32 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
u32 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
return OA_TAKEN(tail, head) <
dev_priv->perf.oa.tail_margin + report_size;
}
/**
* Appends a status record to a userspace read() buffer.
*/
static int append_oa_status(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset,
enum drm_i915_perf_record_type type)
{
struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
if ((count - *offset) < header.size)
return -ENOSPC;
if (copy_to_user(buf + *offset, &header, sizeof(header)))
return -EFAULT;
(*offset) += header.size;
return 0;
}
/**
* Copies single OA report into userspace read() buffer.
*/
static int append_oa_sample(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset,
const u8 *report)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
int report_size = dev_priv->perf.oa.oa_buffer.format_size;
struct drm_i915_perf_record_header header;
u32 sample_flags = stream->sample_flags;
header.type = DRM_I915_PERF_RECORD_SAMPLE;
header.pad = 0;
header.size = stream->sample_size;
if ((count - *offset) < header.size)
return -ENOSPC;
buf += *offset;
if (copy_to_user(buf, &header, sizeof(header)))
return -EFAULT;
buf += sizeof(header);
if (sample_flags & SAMPLE_OA_REPORT) {
if (copy_to_user(buf, report, report_size))
return -EFAULT;
}
(*offset) += header.size;
return 0;
}
/**
* Copies all buffered OA reports into userspace read() buffer.
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
* @head_ptr: (inout): the current oa buffer cpu read position
* @tail: the current oa buffer gpu write position
*
* Returns 0 on success, negative error code on failure.
*
* Notably any error condition resulting in a short read (-ENOSPC or
* -EFAULT) will be returned even though one or more records may
* have been successfully copied. In this case it's up to the caller
* to decide if the error should be squashed before returning to
* userspace.
*
* Note: reports are consumed from the head, and appended to the
* tail, so the head chases the tail?... If you think that's mad
* and back-to-front you're not alone, but this follows the
* Gen PRM naming convention.
*/
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset,
u32 *head_ptr,
u32 tail)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
int report_size = dev_priv->perf.oa.oa_buffer.format_size;
u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
int tail_margin = dev_priv->perf.oa.tail_margin;
u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
u32 mask = (OA_BUFFER_SIZE - 1);
u32 head;
u32 taken;
int ret = 0;
if (WARN_ON(!stream->enabled))
return -EIO;
head = *head_ptr - gtt_offset;
tail -= gtt_offset;
/* The OA unit is expected to wrap the tail pointer according to the OA
* buffer size and since we should never write a misaligned head
* pointer we don't expect to read one back either...
*/
if (tail > OA_BUFFER_SIZE || head > OA_BUFFER_SIZE ||
head % report_size) {
DRM_ERROR("Inconsistent OA buffer pointer (head = %u, tail = %u): force restart\n",
head, tail);
dev_priv->perf.oa.ops.oa_disable(dev_priv);
dev_priv->perf.oa.ops.oa_enable(dev_priv);
*head_ptr = I915_READ(GEN7_OASTATUS2) &
GEN7_OASTATUS2_HEAD_MASK;
return -EIO;
}
/* The tail pointer increases in 64 byte increments, not in report_size
* steps...
*/
tail &= ~(report_size - 1);
/* Move the tail pointer back by the current tail_margin to account for
* the possibility that the latest reports may not have really landed
* in memory yet...
*/
if (OA_TAKEN(tail, head) < report_size + tail_margin)
return -EAGAIN;
tail -= tail_margin;
tail &= mask;
for (/* none */;
(taken = OA_TAKEN(tail, head));
head = (head + report_size) & mask) {
u8 *report = oa_buf_base + head;
u32 *report32 = (void *)report;
/* All the report sizes factor neatly into the buffer
* size so we never expect to see a report split
* between the beginning and end of the buffer.
*
* Given the initial alignment check a misalignment
* here would imply a driver bug that would result
* in an overrun.
*/
if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
break;
}
/* The report-ID field for periodic samples includes
* some undocumented flags related to what triggered
* the report and is never expected to be zero so we
* can check that the report isn't invalid before
* copying it to userspace...
*/
if (report32[0] == 0) {
DRM_ERROR("Skipping spurious, invalid OA report\n");
continue;
}
ret = append_oa_sample(stream, buf, count, offset, report);
if (ret)
break;
/* The above report-id field sanity check is based on
* the assumption that the OA buffer is initially
* zeroed and we reset the field after copying so the
* check is still meaningful once old reports start
* being overwritten.
*/
report32[0] = 0;
}
*head_ptr = gtt_offset + head;
return ret;
}
static int gen7_oa_read(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
int report_size = dev_priv->perf.oa.oa_buffer.format_size;
u32 oastatus2;
u32 oastatus1;
u32 head;
u32 tail;
int ret;
if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
return -EIO;
oastatus2 = I915_READ(GEN7_OASTATUS2);
oastatus1 = I915_READ(GEN7_OASTATUS1);
head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
/* XXX: On Haswell we don't have a safe way to clear oastatus1
* bits while the OA unit is enabled (while the tail pointer
* may be updated asynchronously) so we ignore status bits
* that have already been reported to userspace.
*/
oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
/* We treat OABUFFER_OVERFLOW as a significant error:
*
* - The status can be interpreted to mean that the buffer is
* currently full (with a higher precedence than OA_TAKEN()
* which will start to report a near-empty buffer after an
* overflow) but it's awkward that we can't clear the status
* on Haswell, so without a reset we won't be able to catch
* the state again.
*
* - Since it also implies the HW has started overwriting old
* reports it may also affect our sanity checks for invalid
* reports when copying to userspace that assume new reports
* are being written to cleared memory.
*
* - In the future we may want to introduce a flight recorder
* mode where the driver will automatically maintain a safe
* guard band between head/tail, avoiding this overflow
* condition, but we avoid the added driver complexity for
* now.
*/
if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
if (ret)
return ret;
DRM_ERROR("OA buffer overflow: force restart\n");
dev_priv->perf.oa.ops.oa_disable(dev_priv);
dev_priv->perf.oa.ops.oa_enable(dev_priv);
oastatus2 = I915_READ(GEN7_OASTATUS2);
oastatus1 = I915_READ(GEN7_OASTATUS1);
head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK;
tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}
if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_REPORT_LOST);
if (ret)
return ret;
dev_priv->perf.oa.gen7_latched_oastatus1 |=
GEN7_OASTATUS1_REPORT_LOST;
}
ret = gen7_append_oa_reports(stream, buf, count, offset,
&head, tail);
/* All the report sizes are a power of two and the
* head should always be incremented by some multiple
* of the report size.
*
* A warning here, but notably if we later read back a
* misaligned pointer we will treat that as a bug since
* it could lead to a buffer overrun.
*/
WARN_ONCE(head & (report_size - 1),
"i915: Writing misaligned OA head pointer");
/* Note: we update the head pointer here even if an error
* was returned since the error may represent a short read
* where some some reports were successfully copied.
*/
I915_WRITE(GEN7_OASTATUS2,
((head & GEN7_OASTATUS2_HEAD_MASK) |
OA_MEM_SELECT_GGTT));
return ret;
}
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
/* We would wait indefinitely if periodic sampling is not enabled */
if (!dev_priv->perf.oa.periodic)
return -EIO;
/* Note: the oa_buffer_is_empty() condition is ok to run unlocked as it
* just performs mmio reads of the OA buffer head + tail pointers and
* it's assumed we're handling some operation that implies the stream
* can't be destroyed until completion (such as a read()) that ensures
* the device + OA buffer can't disappear
*/
return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv));
}
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
struct file *file,
poll_table *wait)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
}
static int i915_oa_read(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
}
/* Determine the render context hw id, and ensure it remains fixed for the
* lifetime of the stream. This ensures that we don't have to worry about
* updating the context ID in OACONTROL on the fly.
*/
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
struct i915_vma *vma;
int ret;
ret = i915_mutex_lock_interruptible(&dev_priv->drm);
if (ret)
return ret;
/* As the ID is the gtt offset of the context's vma we pin
* the vma to ensure the ID remains fixed.
*
* NB: implied RCS engine...
*/
vma = i915_gem_context_pin_legacy(stream->ctx, 0);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto unlock;
}
dev_priv->perf.oa.pinned_rcs_vma = vma;
/* Explicitly track the ID (instead of calling i915_ggtt_offset()
* on the fly) considering the difference with gen8+ and
* execlists
*/
dev_priv->perf.oa.specific_ctx_id = i915_ggtt_offset(vma);
unlock:
mutex_unlock(&dev_priv->drm.struct_mutex);
return ret;
}
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
mutex_lock(&dev_priv->drm.struct_mutex);
i915_vma_unpin(dev_priv->perf.oa.pinned_rcs_vma);
dev_priv->perf.oa.pinned_rcs_vma = NULL;
dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static void
free_oa_buffer(struct drm_i915_private *i915)
{
mutex_lock(&i915->drm.struct_mutex);
i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
i915->perf.oa.oa_buffer.vma = NULL;
i915->perf.oa.oa_buffer.vaddr = NULL;
mutex_unlock(&i915->drm.struct_mutex);
}
static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
free_oa_buffer(dev_priv);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
intel_runtime_pm_put(dev_priv);
if (stream->ctx)
oa_put_render_ctx_id(stream);
dev_priv->perf.oa.exclusive_stream = NULL;
}
static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
{
u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
/* Pre-DevBDW: OABUFFER must be set with counters off,
* before OASTATUS1, but after OASTATUS2
*/
I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
I915_WRITE(GEN7_OABUFFER, gtt_offset);
I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
/* On Haswell we have to track which OASTATUS1 flags we've
* already seen since they can't be cleared while periodic
* sampling is enabled.
*/
dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
/* NB: although the OA buffer will initially be allocated
* zeroed via shmfs (and so this memset is redundant when
* first allocating), we may re-init the OA buffer, either
* when re-enabling a stream or in error/reset paths.
*
* The reason we clear the buffer for each re-init is for the
* sanity check in gen7_append_oa_reports() that looks at the
* report-id field to make sure it's non-zero which relies on
* the assumption that new reports are being written to zeroed
* memory...
*/
memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
/* Maybe make ->pollin per-stream state if we support multiple
* concurrent streams in the future.
*/
dev_priv->perf.oa.pollin = false;
}
static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *bo;
struct i915_vma *vma;
int ret;
if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
return -ENODEV;
ret = i915_mutex_lock_interruptible(&dev_priv->drm);
if (ret)
return ret;
BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
bo = i915_gem_object_create(&dev_priv->drm, OA_BUFFER_SIZE);
if (IS_ERR(bo)) {
DRM_ERROR("Failed to allocate OA buffer\n");
ret = PTR_ERR(bo);
goto unlock;
}
ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
if (ret)
goto err_unref;
/* PreHSW required 512K alignment, HSW requires 16M */
vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
dev_priv->perf.oa.oa_buffer.vma = vma;
dev_priv->perf.oa.oa_buffer.vaddr =
i915_gem_object_pin_map(bo, I915_MAP_WB);
if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
goto err_unpin;
}
dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
dev_priv->perf.oa.oa_buffer.vaddr);
goto unlock;
err_unpin:
__i915_vma_unpin(vma);
err_unref:
i915_gem_object_put(bo);
dev_priv->perf.oa.oa_buffer.vaddr = NULL;
dev_priv->perf.oa.oa_buffer.vma = NULL;
unlock:
mutex_unlock(&dev_priv->drm.struct_mutex);
return ret;
}
static void config_oa_regs(struct drm_i915_private *dev_priv,
const struct i915_oa_reg *regs,
int n_regs)
{
int i;
for (i = 0; i < n_regs; i++) {
const struct i915_oa_reg *reg = regs + i;
I915_WRITE(reg->addr, reg->value);
}
}
static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
{
int ret = i915_oa_select_metric_set_hsw(dev_priv);
if (ret)
return ret;
I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
GT_NOA_ENABLE));
/* PRM:
*
* OA unit is using “crclk” for its functionality. When trunk
* level clock gating takes place, OA clock would be gated,
* unable to count the events from non-render clock domain.
* Render clock gating must be disabled when OA is enabled to
* count the events from non-render domain. Unit level clock
* gating for RCS should also be disabled.
*/
I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
~GEN7_DOP_CLOCK_GATE_ENABLE));
I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
GEN6_CSUNIT_CLOCK_GATE_DISABLE));
config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs,
dev_priv->perf.oa.mux_regs_len);
/* It apparently takes a fairly long time for a new MUX
* configuration to be be applied after these register writes.
* This delay duration was derived empirically based on the
* render_basic config but hopefully it covers the maximum
* configuration latency.
*
* As a fallback, the checks in _append_oa_reports() to skip
* invalid OA reports do also seem to work to discard reports
* generated before this config has completed - albeit not
* silently.
*
* Unfortunately this is essentially a magic number, since we
* don't currently know of a reliable mechanism for predicting
* how long the MUX config will take to apply and besides
* seeing invalid reports we don't know of a reliable way to
* explicitly check that the MUX config has landed.
*
* It's even possible we've miss characterized the underlying
* problem - it just seems like the simplest explanation why
* a delay at this location would mitigate any invalid reports.
*/
usleep_range(15000, 20000);
config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
dev_priv->perf.oa.b_counter_regs_len);
return 0;
}
static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
GEN7_DOP_CLOCK_GATE_ENABLE));
I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
~GT_NOA_ENABLE));
}
static void gen7_update_oacontrol_locked(struct drm_i915_private *dev_priv)
{
assert_spin_locked(&dev_priv->perf.hook_lock);
if (dev_priv->perf.oa.exclusive_stream->enabled) {
struct i915_gem_context *ctx =
dev_priv->perf.oa.exclusive_stream->ctx;
u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
bool periodic = dev_priv->perf.oa.periodic;
u32 period_exponent = dev_priv->perf.oa.period_exponent;
u32 report_format = dev_priv->perf.oa.oa_buffer.format;
I915_WRITE(GEN7_OACONTROL,
(ctx_id & GEN7_OACONTROL_CTX_MASK) |
(period_exponent <<
GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
(periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
(report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
(ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
GEN7_OACONTROL_ENABLE);
} else
I915_WRITE(GEN7_OACONTROL, 0);
}
static void gen7_oa_enable(struct drm_i915_private *dev_priv)
{
unsigned long flags;
/* Reset buf pointers so we don't forward reports from before now.
*
* Think carefully if considering trying to avoid this, since it
* also ensures status flags and the buffer itself are cleared
* in error paths, and we have checks for invalid reports based
* on the assumption that certain fields are written to zeroed
* memory which this helps maintains.
*/
gen7_init_oa_buffer(dev_priv);
spin_lock_irqsave(&dev_priv->perf.hook_lock, flags);
gen7_update_oacontrol_locked(dev_priv);
spin_unlock_irqrestore(&dev_priv->perf.hook_lock, flags);
}
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
dev_priv->perf.oa.ops.oa_enable(dev_priv);
if (dev_priv->perf.oa.periodic)
hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
ns_to_ktime(POLL_PERIOD),
HRTIMER_MODE_REL_PINNED);
}
static void gen7_oa_disable(struct drm_i915_private *dev_priv)
{
I915_WRITE(GEN7_OACONTROL, 0);
}
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
dev_priv->perf.oa.ops.oa_disable(dev_priv);
if (dev_priv->perf.oa.periodic)
hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
}
static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
{
return 1000000000ULL * (2ULL << exponent) /
dev_priv->perf.oa.timestamp_frequency;
}
static const struct i915_perf_stream_ops i915_oa_stream_ops = {
.destroy = i915_oa_stream_destroy,
.enable = i915_oa_stream_enable,
.disable = i915_oa_stream_disable,
.wait_unlocked = i915_oa_wait_unlocked,
.poll_wait = i915_oa_poll_wait,
.read = i915_oa_read,
};
static int i915_oa_stream_init(struct i915_perf_stream *stream,
struct drm_i915_perf_open_param *param,
struct perf_open_properties *props)
{
struct drm_i915_private *dev_priv = stream->dev_priv;
int format_size;
int ret;
if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
DRM_ERROR("Only OA report sampling supported\n");
return -EINVAL;
}
if (!dev_priv->perf.oa.ops.init_oa_buffer) {
DRM_ERROR("OA unit not supported\n");
return -ENODEV;
}
/* To avoid the complexity of having to accurately filter
* counter reports and marshal to the appropriate client
* we currently only allow exclusive access
*/
if (dev_priv->perf.oa.exclusive_stream) {
DRM_ERROR("OA unit already in use\n");
return -EBUSY;
}
if (!props->metrics_set) {
DRM_ERROR("OA metric set not specified\n");
return -EINVAL;
}
if (!props->oa_format) {
DRM_ERROR("OA report format not specified\n");
return -EINVAL;
}
stream->sample_size = sizeof(struct drm_i915_perf_record_header);
format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
stream->sample_flags |= SAMPLE_OA_REPORT;
stream->sample_size += format_size;
dev_priv->perf.oa.oa_buffer.format_size = format_size;
if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
return -EINVAL;
dev_priv->perf.oa.oa_buffer.format =
dev_priv->perf.oa.oa_formats[props->oa_format].format;
dev_priv->perf.oa.metrics_set = props->metrics_set;
dev_priv->perf.oa.periodic = props->oa_periodic;
if (dev_priv->perf.oa.periodic) {
u64 period_ns = oa_exponent_to_ns(dev_priv,
props->oa_period_exponent);
dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
/* See comment for OA_TAIL_MARGIN_NSEC for details
* about this tail_margin...
*/
dev_priv->perf.oa.tail_margin =
((OA_TAIL_MARGIN_NSEC / period_ns) + 1) * format_size;
}
if (stream->ctx) {
ret = oa_get_render_ctx_id(stream);
if (ret)
return ret;
}
ret = alloc_oa_buffer(dev_priv);
if (ret)
goto err_oa_buf_alloc;
/* PRM - observability performance counters:
*
* OACONTROL, performance counter enable, note:
*
* "When this bit is set, in order to have coherent counts,
* RC6 power state and trunk clock gating must be disabled.
* This can be achieved by programming MMIO registers as
* 0xA094=0 and 0xA090[31]=1"
*
* In our case we are expecting that taking pm + FORCEWAKE
* references will effectively disable RC6.
*/
intel_runtime_pm_get(dev_priv);
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
if (ret)
goto err_enable;
stream->ops = &i915_oa_stream_ops;
dev_priv->perf.oa.exclusive_stream = stream;
return 0;
err_enable:
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
intel_runtime_pm_put(dev_priv);
free_oa_buffer(dev_priv);
err_oa_buf_alloc:
if (stream->ctx)
oa_put_render_ctx_id(stream);
return ret;
}
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
struct file *file,
char __user *buf,
......@@ -78,8 +961,20 @@ static ssize_t i915_perf_read(struct file *file,
struct drm_i915_private *dev_priv = stream->dev_priv;
ssize_t ret;
/* To ensure it's handled consistently we simply treat all reads of a
* disabled stream as an error. In particular it might otherwise lead
* to a deadlock for blocking file descriptors...
*/
if (!stream->enabled)
return -EIO;
if (!(file->f_flags & O_NONBLOCK)) {
/* Allow false positives from stream->ops->wait_unlocked.
/* There's the small chance of false positives from
* stream->ops->wait_unlocked.
*
* E.g. with single context filtering since we only wait until
* oabuffer has >= 1 report we don't immediately know whether
* any reports really belong to the current context
*/
do {
ret = stream->ops->wait_unlocked(stream);
......@@ -97,21 +992,51 @@ static ssize_t i915_perf_read(struct file *file,
mutex_unlock(&dev_priv->perf.lock);
}
if (ret >= 0) {
/* Maybe make ->pollin per-stream state if we support multiple
* concurrent streams in the future.
*/
dev_priv->perf.oa.pollin = false;
}
return ret;
}
static unsigned int i915_perf_poll_locked(struct i915_perf_stream *stream,
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
struct drm_i915_private *dev_priv =
container_of(hrtimer, typeof(*dev_priv),
perf.oa.poll_check_timer);
if (!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv)) {
dev_priv->perf.oa.pollin = true;
wake_up(&dev_priv->perf.oa.poll_wq);
}
hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
return HRTIMER_RESTART;
}
static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
struct i915_perf_stream *stream,
struct file *file,
poll_table *wait)
{
unsigned int streams = 0;
unsigned int events = 0;
stream->ops->poll_wait(stream, file, wait);
if (stream->ops->can_read(stream))
streams |= POLLIN;
/* Note: we don't explicitly check whether there's something to read
* here since this path may be very hot depending on what else
* userspace is polling, or on the timeout in use. We rely solely on
* the hrtimer/oa_poll_check_timer_cb to notify us when there are
* samples to read.
*/
if (dev_priv->perf.oa.pollin)
events |= POLLIN;
return streams;
return events;
}
static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
......@@ -121,7 +1046,7 @@ static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
int ret;
mutex_lock(&dev_priv->perf.lock);
ret = i915_perf_poll_locked(stream, file, wait);
ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
mutex_unlock(&dev_priv->perf.lock);
return ret;
......@@ -285,18 +1210,21 @@ i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
goto err_ctx;
}
stream->sample_flags = props->sample_flags;
stream->dev_priv = dev_priv;
stream->ctx = specific_ctx;
/*
* TODO: support sampling something
*
* For now this is as far as we can go.
ret = i915_oa_stream_init(stream, param, props);
if (ret)
goto err_alloc;
/* we avoid simply assigning stream->sample_flags = props->sample_flags
* to have _stream_init check the combination of sample flags more
* thoroughly, but still this is the expected result at this point.
*/
DRM_ERROR("Unsupported i915 perf stream configuration\n");
ret = -EINVAL;
goto err_alloc;
if (WARN_ON(stream->sample_flags != props->sample_flags)) {
ret = -ENODEV;
goto err_alloc;
}
list_add(&stream->link, &dev_priv->perf.streams);
......@@ -382,6 +1310,56 @@ static int read_properties_unlocked(struct drm_i915_private *dev_priv,
props->single_context = 1;
props->ctx_handle = value;
break;
case DRM_I915_PERF_PROP_SAMPLE_OA:
props->sample_flags |= SAMPLE_OA_REPORT;
break;
case DRM_I915_PERF_PROP_OA_METRICS_SET:
if (value == 0 ||
value > dev_priv->perf.oa.n_builtin_sets) {
DRM_ERROR("Unknown OA metric set ID");
return -EINVAL;
}
props->metrics_set = value;
break;
case DRM_I915_PERF_PROP_OA_FORMAT:
if (value == 0 || value >= I915_OA_FORMAT_MAX) {
DRM_ERROR("Invalid OA report format\n");
return -EINVAL;
}
if (!dev_priv->perf.oa.oa_formats[value].size) {
DRM_ERROR("Invalid OA report format\n");
return -EINVAL;
}
props->oa_format = value;
break;
case DRM_I915_PERF_PROP_OA_EXPONENT:
if (value > OA_EXPONENT_MAX) {
DRM_ERROR("OA timer exponent too high (> %u)\n",
OA_EXPONENT_MAX);
return -EINVAL;
}
/* NB: The exponent represents a period as follows:
*
* 80ns * 2^(period_exponent + 1)
*
* Theoretically we can program the OA unit to sample
* every 160ns but don't allow that by default unless
* root.
*
* Referring to perf's
* kernel.perf_event_max_sample_rate for a precedent
* (100000 by default); with an OA exponent of 6 we get
* a period of 10.240 microseconds -just under 100000Hz
*/
if (value < 6 && !capable(CAP_SYS_ADMIN)) {
DRM_ERROR("Minimum OA sampling exponent is 6 without root privileges\n");
return -EACCES;
}
props->oa_periodic = true;
props->oa_period_exponent = value;
break;
default:
MISSING_CASE(id);
DRM_ERROR("Unknown i915 perf property ID");
......@@ -432,8 +1410,33 @@ int i915_perf_open_ioctl(struct drm_device *dev, void *data,
void i915_perf_init(struct drm_i915_private *dev_priv)
{
if (!IS_HASWELL(dev_priv))
return;
hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
INIT_LIST_HEAD(&dev_priv->perf.streams);
mutex_init(&dev_priv->perf.lock);
spin_lock_init(&dev_priv->perf.hook_lock);
dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
dev_priv->perf.oa.ops.read = gen7_oa_read;
dev_priv->perf.oa.ops.oa_buffer_is_empty =
gen7_oa_buffer_is_empty_fop_unlocked;
dev_priv->perf.oa.timestamp_frequency = 12500000;
dev_priv->perf.oa.oa_formats = hsw_oa_formats;
dev_priv->perf.oa.n_builtin_sets =
i915_oa_n_builtin_metric_sets_hsw;
dev_priv->perf.initialized = true;
}
......@@ -443,7 +1446,6 @@ void i915_perf_fini(struct drm_i915_private *dev_priv)
if (!dev_priv->perf.initialized)
return;
/* Currently nothing to clean up */
memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
dev_priv->perf.initialized = false;
}
......@@ -616,6 +616,343 @@ static inline bool i915_mmio_reg_valid(i915_reg_t reg)
#define HSW_CS_GPR_UDW(n) _MMIO(0x2600 + (n) * 8 + 4)
#define GEN7_OACONTROL _MMIO(0x2360)
#define GEN7_OACONTROL_CTX_MASK 0xFFFFF000
#define GEN7_OACONTROL_TIMER_PERIOD_MASK 0x3F
#define GEN7_OACONTROL_TIMER_PERIOD_SHIFT 6
#define GEN7_OACONTROL_TIMER_ENABLE (1<<5)
#define GEN7_OACONTROL_FORMAT_A13 (0<<2)
#define GEN7_OACONTROL_FORMAT_A29 (1<<2)
#define GEN7_OACONTROL_FORMAT_A13_B8_C8 (2<<2)
#define GEN7_OACONTROL_FORMAT_A29_B8_C8 (3<<2)
#define GEN7_OACONTROL_FORMAT_B4_C8 (4<<2)
#define GEN7_OACONTROL_FORMAT_A45_B8_C8 (5<<2)
#define GEN7_OACONTROL_FORMAT_B4_C8_A16 (6<<2)
#define GEN7_OACONTROL_FORMAT_C4_B8 (7<<2)
#define GEN7_OACONTROL_FORMAT_SHIFT 2
#define GEN7_OACONTROL_PER_CTX_ENABLE (1<<1)
#define GEN7_OACONTROL_ENABLE (1<<0)
#define GEN8_OACTXID _MMIO(0x2364)
#define GEN8_OACONTROL _MMIO(0x2B00)
#define GEN8_OA_REPORT_FORMAT_A12 (0<<2)
#define GEN8_OA_REPORT_FORMAT_A12_B8_C8 (2<<2)
#define GEN8_OA_REPORT_FORMAT_A36_B8_C8 (5<<2)
#define GEN8_OA_REPORT_FORMAT_C4_B8 (7<<2)
#define GEN8_OA_REPORT_FORMAT_SHIFT 2
#define GEN8_OA_SPECIFIC_CONTEXT_ENABLE (1<<1)
#define GEN8_OA_COUNTER_ENABLE (1<<0)
#define GEN8_OACTXCONTROL _MMIO(0x2360)
#define GEN8_OA_TIMER_PERIOD_MASK 0x3F
#define GEN8_OA_TIMER_PERIOD_SHIFT 2
#define GEN8_OA_TIMER_ENABLE (1<<1)
#define GEN8_OA_COUNTER_RESUME (1<<0)
#define GEN7_OABUFFER _MMIO(0x23B0) /* R/W */
#define GEN7_OABUFFER_OVERRUN_DISABLE (1<<3)
#define GEN7_OABUFFER_EDGE_TRIGGER (1<<2)
#define GEN7_OABUFFER_STOP_RESUME_ENABLE (1<<1)
#define GEN7_OABUFFER_RESUME (1<<0)
#define GEN8_OABUFFER _MMIO(0x2b14)
#define GEN7_OASTATUS1 _MMIO(0x2364)
#define GEN7_OASTATUS1_TAIL_MASK 0xffffffc0
#define GEN7_OASTATUS1_COUNTER_OVERFLOW (1<<2)
#define GEN7_OASTATUS1_OABUFFER_OVERFLOW (1<<1)
#define GEN7_OASTATUS1_REPORT_LOST (1<<0)
#define GEN7_OASTATUS2 _MMIO(0x2368)
#define GEN7_OASTATUS2_HEAD_MASK 0xffffffc0
#define GEN8_OASTATUS _MMIO(0x2b08)
#define GEN8_OASTATUS_OVERRUN_STATUS (1<<3)
#define GEN8_OASTATUS_COUNTER_OVERFLOW (1<<2)
#define GEN8_OASTATUS_OABUFFER_OVERFLOW (1<<1)
#define GEN8_OASTATUS_REPORT_LOST (1<<0)
#define GEN8_OAHEADPTR _MMIO(0x2B0C)
#define GEN8_OATAILPTR _MMIO(0x2B10)
#define OABUFFER_SIZE_128K (0<<3)
#define OABUFFER_SIZE_256K (1<<3)
#define OABUFFER_SIZE_512K (2<<3)
#define OABUFFER_SIZE_1M (3<<3)
#define OABUFFER_SIZE_2M (4<<3)
#define OABUFFER_SIZE_4M (5<<3)
#define OABUFFER_SIZE_8M (6<<3)
#define OABUFFER_SIZE_16M (7<<3)
#define OA_MEM_SELECT_GGTT (1<<0)
#define EU_PERF_CNTL0 _MMIO(0xe458)
#define GDT_CHICKEN_BITS _MMIO(0x9840)
#define GT_NOA_ENABLE 0x00000080
/*
* OA Boolean state
*/
#define OAREPORTTRIG1 _MMIO(0x2740)
#define OAREPORTTRIG1_THRESHOLD_MASK 0xffff
#define OAREPORTTRIG1_EDGE_LEVEL_TRIGER_SELECT_MASK 0xffff0000 /* 0=level */
#define OAREPORTTRIG2 _MMIO(0x2744)
#define OAREPORTTRIG2_INVERT_A_0 (1<<0)
#define OAREPORTTRIG2_INVERT_A_1 (1<<1)
#define OAREPORTTRIG2_INVERT_A_2 (1<<2)
#define OAREPORTTRIG2_INVERT_A_3 (1<<3)
#define OAREPORTTRIG2_INVERT_A_4 (1<<4)
#define OAREPORTTRIG2_INVERT_A_5 (1<<5)
#define OAREPORTTRIG2_INVERT_A_6 (1<<6)
#define OAREPORTTRIG2_INVERT_A_7 (1<<7)
#define OAREPORTTRIG2_INVERT_A_8 (1<<8)
#define OAREPORTTRIG2_INVERT_A_9 (1<<9)
#define OAREPORTTRIG2_INVERT_A_10 (1<<10)
#define OAREPORTTRIG2_INVERT_A_11 (1<<11)
#define OAREPORTTRIG2_INVERT_A_12 (1<<12)
#define OAREPORTTRIG2_INVERT_A_13 (1<<13)
#define OAREPORTTRIG2_INVERT_A_14 (1<<14)
#define OAREPORTTRIG2_INVERT_A_15 (1<<15)
#define OAREPORTTRIG2_INVERT_B_0 (1<<16)
#define OAREPORTTRIG2_INVERT_B_1 (1<<17)
#define OAREPORTTRIG2_INVERT_B_2 (1<<18)
#define OAREPORTTRIG2_INVERT_B_3 (1<<19)
#define OAREPORTTRIG2_INVERT_C_0 (1<<20)
#define OAREPORTTRIG2_INVERT_C_1 (1<<21)
#define OAREPORTTRIG2_INVERT_D_0 (1<<22)
#define OAREPORTTRIG2_THRESHOLD_ENABLE (1<<23)
#define OAREPORTTRIG2_REPORT_TRIGGER_ENABLE (1<<31)
#define OAREPORTTRIG3 _MMIO(0x2748)
#define OAREPORTTRIG3_NOA_SELECT_MASK 0xf
#define OAREPORTTRIG3_NOA_SELECT_8_SHIFT 0
#define OAREPORTTRIG3_NOA_SELECT_9_SHIFT 4
#define OAREPORTTRIG3_NOA_SELECT_10_SHIFT 8
#define OAREPORTTRIG3_NOA_SELECT_11_SHIFT 12
#define OAREPORTTRIG3_NOA_SELECT_12_SHIFT 16
#define OAREPORTTRIG3_NOA_SELECT_13_SHIFT 20
#define OAREPORTTRIG3_NOA_SELECT_14_SHIFT 24
#define OAREPORTTRIG3_NOA_SELECT_15_SHIFT 28
#define OAREPORTTRIG4 _MMIO(0x274c)
#define OAREPORTTRIG4_NOA_SELECT_MASK 0xf
#define OAREPORTTRIG4_NOA_SELECT_0_SHIFT 0
#define OAREPORTTRIG4_NOA_SELECT_1_SHIFT 4
#define OAREPORTTRIG4_NOA_SELECT_2_SHIFT 8
#define OAREPORTTRIG4_NOA_SELECT_3_SHIFT 12
#define OAREPORTTRIG4_NOA_SELECT_4_SHIFT 16
#define OAREPORTTRIG4_NOA_SELECT_5_SHIFT 20
#define OAREPORTTRIG4_NOA_SELECT_6_SHIFT 24
#define OAREPORTTRIG4_NOA_SELECT_7_SHIFT 28
#define OAREPORTTRIG5 _MMIO(0x2750)
#define OAREPORTTRIG5_THRESHOLD_MASK 0xffff
#define OAREPORTTRIG5_EDGE_LEVEL_TRIGER_SELECT_MASK 0xffff0000 /* 0=level */
#define OAREPORTTRIG6 _MMIO(0x2754)
#define OAREPORTTRIG6_INVERT_A_0 (1<<0)
#define OAREPORTTRIG6_INVERT_A_1 (1<<1)
#define OAREPORTTRIG6_INVERT_A_2 (1<<2)
#define OAREPORTTRIG6_INVERT_A_3 (1<<3)
#define OAREPORTTRIG6_INVERT_A_4 (1<<4)
#define OAREPORTTRIG6_INVERT_A_5 (1<<5)
#define OAREPORTTRIG6_INVERT_A_6 (1<<6)
#define OAREPORTTRIG6_INVERT_A_7 (1<<7)
#define OAREPORTTRIG6_INVERT_A_8 (1<<8)
#define OAREPORTTRIG6_INVERT_A_9 (1<<9)
#define OAREPORTTRIG6_INVERT_A_10 (1<<10)
#define OAREPORTTRIG6_INVERT_A_11 (1<<11)
#define OAREPORTTRIG6_INVERT_A_12 (1<<12)
#define OAREPORTTRIG6_INVERT_A_13 (1<<13)
#define OAREPORTTRIG6_INVERT_A_14 (1<<14)
#define OAREPORTTRIG6_INVERT_A_15 (1<<15)
#define OAREPORTTRIG6_INVERT_B_0 (1<<16)
#define OAREPORTTRIG6_INVERT_B_1 (1<<17)
#define OAREPORTTRIG6_INVERT_B_2 (1<<18)
#define OAREPORTTRIG6_INVERT_B_3 (1<<19)
#define OAREPORTTRIG6_INVERT_C_0 (1<<20)
#define OAREPORTTRIG6_INVERT_C_1 (1<<21)
#define OAREPORTTRIG6_INVERT_D_0 (1<<22)
#define OAREPORTTRIG6_THRESHOLD_ENABLE (1<<23)
#define OAREPORTTRIG6_REPORT_TRIGGER_ENABLE (1<<31)
#define OAREPORTTRIG7 _MMIO(0x2758)
#define OAREPORTTRIG7_NOA_SELECT_MASK 0xf
#define OAREPORTTRIG7_NOA_SELECT_8_SHIFT 0
#define OAREPORTTRIG7_NOA_SELECT_9_SHIFT 4
#define OAREPORTTRIG7_NOA_SELECT_10_SHIFT 8
#define OAREPORTTRIG7_NOA_SELECT_11_SHIFT 12
#define OAREPORTTRIG7_NOA_SELECT_12_SHIFT 16
#define OAREPORTTRIG7_NOA_SELECT_13_SHIFT 20
#define OAREPORTTRIG7_NOA_SELECT_14_SHIFT 24
#define OAREPORTTRIG7_NOA_SELECT_15_SHIFT 28
#define OAREPORTTRIG8 _MMIO(0x275c)
#define OAREPORTTRIG8_NOA_SELECT_MASK 0xf
#define OAREPORTTRIG8_NOA_SELECT_0_SHIFT 0
#define OAREPORTTRIG8_NOA_SELECT_1_SHIFT 4
#define OAREPORTTRIG8_NOA_SELECT_2_SHIFT 8
#define OAREPORTTRIG8_NOA_SELECT_3_SHIFT 12
#define OAREPORTTRIG8_NOA_SELECT_4_SHIFT 16
#define OAREPORTTRIG8_NOA_SELECT_5_SHIFT 20
#define OAREPORTTRIG8_NOA_SELECT_6_SHIFT 24
#define OAREPORTTRIG8_NOA_SELECT_7_SHIFT 28
#define OASTARTTRIG1 _MMIO(0x2710)
#define OASTARTTRIG1_THRESHOLD_COUNT_MASK_MBZ 0xffff0000
#define OASTARTTRIG1_THRESHOLD_MASK 0xffff
#define OASTARTTRIG2 _MMIO(0x2714)
#define OASTARTTRIG2_INVERT_A_0 (1<<0)
#define OASTARTTRIG2_INVERT_A_1 (1<<1)
#define OASTARTTRIG2_INVERT_A_2 (1<<2)
#define OASTARTTRIG2_INVERT_A_3 (1<<3)
#define OASTARTTRIG2_INVERT_A_4 (1<<4)
#define OASTARTTRIG2_INVERT_A_5 (1<<5)
#define OASTARTTRIG2_INVERT_A_6 (1<<6)
#define OASTARTTRIG2_INVERT_A_7 (1<<7)
#define OASTARTTRIG2_INVERT_A_8 (1<<8)
#define OASTARTTRIG2_INVERT_A_9 (1<<9)
#define OASTARTTRIG2_INVERT_A_10 (1<<10)
#define OASTARTTRIG2_INVERT_A_11 (1<<11)
#define OASTARTTRIG2_INVERT_A_12 (1<<12)
#define OASTARTTRIG2_INVERT_A_13 (1<<13)
#define OASTARTTRIG2_INVERT_A_14 (1<<14)
#define OASTARTTRIG2_INVERT_A_15 (1<<15)
#define OASTARTTRIG2_INVERT_B_0 (1<<16)
#define OASTARTTRIG2_INVERT_B_1 (1<<17)
#define OASTARTTRIG2_INVERT_B_2 (1<<18)
#define OASTARTTRIG2_INVERT_B_3 (1<<19)
#define OASTARTTRIG2_INVERT_C_0 (1<<20)
#define OASTARTTRIG2_INVERT_C_1 (1<<21)
#define OASTARTTRIG2_INVERT_D_0 (1<<22)
#define OASTARTTRIG2_THRESHOLD_ENABLE (1<<23)
#define OASTARTTRIG2_START_TRIG_FLAG_MBZ (1<<24)
#define OASTARTTRIG2_EVENT_SELECT_0 (1<<28)
#define OASTARTTRIG2_EVENT_SELECT_1 (1<<29)
#define OASTARTTRIG2_EVENT_SELECT_2 (1<<30)
#define OASTARTTRIG2_EVENT_SELECT_3 (1<<31)
#define OASTARTTRIG3 _MMIO(0x2718)
#define OASTARTTRIG3_NOA_SELECT_MASK 0xf
#define OASTARTTRIG3_NOA_SELECT_8_SHIFT 0
#define OASTARTTRIG3_NOA_SELECT_9_SHIFT 4
#define OASTARTTRIG3_NOA_SELECT_10_SHIFT 8
#define OASTARTTRIG3_NOA_SELECT_11_SHIFT 12
#define OASTARTTRIG3_NOA_SELECT_12_SHIFT 16
#define OASTARTTRIG3_NOA_SELECT_13_SHIFT 20
#define OASTARTTRIG3_NOA_SELECT_14_SHIFT 24
#define OASTARTTRIG3_NOA_SELECT_15_SHIFT 28
#define OASTARTTRIG4 _MMIO(0x271c)
#define OASTARTTRIG4_NOA_SELECT_MASK 0xf
#define OASTARTTRIG4_NOA_SELECT_0_SHIFT 0
#define OASTARTTRIG4_NOA_SELECT_1_SHIFT 4
#define OASTARTTRIG4_NOA_SELECT_2_SHIFT 8
#define OASTARTTRIG4_NOA_SELECT_3_SHIFT 12
#define OASTARTTRIG4_NOA_SELECT_4_SHIFT 16
#define OASTARTTRIG4_NOA_SELECT_5_SHIFT 20
#define OASTARTTRIG4_NOA_SELECT_6_SHIFT 24
#define OASTARTTRIG4_NOA_SELECT_7_SHIFT 28
#define OASTARTTRIG5 _MMIO(0x2720)
#define OASTARTTRIG5_THRESHOLD_COUNT_MASK_MBZ 0xffff0000
#define OASTARTTRIG5_THRESHOLD_MASK 0xffff
#define OASTARTTRIG6 _MMIO(0x2724)
#define OASTARTTRIG6_INVERT_A_0 (1<<0)
#define OASTARTTRIG6_INVERT_A_1 (1<<1)
#define OASTARTTRIG6_INVERT_A_2 (1<<2)
#define OASTARTTRIG6_INVERT_A_3 (1<<3)
#define OASTARTTRIG6_INVERT_A_4 (1<<4)
#define OASTARTTRIG6_INVERT_A_5 (1<<5)
#define OASTARTTRIG6_INVERT_A_6 (1<<6)
#define OASTARTTRIG6_INVERT_A_7 (1<<7)
#define OASTARTTRIG6_INVERT_A_8 (1<<8)
#define OASTARTTRIG6_INVERT_A_9 (1<<9)
#define OASTARTTRIG6_INVERT_A_10 (1<<10)
#define OASTARTTRIG6_INVERT_A_11 (1<<11)
#define OASTARTTRIG6_INVERT_A_12 (1<<12)
#define OASTARTTRIG6_INVERT_A_13 (1<<13)
#define OASTARTTRIG6_INVERT_A_14 (1<<14)
#define OASTARTTRIG6_INVERT_A_15 (1<<15)
#define OASTARTTRIG6_INVERT_B_0 (1<<16)
#define OASTARTTRIG6_INVERT_B_1 (1<<17)
#define OASTARTTRIG6_INVERT_B_2 (1<<18)
#define OASTARTTRIG6_INVERT_B_3 (1<<19)
#define OASTARTTRIG6_INVERT_C_0 (1<<20)
#define OASTARTTRIG6_INVERT_C_1 (1<<21)
#define OASTARTTRIG6_INVERT_D_0 (1<<22)
#define OASTARTTRIG6_THRESHOLD_ENABLE (1<<23)
#define OASTARTTRIG6_START_TRIG_FLAG_MBZ (1<<24)
#define OASTARTTRIG6_EVENT_SELECT_4 (1<<28)
#define OASTARTTRIG6_EVENT_SELECT_5 (1<<29)
#define OASTARTTRIG6_EVENT_SELECT_6 (1<<30)
#define OASTARTTRIG6_EVENT_SELECT_7 (1<<31)
#define OASTARTTRIG7 _MMIO(0x2728)
#define OASTARTTRIG7_NOA_SELECT_MASK 0xf
#define OASTARTTRIG7_NOA_SELECT_8_SHIFT 0
#define OASTARTTRIG7_NOA_SELECT_9_SHIFT 4
#define OASTARTTRIG7_NOA_SELECT_10_SHIFT 8
#define OASTARTTRIG7_NOA_SELECT_11_SHIFT 12
#define OASTARTTRIG7_NOA_SELECT_12_SHIFT 16
#define OASTARTTRIG7_NOA_SELECT_13_SHIFT 20
#define OASTARTTRIG7_NOA_SELECT_14_SHIFT 24
#define OASTARTTRIG7_NOA_SELECT_15_SHIFT 28
#define OASTARTTRIG8 _MMIO(0x272c)
#define OASTARTTRIG8_NOA_SELECT_MASK 0xf
#define OASTARTTRIG8_NOA_SELECT_0_SHIFT 0
#define OASTARTTRIG8_NOA_SELECT_1_SHIFT 4
#define OASTARTTRIG8_NOA_SELECT_2_SHIFT 8
#define OASTARTTRIG8_NOA_SELECT_3_SHIFT 12
#define OASTARTTRIG8_NOA_SELECT_4_SHIFT 16
#define OASTARTTRIG8_NOA_SELECT_5_SHIFT 20
#define OASTARTTRIG8_NOA_SELECT_6_SHIFT 24
#define OASTARTTRIG8_NOA_SELECT_7_SHIFT 28
/* CECX_0 */
#define OACEC_COMPARE_LESS_OR_EQUAL 6
#define OACEC_COMPARE_NOT_EQUAL 5
#define OACEC_COMPARE_LESS_THAN 4
#define OACEC_COMPARE_GREATER_OR_EQUAL 3
#define OACEC_COMPARE_EQUAL 2
#define OACEC_COMPARE_GREATER_THAN 1
#define OACEC_COMPARE_ANY_EQUAL 0
#define OACEC_COMPARE_VALUE_MASK 0xffff
#define OACEC_COMPARE_VALUE_SHIFT 3
#define OACEC_SELECT_NOA (0<<19)
#define OACEC_SELECT_PREV (1<<19)
#define OACEC_SELECT_BOOLEAN (2<<19)
/* CECX_1 */
#define OACEC_MASK_MASK 0xffff
#define OACEC_CONSIDERATIONS_MASK 0xffff
#define OACEC_CONSIDERATIONS_SHIFT 16
#define OACEC0_0 _MMIO(0x2770)
#define OACEC0_1 _MMIO(0x2774)
#define OACEC1_0 _MMIO(0x2778)
#define OACEC1_1 _MMIO(0x277c)
#define OACEC2_0 _MMIO(0x2780)
#define OACEC2_1 _MMIO(0x2784)
#define OACEC3_0 _MMIO(0x2788)
#define OACEC3_1 _MMIO(0x278c)
#define OACEC4_0 _MMIO(0x2790)
#define OACEC4_1 _MMIO(0x2794)
#define OACEC5_0 _MMIO(0x2798)
#define OACEC5_1 _MMIO(0x279c)
#define OACEC6_0 _MMIO(0x27a0)
#define OACEC6_1 _MMIO(0x27a4)
#define OACEC7_0 _MMIO(0x27a8)
#define OACEC7_1 _MMIO(0x27ac)
#define _GEN7_PIPEA_DE_LOAD_SL 0x70068
#define _GEN7_PIPEB_DE_LOAD_SL 0x71068
......@@ -6914,6 +7251,7 @@ enum {
# define GEN6_RCCUNIT_CLOCK_GATE_DISABLE (1 << 11)
#define GEN6_UCGCTL3 _MMIO(0x9408)
# define GEN6_OACSUNIT_CLOCK_GATE_DISABLE (1 << 20)
#define GEN7_UCGCTL4 _MMIO(0x940c)
#define GEN7_L3BANK2X_CLOCK_GATE_DISABLE (1<<25)
......
......@@ -1230,6 +1230,18 @@ struct drm_i915_gem_context_param {
__u64 value;
};
enum drm_i915_oa_format {
I915_OA_FORMAT_A13 = 1,
I915_OA_FORMAT_A29,
I915_OA_FORMAT_A13_B8_C8,
I915_OA_FORMAT_B4_C8,
I915_OA_FORMAT_A45_B8_C8,
I915_OA_FORMAT_B4_C8_A16,
I915_OA_FORMAT_C4_B8,
I915_OA_FORMAT_MAX /* non-ABI */
};
enum drm_i915_perf_property_id {
/**
* Open the stream for a specific context handle (as used with
......@@ -1238,6 +1250,32 @@ enum drm_i915_perf_property_id {
*/
DRM_I915_PERF_PROP_CTX_HANDLE = 1,
/**
* A value of 1 requests the inclusion of raw OA unit reports as
* part of stream samples.
*/
DRM_I915_PERF_PROP_SAMPLE_OA,
/**
* The value specifies which set of OA unit metrics should be
* be configured, defining the contents of any OA unit reports.
*/
DRM_I915_PERF_PROP_OA_METRICS_SET,
/**
* The value specifies the size and layout of OA unit reports.
*/
DRM_I915_PERF_PROP_OA_FORMAT,
/**
* Specifying this property implicitly requests periodic OA unit
* sampling and (at least on Haswell) the sampling frequency is derived
* from this exponent as follows:
*
* 80ns * 2^(period_exponent + 1)
*/
DRM_I915_PERF_PROP_OA_EXPONENT,
DRM_I915_PERF_PROP_MAX /* non-ABI */
};
......@@ -1257,7 +1295,23 @@ struct drm_i915_perf_open_param {
__u64 __user properties_ptr;
};
/**
* Enable data capture for a stream that was either opened in a disabled state
* via I915_PERF_FLAG_DISABLED or was later disabled via
* I915_PERF_IOCTL_DISABLE.
*
* It is intended to be cheaper to disable and enable a stream than it may be
* to close and re-open a stream with the same configuration.
*
* It's undefined whether any pending data for the stream will be lost.
*/
#define I915_PERF_IOCTL_ENABLE _IO('i', 0x0)
/**
* Disable data capture for a stream.
*
* It is an error to try and read a stream that is disabled.
*/
#define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
/**
......@@ -1281,17 +1335,30 @@ enum drm_i915_perf_record_type {
* every sample.
*
* The order of these sample properties given by userspace has no
* affect on the ordering of data within a sample. The order will be
* affect on the ordering of data within a sample. The order is
* documented here.
*
* struct {
* struct drm_i915_perf_record_header header;
*
* TODO: itemize extensible sample data here
* { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
* };
*/
DRM_I915_PERF_RECORD_SAMPLE = 1,
/*
* Indicates that one or more OA reports were not written by the
* hardware. This can happen for example if an MI_REPORT_PERF_COUNT
* command collides with periodic sampling - which would be more likely
* at higher sampling frequencies.
*/
DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
/**
* An error occurred that resulted in all pending OA reports being lost.
*/
DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
DRM_I915_PERF_RECORD_MAX /* non-ABI */
};
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment