Commit e77d99d4 authored by Paolo Bonzini's avatar Paolo Bonzini

Merge tag 'kvm-arm-for-3.18' of...

Merge tag 'kvm-arm-for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next

Changes for KVM for arm/arm64 for 3.18

This includes a bunch of changes:
 - Support read-only memory slots on arm/arm64
 - Various changes to fix Sparse warnings
 - Correctly detect write vs. read Stage-2 faults
 - Various VGIC cleanups and fixes
 - Dynamic VGIC data strcuture sizing
 - Fix SGI set_clear_pend offset bug
 - Fix VTTBR_BADDR Mask
 - Correctly report the FSC on Stage-2 faults

Conflicts:
	virt/kvm/eventfd.c
	[duplicate, different patch where the kvm-arm version broke x86.
	 The kvm tree instead has the right one]
parents bb0ca6ac 0496daa5
...@@ -71,3 +71,13 @@ Groups: ...@@ -71,3 +71,13 @@ Groups:
Errors: Errors:
-ENODEV: Getting or setting this register is not yet supported -ENODEV: Getting or setting this register is not yet supported
-EBUSY: One or more VCPUs are running -EBUSY: One or more VCPUs are running
KVM_DEV_ARM_VGIC_GRP_NR_IRQS
Attributes:
A value describing the number of interrupts (SGI, PPI and SPI) for
this GIC instance, ranging from 64 to 1024, in increments of 32.
Errors:
-EINVAL: Value set is out of the expected range
-EBUSY: Value has already be set, or GIC has already been initialized
with default values.
...@@ -148,6 +148,11 @@ static inline bool kvm_vcpu_trap_is_iabt(struct kvm_vcpu *vcpu) ...@@ -148,6 +148,11 @@ static inline bool kvm_vcpu_trap_is_iabt(struct kvm_vcpu *vcpu)
} }
static inline u8 kvm_vcpu_trap_get_fault(struct kvm_vcpu *vcpu) static inline u8 kvm_vcpu_trap_get_fault(struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & HSR_FSC;
}
static inline u8 kvm_vcpu_trap_get_fault_type(struct kvm_vcpu *vcpu)
{ {
return kvm_vcpu_get_hsr(vcpu) & HSR_FSC_TYPE; return kvm_vcpu_get_hsr(vcpu) & HSR_FSC_TYPE;
} }
......
...@@ -43,7 +43,7 @@ ...@@ -43,7 +43,7 @@
#include <kvm/arm_vgic.h> #include <kvm/arm_vgic.h>
u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode); u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode);
int kvm_target_cpu(void); int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu); int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
void kvm_reset_coprocs(struct kvm_vcpu *vcpu); void kvm_reset_coprocs(struct kvm_vcpu *vcpu);
......
...@@ -78,17 +78,6 @@ static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) ...@@ -78,17 +78,6 @@ static inline void kvm_set_pte(pte_t *pte, pte_t new_pte)
flush_pmd_entry(pte); flush_pmd_entry(pte);
} }
static inline bool kvm_is_write_fault(unsigned long hsr)
{
unsigned long hsr_ec = hsr >> HSR_EC_SHIFT;
if (hsr_ec == HSR_EC_IABT)
return false;
else if ((hsr & HSR_ISV) && !(hsr & HSR_WNR))
return false;
else
return true;
}
static inline void kvm_clean_pgd(pgd_t *pgd) static inline void kvm_clean_pgd(pgd_t *pgd)
{ {
clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t)); clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t));
......
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#define __KVM_HAVE_GUEST_DEBUG #define __KVM_HAVE_GUEST_DEBUG
#define __KVM_HAVE_IRQ_LINE #define __KVM_HAVE_IRQ_LINE
#define __KVM_HAVE_READONLY_MEM
#define KVM_REG_SIZE(id) \ #define KVM_REG_SIZE(id) \
(1U << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT)) (1U << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT))
...@@ -173,6 +174,7 @@ struct kvm_arch_memory_slot { ...@@ -173,6 +174,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_CPUID_MASK (0xffULL << KVM_DEV_ARM_VGIC_CPUID_SHIFT) #define KVM_DEV_ARM_VGIC_CPUID_MASK (0xffULL << KVM_DEV_ARM_VGIC_CPUID_SHIFT)
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0 #define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) #define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
/* KVM_IRQ_LINE irq field index values */ /* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24 #define KVM_ARM_IRQ_TYPE_SHIFT 24
......
...@@ -82,7 +82,7 @@ struct kvm_vcpu *kvm_arm_get_running_vcpu(void) ...@@ -82,7 +82,7 @@ struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
/** /**
* kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
*/ */
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void) struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
{ {
return &kvm_arm_running_vcpu; return &kvm_arm_running_vcpu;
} }
...@@ -161,6 +161,8 @@ void kvm_arch_destroy_vm(struct kvm *kvm) ...@@ -161,6 +161,8 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
kvm->vcpus[i] = NULL; kvm->vcpus[i] = NULL;
} }
} }
kvm_vgic_destroy(kvm);
} }
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
...@@ -177,6 +179,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) ...@@ -177,6 +179,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_ONE_REG: case KVM_CAP_ONE_REG:
case KVM_CAP_ARM_PSCI: case KVM_CAP_ARM_PSCI:
case KVM_CAP_ARM_PSCI_0_2: case KVM_CAP_ARM_PSCI_0_2:
case KVM_CAP_READONLY_MEM:
r = 1; r = 1;
break; break;
case KVM_CAP_COALESCED_MMIO: case KVM_CAP_COALESCED_MMIO:
...@@ -242,6 +245,7 @@ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) ...@@ -242,6 +245,7 @@ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{ {
kvm_mmu_free_memory_caches(vcpu); kvm_mmu_free_memory_caches(vcpu);
kvm_timer_vcpu_terminate(vcpu); kvm_timer_vcpu_terminate(vcpu);
kvm_vgic_vcpu_destroy(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu);
} }
...@@ -257,16 +261,9 @@ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) ...@@ -257,16 +261,9 @@ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{ {
int ret;
/* Force users to call KVM_ARM_VCPU_INIT */ /* Force users to call KVM_ARM_VCPU_INIT */
vcpu->arch.target = -1; vcpu->arch.target = -1;
/* Set up VGIC */
ret = kvm_vgic_vcpu_init(vcpu);
if (ret)
return ret;
/* Set up the timer */ /* Set up the timer */
kvm_timer_vcpu_init(vcpu); kvm_timer_vcpu_init(vcpu);
...@@ -413,9 +410,9 @@ static void update_vttbr(struct kvm *kvm) ...@@ -413,9 +410,9 @@ static void update_vttbr(struct kvm *kvm)
/* update vttbr to be used with the new vmid */ /* update vttbr to be used with the new vmid */
pgd_phys = virt_to_phys(kvm->arch.pgd); pgd_phys = virt_to_phys(kvm->arch.pgd);
BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK; kvm->arch.vttbr = pgd_phys | vmid;
kvm->arch.vttbr |= vmid;
spin_unlock(&kvm_vmid_lock); spin_unlock(&kvm_vmid_lock);
} }
......
...@@ -791,7 +791,7 @@ static bool is_valid_cache(u32 val) ...@@ -791,7 +791,7 @@ static bool is_valid_cache(u32 val)
u32 level, ctype; u32 level, ctype;
if (val >= CSSELR_MAX) if (val >= CSSELR_MAX)
return -ENOENT; return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1); level = (val >> 1);
......
...@@ -163,7 +163,7 @@ static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) ...@@ -163,7 +163,7 @@ static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
if (ret != 0) if (ret != 0)
return ret; return -EFAULT;
return kvm_arm_timer_set_reg(vcpu, reg->id, val); return kvm_arm_timer_set_reg(vcpu, reg->id, val);
} }
......
...@@ -746,22 +746,29 @@ static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap) ...@@ -746,22 +746,29 @@ static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
return false; return false;
} }
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
if (kvm_vcpu_trap_is_iabt(vcpu))
return false;
return kvm_vcpu_dabt_iswrite(vcpu);
}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
struct kvm_memory_slot *memslot, struct kvm_memory_slot *memslot, unsigned long hva,
unsigned long fault_status) unsigned long fault_status)
{ {
int ret; int ret;
bool write_fault, writable, hugetlb = false, force_pte = false; bool write_fault, writable, hugetlb = false, force_pte = false;
unsigned long mmu_seq; unsigned long mmu_seq;
gfn_t gfn = fault_ipa >> PAGE_SHIFT; gfn_t gfn = fault_ipa >> PAGE_SHIFT;
unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
struct kvm *kvm = vcpu->kvm; struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma; struct vm_area_struct *vma;
pfn_t pfn; pfn_t pfn;
pgprot_t mem_type = PAGE_S2; pgprot_t mem_type = PAGE_S2;
write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu)); write_fault = kvm_is_write_fault(vcpu);
if (fault_status == FSC_PERM && !write_fault) { if (fault_status == FSC_PERM && !write_fault) {
kvm_err("Unexpected L2 read permission error\n"); kvm_err("Unexpected L2 read permission error\n");
return -EFAULT; return -EFAULT;
...@@ -863,7 +870,8 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) ...@@ -863,7 +870,8 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
unsigned long fault_status; unsigned long fault_status;
phys_addr_t fault_ipa; phys_addr_t fault_ipa;
struct kvm_memory_slot *memslot; struct kvm_memory_slot *memslot;
bool is_iabt; unsigned long hva;
bool is_iabt, write_fault, writable;
gfn_t gfn; gfn_t gfn;
int ret, idx; int ret, idx;
...@@ -874,17 +882,22 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) ...@@ -874,17 +882,22 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
kvm_vcpu_get_hfar(vcpu), fault_ipa); kvm_vcpu_get_hfar(vcpu), fault_ipa);
/* Check the stage-2 fault is trans. fault or write fault */ /* Check the stage-2 fault is trans. fault or write fault */
fault_status = kvm_vcpu_trap_get_fault(vcpu); fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
if (fault_status != FSC_FAULT && fault_status != FSC_PERM) { if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n", kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
kvm_vcpu_trap_get_class(vcpu), fault_status); kvm_vcpu_trap_get_class(vcpu),
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
(unsigned long)kvm_vcpu_get_hsr(vcpu));
return -EFAULT; return -EFAULT;
} }
idx = srcu_read_lock(&vcpu->kvm->srcu); idx = srcu_read_lock(&vcpu->kvm->srcu);
gfn = fault_ipa >> PAGE_SHIFT; gfn = fault_ipa >> PAGE_SHIFT;
if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) { memslot = gfn_to_memslot(vcpu->kvm, gfn);
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
write_fault = kvm_is_write_fault(vcpu);
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
if (is_iabt) { if (is_iabt) {
/* Prefetch Abort on I/O address */ /* Prefetch Abort on I/O address */
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
...@@ -892,13 +905,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) ...@@ -892,13 +905,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
goto out_unlock; goto out_unlock;
} }
if (fault_status != FSC_FAULT) {
kvm_err("Unsupported fault status on io memory: %#lx\n",
fault_status);
ret = -EFAULT;
goto out_unlock;
}
/* /*
* The IPA is reported as [MAX:12], so we need to * The IPA is reported as [MAX:12], so we need to
* complement it with the bottom 12 bits from the * complement it with the bottom 12 bits from the
...@@ -910,9 +916,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) ...@@ -910,9 +916,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
goto out_unlock; goto out_unlock;
} }
memslot = gfn_to_memslot(vcpu->kvm, gfn); ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
if (ret == 0) if (ret == 0)
ret = 1; ret = 1;
out_unlock: out_unlock:
......
...@@ -122,6 +122,17 @@ ...@@ -122,6 +122,17 @@
#define VTCR_EL2_T0SZ_MASK 0x3f #define VTCR_EL2_T0SZ_MASK 0x3f
#define VTCR_EL2_T0SZ_40B 24 #define VTCR_EL2_T0SZ_40B 24
/*
* We configure the Stage-2 page tables to always restrict the IPA space to be
* 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
* not known to exist and will break with this configuration.
*
* Note that when using 4K pages, we concatenate two first level page tables
* together.
*
* The magic numbers used for VTTBR_X in this patch can be found in Tables
* D4-23 and D4-25 in ARM DDI 0487A.b.
*/
#ifdef CONFIG_ARM64_64K_PAGES #ifdef CONFIG_ARM64_64K_PAGES
/* /*
* Stage2 translation configuration: * Stage2 translation configuration:
...@@ -149,7 +160,7 @@ ...@@ -149,7 +160,7 @@
#endif #endif
#define VTTBR_BADDR_SHIFT (VTTBR_X - 1) #define VTTBR_BADDR_SHIFT (VTTBR_X - 1)
#define VTTBR_BADDR_MASK (((1LLU << (40 - VTTBR_X)) - 1) << VTTBR_BADDR_SHIFT) #define VTTBR_BADDR_MASK (((1LLU << (PHYS_MASK_SHIFT - VTTBR_X)) - 1) << VTTBR_BADDR_SHIFT)
#define VTTBR_VMID_SHIFT (48LLU) #define VTTBR_VMID_SHIFT (48LLU)
#define VTTBR_VMID_MASK (0xffLLU << VTTBR_VMID_SHIFT) #define VTTBR_VMID_MASK (0xffLLU << VTTBR_VMID_SHIFT)
......
...@@ -173,6 +173,11 @@ static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) ...@@ -173,6 +173,11 @@ static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
} }
static inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) static inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & ESR_EL2_FSC;
}
static inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
{ {
return kvm_vcpu_get_hsr(vcpu) & ESR_EL2_FSC_TYPE; return kvm_vcpu_get_hsr(vcpu) & ESR_EL2_FSC_TYPE;
} }
......
...@@ -43,7 +43,7 @@ ...@@ -43,7 +43,7 @@
#define KVM_VCPU_MAX_FEATURES 3 #define KVM_VCPU_MAX_FEATURES 3
int kvm_target_cpu(void); int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu); int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
int kvm_arch_dev_ioctl_check_extension(long ext); int kvm_arch_dev_ioctl_check_extension(long ext);
...@@ -197,7 +197,7 @@ static inline void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, ...@@ -197,7 +197,7 @@ static inline void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
} }
struct kvm_vcpu *kvm_arm_get_running_vcpu(void); struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void); struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
u64 kvm_call_hyp(void *hypfn, ...); u64 kvm_call_hyp(void *hypfn, ...);
......
...@@ -59,10 +59,9 @@ ...@@ -59,10 +59,9 @@
#define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET) #define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
/* /*
* Align KVM with the kernel's view of physical memory. Should be * We currently only support a 40bit IPA.
* 40bit IPA, with PGD being 8kB aligned in the 4KB page configuration.
*/ */
#define KVM_PHYS_SHIFT PHYS_MASK_SHIFT #define KVM_PHYS_SHIFT (40)
#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
...@@ -93,19 +92,6 @@ void kvm_clear_hyp_idmap(void); ...@@ -93,19 +92,6 @@ void kvm_clear_hyp_idmap(void);
#define kvm_set_pte(ptep, pte) set_pte(ptep, pte) #define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd) #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
static inline bool kvm_is_write_fault(unsigned long esr)
{
unsigned long esr_ec = esr >> ESR_EL2_EC_SHIFT;
if (esr_ec == ESR_EL2_EC_IABT)
return false;
if ((esr & ESR_EL2_ISV) && !(esr & ESR_EL2_WNR))
return false;
return true;
}
static inline void kvm_clean_pgd(pgd_t *pgd) {} static inline void kvm_clean_pgd(pgd_t *pgd) {}
static inline void kvm_clean_pmd_entry(pmd_t *pmd) {} static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
static inline void kvm_clean_pte(pte_t *pte) {} static inline void kvm_clean_pte(pte_t *pte) {}
......
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#define __KVM_HAVE_GUEST_DEBUG #define __KVM_HAVE_GUEST_DEBUG
#define __KVM_HAVE_IRQ_LINE #define __KVM_HAVE_IRQ_LINE
#define __KVM_HAVE_READONLY_MEM
#define KVM_REG_SIZE(id) \ #define KVM_REG_SIZE(id) \
(1U << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT)) (1U << (((id) & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT))
...@@ -159,6 +160,7 @@ struct kvm_arch_memory_slot { ...@@ -159,6 +160,7 @@ struct kvm_arch_memory_slot {
#define KVM_DEV_ARM_VGIC_CPUID_MASK (0xffULL << KVM_DEV_ARM_VGIC_CPUID_SHIFT) #define KVM_DEV_ARM_VGIC_CPUID_MASK (0xffULL << KVM_DEV_ARM_VGIC_CPUID_SHIFT)
#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0 #define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0
#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) #define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT)
#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3
/* KVM_IRQ_LINE irq field index values */ /* KVM_IRQ_LINE irq field index values */
#define KVM_ARM_IRQ_TYPE_SHIFT 24 #define KVM_ARM_IRQ_TYPE_SHIFT 24
......
...@@ -174,7 +174,7 @@ static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) ...@@ -174,7 +174,7 @@ static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
if (ret != 0) if (ret != 0)
return ret; return -EFAULT;
return kvm_arm_timer_set_reg(vcpu, reg->id, val); return kvm_arm_timer_set_reg(vcpu, reg->id, val);
} }
......
...@@ -1218,7 +1218,7 @@ static bool is_valid_cache(u32 val) ...@@ -1218,7 +1218,7 @@ static bool is_valid_cache(u32 val)
u32 level, ctype; u32 level, ctype;
if (val >= CSSELR_MAX) if (val >= CSSELR_MAX)
return -ENOENT; return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1); level = (val >> 1);
......
...@@ -25,26 +25,25 @@ ...@@ -25,26 +25,25 @@
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/types.h> #include <linux/types.h>
#define VGIC_NR_IRQS 256 #define VGIC_NR_IRQS_LEGACY 256
#define VGIC_NR_SGIS 16 #define VGIC_NR_SGIS 16
#define VGIC_NR_PPIS 16 #define VGIC_NR_PPIS 16
#define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS) #define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS)
#define VGIC_NR_SHARED_IRQS (VGIC_NR_IRQS - VGIC_NR_PRIVATE_IRQS)
#define VGIC_MAX_CPUS KVM_MAX_VCPUS
#define VGIC_V2_MAX_LRS (1 << 6) #define VGIC_V2_MAX_LRS (1 << 6)
#define VGIC_V3_MAX_LRS 16 #define VGIC_V3_MAX_LRS 16
#define VGIC_MAX_IRQS 1024
/* Sanity checks... */ /* Sanity checks... */
#if (VGIC_MAX_CPUS > 8) #if (KVM_MAX_VCPUS > 8)
#error Invalid number of CPU interfaces #error Invalid number of CPU interfaces
#endif #endif
#if (VGIC_NR_IRQS & 31) #if (VGIC_NR_IRQS_LEGACY & 31)
#error "VGIC_NR_IRQS must be a multiple of 32" #error "VGIC_NR_IRQS must be a multiple of 32"
#endif #endif
#if (VGIC_NR_IRQS > 1024) #if (VGIC_NR_IRQS_LEGACY > VGIC_MAX_IRQS)
#error "VGIC_NR_IRQS must be <= 1024" #error "VGIC_NR_IRQS must be <= 1024"
#endif #endif
...@@ -54,19 +53,33 @@ ...@@ -54,19 +53,33 @@
* - a bunch of shared interrupts (SPI) * - a bunch of shared interrupts (SPI)
*/ */
struct vgic_bitmap { struct vgic_bitmap {
union { /*
u32 reg[VGIC_NR_PRIVATE_IRQS / 32]; * - One UL per VCPU for private interrupts (assumes UL is at
DECLARE_BITMAP(reg_ul, VGIC_NR_PRIVATE_IRQS); * least 32 bits)
} percpu[VGIC_MAX_CPUS]; * - As many UL as necessary for shared interrupts.
union { *
u32 reg[VGIC_NR_SHARED_IRQS / 32]; * The private interrupts are accessed via the "private"
DECLARE_BITMAP(reg_ul, VGIC_NR_SHARED_IRQS); * field, one UL per vcpu (the state for vcpu n is in
} shared; * private[n]). The shared interrupts are accessed via the
* "shared" pointer (IRQn state is at bit n-32 in the bitmap).
*/
unsigned long *private;
unsigned long *shared;
}; };
struct vgic_bytemap { struct vgic_bytemap {
u32 percpu[VGIC_MAX_CPUS][VGIC_NR_PRIVATE_IRQS / 4]; /*
u32 shared[VGIC_NR_SHARED_IRQS / 4]; * - 8 u32 per VCPU for private interrupts
* - As many u32 as necessary for shared interrupts.
*
* The private interrupts are accessed via the "private"
* field, (the state for vcpu n is in private[n*8] to
* private[n*8 + 7]). The shared interrupts are accessed via
* the "shared" pointer (IRQn state is at byte (n-32)%4 of the
* shared[(n-32)/4] word).
*/
u32 *private;
u32 *shared;
}; };
struct kvm_vcpu; struct kvm_vcpu;
...@@ -127,6 +140,9 @@ struct vgic_dist { ...@@ -127,6 +140,9 @@ struct vgic_dist {
bool in_kernel; bool in_kernel;
bool ready; bool ready;
int nr_cpus;
int nr_irqs;
/* Virtual control interface mapping */ /* Virtual control interface mapping */
void __iomem *vctrl_base; void __iomem *vctrl_base;
...@@ -140,11 +156,25 @@ struct vgic_dist { ...@@ -140,11 +156,25 @@ struct vgic_dist {
/* Interrupt enabled (one bit per IRQ) */ /* Interrupt enabled (one bit per IRQ) */
struct vgic_bitmap irq_enabled; struct vgic_bitmap irq_enabled;
/* Interrupt 'pin' level */ /* Level-triggered interrupt external input is asserted */
struct vgic_bitmap irq_state; struct vgic_bitmap irq_level;
/* Level-triggered interrupt in progress */ /*
struct vgic_bitmap irq_active; * Interrupt state is pending on the distributor
*/
struct vgic_bitmap irq_pending;
/*
* Tracks writes to GICD_ISPENDRn and GICD_ICPENDRn for level-triggered
* interrupts. Essentially holds the state of the flip-flop in
* Figure 4-10 on page 4-101 in ARM IHI 0048B.b.
* Once set, it is only cleared for level-triggered interrupts on
* guest ACKs (when we queue it) or writes to GICD_ICPENDRn.
*/
struct vgic_bitmap irq_soft_pend;
/* Level-triggered interrupt queued on VCPU interface */
struct vgic_bitmap irq_queued;
/* Interrupt priority. Not used yet. */ /* Interrupt priority. Not used yet. */
struct vgic_bytemap irq_priority; struct vgic_bytemap irq_priority;
...@@ -152,15 +182,36 @@ struct vgic_dist { ...@@ -152,15 +182,36 @@ struct vgic_dist {
/* Level/edge triggered */ /* Level/edge triggered */
struct vgic_bitmap irq_cfg; struct vgic_bitmap irq_cfg;
/* Source CPU per SGI and target CPU */ /*
u8 irq_sgi_sources[VGIC_MAX_CPUS][VGIC_NR_SGIS]; * Source CPU per SGI and target CPU:
*
/* Target CPU for each IRQ */ * Each byte represent a SGI observable on a VCPU, each bit of
u8 irq_spi_cpu[VGIC_NR_SHARED_IRQS]; * this byte indicating if the corresponding VCPU has
struct vgic_bitmap irq_spi_target[VGIC_MAX_CPUS]; * generated this interrupt. This is a GICv2 feature only.
*
* For VCPUn (n < 8), irq_sgi_sources[n*16] to [n*16 + 15] are
* the SGIs observable on VCPUn.
*/
u8 *irq_sgi_sources;
/*
* Target CPU for each SPI:
*
* Array of available SPI, each byte indicating the target
* VCPU for SPI. IRQn (n >=32) is at irq_spi_cpu[n-32].
*/
u8 *irq_spi_cpu;
/*
* Reverse lookup of irq_spi_cpu for faster compute pending:
*
* Array of bitmaps, one per VCPU, describing if IRQn is
* routed to a particular VCPU.
*/
struct vgic_bitmap *irq_spi_target;
/* Bitmap indicating which CPU has something pending */ /* Bitmap indicating which CPU has something pending */
unsigned long irq_pending_on_cpu; unsigned long *irq_pending_on_cpu;
#endif #endif
}; };
...@@ -190,11 +241,11 @@ struct vgic_v3_cpu_if { ...@@ -190,11 +241,11 @@ struct vgic_v3_cpu_if {
struct vgic_cpu { struct vgic_cpu {
#ifdef CONFIG_KVM_ARM_VGIC #ifdef CONFIG_KVM_ARM_VGIC
/* per IRQ to LR mapping */ /* per IRQ to LR mapping */
u8 vgic_irq_lr_map[VGIC_NR_IRQS]; u8 *vgic_irq_lr_map;
/* Pending interrupts on this VCPU */ /* Pending interrupts on this VCPU */
DECLARE_BITMAP( pending_percpu, VGIC_NR_PRIVATE_IRQS); DECLARE_BITMAP( pending_percpu, VGIC_NR_PRIVATE_IRQS);
DECLARE_BITMAP( pending_shared, VGIC_NR_SHARED_IRQS); unsigned long *pending_shared;
/* Bitmap of used/free list registers */ /* Bitmap of used/free list registers */
DECLARE_BITMAP( lr_used, VGIC_V2_MAX_LRS); DECLARE_BITMAP( lr_used, VGIC_V2_MAX_LRS);
...@@ -225,7 +276,8 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write); ...@@ -225,7 +276,8 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
int kvm_vgic_hyp_init(void); int kvm_vgic_hyp_init(void);
int kvm_vgic_init(struct kvm *kvm); int kvm_vgic_init(struct kvm *kvm);
int kvm_vgic_create(struct kvm *kvm); int kvm_vgic_create(struct kvm *kvm);
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu); void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu); void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu); void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
......
...@@ -536,6 +536,8 @@ struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); ...@@ -536,6 +536,8 @@ struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
bool *writable);
void kvm_release_page_clean(struct page *page); void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page); void kvm_release_page_dirty(struct page *page);
void kvm_set_page_accessed(struct page *page); void kvm_set_page_accessed(struct page *page);
......
...@@ -36,21 +36,22 @@ ...@@ -36,21 +36,22 @@
* How the whole thing works (courtesy of Christoffer Dall): * How the whole thing works (courtesy of Christoffer Dall):
* *
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
* something is pending * something is pending on the CPU interface.
* - VGIC pending interrupts are stored on the vgic.irq_state vgic * - Interrupts that are pending on the distributor are stored on the
* bitmap (this bitmap is updated by both user land ioctls and guest * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
* mmio ops, and other in-kernel peripherals such as the * ioctls and guest mmio ops, and other in-kernel peripherals such as the
* arch. timers) and indicate the 'wire' state. * arch. timers).
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
* recalculated * recalculated
* - To calculate the oracle, we need info for each cpu from * - To calculate the oracle, we need info for each cpu from
* compute_pending_for_cpu, which considers: * compute_pending_for_cpu, which considers:
* - PPI: dist->irq_state & dist->irq_enable * - PPI: dist->irq_pending & dist->irq_enable
* - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
* - irq_spi_target is a 'formatted' version of the GICD_ICFGR * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
* registers, stored on each vcpu. We only keep one bit of * registers, stored on each vcpu. We only keep one bit of
* information per interrupt, making sure that only one vcpu can * information per interrupt, making sure that only one vcpu can
* accept the interrupt. * accept the interrupt.
* - If any of the above state changes, we must recalculate the oracle.
* - The same is true when injecting an interrupt, except that we only * - The same is true when injecting an interrupt, except that we only
* consider a single interrupt at a time. The irq_spi_cpu array * consider a single interrupt at a time. The irq_spi_cpu array
* contains the target CPU for each SPI. * contains the target CPU for each SPI.
...@@ -60,13 +61,18 @@ ...@@ -60,13 +61,18 @@
* the 'line' again. This is achieved as such: * the 'line' again. This is achieved as such:
* *
* - When a level interrupt is moved onto a vcpu, the corresponding * - When a level interrupt is moved onto a vcpu, the corresponding
* bit in irq_active is set. As long as this bit is set, the line * bit in irq_queued is set. As long as this bit is set, the line
* will be ignored for further interrupts. The interrupt is injected * will be ignored for further interrupts. The interrupt is injected
* into the vcpu with the GICH_LR_EOI bit set (generate a * into the vcpu with the GICH_LR_EOI bit set (generate a
* maintenance interrupt on EOI). * maintenance interrupt on EOI).
* - When the interrupt is EOIed, the maintenance interrupt fires, * - When the interrupt is EOIed, the maintenance interrupt fires,
* and clears the corresponding bit in irq_active. This allow the * and clears the corresponding bit in irq_queued. This allows the
* interrupt line to be sampled again. * interrupt line to be sampled again.
* - Note that level-triggered interrupts can also be set to pending from
* writes to GICD_ISPENDRn and lowering the external input line does not
* cause the interrupt to become inactive in such a situation.
* Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
* inactive as long as the external input line is held high.
*/ */
#define VGIC_ADDR_UNDEF (-1) #define VGIC_ADDR_UNDEF (-1)
...@@ -89,6 +95,7 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); ...@@ -89,6 +95,7 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
static void vgic_update_state(struct kvm *kvm); static void vgic_update_state(struct kvm *kvm);
static void vgic_kick_vcpus(struct kvm *kvm); static void vgic_kick_vcpus(struct kvm *kvm);
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
...@@ -99,10 +106,8 @@ static const struct vgic_ops *vgic_ops; ...@@ -99,10 +106,8 @@ static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic; static const struct vgic_params *vgic;
/* /*
* struct vgic_bitmap contains unions that provide two views of * struct vgic_bitmap contains a bitmap made of unsigned longs, but
* the same data. In one case it is an array of registers of * extracts u32s out of them.
* u32's, and in the other case it is a bitmap of unsigned
* longs.
* *
* This does not work on 64-bit BE systems, because the bitmap access * This does not work on 64-bit BE systems, because the bitmap access
* will store two consecutive 32-bit words with the higher-addressed * will store two consecutive 32-bit words with the higher-addressed
...@@ -118,23 +123,45 @@ static const struct vgic_params *vgic; ...@@ -118,23 +123,45 @@ static const struct vgic_params *vgic;
#define REG_OFFSET_SWIZZLE 0 #define REG_OFFSET_SWIZZLE 0
#endif #endif
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
int nr_longs;
nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
if (!b->private)
return -ENOMEM;
b->shared = b->private + nr_cpus;
return 0;
}
static void vgic_free_bitmap(struct vgic_bitmap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
}
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
int cpuid, u32 offset) int cpuid, u32 offset)
{ {
offset >>= 2; offset >>= 2;
if (!offset) if (!offset)
return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE); return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
else else
return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE); return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
} }
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
int cpuid, int irq) int cpuid, int irq)
{ {
if (irq < VGIC_NR_PRIVATE_IRQS) if (irq < VGIC_NR_PRIVATE_IRQS)
return test_bit(irq, x->percpu[cpuid].reg_ul); return test_bit(irq, x->private + cpuid);
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul); return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
} }
static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
...@@ -143,9 +170,9 @@ static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, ...@@ -143,9 +170,9 @@ static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
unsigned long *reg; unsigned long *reg;
if (irq < VGIC_NR_PRIVATE_IRQS) { if (irq < VGIC_NR_PRIVATE_IRQS) {
reg = x->percpu[cpuid].reg_ul; reg = x->private + cpuid;
} else { } else {
reg = x->shared.reg_ul; reg = x->shared;
irq -= VGIC_NR_PRIVATE_IRQS; irq -= VGIC_NR_PRIVATE_IRQS;
} }
...@@ -157,24 +184,49 @@ static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, ...@@ -157,24 +184,49 @@ static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{ {
if (unlikely(cpuid >= VGIC_MAX_CPUS)) return x->private + cpuid;
return NULL;
return x->percpu[cpuid].reg_ul;
} }
static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{ {
return x->shared.reg_ul; return x->shared;
}
static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
int size;
size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
x->private = kzalloc(size, GFP_KERNEL);
if (!x->private)
return -ENOMEM;
x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
return 0;
}
static void vgic_free_bytemap(struct vgic_bytemap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
} }
static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{ {
offset >>= 2; u32 *reg;
BUG_ON(offset > (VGIC_NR_IRQS / 4));
if (offset < 8) if (offset < VGIC_NR_PRIVATE_IRQS) {
return x->percpu[cpuid] + offset; reg = x->private;
else offset += cpuid * VGIC_NR_PRIVATE_IRQS;
return x->shared + offset - 8; } else {
reg = x->shared;
offset -= VGIC_NR_PRIVATE_IRQS;
}
return reg + (offset / sizeof(u32));
} }
#define VGIC_CFG_LEVEL 0 #define VGIC_CFG_LEVEL 0
...@@ -196,46 +248,81 @@ static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) ...@@ -196,46 +248,81 @@ static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
} }
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
}
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
}
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
}
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}
static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}
static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
} }
static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
} }
static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
} }
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq); return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
} }
static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq) static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1); vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
} }
static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq) static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0); vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
} }
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
...@@ -256,6 +343,11 @@ static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) ...@@ -256,6 +343,11 @@ static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
vcpu->arch.vgic_cpu.pending_shared); vcpu->arch.vgic_cpu.pending_shared);
} }
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{ {
return le32_to_cpu(*((u32 *)mmio->data)) & mask; return le32_to_cpu(*((u32 *)mmio->data)) & mask;
...@@ -347,7 +439,7 @@ static bool handle_mmio_misc(struct kvm_vcpu *vcpu, ...@@ -347,7 +439,7 @@ static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
case 4: /* GICD_TYPER */ case 4: /* GICD_TYPER */
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
reg |= (VGIC_NR_IRQS >> 5) - 1; reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
vgic_reg_access(mmio, &reg, word_offset, vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break; break;
...@@ -409,11 +501,33 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, ...@@ -409,11 +501,33 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, struct kvm_exit_mmio *mmio,
phys_addr_t offset) phys_addr_t offset)
{ {
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, u32 *reg, orig;
vcpu->vcpu_id, offset); u32 level_mask;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
level_mask = (~(*reg));
/* Mark both level and edge triggered irqs as pending */
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
if (mmio->is_write) { if (mmio->is_write) {
/* Set the soft-pending flag only for level-triggered irqs */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
*reg &= level_mask;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
vgic_update_state(vcpu->kvm); vgic_update_state(vcpu->kvm);
return true; return true;
} }
...@@ -425,11 +539,34 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, ...@@ -425,11 +539,34 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, struct kvm_exit_mmio *mmio,
phys_addr_t offset) phys_addr_t offset)
{ {
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, u32 *level_active;
vcpu->vcpu_id, offset); u32 *reg, orig;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
if (mmio->is_write) { if (mmio->is_write) {
/* Re-set level triggered level-active interrupts */
level_active = vgic_bitmap_get_reg(&dist->irq_level,
vcpu->vcpu_id, offset);
reg = vgic_bitmap_get_reg(&dist->irq_pending,
vcpu->vcpu_id, offset);
*reg |= *level_active;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
/* Clear soft-pending flags */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
vgic_update_state(vcpu->kvm); vgic_update_state(vcpu->kvm);
return true; return true;
} }
...@@ -651,9 +788,9 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) ...@@ -651,9 +788,9 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
* is fine, then we are only setting a few bits that were * is fine, then we are only setting a few bits that were
* already set. * already set.
*/ */
vgic_dist_irq_set(vcpu, lr.irq); vgic_dist_irq_set_pending(vcpu, lr.irq);
if (lr.irq < VGIC_NR_SGIS) if (lr.irq < VGIC_NR_SGIS)
dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source; *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
lr.state &= ~LR_STATE_PENDING; lr.state &= ~LR_STATE_PENDING;
vgic_set_lr(vcpu, i, lr); vgic_set_lr(vcpu, i, lr);
...@@ -662,8 +799,10 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) ...@@ -662,8 +799,10 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
* active), then the LR does not hold any useful info and can * active), then the LR does not hold any useful info and can
* be marked as free for other use. * be marked as free for other use.
*/ */
if (!(lr.state & LR_STATE_MASK)) if (!(lr.state & LR_STATE_MASK)) {
vgic_retire_lr(i, lr.irq, vcpu); vgic_retire_lr(i, lr.irq, vcpu);
vgic_irq_clear_queued(vcpu, lr.irq);
}
/* Finally update the VGIC state. */ /* Finally update the VGIC state. */
vgic_update_state(vcpu->kvm); vgic_update_state(vcpu->kvm);
...@@ -677,7 +816,7 @@ static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, ...@@ -677,7 +816,7 @@ static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi; int sgi;
int min_sgi = (offset & ~0x3) * 4; int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3; int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id; int vcpu_id = vcpu->vcpu_id;
u32 reg = 0; u32 reg = 0;
...@@ -685,7 +824,7 @@ static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, ...@@ -685,7 +824,7 @@ static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
/* Copy source SGIs from distributor side */ /* Copy source SGIs from distributor side */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) { for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
int shift = 8 * (sgi - min_sgi); int shift = 8 * (sgi - min_sgi);
reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift; reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
} }
mmio_data_write(mmio, ~0, reg); mmio_data_write(mmio, ~0, reg);
...@@ -698,7 +837,7 @@ static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, ...@@ -698,7 +837,7 @@ static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi; int sgi;
int min_sgi = (offset & ~0x3) * 4; int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3; int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id; int vcpu_id = vcpu->vcpu_id;
u32 reg; u32 reg;
...@@ -709,14 +848,15 @@ static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, ...@@ -709,14 +848,15 @@ static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
/* Clear pending SGIs on the distributor */ /* Clear pending SGIs on the distributor */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) { for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
u8 mask = reg >> (8 * (sgi - min_sgi)); u8 mask = reg >> (8 * (sgi - min_sgi));
u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
if (set) { if (set) {
if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask) if ((*src & mask) != mask)
updated = true; updated = true;
dist->irq_sgi_sources[vcpu_id][sgi] |= mask; *src |= mask;
} else { } else {
if (dist->irq_sgi_sources[vcpu_id][sgi] & mask) if (*src & mask)
updated = true; updated = true;
dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask; *src &= ~mask;
} }
} }
...@@ -755,6 +895,7 @@ static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, ...@@ -755,6 +895,7 @@ static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
struct mmio_range { struct mmio_range {
phys_addr_t base; phys_addr_t base;
unsigned long len; unsigned long len;
int bits_per_irq;
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset); phys_addr_t offset);
}; };
...@@ -763,56 +904,67 @@ static const struct mmio_range vgic_dist_ranges[] = { ...@@ -763,56 +904,67 @@ static const struct mmio_range vgic_dist_ranges[] = {
{ {
.base = GIC_DIST_CTRL, .base = GIC_DIST_CTRL,
.len = 12, .len = 12,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_misc, .handle_mmio = handle_mmio_misc,
}, },
{ {
.base = GIC_DIST_IGROUP, .base = GIC_DIST_IGROUP,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi, .handle_mmio = handle_mmio_raz_wi,
}, },
{ {
.base = GIC_DIST_ENABLE_SET, .base = GIC_DIST_ENABLE_SET,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg, .handle_mmio = handle_mmio_set_enable_reg,
}, },
{ {
.base = GIC_DIST_ENABLE_CLEAR, .base = GIC_DIST_ENABLE_CLEAR,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg, .handle_mmio = handle_mmio_clear_enable_reg,
}, },
{ {
.base = GIC_DIST_PENDING_SET, .base = GIC_DIST_PENDING_SET,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg, .handle_mmio = handle_mmio_set_pending_reg,
}, },
{ {
.base = GIC_DIST_PENDING_CLEAR, .base = GIC_DIST_PENDING_CLEAR,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg, .handle_mmio = handle_mmio_clear_pending_reg,
}, },
{ {
.base = GIC_DIST_ACTIVE_SET, .base = GIC_DIST_ACTIVE_SET,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi, .handle_mmio = handle_mmio_raz_wi,
}, },
{ {
.base = GIC_DIST_ACTIVE_CLEAR, .base = GIC_DIST_ACTIVE_CLEAR,
.len = VGIC_NR_IRQS / 8, .len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi, .handle_mmio = handle_mmio_raz_wi,
}, },
{ {
.base = GIC_DIST_PRI, .base = GIC_DIST_PRI,
.len = VGIC_NR_IRQS, .len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg, .handle_mmio = handle_mmio_priority_reg,
}, },
{ {
.base = GIC_DIST_TARGET, .base = GIC_DIST_TARGET,
.len = VGIC_NR_IRQS, .len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_target_reg, .handle_mmio = handle_mmio_target_reg,
}, },
{ {
.base = GIC_DIST_CONFIG, .base = GIC_DIST_CONFIG,
.len = VGIC_NR_IRQS / 4, .len = VGIC_MAX_IRQS / 4,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg, .handle_mmio = handle_mmio_cfg_reg,
}, },
{ {
...@@ -850,6 +1002,22 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges, ...@@ -850,6 +1002,22 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges,
return NULL; return NULL;
} }
static bool vgic_validate_access(const struct vgic_dist *dist,
const struct mmio_range *range,
unsigned long offset)
{
int irq;
if (!range->bits_per_irq)
return true; /* Not an irq-based access */
irq = offset * 8 / range->bits_per_irq;
if (irq >= dist->nr_irqs)
return false;
return true;
}
/** /**
* vgic_handle_mmio - handle an in-kernel MMIO access * vgic_handle_mmio - handle an in-kernel MMIO access
* @vcpu: pointer to the vcpu performing the access * @vcpu: pointer to the vcpu performing the access
...@@ -889,7 +1057,13 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, ...@@ -889,7 +1057,13 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
spin_lock(&vcpu->kvm->arch.vgic.lock); spin_lock(&vcpu->kvm->arch.vgic.lock);
offset = mmio->phys_addr - range->base - base; offset = mmio->phys_addr - range->base - base;
updated_state = range->handle_mmio(vcpu, mmio, offset); if (vgic_validate_access(dist, range, offset)) {
updated_state = range->handle_mmio(vcpu, mmio, offset);
} else {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
updated_state = false;
}
spin_unlock(&vcpu->kvm->arch.vgic.lock); spin_unlock(&vcpu->kvm->arch.vgic.lock);
kvm_prepare_mmio(run, mmio); kvm_prepare_mmio(run, mmio);
kvm_handle_mmio_return(vcpu, run); kvm_handle_mmio_return(vcpu, run);
...@@ -900,6 +1074,11 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, ...@@ -900,6 +1074,11 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
return true; return true;
} }
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{ {
struct kvm *kvm = vcpu->kvm; struct kvm *kvm = vcpu->kvm;
...@@ -932,8 +1111,8 @@ static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) ...@@ -932,8 +1111,8 @@ static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
kvm_for_each_vcpu(c, vcpu, kvm) { kvm_for_each_vcpu(c, vcpu, kvm) {
if (target_cpus & 1) { if (target_cpus & 1) {
/* Flag the SGI as pending */ /* Flag the SGI as pending */
vgic_dist_irq_set(vcpu, sgi); vgic_dist_irq_set_pending(vcpu, sgi);
dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id; *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
} }
...@@ -941,32 +1120,38 @@ static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) ...@@ -941,32 +1120,38 @@ static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
} }
} }
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{ {
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pending, *enabled, *pend_percpu, *pend_shared; unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
unsigned long pending_private, pending_shared; unsigned long pending_private, pending_shared;
int nr_shared = vgic_nr_shared_irqs(dist);
int vcpu_id; int vcpu_id;
vcpu_id = vcpu->vcpu_id; vcpu_id = vcpu->vcpu_id;
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
pend_shared = vcpu->arch.vgic_cpu.pending_shared; pend_shared = vcpu->arch.vgic_cpu.pending_shared;
pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id); pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
pending = vgic_bitmap_get_shared_map(&dist->irq_state); pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS); bitmap_and(pend_shared, pending, enabled, nr_shared);
bitmap_and(pend_shared, pend_shared, bitmap_and(pend_shared, pend_shared,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
VGIC_NR_SHARED_IRQS); nr_shared);
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS); pending_shared = find_first_bit(pend_shared, nr_shared);
return (pending_private < VGIC_NR_PRIVATE_IRQS || return (pending_private < VGIC_NR_PRIVATE_IRQS ||
pending_shared < VGIC_NR_SHARED_IRQS); pending_shared < vgic_nr_shared_irqs(dist));
} }
/* /*
...@@ -980,14 +1165,14 @@ static void vgic_update_state(struct kvm *kvm) ...@@ -980,14 +1165,14 @@ static void vgic_update_state(struct kvm *kvm)
int c; int c;
if (!dist->enabled) { if (!dist->enabled) {
set_bit(0, &dist->irq_pending_on_cpu); set_bit(0, dist->irq_pending_on_cpu);
return; return;
} }
kvm_for_each_vcpu(c, vcpu, kvm) { kvm_for_each_vcpu(c, vcpu, kvm) {
if (compute_pending_for_cpu(vcpu)) { if (compute_pending_for_cpu(vcpu)) {
pr_debug("CPU%d has pending interrupts\n", c); pr_debug("CPU%d has pending interrupts\n", c);
set_bit(c, &dist->irq_pending_on_cpu); set_bit(c, dist->irq_pending_on_cpu);
} }
} }
} }
...@@ -1079,8 +1264,8 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) ...@@ -1079,8 +1264,8 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
if (!vgic_irq_is_enabled(vcpu, vlr.irq)) { if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
vgic_retire_lr(lr, vlr.irq, vcpu); vgic_retire_lr(lr, vlr.irq, vcpu);
if (vgic_irq_is_active(vcpu, vlr.irq)) if (vgic_irq_is_queued(vcpu, vlr.irq))
vgic_irq_clear_active(vcpu, vlr.irq); vgic_irq_clear_queued(vcpu, vlr.irq);
} }
} }
} }
...@@ -1092,13 +1277,14 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) ...@@ -1092,13 +1277,14 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{ {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_lr vlr; struct vgic_lr vlr;
int lr; int lr;
/* Sanitize the input... */ /* Sanitize the input... */
BUG_ON(sgi_source_id & ~7); BUG_ON(sgi_source_id & ~7);
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
BUG_ON(irq >= VGIC_NR_IRQS); BUG_ON(irq >= dist->nr_irqs);
kvm_debug("Queue IRQ%d\n", irq); kvm_debug("Queue IRQ%d\n", irq);
...@@ -1144,14 +1330,14 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) ...@@ -1144,14 +1330,14 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
int vcpu_id = vcpu->vcpu_id; int vcpu_id = vcpu->vcpu_id;
int c; int c;
sources = dist->irq_sgi_sources[vcpu_id][irq]; sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
for_each_set_bit(c, &sources, VGIC_MAX_CPUS) { for_each_set_bit(c, &sources, dist->nr_cpus) {
if (vgic_queue_irq(vcpu, c, irq)) if (vgic_queue_irq(vcpu, c, irq))
clear_bit(c, &sources); clear_bit(c, &sources);
} }
dist->irq_sgi_sources[vcpu_id][irq] = sources; *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
/* /*
* If the sources bitmap has been cleared it means that we * If the sources bitmap has been cleared it means that we
...@@ -1160,7 +1346,7 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) ...@@ -1160,7 +1346,7 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
* our emulated gic and can get rid of them. * our emulated gic and can get rid of them.
*/ */
if (!sources) { if (!sources) {
vgic_dist_irq_clear(vcpu, irq); vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq);
return true; return true;
} }
...@@ -1170,15 +1356,15 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) ...@@ -1170,15 +1356,15 @@ static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{ {
if (vgic_irq_is_active(vcpu, irq)) if (!vgic_can_sample_irq(vcpu, irq))
return true; /* level interrupt, already queued */ return true; /* level interrupt, already queued */
if (vgic_queue_irq(vcpu, 0, irq)) { if (vgic_queue_irq(vcpu, 0, irq)) {
if (vgic_irq_is_edge(vcpu, irq)) { if (vgic_irq_is_edge(vcpu, irq)) {
vgic_dist_irq_clear(vcpu, irq); vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq);
} else { } else {
vgic_irq_set_active(vcpu, irq); vgic_irq_set_queued(vcpu, irq);
} }
return true; return true;
...@@ -1223,7 +1409,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) ...@@ -1223,7 +1409,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
} }
/* SPIs */ /* SPIs */
for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) { for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
overflow = 1; overflow = 1;
} }
...@@ -1239,7 +1425,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) ...@@ -1239,7 +1425,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
* us. Claim we don't have anything pending. We'll * us. Claim we don't have anything pending. We'll
* adjust that if needed while exiting. * adjust that if needed while exiting.
*/ */
clear_bit(vcpu_id, &dist->irq_pending_on_cpu); clear_bit(vcpu_id, dist->irq_pending_on_cpu);
} }
} }
...@@ -1261,17 +1447,32 @@ static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) ...@@ -1261,17 +1447,32 @@ static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) { for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr); struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
vgic_irq_clear_active(vcpu, vlr.irq); vgic_irq_clear_queued(vcpu, vlr.irq);
WARN_ON(vlr.state & LR_STATE_MASK); WARN_ON(vlr.state & LR_STATE_MASK);
vlr.state = 0; vlr.state = 0;
vgic_set_lr(vcpu, lr, vlr); vgic_set_lr(vcpu, lr, vlr);
/*
* If the IRQ was EOIed it was also ACKed and we we
* therefore assume we can clear the soft pending
* state (should it had been set) for this interrupt.
*
* Note: if the IRQ soft pending state was set after
* the IRQ was acked, it actually shouldn't be
* cleared, but we have no way of knowing that unless
* we start trapping ACKs when the soft-pending state
* is set.
*/
vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
/* Any additional pending interrupt? */ /* Any additional pending interrupt? */
if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) { if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
vgic_cpu_irq_set(vcpu, vlr.irq); vgic_cpu_irq_set(vcpu, vlr.irq);
level_pending = true; level_pending = true;
} else { } else {
vgic_dist_irq_clear_pending(vcpu, vlr.irq);
vgic_cpu_irq_clear(vcpu, vlr.irq); vgic_cpu_irq_clear(vcpu, vlr.irq);
} }
...@@ -1315,14 +1516,14 @@ static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) ...@@ -1315,14 +1516,14 @@ static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
vlr = vgic_get_lr(vcpu, lr); vlr = vgic_get_lr(vcpu, lr);
BUG_ON(vlr.irq >= VGIC_NR_IRQS); BUG_ON(vlr.irq >= dist->nr_irqs);
vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY; vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
} }
/* Check if we still have something up our sleeve... */ /* Check if we still have something up our sleeve... */
pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr); pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
if (level_pending || pending < vgic->nr_lr) if (level_pending || pending < vgic->nr_lr)
set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
} }
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
...@@ -1356,7 +1557,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) ...@@ -1356,7 +1557,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
if (!irqchip_in_kernel(vcpu->kvm)) if (!irqchip_in_kernel(vcpu->kvm))
return 0; return 0;
return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
} }
static void vgic_kick_vcpus(struct kvm *kvm) static void vgic_kick_vcpus(struct kvm *kvm)
...@@ -1376,34 +1577,36 @@ static void vgic_kick_vcpus(struct kvm *kvm) ...@@ -1376,34 +1577,36 @@ static void vgic_kick_vcpus(struct kvm *kvm)
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{ {
int is_edge = vgic_irq_is_edge(vcpu, irq); int edge_triggered = vgic_irq_is_edge(vcpu, irq);
int state = vgic_dist_irq_is_pending(vcpu, irq);
/* /*
* Only inject an interrupt if: * Only inject an interrupt if:
* - edge triggered and we have a rising edge * - edge triggered and we have a rising edge
* - level triggered and we change level * - level triggered and we change level
*/ */
if (is_edge) if (edge_triggered) {
int state = vgic_dist_irq_is_pending(vcpu, irq);
return level > state; return level > state;
else } else {
int state = vgic_dist_irq_get_level(vcpu, irq);
return level != state; return level != state;
}
} }
static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
unsigned int irq_num, bool level) unsigned int irq_num, bool level)
{ {
struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu; struct kvm_vcpu *vcpu;
int is_edge, is_level; int edge_triggered, level_triggered;
int enabled; int enabled;
bool ret = true; bool ret = true;
spin_lock(&dist->lock); spin_lock(&dist->lock);
vcpu = kvm_get_vcpu(kvm, cpuid); vcpu = kvm_get_vcpu(kvm, cpuid);
is_edge = vgic_irq_is_edge(vcpu, irq_num); edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
is_level = !is_edge; level_triggered = !edge_triggered;
if (!vgic_validate_injection(vcpu, irq_num, level)) { if (!vgic_validate_injection(vcpu, irq_num, level)) {
ret = false; ret = false;
...@@ -1417,10 +1620,19 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, ...@@ -1417,10 +1620,19 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
if (level) if (level) {
vgic_dist_irq_set(vcpu, irq_num); if (level_triggered)
else vgic_dist_irq_set_level(vcpu, irq_num);
vgic_dist_irq_clear(vcpu, irq_num); vgic_dist_irq_set_pending(vcpu, irq_num);
} else {
if (level_triggered) {
vgic_dist_irq_clear_level(vcpu, irq_num);
if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
vgic_dist_irq_clear_pending(vcpu, irq_num);
} else {
vgic_dist_irq_clear_pending(vcpu, irq_num);
}
}
enabled = vgic_irq_is_enabled(vcpu, irq_num); enabled = vgic_irq_is_enabled(vcpu, irq_num);
...@@ -1429,7 +1641,7 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, ...@@ -1429,7 +1641,7 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
goto out; goto out;
} }
if (is_level && vgic_irq_is_active(vcpu, irq_num)) { if (!vgic_can_sample_irq(vcpu, irq_num)) {
/* /*
* Level interrupt in progress, will be picked up * Level interrupt in progress, will be picked up
* when EOId. * when EOId.
...@@ -1440,7 +1652,7 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, ...@@ -1440,7 +1652,7 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
if (level) { if (level) {
vgic_cpu_irq_set(vcpu, irq_num); vgic_cpu_irq_set(vcpu, irq_num);
set_bit(cpuid, &dist->irq_pending_on_cpu); set_bit(cpuid, dist->irq_pending_on_cpu);
} }
out: out:
...@@ -1466,7 +1678,8 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, ...@@ -1466,7 +1678,8 @@ static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level) bool level)
{ {
if (vgic_update_irq_state(kvm, cpuid, irq_num, level)) if (likely(vgic_initialized(kvm)) &&
vgic_update_irq_pending(kvm, cpuid, irq_num, level))
vgic_kick_vcpus(kvm); vgic_kick_vcpus(kvm);
return 0; return 0;
...@@ -1483,6 +1696,32 @@ static irqreturn_t vgic_maintenance_handler(int irq, void *data) ...@@ -1483,6 +1696,32 @@ static irqreturn_t vgic_maintenance_handler(int irq, void *data)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
kfree(vgic_cpu->pending_shared);
kfree(vgic_cpu->vgic_irq_lr_map);
vgic_cpu->pending_shared = NULL;
vgic_cpu->vgic_irq_lr_map = NULL;
}
static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
kvm_vgic_vcpu_destroy(vcpu);
return -ENOMEM;
}
return 0;
}
/** /**
* kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
* @vcpu: pointer to the vcpu struct * @vcpu: pointer to the vcpu struct
...@@ -1490,16 +1729,13 @@ static irqreturn_t vgic_maintenance_handler(int irq, void *data) ...@@ -1490,16 +1729,13 @@ static irqreturn_t vgic_maintenance_handler(int irq, void *data)
* Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
* this vcpu and enable the VGIC for this VCPU * this vcpu and enable the VGIC for this VCPU
*/ */
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{ {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int i; int i;
if (vcpu->vcpu_id >= VGIC_MAX_CPUS) for (i = 0; i < dist->nr_irqs; i++) {
return -EBUSY;
for (i = 0; i < VGIC_NR_IRQS; i++) {
if (i < VGIC_NR_PPIS) if (i < VGIC_NR_PPIS)
vgic_bitmap_set_irq_val(&dist->irq_enabled, vgic_bitmap_set_irq_val(&dist->irq_enabled,
vcpu->vcpu_id, i, 1); vcpu->vcpu_id, i, 1);
...@@ -1518,8 +1754,113 @@ int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) ...@@ -1518,8 +1754,113 @@ int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
vgic_cpu->nr_lr = vgic->nr_lr; vgic_cpu->nr_lr = vgic->nr_lr;
vgic_enable(vcpu); vgic_enable(vcpu);
}
return 0; void kvm_vgic_destroy(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vgic_vcpu_destroy(vcpu);
vgic_free_bitmap(&dist->irq_enabled);
vgic_free_bitmap(&dist->irq_level);
vgic_free_bitmap(&dist->irq_pending);
vgic_free_bitmap(&dist->irq_soft_pend);
vgic_free_bitmap(&dist->irq_queued);
vgic_free_bitmap(&dist->irq_cfg);
vgic_free_bytemap(&dist->irq_priority);
if (dist->irq_spi_target) {
for (i = 0; i < dist->nr_cpus; i++)
vgic_free_bitmap(&dist->irq_spi_target[i]);
}
kfree(dist->irq_sgi_sources);
kfree(dist->irq_spi_cpu);
kfree(dist->irq_spi_target);
kfree(dist->irq_pending_on_cpu);
dist->irq_sgi_sources = NULL;
dist->irq_spi_cpu = NULL;
dist->irq_spi_target = NULL;
dist->irq_pending_on_cpu = NULL;
}
/*
* Allocate and initialize the various data structures. Must be called
* with kvm->lock held!
*/
static int vgic_init_maps(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int nr_cpus, nr_irqs;
int ret, i;
if (dist->nr_cpus) /* Already allocated */
return 0;
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
if (!nr_cpus) /* No vcpus? Can't be good... */
return -EINVAL;
/*
* If nobody configured the number of interrupts, use the
* legacy one.
*/
if (!dist->nr_irqs)
dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
nr_irqs = dist->nr_irqs;
ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
if (ret)
goto out;
dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
GFP_KERNEL);
dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
GFP_KERNEL);
if (!dist->irq_sgi_sources ||
!dist->irq_spi_cpu ||
!dist->irq_spi_target ||
!dist->irq_pending_on_cpu) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < nr_cpus; i++)
ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
nr_cpus, nr_irqs);
if (ret)
goto out;
kvm_for_each_vcpu(i, vcpu, kvm) {
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
if (ret) {
kvm_err("VGIC: Failed to allocate vcpu memory\n");
break;
}
}
for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
vgic_set_target_reg(kvm, 0, i);
out:
if (ret)
kvm_vgic_destroy(kvm);
return ret;
} }
/** /**
...@@ -1533,6 +1874,7 @@ int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) ...@@ -1533,6 +1874,7 @@ int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
*/ */
int kvm_vgic_init(struct kvm *kvm) int kvm_vgic_init(struct kvm *kvm)
{ {
struct kvm_vcpu *vcpu;
int ret = 0, i; int ret = 0, i;
if (!irqchip_in_kernel(kvm)) if (!irqchip_in_kernel(kvm))
...@@ -1550,6 +1892,12 @@ int kvm_vgic_init(struct kvm *kvm) ...@@ -1550,6 +1892,12 @@ int kvm_vgic_init(struct kvm *kvm)
goto out; goto out;
} }
ret = vgic_init_maps(kvm);
if (ret) {
kvm_err("Unable to allocate maps\n");
goto out;
}
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE); vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
if (ret) { if (ret) {
...@@ -1557,11 +1905,13 @@ int kvm_vgic_init(struct kvm *kvm) ...@@ -1557,11 +1905,13 @@ int kvm_vgic_init(struct kvm *kvm)
goto out; goto out;
} }
for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4) kvm_for_each_vcpu(i, vcpu, kvm)
vgic_set_target_reg(kvm, 0, i); kvm_vgic_vcpu_init(vcpu);
kvm->arch.vgic.ready = true; kvm->arch.vgic.ready = true;
out: out:
if (ret)
kvm_vgic_destroy(kvm);
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
return ret; return ret;
} }
...@@ -1613,7 +1963,7 @@ int kvm_vgic_create(struct kvm *kvm) ...@@ -1613,7 +1963,7 @@ int kvm_vgic_create(struct kvm *kvm)
return ret; return ret;
} }
static bool vgic_ioaddr_overlap(struct kvm *kvm) static int vgic_ioaddr_overlap(struct kvm *kvm)
{ {
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
...@@ -1802,6 +2152,10 @@ static int vgic_attr_regs_access(struct kvm_device *dev, ...@@ -1802,6 +2152,10 @@ static int vgic_attr_regs_access(struct kvm_device *dev,
mutex_lock(&dev->kvm->lock); mutex_lock(&dev->kvm->lock);
ret = vgic_init_maps(dev->kvm);
if (ret)
goto out;
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
ret = -EINVAL; ret = -EINVAL;
goto out; goto out;
...@@ -1899,6 +2253,36 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) ...@@ -1899,6 +2253,36 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
return vgic_attr_regs_access(dev, attr, &reg, true); return vgic_attr_regs_access(dev, attr, &reg, true);
} }
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 val;
int ret = 0;
if (get_user(val, uaddr))
return -EFAULT;
/*
* We require:
* - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
* - at most 1024 interrupts
* - a multiple of 32 interrupts
*/
if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
val > VGIC_MAX_IRQS ||
(val & 31))
return -EINVAL;
mutex_lock(&dev->kvm->lock);
if (vgic_initialized(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
ret = -EBUSY;
else
dev->kvm->arch.vgic.nr_irqs = val;
mutex_unlock(&dev->kvm->lock);
return ret;
}
} }
...@@ -1935,6 +2319,11 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) ...@@ -1935,6 +2319,11 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
r = put_user(reg, uaddr); r = put_user(reg, uaddr);
break; break;
} }
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
break;
}
} }
...@@ -1971,6 +2360,8 @@ static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) ...@@ -1971,6 +2360,8 @@ static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
return vgic_has_attr_regs(vgic_cpu_ranges, offset); return vgic_has_attr_regs(vgic_cpu_ranges, offset);
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
return 0;
} }
return -ENXIO; return -ENXIO;
} }
...@@ -2029,8 +2420,8 @@ static const struct of_device_id vgic_ids[] = { ...@@ -2029,8 +2420,8 @@ static const struct of_device_id vgic_ids[] = {
int kvm_vgic_hyp_init(void) int kvm_vgic_hyp_init(void)
{ {
const struct of_device_id *matched_id; const struct of_device_id *matched_id;
int (*vgic_probe)(struct device_node *,const struct vgic_ops **, const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
const struct vgic_params **); const struct vgic_params **);
struct device_node *vgic_node; struct device_node *vgic_node;
int ret; int ret;
......
...@@ -1095,9 +1095,9 @@ EXPORT_SYMBOL_GPL(gfn_to_hva); ...@@ -1095,9 +1095,9 @@ EXPORT_SYMBOL_GPL(gfn_to_hva);
* If writable is set to false, the hva returned by this function is only * If writable is set to false, the hva returned by this function is only
* allowed to be read. * allowed to be read.
*/ */
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
gfn_t gfn, bool *writable)
{ {
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
if (!kvm_is_error_hva(hva) && writable) if (!kvm_is_error_hva(hva) && writable)
...@@ -1106,6 +1106,13 @@ unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) ...@@ -1106,6 +1106,13 @@ unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
return hva; return hva;
} }
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
{
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
return gfn_to_hva_memslot_prot(slot, gfn, writable);
}
static int kvm_read_hva(void *data, void __user *hva, int len) static int kvm_read_hva(void *data, void __user *hva, int len)
{ {
return __copy_from_user(data, hva, len); return __copy_from_user(data, hva, len);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment