Commit eff380aa authored by Anirudh Venkataramanan's avatar Anirudh Venkataramanan Committed by Jeff Kirsher

ice: Introduce ice_base.c

Remove a few uses of kernel configuration flags from ice_lib.c by
introducing a new source file ice_base.c. Also move corresponding
function prototypes from ice_lib.h to ice_base.h and include ice_base.h
where required.
Signed-off-by: default avatarAnirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Signed-off-by: default avatarTony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: default avatarAndrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 1574cf83
......@@ -13,6 +13,7 @@ ice-y := ice_main.o \
ice_nvm.o \
ice_switch.o \
ice_sched.o \
ice_base.o \
ice_lib.o \
ice_txrx.o \
ice_flex_pipe.o \
......
......@@ -127,6 +127,14 @@ extern const char ice_drv_ver[];
ICE_PROMISC_VLAN_TX | \
ICE_PROMISC_VLAN_RX)
struct ice_txq_meta {
u32 q_teid; /* Tx-scheduler element identifier */
u16 q_id; /* Entry in VSI's txq_map bitmap */
u16 q_handle; /* Relative index of Tx queue within TC */
u16 vsi_idx; /* VSI index that Tx queue belongs to */
u8 tc; /* TC number that Tx queue belongs to */
};
struct ice_tc_info {
u16 qoffset;
u16 qcount_tx;
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_base.h"
#include "ice_dcb_lib.h"
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
int offset, i;
mutex_lock(qs_cfg->qs_mutex);
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
0, qs_cfg->q_count, 0);
if (offset >= qs_cfg->pf_map_size) {
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
for (i = 0; i < qs_cfg->q_count; i++)
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
mutex_unlock(qs_cfg->qs_mutex);
return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
int i, index = 0;
mutex_lock(qs_cfg->qs_mutex);
for (i = 0; i < qs_cfg->q_count; i++) {
index = find_next_zero_bit(qs_cfg->pf_map,
qs_cfg->pf_map_size, index);
if (index >= qs_cfg->pf_map_size)
goto err_scatter;
set_bit(index, qs_cfg->pf_map);
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
}
mutex_unlock(qs_cfg->qs_mutex);
return 0;
err_scatter:
for (index = 0; index < i; index++) {
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
}
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
QRX_CTRL_QENA_STAT_M))
return 0;
usleep_range(20, 40);
}
return -ETIMEDOUT;
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
/* allocate q_vector */
q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
if (vsi->type == ICE_VSI_VF)
goto out;
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
/* This will not be called in the driver load path because the netdev
* will not be created yet. All other cases with register the NAPI
* handler here (i.e. resume, reset/rebuild, etc.)
*/
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
NAPI_POLL_WEIGHT);
out:
/* tie q_vector and VSI together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_pf *pf = vsi->back;
struct ice_ring *ring;
if (!vsi->q_vectors[v_idx]) {
dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_ring(ring, q_vector->tx)
ring->q_vector = NULL;
ice_for_each_ring(ring, q_vector->rx)
ring->q_vector = NULL;
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
devm_kfree(&pf->pdev->dev, q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
* @hw: board specific structure
*/
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
u32 regval = rd32(hw, GLINT_CTL);
/* no need to update global register if ITR gran is already set */
if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
(((regval & GLINT_CTL_ITR_GRAN_200_M) >>
GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_100_M) >>
GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_50_M) >>
GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_25_M) >>
GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
return;
regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
GLINT_CTL_ITR_GRAN_200_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
GLINT_CTL_ITR_GRAN_100_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
GLINT_CTL_ITR_GRAN_50_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
GLINT_CTL_ITR_GRAN_25_M);
wr32(hw, GLINT_CTL, regval);
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
ice_set_cgd_num(tlan_ctx, ring);
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_LB:
/* fall through */
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VF:
/* Firmware expects vmvf_num to be absolute VF ID */
tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
break;
default:
return;
}
/* make sure the context is associated with the right VSI */
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
int ice_setup_rx_ctx(struct ice_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
u32 regval;
u16 pf_q;
int err;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
rlan_ctx.base = ring->dma >> 7;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = 1;
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
rlan_ctx.l2tsel = 1;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
if (vsi->type != ICE_VSI_VF) {
regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile ID;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
if (vsi->type == ICE_VSI_VF)
return 0;
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
return 0;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* This function first tries to find contiguous space. If it is not successful,
* it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
int ret = 0;
ret = __ice_vsi_get_qs_contig(qs_cfg);
if (ret) {
/* contig failed, so try with scatter approach */
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
qs_cfg->scatter_count);
ret = __ice_vsi_get_qs_sc(qs_cfg);
}
return ret;
}
/**
* ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
* @vsi: the VSI being configured
* @ena: start or stop the Rx rings
* @rxq_idx: Rx queue index
*/
int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int ret = 0;
u32 rx_reg;
rx_reg = rd32(hw, QRX_CTRL(pf_q));
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
return 0;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
/* wait for the change to finish */
ret = ice_pf_rxq_wait(pf, pf_q, ena);
if (ret)
dev_err(&pf->pdev->dev,
"VSI idx %d Rx ring %d %sable timeout\n",
vsi->idx, pf_q, (ena ? "en" : "dis"));
return ret;
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int v_idx = 0, num_q_vectors;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
vsi->vsi_num);
return -EEXIST;
}
num_q_vectors = vsi->num_q_vectors;
for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
ice_free_q_vector(vsi, v_idx);
dev_err(&pf->pdev->dev,
"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->vsi_num, err);
vsi->num_q_vectors = 0;
return err;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
int q_vectors = vsi->num_q_vectors;
int tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.ring = NULL;
q_vector->tx.itr_idx = ICE_TX_ITR;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
q_vector->tx.ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.ring = NULL;
q_vector->rx.itr_idx = ICE_RX_ITR;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
q_vector->rx.ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
ice_for_each_q_vector(vsi, v_idx)
ice_free_q_vector(vsi, v_idx);
}
/**
* ice_vsi_cfg_txq - Configure single Tx queue
* @vsi: the VSI that queue belongs to
* @ring: Tx ring to be configured
* @tc_q_idx: queue index within given TC
* @qg_buf: queue group buffer
* @tc: TC that Tx ring belongs to
*/
int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
{
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_aqc_add_txqs_perq *txq;
struct ice_pf *pf = vsi->back;
u8 buf_len = sizeof(*qg_buf);
enum ice_status status;
u16 pf_q;
pf_q = ring->reg_idx;
ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
ice_tlan_ctx_info);
/* init queue specific tail reg. It is referred as
* transmit comm scheduler queue doorbell.
*/
ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
/* Add unique software queue handle of the Tx queue per
* TC into the VSI Tx ring
*/
ring->q_handle = tc_q_idx;
status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1, qg_buf, buf_len, NULL);
if (status) {
dev_err(&pf->pdev->dev,
"Failed to set LAN Tx queue context, error: %d\n",
status);
return -ENODEV;
}
/* Add Tx Queue TEID into the VSI Tx ring from the
* response. This will complete configuring and
* enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
ring->txq_teid = le32_to_cpu(txq->q_teid);
return 0;
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
ice_cfg_itr_gran(hw);
if (q_vector->num_ring_rx) {
struct ice_ring_container *rc = &q_vector->rx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_RX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
if (q_vector->num_ring_tx) {
struct ice_ring_container *rc = &q_vector->tx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_TX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
}
/**
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
* @vsi: the VSI being configured
* @txq: Tx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
}
/**
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
* @vsi: the VSI being configured
* @rxq: Rx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
ice_flush(hw);
}
/**
* ice_trigger_sw_intr - trigger a software interrupt
* @hw: pointer to the HW structure
* @q_vector: interrupt vector to trigger the software interrupt for
*/
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
GLINT_DYN_CTL_SWINT_TRIG_M |
GLINT_DYN_CTL_INTENA_M);
}
/**
* ice_vsi_stop_tx_ring - Disable single Tx ring
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @ring: Tx ring to be stopped
* @txq_meta: Meta data of Tx ring to be stopped
*/
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
u32 val;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(ring->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(ring->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector
* associated to the queue to schedule NAPI handler
*/
q_vector = ring->q_vector;
if (q_vector)
ice_trigger_sw_intr(hw, q_vector);
status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
txq_meta->tc, 1, &txq_meta->q_handle,
&txq_meta->q_id, &txq_meta->q_teid, rst_src,
rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an
* active reset flow, ICE_ERR_RESET_ONGOING is returned.
* This is not an error as the reset operation disables
* queues at the hardware level anyway.
*/
if (status == ICE_ERR_RESET_ONGOING) {
dev_dbg(&vsi->back->pdev->dev,
"Reset in progress. LAN Tx queues already disabled\n");
} else if (status == ICE_ERR_DOES_NOT_EXIST) {
dev_dbg(&vsi->back->pdev->dev,
"LAN Tx queues do not exist, nothing to disable\n");
} else if (status) {
dev_err(&vsi->back->pdev->dev,
"Failed to disable LAN Tx queues, error: %d\n", status);
return -ENODEV;
}
return 0;
}
/**
* ice_fill_txq_meta - Prepare the Tx queue's meta data
* @vsi: VSI that ring belongs to
* @ring: ring that txq_meta will be based on
* @txq_meta: a helper struct that wraps Tx queue's information
*
* Set up a helper struct that will contain all the necessary fields that
* are needed for stopping Tx queue
*/
void
ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
struct ice_txq_meta *txq_meta)
{
u8 tc;
if (IS_ENABLED(CONFIG_DCB))
tc = ring->dcb_tc;
else
tc = 0;
txq_meta->q_id = ring->reg_idx;
txq_meta->q_teid = ring->txq_teid;
txq_meta->q_handle = ring->q_handle;
txq_meta->vsi_idx = vsi->idx;
txq_meta->tc = tc;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2019, Intel Corporation. */
#ifndef _ICE_BASE_H_
#define _ICE_BASE_H_
#include "ice.h"
int ice_setup_rx_ctx(struct ice_ring *ring);
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg);
int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx);
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi);
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi);
void ice_vsi_free_q_vectors(struct ice_vsi *vsi);
int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc);
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector);
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx);
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx);
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector);
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_ring *ring,
struct ice_txq_meta *txq_meta);
void
ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
struct ice_txq_meta *txq_meta);
#endif /* _ICE_BASE_H_ */
......@@ -5,6 +5,7 @@
#define _ICE_DCB_LIB_H_
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#ifdef CONFIG_DCB
......
......@@ -2,234 +2,10 @@
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
static int ice_setup_rx_ctx(struct ice_ring *ring)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
u32 regval;
u16 pf_q;
int err;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
/* clear the context structure first */
memset(&rlan_ctx, 0, sizeof(rlan_ctx));
rlan_ctx.base = ring->dma >> 7;
rlan_ctx.qlen = ring->count;
/* Receive Packet Data Buffer Size.
* The Packet Data Buffer Size is defined in 128 byte units.
*/
rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
/* use 32 byte descriptors */
rlan_ctx.dsize = 1;
/* Strip the Ethernet CRC bytes before the packet is posted to host
* memory.
*/
rlan_ctx.crcstrip = 1;
/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
rlan_ctx.l2tsel = 1;
rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
/* This controls whether VLAN is stripped from inner headers
* The VLAN in the inner L2 header is stripped to the receive
* descriptor if enabled by this flag.
*/
rlan_ctx.showiv = 0;
/* Max packet size for this queue - must not be set to a larger value
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
if (vsi->type != ICE_VSI_VF) {
regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile ID;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
/* Absolute queue number out of 2K needs to be passed */
err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
if (err) {
dev_err(&vsi->back->pdev->dev,
"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
pf_q, err);
return -EIO;
}
if (vsi->type == ICE_VSI_VF)
return 0;
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
return 0;
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
tlan_ctx->port_num = vsi->port_info->lport;
/* Transmit Queue Length */
tlan_ctx->qlen = ring->count;
ice_set_cgd_num(tlan_ctx, ring);
/* PF number */
tlan_ctx->pf_num = hw->pf_id;
/* queue belongs to a specific VSI type
* VF / VM index should be programmed per vmvf_type setting:
* for vmvf_type = VF, it is VF number between 0-256
* for vmvf_type = VM, it is VM number between 0-767
* for PF or EMP this field should be set to zero
*/
switch (vsi->type) {
case ICE_VSI_LB:
/* fall through */
case ICE_VSI_PF:
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
break;
case ICE_VSI_VF:
/* Firmware expects vmvf_num to be absolute VF ID */
tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
break;
default:
return;
}
/* make sure the context is associated with the right VSI */
tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
tlan_ctx->tso_ena = ICE_TX_LEGACY;
tlan_ctx->tso_qnum = pf_q;
/* Legacy or Advanced Host Interface:
* 0: Advanced Host Interface
* 1: Legacy Host Interface
*/
tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
int i;
for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
QRX_CTRL_QENA_STAT_M))
return 0;
usleep_range(20, 40);
}
return -ETIMEDOUT;
}
/**
* ice_vsi_ctrl_rx_ring - Start or stop a VSI's Rx ring
* @vsi: the VSI being configured
* @ena: start or stop the Rx rings
* @rxq_idx: Rx queue index
*/
#ifndef CONFIG_PCI_IOV
static
#endif /* !CONFIG_PCI_IOV */
int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
int pf_q = vsi->rxq_map[rxq_idx];
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int ret = 0;
u32 rx_reg;
rx_reg = rd32(hw, QRX_CTRL(pf_q));
/* Skip if the queue is already in the requested state */
if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
return 0;
/* turn on/off the queue */
if (ena)
rx_reg |= QRX_CTRL_QENA_REQ_M;
else
rx_reg &= ~QRX_CTRL_QENA_REQ_M;
wr32(hw, QRX_CTRL(pf_q), rx_reg);
/* wait for the change to finish */
ret = ice_pf_rxq_wait(pf, pf_q, ena);
if (ret)
dev_err(&pf->pdev->dev,
"VSI idx %d Rx ring %d %sable timeout\n",
vsi->idx, pf_q, (ena ? "en" : "dis"));
return ret;
}
/**
* ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
* @vsi: the VSI being configured
......@@ -281,7 +57,6 @@ static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
if (!vsi->rxq_map)
goto err_rxq_map;
/* There is no need to allocate q_vectors for a loopback VSI. */
if (vsi->type == ICE_VSI_LB)
return 0;
......@@ -605,88 +380,6 @@ ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
return vsi;
}
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
int offset, i;
mutex_lock(qs_cfg->qs_mutex);
offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
0, qs_cfg->q_count, 0);
if (offset >= qs_cfg->pf_map_size) {
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
for (i = 0; i < qs_cfg->q_count; i++)
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
mutex_unlock(qs_cfg->qs_mutex);
return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
int i, index = 0;
mutex_lock(qs_cfg->qs_mutex);
for (i = 0; i < qs_cfg->q_count; i++) {
index = find_next_zero_bit(qs_cfg->pf_map,
qs_cfg->pf_map_size, index);
if (index >= qs_cfg->pf_map_size)
goto err_scatter;
set_bit(index, qs_cfg->pf_map);
qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
}
mutex_unlock(qs_cfg->qs_mutex);
return 0;
err_scatter:
for (index = 0; index < i; index++) {
clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
}
mutex_unlock(qs_cfg->qs_mutex);
return -ENOMEM;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* This function first tries to find contiguous space. If it is not successful,
* it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
int ret = 0;
ret = __ice_vsi_get_qs_contig(qs_cfg);
if (ret) {
/* contig failed, so try with scatter approach */
qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
qs_cfg->scatter_count);
ret = __ice_vsi_get_qs_sc(qs_cfg);
}
return ret;
}
/**
* ice_vsi_get_qs - Assign queues from PF to VSI
* @vsi: the VSI to assign queues to
......@@ -1097,129 +790,6 @@ static int ice_vsi_init(struct ice_vsi *vsi)
return ret;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_q_vector *q_vector;
struct ice_pf *pf = vsi->back;
struct ice_ring *ring;
if (!vsi->q_vectors[v_idx]) {
dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
v_idx);
return;
}
q_vector = vsi->q_vectors[v_idx];
ice_for_each_ring(ring, q_vector->tx)
ring->q_vector = NULL;
ice_for_each_ring(ring, q_vector->rx)
ring->q_vector = NULL;
/* only VSI with an associated netdev is set up with NAPI */
if (vsi->netdev)
netif_napi_del(&q_vector->napi);
devm_kfree(&pf->pdev->dev, q_vector);
vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
int v_idx;
ice_for_each_q_vector(vsi, v_idx)
ice_free_q_vector(vsi, v_idx);
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
/* allocate q_vector */
q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
if (!q_vector)
return -ENOMEM;
q_vector->vsi = vsi;
q_vector->v_idx = v_idx;
if (vsi->type == ICE_VSI_VF)
goto out;
/* only set affinity_mask if the CPU is online */
if (cpu_online(v_idx))
cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
/* This will not be called in the driver load path because the netdev
* will not be created yet. All other cases with register the NAPI
* handler here (i.e. resume, reset/rebuild, etc.)
*/
if (vsi->netdev)
netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
NAPI_POLL_WEIGHT);
out:
/* tie q_vector and VSI together */
vsi->q_vectors[v_idx] = q_vector;
return 0;
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int v_idx = 0, num_q_vectors;
int err;
if (vsi->q_vectors[0]) {
dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
vsi->vsi_num);
return -EEXIST;
}
num_q_vectors = vsi->num_q_vectors;
for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
err = ice_vsi_alloc_q_vector(vsi, v_idx);
if (err)
goto err_out;
}
return 0;
err_out:
while (v_idx--)
ice_free_q_vector(vsi, v_idx);
dev_err(&pf->pdev->dev,
"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
vsi->num_q_vectors, vsi->vsi_num, err);
vsi->num_q_vectors = 0;
return err;
}
/**
* ice_vsi_setup_vector_base - Set up the base vector for the given VSI
* @vsi: ptr to the VSI
......@@ -1340,66 +910,6 @@ static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
return -ENOMEM;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
#ifdef CONFIG_DCB
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
#else
static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
#endif /* CONFIG_DCB */
{
int q_vectors = vsi->num_q_vectors;
int tx_rings_rem, rx_rings_rem;
int v_id;
/* initially assigning remaining rings count to VSIs num queue value */
tx_rings_rem = vsi->num_txq;
rx_rings_rem = vsi->num_rxq;
for (v_id = 0; v_id < q_vectors; v_id++) {
struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
/* Tx rings mapping to vector */
tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
q_vector->num_ring_tx = tx_rings_per_v;
q_vector->tx.ring = NULL;
q_vector->tx.itr_idx = ICE_TX_ITR;
q_base = vsi->num_txq - tx_rings_rem;
for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
struct ice_ring *tx_ring = vsi->tx_rings[q_id];
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
q_vector->tx.ring = tx_ring;
}
tx_rings_rem -= tx_rings_per_v;
/* Rx rings mapping to vector */
rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
q_vector->num_ring_rx = rx_rings_per_v;
q_vector->rx.ring = NULL;
q_vector->rx.itr_idx = ICE_RX_ITR;
q_base = vsi->num_rxq - rx_rings_rem;
for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
struct ice_ring *rx_ring = vsi->rx_rings[q_id];
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
q_vector->rx.ring = rx_ring;
}
rx_rings_rem -= rx_rings_per_v;
}
}
/**
* ice_vsi_manage_rss_lut - disable/enable RSS
* @vsi: the VSI being changed
......@@ -1711,62 +1221,6 @@ int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
return 0;
}
/**
* ice_vsi_cfg_txq - Configure single Tx queue
* @vsi: the VSI that queue belongs to
* @ring: Tx ring to be configured
* @tc_q_idx: queue index within given TC
* @qg_buf: queue group buffer
* @tc: TC that Tx ring belongs to
*/
static int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, u16 tc_q_idx,
struct ice_aqc_add_tx_qgrp *qg_buf, u8 tc)
{
struct ice_tlan_ctx tlan_ctx = { 0 };
struct ice_aqc_add_txqs_perq *txq;
struct ice_pf *pf = vsi->back;
u8 buf_len = sizeof(*qg_buf);
enum ice_status status;
u16 pf_q;
pf_q = ring->reg_idx;
ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
/* copy context contents into the qg_buf */
qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
ice_tlan_ctx_info);
/* init queue specific tail reg. It is referred as
* transmit comm scheduler queue doorbell.
*/
ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
/* Add unique software queue handle of the Tx queue per
* TC into the VSI Tx ring
*/
ring->q_handle = tc_q_idx;
status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
1, qg_buf, buf_len, NULL);
if (status) {
dev_err(&pf->pdev->dev,
"Failed to set LAN Tx queue context, error: %d\n",
status);
return -ENODEV;
}
/* Add Tx Queue TEID into the VSI Tx ring from the
* response. This will complete configuring and
* enabling the queue.
*/
txq = &qg_buf->txqs[0];
if (pf_q == le16_to_cpu(txq->txq_id))
ring->txq_teid = le32_to_cpu(txq->q_teid);
return 0;
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
......@@ -1839,141 +1293,6 @@ u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
return 0;
}
/**
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
* @hw: board specific structure
*/
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
u32 regval = rd32(hw, GLINT_CTL);
/* no need to update global register if ITR gran is already set */
if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
(((regval & GLINT_CTL_ITR_GRAN_200_M) >>
GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_100_M) >>
GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_50_M) >>
GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
(((regval & GLINT_CTL_ITR_GRAN_25_M) >>
GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
return;
regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
GLINT_CTL_ITR_GRAN_200_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
GLINT_CTL_ITR_GRAN_100_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
GLINT_CTL_ITR_GRAN_50_M) |
((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
GLINT_CTL_ITR_GRAN_25_M);
wr32(hw, GLINT_CTL, regval);
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
static void
ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
ice_cfg_itr_gran(hw);
if (q_vector->num_ring_rx) {
struct ice_ring_container *rc = &q_vector->rx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_RX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
if (q_vector->num_ring_tx) {
struct ice_ring_container *rc = &q_vector->tx;
/* if this value is set then don't overwrite with default */
if (!rc->itr_setting)
rc->itr_setting = ICE_DFLT_TX_ITR;
rc->target_itr = ITR_TO_REG(rc->itr_setting);
rc->next_update = jiffies + 1;
rc->current_itr = rc->target_itr;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
}
}
/**
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
* @vsi: the VSI being configured
* @txq: Tx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
* within the function space.
*/
#ifdef CONFIG_PCI_IOV
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
#else
static void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
#endif /* CONFIG_PCI_IOV */
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
}
/**
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
* @vsi: the VSI being configured
* @rxq: Rx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
* within the function space.
*/
#ifdef CONFIG_PCI_IOV
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
#else
static void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
#endif /* CONFIG_PCI_IOV */
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
ice_flush(hw);
}
/**
* ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
......@@ -2133,109 +1452,6 @@ int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
return ice_vsi_ctrl_rx_rings(vsi, false);
}
/**
* ice_trigger_sw_intr - trigger a software interrupt
* @hw: pointer to the HW structure
* @q_vector: interrupt vector to trigger the software interrupt for
*/
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
(ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
GLINT_DYN_CTL_SWINT_TRIG_M |
GLINT_DYN_CTL_INTENA_M);
}
/**
* ice_vsi_stop_tx_ring - Disable single Tx ring
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @ring: Tx ring to be stopped
* @txq_meta: Meta data of Tx ring to be stopped
*/
#ifndef CONFIG_PCI_IOV
static
#endif /* !CONFIG_PCI_IOV */
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_ring *ring,
struct ice_txq_meta *txq_meta)
{
struct ice_pf *pf = vsi->back;
struct ice_q_vector *q_vector;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
u32 val;
/* clear cause_ena bit for disabled queues */
val = rd32(hw, QINT_TQCTL(ring->reg_idx));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(ring->reg_idx), val);
/* software is expected to wait for 100 ns */
ndelay(100);
/* trigger a software interrupt for the vector
* associated to the queue to schedule NAPI handler
*/
q_vector = ring->q_vector;
if (q_vector)
ice_trigger_sw_intr(hw, q_vector);
status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
txq_meta->tc, 1, &txq_meta->q_handle,
&txq_meta->q_id, &txq_meta->q_teid, rst_src,
rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an
* active reset flow, ICE_ERR_RESET_ONGOING is returned.
* This is not an error as the reset operation disables
* queues at the hardware level anyway.
*/
if (status == ICE_ERR_RESET_ONGOING) {
dev_dbg(&vsi->back->pdev->dev,
"Reset in progress. LAN Tx queues already disabled\n");
} else if (status == ICE_ERR_DOES_NOT_EXIST) {
dev_dbg(&vsi->back->pdev->dev,
"LAN Tx queues do not exist, nothing to disable\n");
} else if (status) {
dev_err(&vsi->back->pdev->dev,
"Failed to disable LAN Tx queues, error: %d\n", status);
return -ENODEV;
}
return 0;
}
/**
* ice_fill_txq_meta - Prepare the Tx queue's meta data
* @vsi: VSI that ring belongs to
* @ring: ring that txq_meta will be based on
* @txq_meta: a helper struct that wraps Tx queue's information
*
* Set up a helper struct that will contain all the necessary fields that
* are needed for stopping Tx queue
*/
#ifndef CONFIG_PCI_IOV
static
#endif /* !CONFIG_PCI_IOV */
void
ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
struct ice_txq_meta *txq_meta)
{
u8 tc = 0;
#ifdef CONFIG_DCB
tc = ring->dcb_tc;
#endif /* CONFIG_DCB */
txq_meta->q_id = ring->reg_idx;
txq_meta->q_teid = ring->txq_teid;
txq_meta->q_handle = ring->q_handle;
txq_meta->vsi_idx = vsi->idx;
txq_meta->tc = tc;
}
/**
* ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured
......@@ -3085,7 +2301,6 @@ int ice_vsi_rebuild(struct ice_vsi *vsi)
if (ret < 0)
goto err_vsi;
switch (vsi->type) {
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
......
......@@ -6,19 +6,6 @@
#include "ice.h"
struct ice_txq_meta {
/* Tx-scheduler element identifier */
u32 q_teid;
/* Entry in VSI's txq_map bitmap */
u16 q_id;
/* Relative index of Tx queue within TC */
u16 q_handle;
/* VSI index that Tx queue belongs to */
u16 vsi_idx;
/* TC number that Tx queue belongs to */
u8 tc;
};
int
ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
const u8 *macaddr);
......@@ -33,24 +20,6 @@ int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi);
void ice_vsi_cfg_msix(struct ice_vsi *vsi);
#ifdef CONFIG_PCI_IOV
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx);
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx);
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_ring *ring,
struct ice_txq_meta *txq_meta);
void ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
struct ice_txq_meta *txq_meta);
int ice_vsi_ctrl_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx);
#endif /* CONFIG_PCI_IOV */
int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid);
int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid);
......@@ -98,16 +67,8 @@ int ice_vsi_rebuild(struct ice_vsi *vsi);
bool ice_is_reset_in_progress(unsigned long *state);
void ice_vsi_free_q_vectors(struct ice_vsi *vsi);
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector);
void ice_vsi_put_qs(struct ice_vsi *vsi);
#ifdef CONFIG_DCB
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi);
#endif /* CONFIG_DCB */
void ice_vsi_dis_irq(struct ice_vsi *vsi);
void ice_vsi_free_irq(struct ice_vsi *vsi);
......
......@@ -6,6 +6,7 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
......
......@@ -205,9 +205,7 @@ struct ice_ring {
unsigned int size; /* length of descriptor ring in bytes */
u32 txq_teid; /* Added Tx queue TEID */
u16 rx_buf_len;
#ifdef CONFIG_DCB
u8 dcb_tc; /* Traffic class of ring */
#endif /* CONFIG_DCB */
} ____cacheline_internodealigned_in_smp;
struct ice_ring_container {
......
......@@ -2,6 +2,7 @@
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
/**
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment