Commit f116d2ff authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'asoc/topic/stm32', 'asoc/topic/sunxi',...

Merge remote-tracking branches 'asoc/topic/stm32', 'asoc/topic/sunxi', 'asoc/topic/tlv320dac31xx', 'asoc/topic/topology' and 'asoc/topic/wm-adsp' into asoc-next
STMicroelectronics STM32 SPI/I2S Controller
The SPI/I2S block supports I2S/PCM protocols when configured on I2S mode.
Only some SPI instances support I2S.
Required properties:
- compatible: Must be "st,stm32h7-i2s"
- reg: Offset and length of the device's register set.
- interrupts: Must contain the interrupt line id.
- clocks: Must contain phandle and clock specifier pairs for each entry
in clock-names.
- clock-names: Must contain "i2sclk", "pclk", "x8k" and "x11k".
"i2sclk": clock which feeds the internal clock generator
"pclk": clock which feeds the peripheral bus interface
"x8k": I2S parent clock for sampling rates multiple of 8kHz.
"x11k": I2S parent clock for sampling rates multiple of 11.025kHz.
- dmas: DMA specifiers for tx and rx dma.
See Documentation/devicetree/bindings/dma/stm32-dma.txt.
- dma-names: Identifier for each DMA request line. Must be "tx" and "rx".
- pinctrl-names: should contain only value "default"
- pinctrl-0: see Documentation/devicetree/bindings/pinctrl/pinctrl-stm32.txt
Optional properties:
- resets: Reference to a reset controller asserting the reset controller
The device node should contain one 'port' child node with one child 'endpoint'
node, according to the bindings defined in Documentation/devicetree/bindings/
graph.txt.
Example:
sound_card {
compatible = "audio-graph-card";
dais = <&i2s2_port>;
};
i2s2: audio-controller@40003800 {
compatible = "st,stm32h7-i2s";
reg = <0x40003800 0x400>;
interrupts = <36>;
clocks = <&rcc PCLK1>, <&rcc SPI2_CK>, <&rcc PLL1_Q>, <&rcc PLL2_P>;
clock-names = "pclk", "i2sclk", "x8k", "x11k";
dmas = <&dmamux2 2 39 0x400 0x1>,
<&dmamux2 3 40 0x400 0x1>;
dma-names = "rx", "tx";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_i2s2>;
i2s2_port: port@0 {
cpu_endpoint: endpoint {
remote-endpoint = <&codec_endpoint>;
format = "i2s";
};
};
};
audio-codec {
codec_port: port@0 {
codec_endpoint: endpoint {
remote-endpoint = <&cpu_endpoint>;
};
};
};
......@@ -6,7 +6,7 @@ The SAI contains two independent audio sub-blocks. Each sub-block has
its own clock generator and I/O lines controller.
Required properties:
- compatible: Should be "st,stm32f4-sai"
- compatible: Should be "st,stm32f4-sai" or "st,stm32h7-sai"
- reg: Base address and size of SAI common register set.
- clocks: Must contain phandle and clock specifier pairs for each entry
in clock-names.
......@@ -36,6 +36,10 @@ SAI subnodes required properties:
- pinctrl-names: should contain only value "default"
- pinctrl-0: see Documentation/devicetree/bindings/pinctrl/pinctrl-stm32.txt
The device node should contain one 'port' child node with one child 'endpoint'
node, according to the bindings defined in Documentation/devicetree/bindings/
graph.txt.
Example:
sound_card {
compatible = "audio-graph-card";
......@@ -43,38 +47,29 @@ sound_card {
};
sai1: sai1@40015800 {
compatible = "st,stm32f4-sai";
compatible = "st,stm32h7-sai";
#address-cells = <1>;
#size-cells = <1>;
ranges;
ranges = <0 0x40015800 0x400>;
reg = <0x40015800 0x4>;
clocks = <&rcc 1 CLK_SAIQ_PDIV>, <&rcc 1 CLK_I2SQ_PDIV>;
clocks = <&rcc PLL1_Q>, <&rcc PLL2_P>;
clock-names = "x8k", "x11k";
interrupts = <87>;
sai1b: audio-controller@40015824 {
#sound-dai-cells = <0>;
compatible = "st,stm32-sai-sub-b";
reg = <0x40015824 0x1C>;
clocks = <&rcc 1 CLK_SAI2>;
sai1a: audio-controller@40015804 {
compatible = "st,stm32-sai-sub-a";
reg = <0x4 0x1C>;
clocks = <&rcc SAI1_CK>;
clock-names = "sai_ck";
dmas = <&dma2 5 0 0x400 0x0>;
dmas = <&dmamux1 1 87 0x400 0x0>;
dma-names = "tx";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sai1b>;
ports {
#address-cells = <1>;
#size-cells = <0>;
pinctrl-0 = <&pinctrl_sai1a>;
sai1b_port: port@0 {
reg = <0>;
cpu_endpoint: endpoint {
remote-endpoint = <&codec_endpoint>;
audio-graph-card,format = "i2s";
audio-graph-card,bitclock-master = <&codec_endpoint>;
audio-graph-card,frame-master = <&codec_endpoint>;
};
sai1b_port: port {
cpu_endpoint: endpoint {
remote-endpoint = <&codec_endpoint>;
format = "i2s";
};
};
};
......
STMicroelectronics STM32 S/PDIF receiver (SPDIFRX).
The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with
IEC-60958 and IEC-61937.
Required properties:
- compatible: should be "st,stm32h7-spdifrx"
- reg: cpu DAI IP base address and size
- clocks: must contain an entry for kclk (used as S/PDIF signal reference)
- clock-names: must contain "kclk"
- interrupts: cpu DAI interrupt line
- dmas: DMA specifiers for audio data DMA and iec control flow DMA
See STM32 DMA bindings, Documentation/devicetree/bindings/dma/stm32-dma.txt
- dma-names: two dmas have to be defined, "rx" and "rx-ctrl"
Optional properties:
- resets: Reference to a reset controller asserting the SPDIFRX
The device node should contain one 'port' child node with one child 'endpoint'
node, according to the bindings defined in Documentation/devicetree/bindings/
graph.txt.
Example:
spdifrx: spdifrx@40004000 {
compatible = "st,stm32h7-spdifrx";
reg = <0x40004000 0x400>;
clocks = <&rcc SPDIFRX_CK>;
clock-names = "kclk";
interrupts = <97>;
dmas = <&dmamux1 2 93 0x400 0x0>,
<&dmamux1 3 94 0x400 0x0>;
dma-names = "rx", "rx-ctrl";
pinctrl-0 = <&spdifrx_pins>;
pinctrl-names = "default";
spdifrx_port: port {
cpu_endpoint: endpoint {
remote-endpoint = <&codec_endpoint>;
};
};
};
spdif_in: spdif-in {
compatible = "linux,spdif-dir";
codec_port: port {
codec_endpoint: endpoint {
remote-endpoint = <&cpu_endpoint>;
};
};
};
soundcard {
compatible = "audio-graph-card";
dais = <&spdifrx_port>;
};
......@@ -7,6 +7,7 @@ Required properties:
- "allwinner,sun7i-a20-codec"
- "allwinner,sun8i-a23-codec"
- "allwinner,sun8i-h3-codec"
- "allwinner,sun8i-v3s-codec"
- reg: must contain the registers location and length
- interrupts: must contain the codec interrupt
- dmas: DMA channels for tx and rx dma. See the DMA client binding,
......@@ -25,6 +26,7 @@ Required properties for the following compatibles:
- "allwinner,sun6i-a31-codec"
- "allwinner,sun8i-a23-codec"
- "allwinner,sun8i-h3-codec"
- "allwinner,sun8i-v3s-codec"
- resets: phandle to the reset control for this device
- allwinner,audio-routing: A list of the connections between audio components.
Each entry is a pair of strings, the first being the
......@@ -34,15 +36,15 @@ Required properties for the following compatibles:
Audio pins on the SoC:
"HP"
"HPCOM"
"LINEIN"
"LINEOUT" (not on sun8i-a23)
"LINEIN" (not on sun8i-v3s)
"LINEOUT" (not on sun8i-a23 or sun8i-v3s)
"MIC1"
"MIC2"
"MIC2" (not on sun8i-v3s)
"MIC3" (sun6i-a31 only)
Microphone biases from the SoC:
"HBIAS"
"MBIAS"
"MBIAS" (not on sun8i-v3s)
Board connectors:
"Headphone"
......@@ -55,6 +57,7 @@ Required properties for the following compatibles:
Required properties for the following compatibles:
- "allwinner,sun8i-a23-codec"
- "allwinner,sun8i-h3-codec"
- "allwinner,sun8i-v3s-codec"
- allwinner,codec-analog-controls: A phandle to the codec analog controls
block in the PRCM.
......
......@@ -4,6 +4,7 @@ Required properties:
- compatible: must be one of the following compatibles:
- "allwinner,sun8i-a23-codec-analog"
- "allwinner,sun8i-h3-codec-analog"
- "allwinner,sun8i-v3s-codec-analog"
Required properties if not a sub-node of the PRCM node:
- reg: must contain the registers location and length
......
......@@ -28,6 +28,8 @@ struct snd_soc_component;
struct snd_soc_tplg_pcm_fe;
struct snd_soc_dapm_context;
struct snd_soc_card;
struct snd_kcontrol_new;
struct snd_soc_dai_link;
/* object scan be loaded and unloaded in groups with identfying indexes */
#define SND_SOC_TPLG_INDEX_ALL 0 /* ID that matches all FW objects */
......@@ -116,6 +118,9 @@ struct snd_soc_tplg_ops {
int (*widget_load)(struct snd_soc_component *,
struct snd_soc_dapm_widget *,
struct snd_soc_tplg_dapm_widget *);
int (*widget_ready)(struct snd_soc_component *,
struct snd_soc_dapm_widget *,
struct snd_soc_tplg_dapm_widget *);
int (*widget_unload)(struct snd_soc_component *,
struct snd_soc_dobj *);
......
......@@ -1210,7 +1210,7 @@ static const struct snd_soc_dai_ops aic31xx_dai_ops = {
static struct snd_soc_dai_driver dac31xx_dai_driver[] = {
{
.name = "tlv32dac31xx-hifi",
.name = "tlv320dac31xx-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
......
......@@ -482,8 +482,6 @@ struct wm_coeff_ctl_ops {
struct snd_ctl_elem_value *ucontrol);
int (*xput)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol);
int (*xinfo)(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo);
};
struct wm_coeff_ctl {
......@@ -1890,7 +1888,7 @@ static void *wm_adsp_read_algs(struct wm_adsp *dsp, size_t n_algs,
}
if (be32_to_cpu(val) != 0xbedead)
adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbeadead\n",
adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
pos + len, be32_to_cpu(val));
alg = kzalloc(len * 2, GFP_KERNEL | GFP_DMA);
......@@ -2654,7 +2652,7 @@ int wm_adsp2_preloader_put(struct snd_kcontrol *kcontrol,
(struct soc_mixer_control *)kcontrol->private_value;
char preload[32];
snprintf(preload, ARRAY_SIZE(preload), "DSP%d Preload", mc->shift);
snprintf(preload, ARRAY_SIZE(preload), "DSP%u Preload", mc->shift);
dsp->preloaded = ucontrol->value.integer.value[0];
......
......@@ -352,6 +352,17 @@ static int soc_tplg_widget_load(struct soc_tplg *tplg,
return 0;
}
/* optionally pass new dynamic widget to component driver. This is mainly for
* external widgets where we can assign private data/ops */
static int soc_tplg_widget_ready(struct soc_tplg *tplg,
struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tplg_w)
{
if (tplg->comp && tplg->ops && tplg->ops->widget_ready)
return tplg->ops->widget_ready(tplg->comp, w, tplg_w);
return 0;
}
/* pass DAI configurations to component driver for extra initialization */
static int soc_tplg_dai_load(struct soc_tplg *tplg,
struct snd_soc_dai_driver *dai_drv)
......@@ -1160,7 +1171,8 @@ static int soc_tplg_dapm_graph_elems_load(struct soc_tplg *tplg,
return -EINVAL;
}
dev_dbg(tplg->dev, "ASoC: adding %d DAPM routes\n", count);
dev_dbg(tplg->dev, "ASoC: adding %d DAPM routes for index %d\n", count,
hdr->index);
for (i = 0; i < count; i++) {
elem = (struct snd_soc_tplg_dapm_graph_elem *)tplg->pos;
......@@ -1473,6 +1485,7 @@ static int soc_tplg_dapm_widget_create(struct soc_tplg *tplg,
if (template.id < 0)
return template.id;
/* strings are allocated here, but used and freed by the widget */
template.name = kstrdup(w->name, GFP_KERNEL);
if (!template.name)
return -ENOMEM;
......@@ -1585,11 +1598,17 @@ static int soc_tplg_dapm_widget_create(struct soc_tplg *tplg,
widget->dobj.widget.kcontrol_type = kcontrol_type;
widget->dobj.ops = tplg->ops;
widget->dobj.index = tplg->index;
kfree(template.sname);
kfree(template.name);
list_add(&widget->dobj.list, &tplg->comp->dobj_list);
ret = soc_tplg_widget_ready(tplg, widget, w);
if (ret < 0)
goto ready_err;
return 0;
ready_err:
snd_soc_tplg_widget_remove(widget);
snd_soc_dapm_free_widget(widget);
hdr_err:
kfree(template.sname);
err:
......@@ -1636,7 +1655,7 @@ static int soc_tplg_dapm_complete(struct soc_tplg *tplg)
*/
if (!card || !card->instantiated) {
dev_warn(tplg->dev, "ASoC: Parent card not yet available,"
"Do not add new widgets now\n");
" widget card binding deferred\n");
return 0;
}
......@@ -2371,7 +2390,7 @@ static int soc_tplg_load_header(struct soc_tplg *tplg,
/* check for matching ID */
if (hdr->index != tplg->req_index &&
hdr->index != SND_SOC_TPLG_INDEX_ALL)
tplg->req_index != SND_SOC_TPLG_INDEX_ALL)
return 0;
tplg->index = hdr->index;
......
menuconfig SND_SOC_STM32
tristate "STMicroelectronics STM32 SOC audio support"
menu "STMicroelectronics STM32 SOC audio support"
config SND_SOC_STM32_SAI
tristate "STM32 SAI interface (Serial Audio Interface) support"
depends on ARCH_STM32 || COMPILE_TEST
depends on SND_SOC
select SND_SOC_GENERIC_DMAENGINE_PCM
select REGMAP_MMIO
help
Say Y if you want to enable ASoC-support for STM32
Say Y if you want to enable SAI for STM32
config SND_SOC_STM32_I2S
tristate "STM32 I2S interface (SPI/I2S block) support"
depends on ARCH_STM32 || COMPILE_TEST
depends on SND_SOC
select SND_SOC_GENERIC_DMAENGINE_PCM
select REGMAP_MMIO
help
Say Y if you want to enable I2S for STM32
config SND_SOC_STM32_SPDIFRX
tristate "STM32 S/PDIF receiver (SPDIFRX) support"
depends on ARCH_STM32 || COMPILE_TEST
depends on SND_SOC
select SND_SOC_GENERIC_DMAENGINE_PCM
select REGMAP_MMIO
select SND_SOC_SPDIF
help
Say Y if you want to enable S/PDIF capture for STM32
endmenu
# SAI
snd-soc-stm32-sai-sub-objs := stm32_sai_sub.o
obj-$(CONFIG_SND_SOC_STM32) += snd-soc-stm32-sai-sub.o
obj-$(CONFIG_SND_SOC_STM32_SAI) += snd-soc-stm32-sai-sub.o
snd-soc-stm32-sai-objs := stm32_sai.o
obj-$(CONFIG_SND_SOC_STM32) += snd-soc-stm32-sai.o
obj-$(CONFIG_SND_SOC_STM32_SAI) += snd-soc-stm32-sai.o
# I2S
snd-soc-stm32-i2s-objs := stm32_i2s.o
obj-$(CONFIG_SND_SOC_STM32_I2S) += snd-soc-stm32-i2s.o
# SPDIFRX
snd-soc-stm32-spdifrx-objs := stm32_spdifrx.o
obj-$(CONFIG_SND_SOC_STM32_SPDIFRX) += snd-soc-stm32-spdifrx.o
/*
* STM32 ALSA SoC Digital Audio Interface (I2S) driver.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#define STM32_I2S_CR1_REG 0x0
#define STM32_I2S_CFG1_REG 0x08
#define STM32_I2S_CFG2_REG 0x0C
#define STM32_I2S_IER_REG 0x10
#define STM32_I2S_SR_REG 0x14
#define STM32_I2S_IFCR_REG 0x18
#define STM32_I2S_TXDR_REG 0X20
#define STM32_I2S_RXDR_REG 0x30
#define STM32_I2S_CGFR_REG 0X50
/* Bit definition for SPI2S_CR1 register */
#define I2S_CR1_SPE BIT(0)
#define I2S_CR1_CSTART BIT(9)
#define I2S_CR1_CSUSP BIT(10)
#define I2S_CR1_HDDIR BIT(11)
#define I2S_CR1_SSI BIT(12)
#define I2S_CR1_CRC33_17 BIT(13)
#define I2S_CR1_RCRCI BIT(14)
#define I2S_CR1_TCRCI BIT(15)
/* Bit definition for SPI_CFG2 register */
#define I2S_CFG2_IOSWP_SHIFT 15
#define I2S_CFG2_IOSWP BIT(I2S_CFG2_IOSWP_SHIFT)
#define I2S_CFG2_LSBFRST BIT(23)
#define I2S_CFG2_AFCNTR BIT(31)
/* Bit definition for SPI_CFG1 register */
#define I2S_CFG1_FTHVL_SHIFT 5
#define I2S_CFG1_FTHVL_MASK GENMASK(8, I2S_CFG1_FTHVL_SHIFT)
#define I2S_CFG1_FTHVL_SET(x) ((x) << I2S_CFG1_FTHVL_SHIFT)
#define I2S_CFG1_TXDMAEN BIT(15)
#define I2S_CFG1_RXDMAEN BIT(14)
/* Bit definition for SPI2S_IER register */
#define I2S_IER_RXPIE BIT(0)
#define I2S_IER_TXPIE BIT(1)
#define I2S_IER_DPXPIE BIT(2)
#define I2S_IER_EOTIE BIT(3)
#define I2S_IER_TXTFIE BIT(4)
#define I2S_IER_UDRIE BIT(5)
#define I2S_IER_OVRIE BIT(6)
#define I2S_IER_CRCEIE BIT(7)
#define I2S_IER_TIFREIE BIT(8)
#define I2S_IER_MODFIE BIT(9)
#define I2S_IER_TSERFIE BIT(10)
/* Bit definition for SPI2S_SR register */
#define I2S_SR_RXP BIT(0)
#define I2S_SR_TXP BIT(1)
#define I2S_SR_DPXP BIT(2)
#define I2S_SR_EOT BIT(3)
#define I2S_SR_TXTF BIT(4)
#define I2S_SR_UDR BIT(5)
#define I2S_SR_OVR BIT(6)
#define I2S_SR_CRCERR BIT(7)
#define I2S_SR_TIFRE BIT(8)
#define I2S_SR_MODF BIT(9)
#define I2S_SR_TSERF BIT(10)
#define I2S_SR_SUSP BIT(11)
#define I2S_SR_TXC BIT(12)
#define I2S_SR_RXPLVL GENMASK(14, 13)
#define I2S_SR_RXWNE BIT(15)
#define I2S_SR_MASK GENMASK(15, 0)
/* Bit definition for SPI_IFCR register */
#define I2S_IFCR_EOTC BIT(3)
#define I2S_IFCR_TXTFC BIT(4)
#define I2S_IFCR_UDRC BIT(5)
#define I2S_IFCR_OVRC BIT(6)
#define I2S_IFCR_CRCEC BIT(7)
#define I2S_IFCR_TIFREC BIT(8)
#define I2S_IFCR_MODFC BIT(9)
#define I2S_IFCR_TSERFC BIT(10)
#define I2S_IFCR_SUSPC BIT(11)
#define I2S_IFCR_MASK GENMASK(11, 3)
/* Bit definition for SPI_I2SCGFR register */
#define I2S_CGFR_I2SMOD BIT(0)
#define I2S_CGFR_I2SCFG_SHIFT 1
#define I2S_CGFR_I2SCFG_MASK GENMASK(3, I2S_CGFR_I2SCFG_SHIFT)
#define I2S_CGFR_I2SCFG_SET(x) ((x) << I2S_CGFR_I2SCFG_SHIFT)
#define I2S_CGFR_I2SSTD_SHIFT 4
#define I2S_CGFR_I2SSTD_MASK GENMASK(5, I2S_CGFR_I2SSTD_SHIFT)
#define I2S_CGFR_I2SSTD_SET(x) ((x) << I2S_CGFR_I2SSTD_SHIFT)
#define I2S_CGFR_PCMSYNC BIT(7)
#define I2S_CGFR_DATLEN_SHIFT 8
#define I2S_CGFR_DATLEN_MASK GENMASK(9, I2S_CGFR_DATLEN_SHIFT)
#define I2S_CGFR_DATLEN_SET(x) ((x) << I2S_CGFR_DATLEN_SHIFT)
#define I2S_CGFR_CHLEN_SHIFT 10
#define I2S_CGFR_CHLEN BIT(I2S_CGFR_CHLEN_SHIFT)
#define I2S_CGFR_CKPOL BIT(11)
#define I2S_CGFR_FIXCH BIT(12)
#define I2S_CGFR_WSINV BIT(13)
#define I2S_CGFR_DATFMT BIT(14)
#define I2S_CGFR_I2SDIV_SHIFT 16
#define I2S_CGFR_I2SDIV_BIT_H 23
#define I2S_CGFR_I2SDIV_MASK GENMASK(I2S_CGFR_I2SDIV_BIT_H,\
I2S_CGFR_I2SDIV_SHIFT)
#define I2S_CGFR_I2SDIV_SET(x) ((x) << I2S_CGFR_I2SDIV_SHIFT)
#define I2S_CGFR_I2SDIV_MAX ((1 << (I2S_CGFR_I2SDIV_BIT_H -\
I2S_CGFR_I2SDIV_SHIFT)) - 1)
#define I2S_CGFR_ODD_SHIFT 24
#define I2S_CGFR_ODD BIT(I2S_CGFR_ODD_SHIFT)
#define I2S_CGFR_MCKOE BIT(25)
enum i2s_master_mode {
I2S_MS_NOT_SET,
I2S_MS_MASTER,
I2S_MS_SLAVE,
};
enum i2s_mode {
I2S_I2SMOD_TX_SLAVE,
I2S_I2SMOD_RX_SLAVE,
I2S_I2SMOD_TX_MASTER,
I2S_I2SMOD_RX_MASTER,
I2S_I2SMOD_FD_SLAVE,
I2S_I2SMOD_FD_MASTER,
};
enum i2s_fifo_th {
I2S_FIFO_TH_NONE,
I2S_FIFO_TH_ONE_QUARTER,
I2S_FIFO_TH_HALF,
I2S_FIFO_TH_THREE_QUARTER,
I2S_FIFO_TH_FULL,
};
enum i2s_std {
I2S_STD_I2S,
I2S_STD_LEFT_J,
I2S_STD_RIGHT_J,
I2S_STD_DSP,
};
enum i2s_datlen {
I2S_I2SMOD_DATLEN_16,
I2S_I2SMOD_DATLEN_24,
I2S_I2SMOD_DATLEN_32,
};
#define STM32_I2S_DAI_NAME_SIZE 20
#define STM32_I2S_FIFO_SIZE 16
#define STM32_I2S_IS_MASTER(x) ((x)->ms_flg == I2S_MS_MASTER)
#define STM32_I2S_IS_SLAVE(x) ((x)->ms_flg == I2S_MS_SLAVE)
/**
* @regmap_conf: I2S register map configuration pointer
* @egmap: I2S register map pointer
* @pdev: device data pointer
* @dai_drv: DAI driver pointer
* @dma_data_tx: dma configuration data for tx channel
* @dma_data_rx: dma configuration data for tx channel
* @substream: PCM substream data pointer
* @i2sclk: kernel clock feeding the I2S clock generator
* @pclk: peripheral clock driving bus interface
* @x8kclk: I2S parent clock for sampling frequencies multiple of 8kHz
* @x11kclk: I2S parent clock for sampling frequencies multiple of 11kHz
* @base: mmio register base virtual address
* @phys_addr: I2S registers physical base address
* @lock_fd: lock to manage race conditions in full duplex mode
* @dais_name: DAI name
* @mclk_rate: master clock frequency (Hz)
* @fmt: DAI protocol
* @refcount: keep count of opened streams on I2S
* @ms_flg: master mode flag.
*/
struct stm32_i2s_data {
const struct regmap_config *regmap_conf;
struct regmap *regmap;
struct platform_device *pdev;
struct snd_soc_dai_driver *dai_drv;
struct snd_dmaengine_dai_dma_data dma_data_tx;
struct snd_dmaengine_dai_dma_data dma_data_rx;
struct snd_pcm_substream *substream;
struct clk *i2sclk;
struct clk *pclk;
struct clk *x8kclk;
struct clk *x11kclk;
void __iomem *base;
dma_addr_t phys_addr;
spinlock_t lock_fd; /* Manage race conditions for full duplex */
char dais_name[STM32_I2S_DAI_NAME_SIZE];
unsigned int mclk_rate;
unsigned int fmt;
int refcount;
int ms_flg;
};
static irqreturn_t stm32_i2s_isr(int irq, void *devid)
{
struct stm32_i2s_data *i2s = (struct stm32_i2s_data *)devid;
struct platform_device *pdev = i2s->pdev;
u32 sr, ier;
unsigned long flags;
int err = 0;
regmap_read(i2s->regmap, STM32_I2S_SR_REG, &sr);
regmap_read(i2s->regmap, STM32_I2S_IER_REG, &ier);
flags = sr & ier;
if (!flags) {
dev_dbg(&pdev->dev, "Spurious IRQ sr=0x%08x, ier=0x%08x\n",
sr, ier);
return IRQ_NONE;
}
regmap_update_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, flags);
if (flags & I2S_SR_OVR) {
dev_dbg(&pdev->dev, "Overrun\n");
err = 1;
}
if (flags & I2S_SR_UDR) {
dev_dbg(&pdev->dev, "Underrun\n");
err = 1;
}
if (flags & I2S_SR_TIFRE)
dev_dbg(&pdev->dev, "Frame error\n");
if (err)
snd_pcm_stop_xrun(i2s->substream);
return IRQ_HANDLED;
}
static bool stm32_i2s_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_CR1_REG:
case STM32_I2S_CFG1_REG:
case STM32_I2S_CFG2_REG:
case STM32_I2S_IER_REG:
case STM32_I2S_SR_REG:
case STM32_I2S_IFCR_REG:
case STM32_I2S_TXDR_REG:
case STM32_I2S_RXDR_REG:
case STM32_I2S_CGFR_REG:
return true;
default:
return false;
}
}
static bool stm32_i2s_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_TXDR_REG:
case STM32_I2S_RXDR_REG:
return true;
default:
return false;
}
}
static bool stm32_i2s_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_I2S_CR1_REG:
case STM32_I2S_CFG1_REG:
case STM32_I2S_CFG2_REG:
case STM32_I2S_IER_REG:
case STM32_I2S_IFCR_REG:
case STM32_I2S_TXDR_REG:
case STM32_I2S_CGFR_REG:
return true;
default:
return false;
}
}
static int stm32_i2s_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
u32 cgfr;
u32 cgfr_mask = I2S_CGFR_I2SSTD_MASK | I2S_CGFR_CKPOL |
I2S_CGFR_WSINV | I2S_CGFR_I2SCFG_MASK;
dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
/*
* winv = 0 : default behavior (high/low) for all standards
* ckpol = 0 for all standards.
*/
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_I2S);
break;
case SND_SOC_DAIFMT_MSB:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_LEFT_J);
break;
case SND_SOC_DAIFMT_LSB:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_RIGHT_J);
break;
case SND_SOC_DAIFMT_DSP_A:
cgfr = I2S_CGFR_I2SSTD_SET(I2S_STD_DSP);
break;
/* DSP_B not mapped on I2S PCM long format. 1 bit offset does not fit */
default:
dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
/* DAI clock strobing */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
cgfr |= I2S_CGFR_CKPOL;
break;
case SND_SOC_DAIFMT_NB_IF:
cgfr |= I2S_CGFR_WSINV;
break;
case SND_SOC_DAIFMT_IB_IF:
cgfr |= I2S_CGFR_CKPOL;
cgfr |= I2S_CGFR_WSINV;
break;
default:
dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
fmt & SND_SOC_DAIFMT_INV_MASK);
return -EINVAL;
}
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
i2s->ms_flg = I2S_MS_SLAVE;
break;
case SND_SOC_DAIFMT_CBS_CFS:
i2s->ms_flg = I2S_MS_MASTER;
break;
default:
dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
fmt & SND_SOC_DAIFMT_MASTER_MASK);
return -EINVAL;
}
i2s->fmt = fmt;
return regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cgfr_mask, cgfr);
}
static int stm32_i2s_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
dev_dbg(cpu_dai->dev, "I2S MCLK frequency is %uHz\n", freq);
if ((dir == SND_SOC_CLOCK_OUT) && STM32_I2S_IS_MASTER(i2s)) {
i2s->mclk_rate = freq;
/* Enable master clock if master mode and mclk-fs are set */
return regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_MCKOE, I2S_CGFR_MCKOE);
}
return 0;
}
static int stm32_i2s_configure_clock(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
unsigned long i2s_clock_rate;
unsigned int tmp, div, real_div, nb_bits, frame_len;
unsigned int rate = params_rate(params);
int ret;
u32 cgfr, cgfr_mask;
bool odd;
if (!(rate % 11025))
clk_set_parent(i2s->i2sclk, i2s->x11kclk);
else
clk_set_parent(i2s->i2sclk, i2s->x8kclk);
i2s_clock_rate = clk_get_rate(i2s->i2sclk);
/*
* mckl = mclk_ratio x ws
* i2s mode : mclk_ratio = 256
* dsp mode : mclk_ratio = 128
*
* mclk on
* i2s mode : div = i2s_clk / (mclk_ratio * ws)
* dsp mode : div = i2s_clk / (mclk_ratio * ws)
* mclk off
* i2s mode : div = i2s_clk / (nb_bits x ws)
* dsp mode : div = i2s_clk / (nb_bits x ws)
*/
if (i2s->mclk_rate) {
tmp = DIV_ROUND_CLOSEST(i2s_clock_rate, i2s->mclk_rate);
} else {
frame_len = 32;
if ((i2s->fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
SND_SOC_DAIFMT_DSP_A)
frame_len = 16;
/* master clock not enabled */
ret = regmap_read(i2s->regmap, STM32_I2S_CGFR_REG, &cgfr);
if (ret < 0)
return ret;
nb_bits = frame_len * ((cgfr & I2S_CGFR_CHLEN) + 1);
tmp = DIV_ROUND_CLOSEST(i2s_clock_rate, (nb_bits * rate));
}
/* Check the parity of the divider */
odd = tmp & 0x1;
/* Compute the div prescaler */
div = tmp >> 1;
cgfr = I2S_CGFR_I2SDIV_SET(div) | (odd << I2S_CGFR_ODD_SHIFT);
cgfr_mask = I2S_CGFR_I2SDIV_MASK | I2S_CGFR_ODD;
real_div = ((2 * div) + odd);
dev_dbg(cpu_dai->dev, "I2S clk: %ld, SCLK: %d\n",
i2s_clock_rate, rate);
dev_dbg(cpu_dai->dev, "Divider: 2*%d(div)+%d(odd) = %d\n",
div, odd, real_div);
if (((div == 1) && odd) || (div > I2S_CGFR_I2SDIV_MAX)) {
dev_err(cpu_dai->dev, "Wrong divider setting\n");
return -EINVAL;
}
if (!div && !odd)
dev_warn(cpu_dai->dev, "real divider forced to 1\n");
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cgfr_mask, cgfr);
if (ret < 0)
return ret;
/* Set bitclock and frameclock to their inactive state */
return regmap_update_bits(i2s->regmap, STM32_I2S_CFG2_REG,
I2S_CFG2_AFCNTR, I2S_CFG2_AFCNTR);
}
static int stm32_i2s_configure(struct snd_soc_dai *cpu_dai,
struct snd_pcm_hw_params *params,
struct snd_pcm_substream *substream)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
int format = params_width(params);
u32 cfgr, cfgr_mask, cfg1, cfg1_mask;
unsigned int fthlv;
int ret;
if ((params_channels(params) == 1) &&
((i2s->fmt & SND_SOC_DAIFMT_FORMAT_MASK) != SND_SOC_DAIFMT_DSP_A)) {
dev_err(cpu_dai->dev, "Mono mode supported only by DSP_A\n");
return -EINVAL;
}
switch (format) {
case 16:
cfgr = I2S_CGFR_DATLEN_SET(I2S_I2SMOD_DATLEN_16);
cfgr_mask = I2S_CGFR_DATLEN_MASK;
break;
case 32:
cfgr = I2S_CGFR_DATLEN_SET(I2S_I2SMOD_DATLEN_32) |
I2S_CGFR_CHLEN;
cfgr_mask = I2S_CGFR_DATLEN_MASK | I2S_CGFR_CHLEN;
break;
default:
dev_err(cpu_dai->dev, "Unexpected format %d", format);
return -EINVAL;
}
if (STM32_I2S_IS_SLAVE(i2s)) {
cfgr |= I2S_CGFR_I2SCFG_SET(I2S_I2SMOD_FD_SLAVE);
/* As data length is either 16 or 32 bits, fixch always set */
cfgr |= I2S_CGFR_FIXCH;
cfgr_mask |= I2S_CGFR_FIXCH;
} else {
cfgr |= I2S_CGFR_I2SCFG_SET(I2S_I2SMOD_FD_MASTER);
}
cfgr_mask |= I2S_CGFR_I2SCFG_MASK;
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
cfgr_mask, cfgr);
if (ret < 0)
return ret;
cfg1 = I2S_CFG1_RXDMAEN | I2S_CFG1_TXDMAEN;
cfg1_mask = cfg1;
fthlv = STM32_I2S_FIFO_SIZE * I2S_FIFO_TH_ONE_QUARTER / 4;
cfg1 |= I2S_CFG1_FTHVL_SET(fthlv - 1);
cfg1_mask |= I2S_CFG1_FTHVL_MASK;
return regmap_update_bits(i2s->regmap, STM32_I2S_CFG1_REG,
cfg1_mask, cfg1);
}
static int stm32_i2s_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
i2s->substream = substream;
spin_lock(&i2s->lock_fd);
i2s->refcount++;
spin_unlock(&i2s->lock_fd);
return regmap_update_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, I2S_IFCR_MASK);
}
static int stm32_i2s_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
ret = stm32_i2s_configure(cpu_dai, params, substream);
if (ret < 0) {
dev_err(cpu_dai->dev, "Configuration returned error %d\n", ret);
return ret;
}
if (STM32_I2S_IS_MASTER(i2s))
ret = stm32_i2s_configure_clock(cpu_dai, params);
return ret;
}
static int stm32_i2s_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
bool playback_flg = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
u32 cfg1_mask, ier;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
/* Enable i2s */
dev_dbg(cpu_dai->dev, "start I2S\n");
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_SPE, I2S_CR1_SPE);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d enabling I2S\n", ret);
return ret;
}
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_CSTART, I2S_CR1_CSTART);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d starting I2S\n", ret);
return ret;
}
regmap_update_bits(i2s->regmap, STM32_I2S_IFCR_REG,
I2S_IFCR_MASK, I2S_IFCR_MASK);
if (playback_flg) {
ier = I2S_IER_UDRIE;
} else {
ier = I2S_IER_OVRIE;
spin_lock(&i2s->lock_fd);
if (i2s->refcount == 1)
/* dummy write to trigger capture */
regmap_write(i2s->regmap,
STM32_I2S_TXDR_REG, 0);
spin_unlock(&i2s->lock_fd);
}
if (STM32_I2S_IS_SLAVE(i2s))
ier |= I2S_IER_TIFREIE;
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG, ier, ier);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (playback_flg)
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG,
I2S_IER_UDRIE,
(unsigned int)~I2S_IER_UDRIE);
else
regmap_update_bits(i2s->regmap, STM32_I2S_IER_REG,
I2S_IER_OVRIE,
(unsigned int)~I2S_IER_OVRIE);
spin_lock(&i2s->lock_fd);
i2s->refcount--;
if (i2s->refcount) {
spin_unlock(&i2s->lock_fd);
break;
}
spin_unlock(&i2s->lock_fd);
dev_dbg(cpu_dai->dev, "stop I2S\n");
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CR1_REG,
I2S_CR1_SPE, 0);
if (ret < 0) {
dev_err(cpu_dai->dev, "Error %d disabling I2S\n", ret);
return ret;
}
cfg1_mask = I2S_CFG1_RXDMAEN | I2S_CFG1_TXDMAEN;
regmap_update_bits(i2s->regmap, STM32_I2S_CFG1_REG,
cfg1_mask, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static void stm32_i2s_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = snd_soc_dai_get_drvdata(cpu_dai);
i2s->substream = NULL;
regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_MCKOE, (unsigned int)~I2S_CGFR_MCKOE);
}
static int stm32_i2s_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_i2s_data *i2s = dev_get_drvdata(cpu_dai->dev);
struct snd_dmaengine_dai_dma_data *dma_data_tx = &i2s->dma_data_tx;
struct snd_dmaengine_dai_dma_data *dma_data_rx = &i2s->dma_data_rx;
/* Buswidth will be set by framework */
dma_data_tx->addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
dma_data_tx->addr = (dma_addr_t)(i2s->phys_addr) + STM32_I2S_TXDR_REG;
dma_data_tx->maxburst = 1;
dma_data_rx->addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
dma_data_rx->addr = (dma_addr_t)(i2s->phys_addr) + STM32_I2S_RXDR_REG;
dma_data_rx->maxburst = 1;
snd_soc_dai_init_dma_data(cpu_dai, dma_data_tx, dma_data_rx);
return 0;
}
static const struct regmap_config stm32_h7_i2s_regmap_conf = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM32_I2S_CGFR_REG,
.readable_reg = stm32_i2s_readable_reg,
.volatile_reg = stm32_i2s_volatile_reg,
.writeable_reg = stm32_i2s_writeable_reg,
.fast_io = true,
};
static const struct snd_soc_dai_ops stm32_i2s_pcm_dai_ops = {
.set_sysclk = stm32_i2s_set_sysclk,
.set_fmt = stm32_i2s_set_dai_fmt,
.startup = stm32_i2s_startup,
.hw_params = stm32_i2s_hw_params,
.trigger = stm32_i2s_trigger,
.shutdown = stm32_i2s_shutdown,
};
static const struct snd_pcm_hardware stm32_i2s_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_max = 2048,
.periods_min = 2,
.periods_max = 8,
};
static const struct snd_dmaengine_pcm_config stm32_i2s_pcm_config = {
.pcm_hardware = &stm32_i2s_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
.prealloc_buffer_size = PAGE_SIZE * 8,
};
static const struct snd_soc_component_driver stm32_i2s_component = {
.name = "stm32-i2s",
};
static void stm32_i2s_dai_init(struct snd_soc_pcm_stream *stream,
char *stream_name)
{
stream->stream_name = stream_name;
stream->channels_min = 1;
stream->channels_max = 2;
stream->rates = SNDRV_PCM_RATE_8000_192000;
stream->formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE;
}
static int stm32_i2s_dais_init(struct platform_device *pdev,
struct stm32_i2s_data *i2s)
{
struct snd_soc_dai_driver *dai_ptr;
dai_ptr = devm_kzalloc(&pdev->dev, sizeof(struct snd_soc_dai_driver),
GFP_KERNEL);
if (!dai_ptr)
return -ENOMEM;
snprintf(i2s->dais_name, STM32_I2S_DAI_NAME_SIZE,
"%s", dev_name(&pdev->dev));
dai_ptr->probe = stm32_i2s_dai_probe;
dai_ptr->ops = &stm32_i2s_pcm_dai_ops;
dai_ptr->name = i2s->dais_name;
dai_ptr->id = 1;
stm32_i2s_dai_init(&dai_ptr->playback, "playback");
stm32_i2s_dai_init(&dai_ptr->capture, "capture");
i2s->dai_drv = dai_ptr;
return 0;
}
static const struct of_device_id stm32_i2s_ids[] = {
{
.compatible = "st,stm32h7-i2s",
.data = &stm32_h7_i2s_regmap_conf
},
{},
};
static int stm32_i2s_parse_dt(struct platform_device *pdev,
struct stm32_i2s_data *i2s)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id;
struct reset_control *rst;
struct resource *res;
int irq, ret;
if (!np)
return -ENODEV;
of_id = of_match_device(stm32_i2s_ids, &pdev->dev);
if (of_id)
i2s->regmap_conf = (const struct regmap_config *)of_id->data;
else
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2s->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(i2s->base))
return PTR_ERR(i2s->base);
i2s->phys_addr = res->start;
/* Get clocks */
i2s->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(i2s->pclk)) {
dev_err(&pdev->dev, "Could not get pclk\n");
return PTR_ERR(i2s->pclk);
}
i2s->i2sclk = devm_clk_get(&pdev->dev, "i2sclk");
if (IS_ERR(i2s->i2sclk)) {
dev_err(&pdev->dev, "Could not get i2sclk\n");
return PTR_ERR(i2s->i2sclk);
}
i2s->x8kclk = devm_clk_get(&pdev->dev, "x8k");
if (IS_ERR(i2s->x8kclk)) {
dev_err(&pdev->dev, "missing x8k parent clock\n");
return PTR_ERR(i2s->x8kclk);
}
i2s->x11kclk = devm_clk_get(&pdev->dev, "x11k");
if (IS_ERR(i2s->x11kclk)) {
dev_err(&pdev->dev, "missing x11k parent clock\n");
return PTR_ERR(i2s->x11kclk);
}
/* Get irqs */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
return -ENOENT;
}
ret = devm_request_irq(&pdev->dev, irq, stm32_i2s_isr, IRQF_ONESHOT,
dev_name(&pdev->dev), i2s);
if (ret) {
dev_err(&pdev->dev, "irq request returned %d\n", ret);
return ret;
}
/* Reset */
rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(rst)) {
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
}
return 0;
}
static int stm32_i2s_probe(struct platform_device *pdev)
{
struct stm32_i2s_data *i2s;
int ret;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s)
return -ENOMEM;
ret = stm32_i2s_parse_dt(pdev, i2s);
if (ret)
return ret;
i2s->pdev = pdev;
i2s->ms_flg = I2S_MS_NOT_SET;
spin_lock_init(&i2s->lock_fd);
platform_set_drvdata(pdev, i2s);
ret = stm32_i2s_dais_init(pdev, i2s);
if (ret)
return ret;
i2s->regmap = devm_regmap_init_mmio(&pdev->dev, i2s->base,
i2s->regmap_conf);
if (IS_ERR(i2s->regmap)) {
dev_err(&pdev->dev, "regmap init failed\n");
return PTR_ERR(i2s->regmap);
}
ret = clk_prepare_enable(i2s->pclk);
if (ret) {
dev_err(&pdev->dev, "Enable pclk failed: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(i2s->i2sclk);
if (ret) {
dev_err(&pdev->dev, "Enable i2sclk failed: %d\n", ret);
goto err_pclk_disable;
}
ret = devm_snd_soc_register_component(&pdev->dev, &stm32_i2s_component,
i2s->dai_drv, 1);
if (ret)
goto err_clocks_disable;
ret = devm_snd_dmaengine_pcm_register(&pdev->dev,
&stm32_i2s_pcm_config, 0);
if (ret)
goto err_clocks_disable;
/* Set SPI/I2S in i2s mode */
ret = regmap_update_bits(i2s->regmap, STM32_I2S_CGFR_REG,
I2S_CGFR_I2SMOD, I2S_CGFR_I2SMOD);
if (ret)
goto err_clocks_disable;
return ret;
err_clocks_disable:
clk_disable_unprepare(i2s->i2sclk);
err_pclk_disable:
clk_disable_unprepare(i2s->pclk);
return ret;
}
static int stm32_i2s_remove(struct platform_device *pdev)
{
struct stm32_i2s_data *i2s = platform_get_drvdata(pdev);
clk_disable_unprepare(i2s->i2sclk);
clk_disable_unprepare(i2s->pclk);
return 0;
}
MODULE_DEVICE_TABLE(of, stm32_i2s_ids);
static struct platform_driver stm32_i2s_driver = {
.driver = {
.name = "st,stm32-i2s",
.of_match_table = stm32_i2s_ids,
},
.probe = stm32_i2s_probe,
.remove = stm32_i2s_remove,
};
module_platform_driver(stm32_i2s_driver);
MODULE_DESCRIPTION("STM32 Soc i2s Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_ALIAS("platform:stm32-i2s");
MODULE_LICENSE("GPL v2");
......@@ -27,8 +27,17 @@
#include "stm32_sai.h"
static const struct stm32_sai_conf stm32_sai_conf_f4 = {
.version = SAI_STM32F4,
};
static const struct stm32_sai_conf stm32_sai_conf_h7 = {
.version = SAI_STM32H7,
};
static const struct of_device_id stm32_sai_ids[] = {
{ .compatible = "st,stm32f4-sai", .data = (void *)SAI_STM32F4 },
{ .compatible = "st,stm32f4-sai", .data = (void *)&stm32_sai_conf_f4 },
{ .compatible = "st,stm32h7-sai", .data = (void *)&stm32_sai_conf_h7 },
{}
};
......@@ -52,7 +61,7 @@ static int stm32_sai_probe(struct platform_device *pdev)
of_id = of_match_device(stm32_sai_ids, &pdev->dev);
if (of_id)
sai->version = (enum stm32_sai_version)of_id->data;
sai->conf = (struct stm32_sai_conf *)of_id->data;
else
return -EINVAL;
......@@ -110,6 +119,6 @@ static struct platform_driver stm32_sai_driver = {
module_platform_driver(stm32_sai_driver);
MODULE_DESCRIPTION("STM32 Soc SAI Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
MODULE_ALIAS("platform:st,stm32-sai");
MODULE_LICENSE("GPL v2");
......@@ -31,6 +31,10 @@
#define STM_SAI_CLRFR_REGX 0x18
#define STM_SAI_DR_REGX 0x1C
/* Sub-block A registers, relative to sub-block A address */
#define STM_SAI_PDMCR_REGX 0x40
#define STM_SAI_PDMLY_REGX 0x44
/******************** Bit definition for SAI_GCR register *******************/
#define SAI_GCR_SYNCIN_SHIFT 0
#define SAI_GCR_SYNCIN_MASK GENMASK(1, SAI_GCR_SYNCIN_SHIFT)
......@@ -75,10 +79,11 @@
#define SAI_XCR1_NODIV BIT(SAI_XCR1_NODIV_SHIFT)
#define SAI_XCR1_MCKDIV_SHIFT 20
#define SAI_XCR1_MCKDIV_WIDTH 4
#define SAI_XCR1_MCKDIV_MASK GENMASK(24, SAI_XCR1_MCKDIV_SHIFT)
#define SAI_XCR1_MCKDIV_WIDTH(x) (((x) == SAI_STM32F4) ? 4 : 6)
#define SAI_XCR1_MCKDIV_MASK(x) GENMASK((SAI_XCR1_MCKDIV_SHIFT + (x) - 1),\
SAI_XCR1_MCKDIV_SHIFT)
#define SAI_XCR1_MCKDIV_SET(x) ((x) << SAI_XCR1_MCKDIV_SHIFT)
#define SAI_XCR1_MCKDIV_MAX ((1 << SAI_XCR1_MCKDIV_WIDTH) - 1)
#define SAI_XCR1_MCKDIV_MAX(x) ((1 << SAI_XCR1_MCKDIV_WIDTH(x)) - 1)
#define SAI_XCR1_OSR_SHIFT 26
#define SAI_XCR1_OSR BIT(SAI_XCR1_OSR_SHIFT)
......@@ -125,7 +130,6 @@
#define SAI_XFRCR_FSOFF BIT(SAI_XFRCR_FSOFF_SHIFT)
/****************** Bit definition for SAI_XSLOTR register ******************/
#define SAI_XSLOTR_FBOFF_SHIFT 0
#define SAI_XSLOTR_FBOFF_MASK GENMASK(4, SAI_XSLOTR_FBOFF_SHIFT)
#define SAI_XSLOTR_FBOFF_SET(x) ((x) << SAI_XSLOTR_FBOFF_SHIFT)
......@@ -179,8 +183,65 @@
#define SAI_XCLRFR_SHIFT 0
#define SAI_XCLRFR_MASK GENMASK(6, SAI_XCLRFR_SHIFT)
/****************** Bit definition for SAI_PDMCR register ******************/
#define SAI_PDMCR_PDMEN BIT(0)
#define SAI_PDMCR_MICNBR_SHIFT 4
#define SAI_PDMCR_MICNBR_MASK GENMASK(5, SAI_PDMCR_MICNBR_SHIFT)
#define SAI_PDMCR_MICNBR_SET(x) ((x) << SAI_PDMCR_MICNBR_SHIFT)
#define SAI_PDMCR_CKEN1 BIT(8)
#define SAI_PDMCR_CKEN2 BIT(9)
#define SAI_PDMCR_CKEN3 BIT(10)
#define SAI_PDMCR_CKEN4 BIT(11)
/****************** Bit definition for (SAI_PDMDLY register ****************/
#define SAI_PDMDLY_1L_SHIFT 0
#define SAI_PDMDLY_1L_MASK GENMASK(2, SAI_PDMDLY_1L_SHIFT)
#define SAI_PDMDLY_1L_WIDTH 3
#define SAI_PDMDLY_1R_SHIFT 4
#define SAI_PDMDLY_1R_MASK GENMASK(6, SAI_PDMDLY_1R_SHIFT)
#define SAI_PDMDLY_1R_WIDTH 3
#define SAI_PDMDLY_2L_SHIFT 8
#define SAI_PDMDLY_2L_MASK GENMASK(10, SAI_PDMDLY_2L_SHIFT)
#define SAI_PDMDLY_2L_WIDTH 3
#define SAI_PDMDLY_2R_SHIFT 12
#define SAI_PDMDLY_2R_MASK GENMASK(14, SAI_PDMDLY_2R_SHIFT)
#define SAI_PDMDLY_2R_WIDTH 3
#define SAI_PDMDLY_3L_SHIFT 16
#define SAI_PDMDLY_3L_MASK GENMASK(18, SAI_PDMDLY_3L_SHIFT)
#define SAI_PDMDLY_3L_WIDTH 3
#define SAI_PDMDLY_3R_SHIFT 20
#define SAI_PDMDLY_3R_MASK GENMASK(22, SAI_PDMDLY_3R_SHIFT)
#define SAI_PDMDLY_3R_WIDTH 3
#define SAI_PDMDLY_4L_SHIFT 24
#define SAI_PDMDLY_4L_MASK GENMASK(26, SAI_PDMDLY_4L_SHIFT)
#define SAI_PDMDLY_4L_WIDTH 3
#define SAI_PDMDLY_4R_SHIFT 28
#define SAI_PDMDLY_4R_MASK GENMASK(30, SAI_PDMDLY_4R_SHIFT)
#define SAI_PDMDLY_4R_WIDTH 3
#define STM_SAI_IS_F4(ip) ((ip)->conf->version == SAI_STM32F4)
#define STM_SAI_IS_H7(ip) ((ip)->conf->version == SAI_STM32H7)
enum stm32_sai_version {
SAI_STM32F4
SAI_STM32F4,
SAI_STM32H7
};
/**
* struct stm32_sai_conf - SAI configuration
* @version: SAI version
*/
struct stm32_sai_conf {
int version;
};
/**
......@@ -195,6 +256,6 @@ struct stm32_sai_data {
struct platform_device *pdev;
struct clk *clk_x8k;
struct clk *clk_x11k;
int version;
struct stm32_sai_conf *conf;
int irq;
};
......@@ -51,12 +51,15 @@
#define STM_SAI_A_ID 0x0
#define STM_SAI_B_ID 0x1
#define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
#define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID)
#define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B")
/**
* struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
* @pdev: device data pointer
* @regmap: SAI register map pointer
* @regmap_config: SAI sub block register map configuration pointer
* @dma_params: dma configuration data for rx or tx channel
* @cpu_dai_drv: DAI driver data pointer
* @cpu_dai: DAI runtime data pointer
......@@ -79,6 +82,7 @@
struct stm32_sai_sub_data {
struct platform_device *pdev;
struct regmap *regmap;
const struct regmap_config *regmap_config;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_soc_dai_driver *cpu_dai_drv;
struct snd_soc_dai *cpu_dai;
......@@ -118,6 +122,8 @@ static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
......@@ -145,13 +151,15 @@ static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
case STM_SAI_SR_REGX:
case STM_SAI_CLRFR_REGX:
case STM_SAI_DR_REGX:
case STM_SAI_PDMCR_REGX:
case STM_SAI_PDMLY_REGX:
return true;
default:
return false;
}
}
static const struct regmap_config stm32_sai_sub_regmap_config = {
static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
......@@ -162,6 +170,17 @@ static const struct regmap_config stm32_sai_sub_regmap_config = {
.fast_io = true,
};
static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM_SAI_PDMLY_REGX,
.readable_reg = stm32_sai_sub_readable_reg,
.volatile_reg = stm32_sai_sub_volatile_reg,
.writeable_reg = stm32_sai_sub_writeable_reg,
.fast_io = true,
};
static irqreturn_t stm32_sai_isr(int irq, void *devid)
{
struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
......@@ -181,29 +200,29 @@ static irqreturn_t stm32_sai_isr(int irq, void *devid)
SAI_XCLRFR_MASK);
if (flags & SAI_XIMR_OVRUDRIE) {
dev_err(&pdev->dev, "IT %s\n",
dev_err(&pdev->dev, "IRQ %s\n",
STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_MUTEDETIE)
dev_dbg(&pdev->dev, "IT mute detected\n");
dev_dbg(&pdev->dev, "IRQ mute detected\n");
if (flags & SAI_XIMR_WCKCFGIE) {
dev_err(&pdev->dev, "IT wrong clock configuration\n");
dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
status = SNDRV_PCM_STATE_DISCONNECTED;
}
if (flags & SAI_XIMR_CNRDYIE)
dev_warn(&pdev->dev, "IT Codec not ready\n");
dev_err(&pdev->dev, "IRQ Codec not ready\n");
if (flags & SAI_XIMR_AFSDETIE) {
dev_warn(&pdev->dev, "IT Anticipated frame synchro\n");
dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
if (flags & SAI_XIMR_LFSDETIE) {
dev_warn(&pdev->dev, "IT Late frame synchro\n");
dev_err(&pdev->dev, "IRQ Late frame synchro\n");
status = SNDRV_PCM_STATE_XRUN;
}
......@@ -220,8 +239,15 @@ static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq, int dir)
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
if ((dir == SND_SOC_CLOCK_OUT) && sai->master) {
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_NODIV,
(unsigned int)~SAI_XCR1_NODIV);
if (ret < 0)
return ret;
sai->mclk_rate = freq;
dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
}
......@@ -235,7 +261,7 @@ static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int slotr, slotr_mask, slot_size;
dev_dbg(cpu_dai->dev, "masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
tx_mask, rx_mask, slots, slot_width);
switch (slot_width) {
......@@ -356,6 +382,10 @@ static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
}
cr1_mask |= SAI_XCR1_SLAVE;
/* do not generate master by default */
cr1 |= SAI_XCR1_NODIV;
cr1_mask |= SAI_XCR1_NODIV;
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
if (ret < 0) {
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
......@@ -377,7 +407,7 @@ static int stm32_sai_startup(struct snd_pcm_substream *substream,
ret = clk_prepare_enable(sai->sai_ck);
if (ret < 0) {
dev_err(cpu_dai->dev, "failed to enable clock: %d\n", ret);
dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
return ret;
}
......@@ -497,7 +527,7 @@ static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
}
dev_dbg(cpu_dai->dev, "slots %d, slot width %d\n",
dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
sai->slots, sai->slot_width);
return 0;
......@@ -521,7 +551,7 @@ static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
dev_dbg(cpu_dai->dev, "frame length %d, frame active %d\n",
dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
sai->fs_length, fs_active);
regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
......@@ -540,7 +570,8 @@ static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
{
struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
int cr1, mask, div = 0;
int sai_clk_rate, ret;
int sai_clk_rate, mclk_ratio, den, ret;
int version = sai->pdata->conf->version;
if (!sai->mclk_rate) {
dev_err(cpu_dai->dev, "Mclk rate is null\n");
......@@ -553,21 +584,53 @@ static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
clk_set_parent(sai->sai_ck, sai->pdata->clk_x8k);
sai_clk_rate = clk_get_rate(sai->sai_ck);
/*
* mclk_rate = 256 * fs
* MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
* MCKDIV = sai_ck / (2 * mclk_rate) otherwise
*/
if (2 * sai_clk_rate >= 3 * sai->mclk_rate)
div = DIV_ROUND_CLOSEST(sai_clk_rate, 2 * sai->mclk_rate);
if (div > SAI_XCR1_MCKDIV_MAX) {
if (STM_SAI_IS_F4(sai->pdata)) {
/*
* mclk_rate = 256 * fs
* MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
* MCKDIV = sai_ck / (2 * mclk_rate) otherwise
*/
if (2 * sai_clk_rate >= 3 * sai->mclk_rate)
div = DIV_ROUND_CLOSEST(sai_clk_rate,
2 * sai->mclk_rate);
} else {
/*
* TDM mode :
* mclk on
* MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
* MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
* mclk off
* MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
* Note: NOMCK/NODIV correspond to same bit.
*/
if (sai->mclk_rate) {
mclk_ratio = sai->mclk_rate / params_rate(params);
if (mclk_ratio != 256) {
if (mclk_ratio == 512) {
mask = SAI_XCR1_OSR;
cr1 = SAI_XCR1_OSR;
} else {
dev_err(cpu_dai->dev,
"Wrong mclk ratio %d\n",
mclk_ratio);
return -EINVAL;
}
}
div = DIV_ROUND_CLOSEST(sai_clk_rate, sai->mclk_rate);
} else {
/* mclk-fs not set, master clock not active. NOMCK=1 */
den = sai->fs_length * params_rate(params);
div = DIV_ROUND_CLOSEST(sai_clk_rate, den);
}
}
if (div > SAI_XCR1_MCKDIV_MAX(version)) {
dev_err(cpu_dai->dev, "Divider %d out of range\n", div);
return -EINVAL;
}
dev_dbg(cpu_dai->dev, "SAI clock %d, divider %d\n", sai_clk_rate, div);
mask = SAI_XCR1_MCKDIV_MASK;
mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
cr1 = SAI_XCR1_MCKDIV_SET(div);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1);
if (ret < 0) {
......@@ -629,12 +692,12 @@ static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_DMAEN,
(unsigned int)~SAI_XCR1_DMAEN);
SAI_XCR1_SAIEN,
(unsigned int)~SAI_XCR1_SAIEN);
ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
SAI_XCR1_SAIEN,
(unsigned int)~SAI_XCR1_SAIEN);
SAI_XCR1_DMAEN,
(unsigned int)~SAI_XCR1_DMAEN);
if (ret < 0)
dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
break;
......@@ -652,6 +715,9 @@ static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_NODIV,
SAI_XCR1_NODIV);
clk_disable_unprepare(sai->sai_ck);
sai->substream = NULL;
}
......@@ -761,16 +827,23 @@ static int stm32_sai_sub_parse_of(struct platform_device *pdev,
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev_err(&pdev->dev, "res %pr\n", res);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
sai->phys_addr = res->start;
sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&stm32_sai_sub_regmap_config);
sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
/* Note: PDM registers not available for H7 sub-block B */
if (STM_SAI_IS_H7(sai->pdata) && STM_SAI_IS_SUB_A(sai))
sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck",
base, sai->regmap_config);
if (IS_ERR(sai->regmap)) {
dev_err(&pdev->dev, "Failed to initialize MMIO\n");
return PTR_ERR(sai->regmap);
}
/* Get direction property */
if (of_property_match_string(np, "dma-names", "tx") >= 0) {
......@@ -784,7 +857,7 @@ static int stm32_sai_sub_parse_of(struct platform_device *pdev,
sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
if (IS_ERR(sai->sai_ck)) {
dev_err(&pdev->dev, "missing kernel clock sai_ck\n");
dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
return PTR_ERR(sai->sai_ck);
}
......@@ -849,7 +922,7 @@ static int stm32_sai_sub_probe(struct platform_device *pdev)
ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
IRQF_SHARED, dev_name(&pdev->dev), sai);
if (ret) {
dev_err(&pdev->dev, "irq request returned %d\n", ret);
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
......@@ -861,7 +934,7 @@ static int stm32_sai_sub_probe(struct platform_device *pdev)
ret = devm_snd_dmaengine_pcm_register(&pdev->dev,
&stm32_sai_pcm_config, 0);
if (ret) {
dev_err(&pdev->dev, "could not register pcm dma\n");
dev_err(&pdev->dev, "Could not register pcm dma\n");
return ret;
}
......@@ -879,6 +952,6 @@ static struct platform_driver stm32_sai_sub_driver = {
module_platform_driver(stm32_sai_sub_driver);
MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
MODULE_ALIAS("platform:st,stm32-sai-sub");
MODULE_LICENSE("GPL v2");
/*
* STM32 ALSA SoC Digital Audio Interface (SPDIF-rx) driver.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
*
* License terms: GPL V2.0.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
/* SPDIF-rx Register Map */
#define STM32_SPDIFRX_CR 0x00
#define STM32_SPDIFRX_IMR 0x04
#define STM32_SPDIFRX_SR 0x08
#define STM32_SPDIFRX_IFCR 0x0C
#define STM32_SPDIFRX_DR 0x10
#define STM32_SPDIFRX_CSR 0x14
#define STM32_SPDIFRX_DIR 0x18
/* Bit definition for SPDIF_CR register */
#define SPDIFRX_CR_SPDIFEN_SHIFT 0
#define SPDIFRX_CR_SPDIFEN_MASK GENMASK(1, SPDIFRX_CR_SPDIFEN_SHIFT)
#define SPDIFRX_CR_SPDIFENSET(x) ((x) << SPDIFRX_CR_SPDIFEN_SHIFT)
#define SPDIFRX_CR_RXDMAEN BIT(2)
#define SPDIFRX_CR_RXSTEO BIT(3)
#define SPDIFRX_CR_DRFMT_SHIFT 4
#define SPDIFRX_CR_DRFMT_MASK GENMASK(5, SPDIFRX_CR_DRFMT_SHIFT)
#define SPDIFRX_CR_DRFMTSET(x) ((x) << SPDIFRX_CR_DRFMT_SHIFT)
#define SPDIFRX_CR_PMSK BIT(6)
#define SPDIFRX_CR_VMSK BIT(7)
#define SPDIFRX_CR_CUMSK BIT(8)
#define SPDIFRX_CR_PTMSK BIT(9)
#define SPDIFRX_CR_CBDMAEN BIT(10)
#define SPDIFRX_CR_CHSEL_SHIFT 11
#define SPDIFRX_CR_CHSEL BIT(SPDIFRX_CR_CHSEL_SHIFT)
#define SPDIFRX_CR_NBTR_SHIFT 12
#define SPDIFRX_CR_NBTR_MASK GENMASK(13, SPDIFRX_CR_NBTR_SHIFT)
#define SPDIFRX_CR_NBTRSET(x) ((x) << SPDIFRX_CR_NBTR_SHIFT)
#define SPDIFRX_CR_WFA BIT(14)
#define SPDIFRX_CR_INSEL_SHIFT 16
#define SPDIFRX_CR_INSEL_MASK GENMASK(18, PDIFRX_CR_INSEL_SHIFT)
#define SPDIFRX_CR_INSELSET(x) ((x) << SPDIFRX_CR_INSEL_SHIFT)
#define SPDIFRX_CR_CKSEN_SHIFT 20
#define SPDIFRX_CR_CKSEN BIT(20)
#define SPDIFRX_CR_CKSBKPEN BIT(21)
/* Bit definition for SPDIFRX_IMR register */
#define SPDIFRX_IMR_RXNEI BIT(0)
#define SPDIFRX_IMR_CSRNEIE BIT(1)
#define SPDIFRX_IMR_PERRIE BIT(2)
#define SPDIFRX_IMR_OVRIE BIT(3)
#define SPDIFRX_IMR_SBLKIE BIT(4)
#define SPDIFRX_IMR_SYNCDIE BIT(5)
#define SPDIFRX_IMR_IFEIE BIT(6)
#define SPDIFRX_XIMR_MASK GENMASK(6, 0)
/* Bit definition for SPDIFRX_SR register */
#define SPDIFRX_SR_RXNE BIT(0)
#define SPDIFRX_SR_CSRNE BIT(1)
#define SPDIFRX_SR_PERR BIT(2)
#define SPDIFRX_SR_OVR BIT(3)
#define SPDIFRX_SR_SBD BIT(4)
#define SPDIFRX_SR_SYNCD BIT(5)
#define SPDIFRX_SR_FERR BIT(6)
#define SPDIFRX_SR_SERR BIT(7)
#define SPDIFRX_SR_TERR BIT(8)
#define SPDIFRX_SR_WIDTH5_SHIFT 16
#define SPDIFRX_SR_WIDTH5_MASK GENMASK(30, PDIFRX_SR_WIDTH5_SHIFT)
#define SPDIFRX_SR_WIDTH5SET(x) ((x) << SPDIFRX_SR_WIDTH5_SHIFT)
/* Bit definition for SPDIFRX_IFCR register */
#define SPDIFRX_IFCR_PERRCF BIT(2)
#define SPDIFRX_IFCR_OVRCF BIT(3)
#define SPDIFRX_IFCR_SBDCF BIT(4)
#define SPDIFRX_IFCR_SYNCDCF BIT(5)
#define SPDIFRX_XIFCR_MASK GENMASK(5, 2)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b00) */
#define SPDIFRX_DR0_DR_SHIFT 0
#define SPDIFRX_DR0_DR_MASK GENMASK(23, SPDIFRX_DR0_DR_SHIFT)
#define SPDIFRX_DR0_DRSET(x) ((x) << SPDIFRX_DR0_DR_SHIFT)
#define SPDIFRX_DR0_PE BIT(24)
#define SPDIFRX_DR0_V BIT(25)
#define SPDIFRX_DR0_U BIT(26)
#define SPDIFRX_DR0_C BIT(27)
#define SPDIFRX_DR0_PT_SHIFT 28
#define SPDIFRX_DR0_PT_MASK GENMASK(29, SPDIFRX_DR0_PT_SHIFT)
#define SPDIFRX_DR0_PTSET(x) ((x) << SPDIFRX_DR0_PT_SHIFT)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b01) */
#define SPDIFRX_DR1_PE BIT(0)
#define SPDIFRX_DR1_V BIT(1)
#define SPDIFRX_DR1_U BIT(2)
#define SPDIFRX_DR1_C BIT(3)
#define SPDIFRX_DR1_PT_SHIFT 4
#define SPDIFRX_DR1_PT_MASK GENMASK(5, SPDIFRX_DR1_PT_SHIFT)
#define SPDIFRX_DR1_PTSET(x) ((x) << SPDIFRX_DR1_PT_SHIFT)
#define SPDIFRX_DR1_DR_SHIFT 8
#define SPDIFRX_DR1_DR_MASK GENMASK(31, SPDIFRX_DR1_DR_SHIFT)
#define SPDIFRX_DR1_DRSET(x) ((x) << SPDIFRX_DR1_DR_SHIFT)
/* Bit definition for SPDIFRX_DR register (DRFMT = 0b10) */
#define SPDIFRX_DR1_DRNL1_SHIFT 0
#define SPDIFRX_DR1_DRNL1_MASK GENMASK(15, SPDIFRX_DR1_DRNL1_SHIFT)
#define SPDIFRX_DR1_DRNL1SET(x) ((x) << SPDIFRX_DR1_DRNL1_SHIFT)
#define SPDIFRX_DR1_DRNL2_SHIFT 16
#define SPDIFRX_DR1_DRNL2_MASK GENMASK(31, SPDIFRX_DR1_DRNL2_SHIFT)
#define SPDIFRX_DR1_DRNL2SET(x) ((x) << SPDIFRX_DR1_DRNL2_SHIFT)
/* Bit definition for SPDIFRX_CSR register */
#define SPDIFRX_CSR_USR_SHIFT 0
#define SPDIFRX_CSR_USR_MASK GENMASK(15, SPDIFRX_CSR_USR_SHIFT)
#define SPDIFRX_CSR_USRGET(x) (((x) & SPDIFRX_CSR_USR_MASK)\
>> SPDIFRX_CSR_USR_SHIFT)
#define SPDIFRX_CSR_CS_SHIFT 16
#define SPDIFRX_CSR_CS_MASK GENMASK(23, SPDIFRX_CSR_CS_SHIFT)
#define SPDIFRX_CSR_CSGET(x) (((x) & SPDIFRX_CSR_CS_MASK)\
>> SPDIFRX_CSR_CS_SHIFT)
#define SPDIFRX_CSR_SOB BIT(24)
/* Bit definition for SPDIFRX_DIR register */
#define SPDIFRX_DIR_THI_SHIFT 0
#define SPDIFRX_DIR_THI_MASK GENMASK(12, SPDIFRX_DIR_THI_SHIFT)
#define SPDIFRX_DIR_THI_SET(x) ((x) << SPDIFRX_DIR_THI_SHIFT)
#define SPDIFRX_DIR_TLO_SHIFT 16
#define SPDIFRX_DIR_TLO_MASK GENMASK(28, SPDIFRX_DIR_TLO_SHIFT)
#define SPDIFRX_DIR_TLO_SET(x) ((x) << SPDIFRX_DIR_TLO_SHIFT)
#define SPDIFRX_SPDIFEN_DISABLE 0x0
#define SPDIFRX_SPDIFEN_SYNC 0x1
#define SPDIFRX_SPDIFEN_ENABLE 0x3
#define SPDIFRX_IN1 0x1
#define SPDIFRX_IN2 0x2
#define SPDIFRX_IN3 0x3
#define SPDIFRX_IN4 0x4
#define SPDIFRX_IN5 0x5
#define SPDIFRX_IN6 0x6
#define SPDIFRX_IN7 0x7
#define SPDIFRX_IN8 0x8
#define SPDIFRX_NBTR_NONE 0x0
#define SPDIFRX_NBTR_3 0x1
#define SPDIFRX_NBTR_15 0x2
#define SPDIFRX_NBTR_63 0x3
#define SPDIFRX_DRFMT_RIGHT 0x0
#define SPDIFRX_DRFMT_LEFT 0x1
#define SPDIFRX_DRFMT_PACKED 0x2
/* 192 CS bits in S/PDIF frame. i.e 24 CS bytes */
#define SPDIFRX_CS_BYTES_NB 24
#define SPDIFRX_UB_BYTES_NB 48
/*
* CSR register is retrieved as a 32 bits word
* It contains 1 channel status byte and 2 user data bytes
* 2 S/PDIF frames are acquired to get all CS/UB bits
*/
#define SPDIFRX_CSR_BUF_LENGTH (SPDIFRX_CS_BYTES_NB * 4 * 2)
/**
* struct stm32_spdifrx_data - private data of SPDIFRX
* @pdev: device data pointer
* @base: mmio register base virtual address
* @regmap: SPDIFRX register map pointer
* @regmap_conf: SPDIFRX register map configuration pointer
* @cs_completion: channel status retrieving completion
* @kclk: kernel clock feeding the SPDIFRX clock generator
* @dma_params: dma configuration data for rx channel
* @substream: PCM substream data pointer
* @dmab: dma buffer info pointer
* @ctrl_chan: dma channel for S/PDIF control bits
* @desc:dma async transaction descriptor
* @slave_config: dma slave channel runtime config pointer
* @phys_addr: SPDIFRX registers physical base address
* @lock: synchronization enabling lock
* @cs: channel status buffer
* @ub: user data buffer
* @irq: SPDIFRX interrupt line
* @refcount: keep count of opened DMA channels
*/
struct stm32_spdifrx_data {
struct platform_device *pdev;
void __iomem *base;
struct regmap *regmap;
const struct regmap_config *regmap_conf;
struct completion cs_completion;
struct clk *kclk;
struct snd_dmaengine_dai_dma_data dma_params;
struct snd_pcm_substream *substream;
struct snd_dma_buffer *dmab;
struct dma_chan *ctrl_chan;
struct dma_async_tx_descriptor *desc;
struct dma_slave_config slave_config;
dma_addr_t phys_addr;
spinlock_t lock; /* Sync enabling lock */
unsigned char cs[SPDIFRX_CS_BYTES_NB];
unsigned char ub[SPDIFRX_UB_BYTES_NB];
int irq;
int refcount;
};
static void stm32_spdifrx_dma_complete(void *data)
{
struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)data;
struct platform_device *pdev = spdifrx->pdev;
u32 *p_start = (u32 *)spdifrx->dmab->area;
u32 *p_end = p_start + (2 * SPDIFRX_CS_BYTES_NB) - 1;
u32 *ptr = p_start;
u16 *ub_ptr = (short *)spdifrx->ub;
int i = 0;
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_CBDMAEN,
(unsigned int)~SPDIFRX_CR_CBDMAEN);
if (!spdifrx->dmab->area)
return;
while (ptr <= p_end) {
if (*ptr & SPDIFRX_CSR_SOB)
break;
ptr++;
}
if (ptr > p_end) {
dev_err(&pdev->dev, "Start of S/PDIF block not found\n");
return;
}
while (i < SPDIFRX_CS_BYTES_NB) {
spdifrx->cs[i] = (unsigned char)SPDIFRX_CSR_CSGET(*ptr);
*ub_ptr++ = SPDIFRX_CSR_USRGET(*ptr++);
if (ptr > p_end) {
dev_err(&pdev->dev, "Failed to get channel status\n");
return;
}
i++;
}
complete(&spdifrx->cs_completion);
}
static int stm32_spdifrx_dma_ctrl_start(struct stm32_spdifrx_data *spdifrx)
{
dma_cookie_t cookie;
int err;
spdifrx->desc = dmaengine_prep_slave_single(spdifrx->ctrl_chan,
spdifrx->dmab->addr,
SPDIFRX_CSR_BUF_LENGTH,
DMA_DEV_TO_MEM,
DMA_CTRL_ACK);
if (!spdifrx->desc)
return -EINVAL;
spdifrx->desc->callback = stm32_spdifrx_dma_complete;
spdifrx->desc->callback_param = spdifrx;
cookie = dmaengine_submit(spdifrx->desc);
err = dma_submit_error(cookie);
if (err)
return -EINVAL;
dma_async_issue_pending(spdifrx->ctrl_chan);
return 0;
}
static void stm32_spdifrx_dma_ctrl_stop(struct stm32_spdifrx_data *spdifrx)
{
dmaengine_terminate_async(spdifrx->ctrl_chan);
}
static int stm32_spdifrx_start_sync(struct stm32_spdifrx_data *spdifrx)
{
int cr, cr_mask, imr, ret;
/* Enable IRQs */
imr = SPDIFRX_IMR_IFEIE | SPDIFRX_IMR_SYNCDIE | SPDIFRX_IMR_PERRIE;
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR, imr, imr);
if (ret)
return ret;
spin_lock(&spdifrx->lock);
spdifrx->refcount++;
regmap_read(spdifrx->regmap, STM32_SPDIFRX_CR, &cr);
if (!(cr & SPDIFRX_CR_SPDIFEN_MASK)) {
/*
* Start sync if SPDIFRX is still in idle state.
* SPDIFRX reception enabled when sync done
*/
dev_dbg(&spdifrx->pdev->dev, "start synchronization\n");
/*
* SPDIFRX configuration:
* Wait for activity before starting sync process. This avoid
* to issue sync errors when spdif signal is missing on input.
* Preamble, CS, user, validity and parity error bits not copied
* to DR register.
*/
cr = SPDIFRX_CR_WFA | SPDIFRX_CR_PMSK | SPDIFRX_CR_VMSK |
SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | SPDIFRX_CR_RXSTEO;
cr_mask = cr;
cr |= SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_SYNC);
cr_mask |= SPDIFRX_CR_SPDIFEN_MASK;
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
cr_mask, cr);
if (ret < 0)
dev_err(&spdifrx->pdev->dev,
"Failed to start synchronization\n");
}
spin_unlock(&spdifrx->lock);
return ret;
}
static void stm32_spdifrx_stop(struct stm32_spdifrx_data *spdifrx)
{
int cr, cr_mask, reg;
spin_lock(&spdifrx->lock);
if (--spdifrx->refcount) {
spin_unlock(&spdifrx->lock);
return;
}
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE);
cr_mask = SPDIFRX_CR_SPDIFEN_MASK | SPDIFRX_CR_RXDMAEN;
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, cr_mask, cr);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR,
SPDIFRX_XIMR_MASK, 0);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR,
SPDIFRX_XIFCR_MASK, SPDIFRX_XIFCR_MASK);
/* dummy read to clear CSRNE and RXNE in status register */
regmap_read(spdifrx->regmap, STM32_SPDIFRX_DR, &reg);
regmap_read(spdifrx->regmap, STM32_SPDIFRX_CSR, &reg);
spin_unlock(&spdifrx->lock);
}
static int stm32_spdifrx_dma_ctrl_register(struct device *dev,
struct stm32_spdifrx_data *spdifrx)
{
int ret;
spdifrx->dmab = devm_kzalloc(dev, sizeof(struct snd_dma_buffer),
GFP_KERNEL);
if (!spdifrx->dmab)
return -ENOMEM;
spdifrx->dmab->dev.type = SNDRV_DMA_TYPE_DEV_IRAM;
spdifrx->dmab->dev.dev = dev;
ret = snd_dma_alloc_pages(spdifrx->dmab->dev.type, dev,
SPDIFRX_CSR_BUF_LENGTH, spdifrx->dmab);
if (ret < 0) {
dev_err(dev, "snd_dma_alloc_pages returned error %d\n", ret);
return ret;
}
spdifrx->ctrl_chan = dma_request_chan(dev, "rx-ctrl");
if (!spdifrx->ctrl_chan) {
dev_err(dev, "dma_request_slave_channel failed\n");
return -EINVAL;
}
spdifrx->slave_config.direction = DMA_DEV_TO_MEM;
spdifrx->slave_config.src_addr = (dma_addr_t)(spdifrx->phys_addr +
STM32_SPDIFRX_CSR);
spdifrx->slave_config.dst_addr = spdifrx->dmab->addr;
spdifrx->slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
spdifrx->slave_config.src_maxburst = 1;
ret = dmaengine_slave_config(spdifrx->ctrl_chan,
&spdifrx->slave_config);
if (ret < 0) {
dev_err(dev, "dmaengine_slave_config returned error %d\n", ret);
dma_release_channel(spdifrx->ctrl_chan);
spdifrx->ctrl_chan = NULL;
}
return ret;
};
static const char * const spdifrx_enum_input[] = {
"in0", "in1", "in2", "in3"
};
/* By default CS bits are retrieved from channel A */
static const char * const spdifrx_enum_cs_channel[] = {
"A", "B"
};
static SOC_ENUM_SINGLE_DECL(ctrl_enum_input,
STM32_SPDIFRX_CR, SPDIFRX_CR_INSEL_SHIFT,
spdifrx_enum_input);
static SOC_ENUM_SINGLE_DECL(ctrl_enum_cs_channel,
STM32_SPDIFRX_CR, SPDIFRX_CR_CHSEL_SHIFT,
spdifrx_enum_cs_channel);
static int stm32_spdifrx_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int stm32_spdifrx_ub_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int stm32_spdifrx_get_ctrl_data(struct stm32_spdifrx_data *spdifrx)
{
int ret = 0;
memset(spdifrx->cs, 0, SPDIFRX_CS_BYTES_NB);
memset(spdifrx->ub, 0, SPDIFRX_UB_BYTES_NB);
ret = stm32_spdifrx_dma_ctrl_start(spdifrx);
if (ret < 0)
return ret;
ret = clk_prepare_enable(spdifrx->kclk);
if (ret) {
dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret);
return ret;
}
ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_CBDMAEN, SPDIFRX_CR_CBDMAEN);
if (ret < 0)
goto end;
ret = stm32_spdifrx_start_sync(spdifrx);
if (ret < 0)
goto end;
if (wait_for_completion_interruptible_timeout(&spdifrx->cs_completion,
msecs_to_jiffies(100))
<= 0) {
dev_err(&spdifrx->pdev->dev, "Failed to get control data\n");
ret = -EAGAIN;
}
stm32_spdifrx_stop(spdifrx);
stm32_spdifrx_dma_ctrl_stop(spdifrx);
end:
clk_disable_unprepare(spdifrx->kclk);
return ret;
}
static int stm32_spdifrx_capture_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
stm32_spdifrx_get_ctrl_data(spdifrx);
ucontrol->value.iec958.status[0] = spdifrx->cs[0];
ucontrol->value.iec958.status[1] = spdifrx->cs[1];
ucontrol->value.iec958.status[2] = spdifrx->cs[2];
ucontrol->value.iec958.status[3] = spdifrx->cs[3];
ucontrol->value.iec958.status[4] = spdifrx->cs[4];
return 0;
}
static int stm32_spdif_user_bits_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
stm32_spdifrx_get_ctrl_data(spdifrx);
ucontrol->value.iec958.status[0] = spdifrx->ub[0];
ucontrol->value.iec958.status[1] = spdifrx->ub[1];
ucontrol->value.iec958.status[2] = spdifrx->ub[2];
ucontrol->value.iec958.status[3] = spdifrx->ub[3];
ucontrol->value.iec958.status[4] = spdifrx->ub[4];
return 0;
}
static struct snd_kcontrol_new stm32_spdifrx_iec_ctrls[] = {
/* Channel status control */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = stm32_spdifrx_info,
.get = stm32_spdifrx_capture_get,
},
/* User bits control */
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "IEC958 User Bit Capture Default",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_VOLATILE,
.info = stm32_spdifrx_ub_info,
.get = stm32_spdif_user_bits_get,
},
};
static struct snd_kcontrol_new stm32_spdifrx_ctrls[] = {
SOC_ENUM("SPDIFRX input", ctrl_enum_input),
SOC_ENUM("SPDIFRX CS channel", ctrl_enum_cs_channel),
};
static int stm32_spdifrx_dai_register_ctrls(struct snd_soc_dai *cpu_dai)
{
int ret;
ret = snd_soc_add_dai_controls(cpu_dai, stm32_spdifrx_iec_ctrls,
ARRAY_SIZE(stm32_spdifrx_iec_ctrls));
if (ret < 0)
return ret;
return snd_soc_add_component_controls(cpu_dai->component,
stm32_spdifrx_ctrls,
ARRAY_SIZE(stm32_spdifrx_ctrls));
}
static int stm32_spdifrx_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = dev_get_drvdata(cpu_dai->dev);
spdifrx->dma_params.addr = (dma_addr_t)(spdifrx->phys_addr +
STM32_SPDIFRX_DR);
spdifrx->dma_params.maxburst = 1;
snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params);
return stm32_spdifrx_dai_register_ctrls(cpu_dai);
}
static bool stm32_spdifrx_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_SPDIFRX_CR:
case STM32_SPDIFRX_IMR:
case STM32_SPDIFRX_SR:
case STM32_SPDIFRX_IFCR:
case STM32_SPDIFRX_DR:
case STM32_SPDIFRX_CSR:
case STM32_SPDIFRX_DIR:
return true;
default:
return false;
}
}
static bool stm32_spdifrx_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == STM32_SPDIFRX_DR)
return true;
return false;
}
static bool stm32_spdifrx_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case STM32_SPDIFRX_CR:
case STM32_SPDIFRX_IMR:
case STM32_SPDIFRX_IFCR:
return true;
default:
return false;
}
}
static const struct regmap_config stm32_h7_spdifrx_regmap_conf = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = STM32_SPDIFRX_DIR,
.readable_reg = stm32_spdifrx_readable_reg,
.volatile_reg = stm32_spdifrx_volatile_reg,
.writeable_reg = stm32_spdifrx_writeable_reg,
.fast_io = true,
};
static irqreturn_t stm32_spdifrx_isr(int irq, void *devid)
{
struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)devid;
struct snd_pcm_substream *substream = spdifrx->substream;
struct platform_device *pdev = spdifrx->pdev;
unsigned int cr, mask, sr, imr;
unsigned int flags;
int err = 0, err_xrun = 0;
regmap_read(spdifrx->regmap, STM32_SPDIFRX_SR, &sr);
regmap_read(spdifrx->regmap, STM32_SPDIFRX_IMR, &imr);
mask = imr & SPDIFRX_XIMR_MASK;
/* SERR, TERR, FERR IRQs are generated if IFEIE is set */
if (mask & SPDIFRX_IMR_IFEIE)
mask |= (SPDIFRX_IMR_IFEIE << 1) | (SPDIFRX_IMR_IFEIE << 2);
flags = sr & mask;
if (!flags) {
dev_err(&pdev->dev, "Unexpected IRQ. rflags=%#x, imr=%#x\n",
sr, imr);
return IRQ_NONE;
}
/* Clear IRQs */
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR,
SPDIFRX_XIFCR_MASK, flags);
if (flags & SPDIFRX_SR_PERR) {
dev_dbg(&pdev->dev, "Parity error\n");
err_xrun = 1;
}
if (flags & SPDIFRX_SR_OVR) {
dev_dbg(&pdev->dev, "Overrun error\n");
err_xrun = 1;
}
if (flags & SPDIFRX_SR_SBD)
dev_dbg(&pdev->dev, "Synchronization block detected\n");
if (flags & SPDIFRX_SR_SYNCD) {
dev_dbg(&pdev->dev, "Synchronization done\n");
/* Enable spdifrx */
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_ENABLE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_SPDIFEN_MASK, cr);
}
if (flags & SPDIFRX_SR_FERR) {
dev_dbg(&pdev->dev, "Frame error\n");
err = 1;
}
if (flags & SPDIFRX_SR_SERR) {
dev_dbg(&pdev->dev, "Synchronization error\n");
err = 1;
}
if (flags & SPDIFRX_SR_TERR) {
dev_dbg(&pdev->dev, "Timeout error\n");
err = 1;
}
if (err) {
/* SPDIFRX in STATE_STOP. Disable SPDIFRX to clear errors */
cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_SPDIFEN_MASK, cr);
if (substream)
snd_pcm_stop(substream, SNDRV_PCM_STATE_DISCONNECTED);
return IRQ_HANDLED;
}
if (err_xrun && substream)
snd_pcm_stop_xrun(substream);
return IRQ_HANDLED;
}
static int stm32_spdifrx_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int ret;
spdifrx->substream = substream;
ret = clk_prepare_enable(spdifrx->kclk);
if (ret)
dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret);
return ret;
}
static int stm32_spdifrx_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int data_size = params_width(params);
int fmt;
switch (data_size) {
case 16:
fmt = SPDIFRX_DRFMT_PACKED;
spdifrx->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case 32:
fmt = SPDIFRX_DRFMT_LEFT;
spdifrx->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
default:
dev_err(&spdifrx->pdev->dev, "Unexpected data format\n");
return -EINVAL;
}
snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params);
return regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_DRFMT_MASK,
SPDIFRX_CR_DRFMTSET(fmt));
}
static int stm32_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR,
SPDIFRX_IMR_OVRIE, SPDIFRX_IMR_OVRIE);
regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR,
SPDIFRX_CR_RXDMAEN, SPDIFRX_CR_RXDMAEN);
ret = stm32_spdifrx_start_sync(spdifrx);
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_STOP:
stm32_spdifrx_stop(spdifrx);
break;
default:
return -EINVAL;
}
return ret;
}
static void stm32_spdifrx_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai);
spdifrx->substream = NULL;
clk_disable_unprepare(spdifrx->kclk);
}
static const struct snd_soc_dai_ops stm32_spdifrx_pcm_dai_ops = {
.startup = stm32_spdifrx_startup,
.hw_params = stm32_spdifrx_hw_params,
.trigger = stm32_spdifrx_trigger,
.shutdown = stm32_spdifrx_shutdown,
};
static struct snd_soc_dai_driver stm32_spdifrx_dai[] = {
{
.name = "spdifrx-capture-cpu-dai",
.probe = stm32_spdifrx_dai_probe,
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = SNDRV_PCM_FMTBIT_S32_LE |
SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &stm32_spdifrx_pcm_dai_ops,
}
};
static const struct snd_pcm_hardware stm32_spdifrx_pcm_hw = {
.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
.buffer_bytes_max = 8 * PAGE_SIZE,
.period_bytes_max = 2048, /* MDMA constraint */
.periods_min = 2,
.periods_max = 8,
};
static const struct snd_soc_component_driver stm32_spdifrx_component = {
.name = "stm32-spdifrx",
};
static const struct snd_dmaengine_pcm_config stm32_spdifrx_pcm_config = {
.pcm_hardware = &stm32_spdifrx_pcm_hw,
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static const struct of_device_id stm32_spdifrx_ids[] = {
{
.compatible = "st,stm32h7-spdifrx",
.data = &stm32_h7_spdifrx_regmap_conf
},
{}
};
static int stm_spdifrx_parse_of(struct platform_device *pdev,
struct stm32_spdifrx_data *spdifrx)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id;
struct resource *res;
if (!np)
return -ENODEV;
of_id = of_match_device(stm32_spdifrx_ids, &pdev->dev);
if (of_id)
spdifrx->regmap_conf =
(const struct regmap_config *)of_id->data;
else
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spdifrx->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(spdifrx->base))
return PTR_ERR(spdifrx->base);
spdifrx->phys_addr = res->start;
spdifrx->kclk = devm_clk_get(&pdev->dev, "kclk");
if (IS_ERR(spdifrx->kclk)) {
dev_err(&pdev->dev, "Could not get kclk\n");
return PTR_ERR(spdifrx->kclk);
}
spdifrx->irq = platform_get_irq(pdev, 0);
if (spdifrx->irq < 0) {
dev_err(&pdev->dev, "No irq for node %s\n", pdev->name);
return spdifrx->irq;
}
return 0;
}
static int stm32_spdifrx_probe(struct platform_device *pdev)
{
struct stm32_spdifrx_data *spdifrx;
struct reset_control *rst;
const struct snd_dmaengine_pcm_config *pcm_config = NULL;
int ret;
spdifrx = devm_kzalloc(&pdev->dev, sizeof(*spdifrx), GFP_KERNEL);
if (!spdifrx)
return -ENOMEM;
spdifrx->pdev = pdev;
init_completion(&spdifrx->cs_completion);
spin_lock_init(&spdifrx->lock);
platform_set_drvdata(pdev, spdifrx);
ret = stm_spdifrx_parse_of(pdev, spdifrx);
if (ret)
return ret;
spdifrx->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "kclk",
spdifrx->base,
spdifrx->regmap_conf);
if (IS_ERR(spdifrx->regmap)) {
dev_err(&pdev->dev, "Regmap init failed\n");
return PTR_ERR(spdifrx->regmap);
}
ret = devm_request_irq(&pdev->dev, spdifrx->irq, stm32_spdifrx_isr, 0,
dev_name(&pdev->dev), spdifrx);
if (ret) {
dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
return ret;
}
rst = devm_reset_control_get(&pdev->dev, NULL);
if (!IS_ERR(rst)) {
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
}
ret = devm_snd_soc_register_component(&pdev->dev,
&stm32_spdifrx_component,
stm32_spdifrx_dai,
ARRAY_SIZE(stm32_spdifrx_dai));
if (ret)
return ret;
ret = stm32_spdifrx_dma_ctrl_register(&pdev->dev, spdifrx);
if (ret)
goto error;
pcm_config = &stm32_spdifrx_pcm_config;
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, pcm_config, 0);
if (ret) {
dev_err(&pdev->dev, "PCM DMA register returned %d\n", ret);
goto error;
}
return 0;
error:
if (spdifrx->ctrl_chan)
dma_release_channel(spdifrx->ctrl_chan);
if (spdifrx->dmab)
snd_dma_free_pages(spdifrx->dmab);
return ret;
}
static int stm32_spdifrx_remove(struct platform_device *pdev)
{
struct stm32_spdifrx_data *spdifrx = platform_get_drvdata(pdev);
if (spdifrx->ctrl_chan)
dma_release_channel(spdifrx->ctrl_chan);
if (spdifrx->dmab)
snd_dma_free_pages(spdifrx->dmab);
return 0;
}
MODULE_DEVICE_TABLE(of, stm32_spdifrx_ids);
static struct platform_driver stm32_spdifrx_driver = {
.driver = {
.name = "st,stm32-spdifrx",
.of_match_table = stm32_spdifrx_ids,
},
.probe = stm32_spdifrx_probe,
.remove = stm32_spdifrx_remove,
};
module_platform_driver(stm32_spdifrx_driver);
MODULE_DESCRIPTION("STM32 Soc spdifrx Interface");
MODULE_AUTHOR("Olivier Moysan, <olivier.moysan@st.com>");
MODULE_ALIAS("platform:stm32-spdifrx");
MODULE_LICENSE("GPL v2");
......@@ -1339,6 +1339,44 @@ static struct snd_soc_card *sun8i_h3_codec_create_card(struct device *dev)
return card;
};
static struct snd_soc_card *sun8i_v3s_codec_create_card(struct device *dev)
{
struct snd_soc_card *card;
int ret;
card = devm_kzalloc(dev, sizeof(*card), GFP_KERNEL);
if (!card)
return ERR_PTR(-ENOMEM);
aux_dev.codec_of_node = of_parse_phandle(dev->of_node,
"allwinner,codec-analog-controls",
0);
if (!aux_dev.codec_of_node) {
dev_err(dev, "Can't find analog controls for codec.\n");
return ERR_PTR(-EINVAL);
};
card->dai_link = sun4i_codec_create_link(dev, &card->num_links);
if (!card->dai_link)
return ERR_PTR(-ENOMEM);
card->dev = dev;
card->name = "V3s Audio Codec";
card->dapm_widgets = sun6i_codec_card_dapm_widgets;
card->num_dapm_widgets = ARRAY_SIZE(sun6i_codec_card_dapm_widgets);
card->dapm_routes = sun8i_codec_card_routes;
card->num_dapm_routes = ARRAY_SIZE(sun8i_codec_card_routes);
card->aux_dev = &aux_dev;
card->num_aux_devs = 1;
card->fully_routed = true;
ret = snd_soc_of_parse_audio_routing(card, "allwinner,audio-routing");
if (ret)
dev_warn(dev, "failed to parse audio-routing: %d\n", ret);
return card;
};
static const struct regmap_config sun4i_codec_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
......@@ -1374,6 +1412,13 @@ static const struct regmap_config sun8i_h3_codec_regmap_config = {
.max_register = SUN8I_H3_CODEC_ADC_DBG,
};
static const struct regmap_config sun8i_v3s_codec_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SUN8I_H3_CODEC_ADC_DBG,
};
struct sun4i_codec_quirks {
const struct regmap_config *regmap_config;
const struct snd_soc_codec_driver *codec;
......@@ -1437,6 +1482,20 @@ static const struct sun4i_codec_quirks sun8i_h3_codec_quirks = {
.has_reset = true,
};
static const struct sun4i_codec_quirks sun8i_v3s_codec_quirks = {
.regmap_config = &sun8i_v3s_codec_regmap_config,
/*
* TODO The codec structure should be split out, like
* H3, when adding digital audio processing support.
*/
.codec = &sun8i_a23_codec_codec,
.create_card = sun8i_v3s_codec_create_card,
.reg_adc_fifoc = REG_FIELD(SUN6I_CODEC_ADC_FIFOC, 0, 31),
.reg_dac_txdata = SUN8I_H3_CODEC_DAC_TXDATA,
.reg_adc_rxdata = SUN6I_CODEC_ADC_RXDATA,
.has_reset = true,
};
static const struct of_device_id sun4i_codec_of_match[] = {
{
.compatible = "allwinner,sun4i-a10-codec",
......@@ -1458,6 +1517,10 @@ static const struct of_device_id sun4i_codec_of_match[] = {
.compatible = "allwinner,sun8i-h3-codec",
.data = &sun8i_h3_codec_quirks,
},
{
.compatible = "allwinner,sun8i-v3s-codec",
.data = &sun8i_v3s_codec_quirks,
},
{}
};
MODULE_DEVICE_TABLE(of, sun4i_codec_of_match);
......
......@@ -219,6 +219,22 @@ static const struct snd_kcontrol_new sun8i_codec_mixer_controls[] = {
SUN8I_ADDA_LOMIXSC_MIC2, 1, 0),
};
/* mixer controls */
static const struct snd_kcontrol_new sun8i_v3s_codec_mixer_controls[] = {
SOC_DAPM_DOUBLE_R("DAC Playback Switch",
SUN8I_ADDA_LOMIXSC,
SUN8I_ADDA_ROMIXSC,
SUN8I_ADDA_LOMIXSC_DACL, 1, 0),
SOC_DAPM_DOUBLE_R("DAC Reversed Playback Switch",
SUN8I_ADDA_LOMIXSC,
SUN8I_ADDA_ROMIXSC,
SUN8I_ADDA_LOMIXSC_DACR, 1, 0),
SOC_DAPM_DOUBLE_R("Mic1 Playback Switch",
SUN8I_ADDA_LOMIXSC,
SUN8I_ADDA_ROMIXSC,
SUN8I_ADDA_LOMIXSC_MIC1, 1, 0),
};
/* ADC mixer controls */
static const struct snd_kcontrol_new sun8i_codec_adc_mixer_controls[] = {
SOC_DAPM_DOUBLE_R("Mixer Capture Switch",
......@@ -243,6 +259,22 @@ static const struct snd_kcontrol_new sun8i_codec_adc_mixer_controls[] = {
SUN8I_ADDA_LADCMIXSC_MIC2, 1, 0),
};
/* ADC mixer controls */
static const struct snd_kcontrol_new sun8i_v3s_codec_adc_mixer_controls[] = {
SOC_DAPM_DOUBLE_R("Mixer Capture Switch",
SUN8I_ADDA_LADCMIXSC,
SUN8I_ADDA_RADCMIXSC,
SUN8I_ADDA_LADCMIXSC_OMIXRL, 1, 0),
SOC_DAPM_DOUBLE_R("Mixer Reversed Capture Switch",
SUN8I_ADDA_LADCMIXSC,
SUN8I_ADDA_RADCMIXSC,
SUN8I_ADDA_LADCMIXSC_OMIXRR, 1, 0),
SOC_DAPM_DOUBLE_R("Mic1 Capture Switch",
SUN8I_ADDA_LADCMIXSC,
SUN8I_ADDA_RADCMIXSC,
SUN8I_ADDA_LADCMIXSC_MIC1, 1, 0),
};
/* volume / mute controls */
static const DECLARE_TLV_DB_SCALE(sun8i_codec_out_mixer_pregain_scale,
-450, 150, 0);
......@@ -289,16 +321,12 @@ static const struct snd_soc_dapm_widget sun8i_codec_common_widgets[] = {
/* Microphone input */
SND_SOC_DAPM_INPUT("MIC1"),
/* Microphone Bias */
SND_SOC_DAPM_SUPPLY("MBIAS", SUN8I_ADDA_MIC1G_MICBIAS_CTRL,
SUN8I_ADDA_MIC1G_MICBIAS_CTRL_MMICBIASEN,
0, NULL, 0),
/* Mic input path */
SND_SOC_DAPM_PGA("Mic1 Amplifier", SUN8I_ADDA_MIC1G_MICBIAS_CTRL,
SUN8I_ADDA_MIC1G_MICBIAS_CTRL_MIC1AMPEN, 0, NULL, 0),
};
/* Mixers */
static const struct snd_soc_dapm_widget sun8i_codec_mixer_widgets[] = {
SND_SOC_DAPM_MIXER("Left Mixer", SUN8I_ADDA_DAC_PA_SRC,
SUN8I_ADDA_DAC_PA_SRC_LMIXEN, 0,
sun8i_codec_mixer_controls,
......@@ -317,10 +345,31 @@ static const struct snd_soc_dapm_widget sun8i_codec_common_widgets[] = {
ARRAY_SIZE(sun8i_codec_adc_mixer_controls)),
};
static const struct snd_soc_dapm_widget sun8i_v3s_codec_mixer_widgets[] = {
SND_SOC_DAPM_MIXER("Left Mixer", SUN8I_ADDA_DAC_PA_SRC,
SUN8I_ADDA_DAC_PA_SRC_LMIXEN, 0,
sun8i_v3s_codec_mixer_controls,
ARRAY_SIZE(sun8i_v3s_codec_mixer_controls)),
SND_SOC_DAPM_MIXER("Right Mixer", SUN8I_ADDA_DAC_PA_SRC,
SUN8I_ADDA_DAC_PA_SRC_RMIXEN, 0,
sun8i_v3s_codec_mixer_controls,
ARRAY_SIZE(sun8i_v3s_codec_mixer_controls)),
SND_SOC_DAPM_MIXER("Left ADC Mixer", SUN8I_ADDA_ADC_AP_EN,
SUN8I_ADDA_ADC_AP_EN_ADCLEN, 0,
sun8i_v3s_codec_adc_mixer_controls,
ARRAY_SIZE(sun8i_v3s_codec_adc_mixer_controls)),
SND_SOC_DAPM_MIXER("Right ADC Mixer", SUN8I_ADDA_ADC_AP_EN,
SUN8I_ADDA_ADC_AP_EN_ADCREN, 0,
sun8i_v3s_codec_adc_mixer_controls,
ARRAY_SIZE(sun8i_v3s_codec_adc_mixer_controls)),
};
static const struct snd_soc_dapm_route sun8i_codec_common_routes[] = {
/* Microphone Routes */
{ "Mic1 Amplifier", NULL, "MIC1"},
};
static const struct snd_soc_dapm_route sun8i_codec_mixer_routes[] = {
/* Left Mixer Routes */
{ "Left Mixer", "DAC Playback Switch", "Left DAC" },
{ "Left Mixer", "DAC Reversed Playback Switch", "Right DAC" },
......@@ -453,6 +502,27 @@ static int sun8i_codec_add_headphone(struct snd_soc_component *cmpnt)
return 0;
}
/* mbias specific widget */
static const struct snd_soc_dapm_widget sun8i_codec_mbias_widgets[] = {
SND_SOC_DAPM_SUPPLY("MBIAS", SUN8I_ADDA_MIC1G_MICBIAS_CTRL,
SUN8I_ADDA_MIC1G_MICBIAS_CTRL_MMICBIASEN,
0, NULL, 0),
};
static int sun8i_codec_add_mbias(struct snd_soc_component *cmpnt)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(cmpnt);
struct device *dev = cmpnt->dev;
int ret;
ret = snd_soc_dapm_new_controls(dapm, sun8i_codec_mbias_widgets,
ARRAY_SIZE(sun8i_codec_mbias_widgets));
if (ret)
dev_err(dev, "Failed to add MBIAS DAPM widgets: %d\n", ret);
return ret;
}
/* hmic specific widget */
static const struct snd_soc_dapm_widget sun8i_codec_hmic_widgets[] = {
SND_SOC_DAPM_SUPPLY("HBIAS", SUN8I_ADDA_MIC1G_MICBIAS_CTRL,
......@@ -679,6 +749,7 @@ struct sun8i_codec_analog_quirks {
bool has_hmic;
bool has_linein;
bool has_lineout;
bool has_mbias;
bool has_mic2;
};
......@@ -686,15 +757,64 @@ static const struct sun8i_codec_analog_quirks sun8i_a23_quirks = {
.has_headphone = true,
.has_hmic = true,
.has_linein = true,
.has_mbias = true,
.has_mic2 = true,
};
static const struct sun8i_codec_analog_quirks sun8i_h3_quirks = {
.has_linein = true,
.has_lineout = true,
.has_mbias = true,
.has_mic2 = true,
};
static int sun8i_codec_analog_add_mixer(struct snd_soc_component *cmpnt,
const struct sun8i_codec_analog_quirks *quirks)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(cmpnt);
struct device *dev = cmpnt->dev;
int ret;
if (!quirks->has_mic2 && !quirks->has_linein) {
/*
* Apply the special widget set which has uses a control
* without MIC2 and Line In, for SoCs without these.
* TODO: not all special cases are supported now, this case
* is present because it's the case of V3s.
*/
ret = snd_soc_dapm_new_controls(dapm,
sun8i_v3s_codec_mixer_widgets,
ARRAY_SIZE(sun8i_v3s_codec_mixer_widgets));
if (ret) {
dev_err(dev, "Failed to add V3s Mixer DAPM widgets: %d\n", ret);
return ret;
}
} else {
/* Apply the generic mixer widget set. */
ret = snd_soc_dapm_new_controls(dapm,
sun8i_codec_mixer_widgets,
ARRAY_SIZE(sun8i_codec_mixer_widgets));
if (ret) {
dev_err(dev, "Failed to add Mixer DAPM widgets: %d\n", ret);
return ret;
}
}
ret = snd_soc_dapm_add_routes(dapm, sun8i_codec_mixer_routes,
ARRAY_SIZE(sun8i_codec_mixer_routes));
if (ret) {
dev_err(dev, "Failed to add Mixer DAPM routes: %d\n", ret);
return ret;
}
return 0;
}
static const struct sun8i_codec_analog_quirks sun8i_v3s_quirks = {
.has_headphone = true,
.has_hmic = true,
};
static int sun8i_codec_analog_cmpnt_probe(struct snd_soc_component *cmpnt)
{
struct device *dev = cmpnt->dev;
......@@ -709,6 +829,9 @@ static int sun8i_codec_analog_cmpnt_probe(struct snd_soc_component *cmpnt)
quirks = of_device_get_match_data(dev);
/* Add controls, widgets, and routes for individual features */
ret = sun8i_codec_analog_add_mixer(cmpnt, quirks);
if (ret)
return ret;
if (quirks->has_headphone) {
ret = sun8i_codec_add_headphone(cmpnt);
......@@ -734,6 +857,12 @@ static int sun8i_codec_analog_cmpnt_probe(struct snd_soc_component *cmpnt)
return ret;
}
if (quirks->has_mbias) {
ret = sun8i_codec_add_mbias(cmpnt);
if (ret)
return ret;
}
if (quirks->has_mic2) {
ret = sun8i_codec_add_mic2(cmpnt);
if (ret)
......@@ -762,6 +891,10 @@ static const struct of_device_id sun8i_codec_analog_of_match[] = {
.compatible = "allwinner,sun8i-h3-codec-analog",
.data = &sun8i_h3_quirks,
},
{
.compatible = "allwinner,sun8i-v3s-codec-analog",
.data = &sun8i_v3s_quirks,
},
{}
};
MODULE_DEVICE_TABLE(of, sun8i_codec_analog_of_match);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment