Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
f42083cc
Commit
f42083cc
authored
May 09, 2004
by
Marc Singer
Committed by
Russell King
May 09, 2004
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[ARM PATCH] 1818/1: lh7a40x #2 (3/7) doc
Patch from Marc Singer Documentation for the Sharp-LH machines.
parent
a7c57d4a
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
183 additions
and
0 deletions
+183
-0
Documentation/arm/Sharp-LH/CompactFlash
Documentation/arm/Sharp-LH/CompactFlash
+32
-0
Documentation/arm/Sharp-LH/IOBarrier
Documentation/arm/Sharp-LH/IOBarrier
+32
-0
Documentation/arm/Sharp-LH/KEV7A400
Documentation/arm/Sharp-LH/KEV7A400
+8
-0
Documentation/arm/Sharp-LH/LPD7A400
Documentation/arm/Sharp-LH/LPD7A400
+15
-0
Documentation/arm/Sharp-LH/LPD7A40X
Documentation/arm/Sharp-LH/LPD7A40X
+16
-0
Documentation/arm/Sharp-LH/VectoredInterruptController
Documentation/arm/Sharp-LH/VectoredInterruptController
+80
-0
No files found.
Documentation/arm/Sharp-LH/CompactFlash
0 → 100644
View file @
f42083cc
README on the Compact Flash for Card Engines
============================================
There are three challenges in supporting the CF interface of the Card
Engines. First, every IO operation must be followed with IO to
another memory region. Second, the slot is wired for one-to-one
address mapping *and* it is wired for 16 bit access only. Second, the
interrupt request line from the CF device isn't wired.
The IOBARRIER issue is covered in README.IOBARRIER. This isn't an
onerous problem. Enough said here.
The addressing issue is solved in the
arch/arm/mach-lh7a40x/ide-lpd7a40x.c file with some awkward
work-arounds. We implement a special SELECT_DRIVE routine that is
called before the IDE driver performs its own SELECT_DRIVE. Our code
recognizes that the SELECT register cannot be modified without also
writing a command. It send an IDLE_IMMEDIATE command on selecting a
drive. The function also prevents drive select to the slave drive
since there can be only one. The awkward part is that the IDE driver,
even though we have a select procedure, also attempts to change the
drive by writing directly the SELECT register. This attempt is
explicitly blocked by the OUTB function--not pretty, but effective.
The lack of interrupts is a more serious problem. Even though the CF
card is fast when compared to a normal IDE device, we don't know that
the CF is really flash. A user could use one of the very small hard
drives being shipped with a CF interface. The IDE code includes a
check for interfaces that lack an IRQ. In these cases, submitting a
command to the IDE controller is followed by a call to poll for
completion. If the device isn't immediately ready, it schedules a
timer to poll again later.
Documentation/arm/Sharp-LH/IOBarrier
0 → 100644
View file @
f42083cc
README on the IOBARRIER for CardEngine IO
=========================================
Due to an unfortunate oversight when the Card Engines were designed,
the signals that control access to some peripherals, most notably the
SMC91C9111 ethernet controller, are not properly handled.
The symptom is that back to back IO with the peripheral returns
unreliable data. With the SMC chip, you'll see errors about the bank
register being 'screwed'.
The cause is that the AEN signal to the SMC chip does not transition
for every memory access. It is driven through the CPLD from the CS7
line of the CPU's static memory controller which is optimized to
eliminate unnecessary transitions. Yet, the SMC requires a transition
for every access. The Sharp website has more information on the
effect of this power conservation feature on peripheral interfacing.
The solution is to follow every access to the SMC chip with an access
to another memory region that will force the CPU to release the chip
select line. Note that it is important to guarantee that the access
will force the CPU off-chip. We map a page of SDRAM as if it were an
uncacheable IO device and read from it after every SMC IO operation.
SMC IO
BARRIER IO
You might be tempted to believe that we must access another device
attached to the static memory controller, but the empirical evidence
indicates that this is not so. Mapping 0x00000000 (flash) and
0xc0000000 (SDRAM) appear to have the same effect. Using SDRAM seems
to be faster.
Documentation/arm/Sharp-LH/KEV7A400
0 → 100644
View file @
f42083cc
README on Implementing Linux for Sharp's KEV7a400
=================================================
This product has been discontinued by Sharp. For the time being, the
partially implemented code remains in the kernel. At some point in
the future, either the code will be finished or it will be removed
completely. This depends primarily on how many of the development
boards are in the field.
Documentation/arm/Sharp-LH/LPD7A400
0 → 100644
View file @
f42083cc
README on Implementing Linux for the Logic PD LPD7A400-10
=========================================================
- CPLD memory mapping
The board designers chose to use high address lines for controlling
access to the CPLD registers. It turns out to be a big waste
because we're using an MMU and must map IO space into virtual
memory. The result is that we have to make a mapping for every
register.
- Serial Console
It may be OK not to use the serial console option if the user passes
the console device name to the kernel. This deserves some exploration.
Documentation/arm/Sharp-LH/LPD7A40X
0 → 100644
View file @
f42083cc
README on Implementing Linux for the Logic PD LPD7A40X-10
=========================================================
- CPLD memory mapping
The board designers chose to use high address lines for controlling
access to the CPLD registers. It turns out to be a big waste
because we're using an MMU and must map IO space into virtual
memory. The result is that we have to make a mapping for every
register.
- Serial Console
It may be OK not to use the serial console option if the user passes
the console device name to the kernel. This deserves some exploration.
Documentation/arm/Sharp-LH/VectoredInterruptController
0 → 100644
View file @
f42083cc
README on the Vectored Interrupt Controller of the LH7A404
==========================================================
The 404 revision of the LH7A40X series comes with two vectored
interrupts controllers. While the kernel does use some of the
features of these devices, it is far from the purpose for which they
were designed.
When this README was written, the implementation of the VICs was in
flux. It is possible that some details, especially with priorities,
will change.
The VIC support code is inspired by routines written by Sharp.
Priority Control
----------------
The significant reason for using the VIC's vectoring is to control
interrupt priorities. There are two tables in
arch/arm/mach-lh7a40x/irq-lh7a404.c that look something like this.
static unsigned char irq_pri_vic1[] = { IRQ_GPIO3INTR, };
static unsigned char irq_pri_vic2[] = {
IRQ_T3UI, IRQ_GPIO7INTR,
IRQ_UART1INTR, IRQ_UART2INTR, IRQ_UART3INTR, };
The initialization code reads these tables and inserts a vector
address and enable for each indicated IRQ. Vectored interrupts have
higher priority than non-vectored interrupts. So, on VIC1,
IRQ_GPIO3INTR will be served before any other non-FIQ interrupt. Due
to the way that the vectoring works, IRQ_T3UI is the next highest
priority followed by the other vectored interrupts on VIC2. After
that, the non-vectored interrupts are scanned in VIC1 then in VIC2.
ISR
---
The interrupt service routine macro get_irqnr() in
arch/arm/kernel/entry-armv.S scans the VICs for the next active
interrupt. The vectoring makes this code somewhat larger than it was
before using vectoring (refer to the LH7A400 implementation). In the
case where an interrupt is vectored, the implementation will tend to
be faster than the non-vectored version. However, the worst-case path
is longer.
It is worth noting that at present, there is no need to read
VIC2_VECTADDR because the register appears to be shared between the
controllers. The code is written such that if this changes, it ought
to still work properly.
Vector Addresses
----------------
The proper use of the vectoring hardware would jump to the ISR
specified by the vectoring address. Linux isn't structured to take
advantage of this feature, though it might be possible to change
things to support it.
In this implementation, the vectoring address is used to speed the
search for the active IRQ. The address is coded such that the lowest
6 bits store the IRQ number for vectored interrupts. These numbers
correspond to the bits in the interrupt status registers. IRQ zero is
the lowest interrupt bit in VIC1. IRQ 32 is the lowest interrupt bit
in VIC2. Because zero is a valid IRQ number and because we cannot
detect whether or not there is a valid vectoring address if that
address is zero, the eigth bit (0x100) is set for vectored interrupts.
The address for IRQ 0x18 (VIC2) is 0x118. Only the ninth bit is set
for the default handler on VIC1 and only the tenth bit is set for the
default handler on VIC2.
In other words.
0x000 - no active interrupt
0x1ii - vectored interrupt 0xii
0x2xx - unvectored interrupt on VIC1 (xx is don't care)
0x4xx - unvectored interrupt on VIC2 (xx is don't care)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment