Commit fb75e287 authored by Jeff Garzik's avatar Jeff Garzik

Merge redhat.com:/spare/repo/linux-2.6

into redhat.com:/spare/repo/libata-2.6
parents 91ddedbe 3fcd1680
...@@ -434,10 +434,18 @@ config SCSI_ATA_PIIX ...@@ -434,10 +434,18 @@ config SCSI_ATA_PIIX
If unsure, say N. If unsure, say N.
config SCSI_SATA_PROMISE config SCSI_SATA_PROMISE
tristate "Promise SATA support" tristate "Promise SATA TX2/TX4 support"
depends on SCSI_SATA && PCI
help
This option enables support for Promise Serial ATA TX2/TX4.
If unsure, say N.
config SCSI_SATA_SX4
tristate "Promise SATA SX4 support"
depends on SCSI_SATA && PCI && EXPERIMENTAL depends on SCSI_SATA && PCI && EXPERIMENTAL
help help
This option enables support for Promise Serial ATA. This option enables support for Promise Serial ATA SX4.
If unsure, say N. If unsure, say N.
......
...@@ -124,6 +124,7 @@ obj-$(CONFIG_SCSI_SATA_SIL) += libata.o sata_sil.o ...@@ -124,6 +124,7 @@ obj-$(CONFIG_SCSI_SATA_SIL) += libata.o sata_sil.o
obj-$(CONFIG_SCSI_SATA_VIA) += libata.o sata_via.o obj-$(CONFIG_SCSI_SATA_VIA) += libata.o sata_via.o
obj-$(CONFIG_SCSI_SATA_VITESSE) += libata.o sata_vsc.o obj-$(CONFIG_SCSI_SATA_VITESSE) += libata.o sata_vsc.o
obj-$(CONFIG_SCSI_SATA_SIS) += libata.o sata_sis.o obj-$(CONFIG_SCSI_SATA_SIS) += libata.o sata_sis.o
obj-$(CONFIG_SCSI_SATA_SX4) += libata.o sata_sx4.o
obj-$(CONFIG_ARM) += arm/ obj-$(CONFIG_ARM) += arm/
......
...@@ -34,7 +34,9 @@ ...@@ -34,7 +34,9 @@
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/timer.h> #include <linux/timer.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/suspend.h> #include <linux/suspend.h>
#include <linux/workqueue.h>
#include <scsi/scsi.h> #include <scsi/scsi.h>
#include "scsi.h" #include "scsi.h"
#include "hosts.h" #include "hosts.h"
...@@ -44,14 +46,10 @@ ...@@ -44,14 +46,10 @@
#include "libata.h" #include "libata.h"
static void atapi_cdb_send(struct ata_port *ap);
static unsigned int ata_busy_sleep (struct ata_port *ap, static unsigned int ata_busy_sleep (struct ata_port *ap,
unsigned long tmout_pat, unsigned long tmout_pat,
unsigned long tmout); unsigned long tmout);
static void __ata_dev_select (struct ata_port *ap, unsigned int device); static void __ata_dev_select (struct ata_port *ap, unsigned int device);
#if 0 /* to be used eventually */
static void ata_qc_push (struct ata_queued_cmd *qc, unsigned int append);
#endif
static void ata_dma_complete(struct ata_port *ap, u8 host_stat, static void ata_dma_complete(struct ata_port *ap, u8 host_stat,
unsigned int done_late); unsigned int done_late);
static void ata_host_set_pio(struct ata_port *ap); static void ata_host_set_pio(struct ata_port *ap);
...@@ -59,8 +57,10 @@ static void ata_host_set_udma(struct ata_port *ap); ...@@ -59,8 +57,10 @@ static void ata_host_set_udma(struct ata_port *ap);
static void ata_dev_set_pio(struct ata_port *ap, unsigned int device); static void ata_dev_set_pio(struct ata_port *ap, unsigned int device);
static void ata_dev_set_udma(struct ata_port *ap, unsigned int device); static void ata_dev_set_udma(struct ata_port *ap, unsigned int device);
static void ata_set_mode(struct ata_port *ap); static void ata_set_mode(struct ata_port *ap);
static int ata_qc_issue_prot(struct ata_queued_cmd *qc);
static unsigned int ata_unique_id = 1; static unsigned int ata_unique_id = 1;
static struct workqueue_struct *ata_wq;
MODULE_AUTHOR("Jeff Garzik"); MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Library module for ATA devices"); MODULE_DESCRIPTION("Library module for ATA devices");
...@@ -74,13 +74,6 @@ static const char * thr_state_name[] = { ...@@ -74,13 +74,6 @@ static const char * thr_state_name[] = {
"THR_IDLE", "THR_IDLE",
"THR_PROBE_SUCCESS", "THR_PROBE_SUCCESS",
"THR_PROBE_START", "THR_PROBE_START",
"THR_PIO_POLL",
"THR_PIO_TMOUT",
"THR_PIO",
"THR_PIO_LAST",
"THR_PIO_LAST_POLL",
"THR_PIO_ERR",
"THR_PACKET",
}; };
/** /**
...@@ -315,8 +308,6 @@ static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf) ...@@ -315,8 +308,6 @@ static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf) static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
{ {
init_MUTEX_LOCKED(&ap->sem);
ap->ops->tf_load(ap, tf); ap->ops->tf_load(ap, tf);
ata_exec(ap, tf); ata_exec(ap, tf);
...@@ -337,8 +328,6 @@ static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf) ...@@ -337,8 +328,6 @@ static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf) void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
{ {
init_MUTEX_LOCKED(&ap->sem);
ap->ops->tf_load(ap, tf); ap->ops->tf_load(ap, tf);
ap->ops->exec_command(ap, tf); ap->ops->exec_command(ap, tf);
} }
...@@ -439,6 +428,77 @@ u8 ata_check_status_mmio(struct ata_port *ap) ...@@ -439,6 +428,77 @@ u8 ata_check_status_mmio(struct ata_port *ap)
return readb((void *) ap->ioaddr.status_addr); return readb((void *) ap->ioaddr.status_addr);
} }
/**
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
* @tf: Taskfile to convert
* @fis: Buffer into which data will output
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
{
fis[0] = 0x27; /* Register - Host to Device FIS */
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
bit 7 indicates Command FIS */
fis[2] = tf->command;
fis[3] = tf->feature;
fis[4] = tf->lbal;
fis[5] = tf->lbam;
fis[6] = tf->lbah;
fis[7] = tf->device;
fis[8] = tf->hob_lbal;
fis[9] = tf->hob_lbam;
fis[10] = tf->hob_lbah;
fis[11] = tf->hob_feature;
fis[12] = tf->nsect;
fis[13] = tf->hob_nsect;
fis[14] = 0;
fis[15] = tf->ctl;
fis[16] = 0;
fis[17] = 0;
fis[18] = 0;
fis[19] = 0;
}
/**
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
* @fis: Buffer from which data will be input
* @tf: Taskfile to output
*
* Converts a standard ATA taskfile to a Serial ATA
* FIS structure (Register - Host to Device).
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
{
tf->command = fis[2]; /* status */
tf->feature = fis[3]; /* error */
tf->lbal = fis[4];
tf->lbam = fis[5];
tf->lbah = fis[6];
tf->device = fis[7];
tf->hob_lbal = fis[8];
tf->hob_lbam = fis[9];
tf->hob_lbah = fis[10];
tf->nsect = fis[12];
tf->hob_nsect = fis[13];
}
/** /**
* ata_prot_to_cmd - determine which read/write opcodes to use * ata_prot_to_cmd - determine which read/write opcodes to use
* @protocol: ATA_PROT_xxx taskfile protocol * @protocol: ATA_PROT_xxx taskfile protocol
...@@ -1928,20 +1988,20 @@ static int ata_sg_setup(struct ata_queued_cmd *qc) ...@@ -1928,20 +1988,20 @@ static int ata_sg_setup(struct ata_queued_cmd *qc)
static unsigned long ata_pio_poll(struct ata_port *ap) static unsigned long ata_pio_poll(struct ata_port *ap)
{ {
u8 status; u8 status;
unsigned int poll_state = THR_UNKNOWN; unsigned int poll_state = PIO_ST_UNKNOWN;
unsigned int reg_state = THR_UNKNOWN; unsigned int reg_state = PIO_ST_UNKNOWN;
const unsigned int tmout_state = THR_PIO_TMOUT; const unsigned int tmout_state = PIO_ST_TMOUT;
switch (ap->thr_state) { switch (ap->pio_task_state) {
case THR_PIO: case PIO_ST:
case THR_PIO_POLL: case PIO_ST_POLL:
poll_state = THR_PIO_POLL; poll_state = PIO_ST_POLL;
reg_state = THR_PIO; reg_state = PIO_ST;
break; break;
case THR_PIO_LAST: case PIO_ST_LAST:
case THR_PIO_LAST_POLL: case PIO_ST_LAST_POLL:
poll_state = THR_PIO_LAST_POLL; poll_state = PIO_ST_LAST_POLL;
reg_state = THR_PIO_LAST; reg_state = PIO_ST_LAST;
break; break;
default: default:
BUG(); BUG();
...@@ -1950,38 +2010,18 @@ static unsigned long ata_pio_poll(struct ata_port *ap) ...@@ -1950,38 +2010,18 @@ static unsigned long ata_pio_poll(struct ata_port *ap)
status = ata_chk_status(ap); status = ata_chk_status(ap);
if (status & ATA_BUSY) { if (status & ATA_BUSY) {
if (time_after(jiffies, ap->thr_timeout)) { if (time_after(jiffies, ap->pio_task_timeout)) {
ap->thr_state = tmout_state; ap->pio_task_state = tmout_state;
return 0; return 0;
} }
ap->thr_state = poll_state; ap->pio_task_state = poll_state;
return ATA_SHORT_PAUSE; return ATA_SHORT_PAUSE;
} }
ap->thr_state = reg_state; ap->pio_task_state = reg_state;
return 0; return 0;
} }
/**
* ata_pio_start -
* @qc:
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_pio_start (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
assert(qc->tf.protocol == ATA_PROT_PIO);
qc->flags |= ATA_QCFLAG_POLL;
qc->tf.ctl |= ATA_NIEN; /* disable interrupts */
ata_tf_to_host_nolock(ap, &qc->tf);
ata_thread_wake(ap, THR_PIO);
}
/** /**
* ata_pio_complete - * ata_pio_complete -
* @ap: * @ap:
...@@ -1992,7 +2032,6 @@ static void ata_pio_start (struct ata_queued_cmd *qc) ...@@ -1992,7 +2032,6 @@ static void ata_pio_start (struct ata_queued_cmd *qc)
static void ata_pio_complete (struct ata_port *ap) static void ata_pio_complete (struct ata_port *ap)
{ {
struct ata_queued_cmd *qc; struct ata_queued_cmd *qc;
unsigned long flags;
u8 drv_stat; u8 drv_stat;
/* /*
...@@ -2001,31 +2040,29 @@ static void ata_pio_complete (struct ata_port *ap) ...@@ -2001,31 +2040,29 @@ static void ata_pio_complete (struct ata_port *ap)
* a chk-status or two. If not, the drive is probably seeking * a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then * or something. Snooze for a couple msecs, then
* chk-status again. If still busy, fall back to * chk-status again. If still busy, fall back to
* THR_PIO_POLL state. * PIO_ST_POLL state.
*/ */
drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
if (drv_stat & (ATA_BUSY | ATA_DRQ)) { if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
msleep(2); msleep(2);
drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
if (drv_stat & (ATA_BUSY | ATA_DRQ)) { if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
ap->thr_state = THR_PIO_LAST_POLL; ap->pio_task_state = PIO_ST_LAST_POLL;
ap->thr_timeout = jiffies + ATA_TMOUT_PIO; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return; return;
} }
} }
drv_stat = ata_wait_idle(ap); drv_stat = ata_wait_idle(ap);
if (drv_stat & (ATA_BUSY | ATA_DRQ)) { if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
ap->thr_state = THR_PIO_ERR; ap->pio_task_state = PIO_ST_ERR;
return; return;
} }
qc = ata_qc_from_tag(ap, ap->active_tag); qc = ata_qc_from_tag(ap, ap->active_tag);
assert(qc != NULL); assert(qc != NULL);
spin_lock_irqsave(&ap->host_set->lock, flags); ap->pio_task_state = PIO_ST_IDLE;
ap->thr_state = THR_IDLE;
spin_unlock_irqrestore(&ap->host_set->lock, flags);
ata_irq_on(ap); ata_irq_on(ap);
...@@ -2053,22 +2090,22 @@ static void ata_pio_sector(struct ata_port *ap) ...@@ -2053,22 +2090,22 @@ static void ata_pio_sector(struct ata_port *ap)
* a chk-status or two. If not, the drive is probably seeking * a chk-status or two. If not, the drive is probably seeking
* or something. Snooze for a couple msecs, then * or something. Snooze for a couple msecs, then
* chk-status again. If still busy, fall back to * chk-status again. If still busy, fall back to
* THR_PIO_POLL state. * PIO_ST_POLL state.
*/ */
status = ata_busy_wait(ap, ATA_BUSY, 5); status = ata_busy_wait(ap, ATA_BUSY, 5);
if (status & ATA_BUSY) { if (status & ATA_BUSY) {
msleep(2); msleep(2);
status = ata_busy_wait(ap, ATA_BUSY, 10); status = ata_busy_wait(ap, ATA_BUSY, 10);
if (status & ATA_BUSY) { if (status & ATA_BUSY) {
ap->thr_state = THR_PIO_POLL; ap->pio_task_state = PIO_ST_POLL;
ap->thr_timeout = jiffies + ATA_TMOUT_PIO; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
return; return;
} }
} }
/* handle BSY=0, DRQ=0 as error */ /* handle BSY=0, DRQ=0 as error */
if ((status & ATA_DRQ) == 0) { if ((status & ATA_DRQ) == 0) {
ap->thr_state = THR_PIO_ERR; ap->pio_task_state = PIO_ST_ERR;
return; return;
} }
...@@ -2079,7 +2116,7 @@ static void ata_pio_sector(struct ata_port *ap) ...@@ -2079,7 +2116,7 @@ static void ata_pio_sector(struct ata_port *ap)
sg = qc->sg; sg = qc->sg;
if (qc->cursect == (qc->nsect - 1)) if (qc->cursect == (qc->nsect - 1))
ap->thr_state = THR_PIO_LAST; ap->pio_task_state = PIO_ST_LAST;
buf = kmap(sg[qc->cursg].page) + buf = kmap(sg[qc->cursg].page) +
sg[qc->cursg].offset + (qc->cursg_ofs * ATA_SECT_SIZE); sg[qc->cursg].offset + (qc->cursg_ofs * ATA_SECT_SIZE);
...@@ -2107,20 +2144,48 @@ static void ata_pio_sector(struct ata_port *ap) ...@@ -2107,20 +2144,48 @@ static void ata_pio_sector(struct ata_port *ap)
kunmap(sg[qc->cursg].page); kunmap(sg[qc->cursg].page);
} }
#if 0 /* to be used eventually */ static void ata_pio_task(void *_data)
/**
* ata_eng_schedule - run an iteration of the pio/dma/whatever engine
* @ap: port on which activity will occur
* @eng: instance of engine
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
static void ata_eng_schedule (struct ata_port *ap, struct ata_engine *eng)
{ {
/* FIXME */ struct ata_port *ap = _data;
unsigned long timeout = 0;
switch (ap->pio_task_state) {
case PIO_ST:
ata_pio_sector(ap);
break;
case PIO_ST_LAST:
ata_pio_complete(ap);
break;
case PIO_ST_POLL:
case PIO_ST_LAST_POLL:
timeout = ata_pio_poll(ap);
break;
case PIO_ST_TMOUT:
printk(KERN_ERR "ata%d: FIXME: PIO_ST_TMOUT\n", /* FIXME */
ap->id);
timeout = 11 * HZ;
break;
case PIO_ST_ERR:
printk(KERN_ERR "ata%d: FIXME: PIO_ST_ERR\n", /* FIXME */
ap->id);
timeout = 11 * HZ;
break;
}
if ((ap->pio_task_state != PIO_ST_IDLE) &&
(ap->pio_task_state != PIO_ST_TMOUT) &&
(ap->pio_task_state != PIO_ST_ERR)) {
if (timeout)
queue_delayed_work(ata_wq, &ap->pio_task,
timeout);
else
queue_work(ata_wq, &ap->pio_task);
}
} }
#endif
/** /**
* ata_eng_timeout - Handle timeout of queued command * ata_eng_timeout - Handle timeout of queued command
...@@ -2246,8 +2311,6 @@ struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, ...@@ -2246,8 +2311,6 @@ struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
qc->ap = ap; qc->ap = ap;
qc->dev = dev; qc->dev = dev;
qc->cursect = qc->cursg = qc->cursg_ofs = 0; qc->cursect = qc->cursg = qc->cursg_ofs = 0;
INIT_LIST_HEAD(&qc->node);
init_MUTEX_LOCKED(&qc->sem);
ata_tf_init(ap, &qc->tf, dev->devno); ata_tf_init(ap, &qc->tf, dev->devno);
...@@ -2304,52 +2367,33 @@ void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat, unsigned int done_l ...@@ -2304,52 +2367,33 @@ void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat, unsigned int done_l
do_clear = 1; do_clear = 1;
} }
up(&qc->sem); if (qc->waiting)
complete(qc->waiting);
if (likely(do_clear)) if (likely(do_clear))
clear_bit(tag, &ap->qactive); clear_bit(tag, &ap->qactive);
} }
#if 0 /* to be used eventually */
/** /**
* ata_qc_push - * ata_qc_issue - issue taskfile to device
* @qc: * @qc: command to issue to device
* @append:
* *
* LOCKING: * Prepare an ATA command to submission to device.
* spin_lock_irqsave(host_set lock) * This includes mapping the data into a DMA-able
*/ * area, filling in the S/G table, and finally
static void ata_qc_push (struct ata_queued_cmd *qc, unsigned int append) * writing the taskfile to hardware, starting the command.
{
struct ata_port *ap = qc->ap;
struct ata_engine *eng = &ap->eng;
if (likely(append))
list_add_tail(&qc->node, &eng->q);
else
list_add(&qc->node, &eng->q);
if (!test_and_set_bit(ATA_EFLG_ACTIVE, &eng->flags))
ata_eng_schedule(ap, eng);
}
#endif
/**
* ata_qc_issue -
* @qc:
* *
* LOCKING: * LOCKING:
* spin_lock_irqsave(host_set lock)
* *
* RETURNS: * RETURNS:
* * Zero on success, negative on error.
*/ */
int ata_qc_issue(struct ata_queued_cmd *qc) int ata_qc_issue(struct ata_queued_cmd *qc)
{ {
struct ata_port *ap = qc->ap; struct ata_port *ap = qc->ap;
struct scsi_cmnd *cmd = qc->scsicmd; struct scsi_cmnd *cmd = qc->scsicmd;
unsigned int dma = qc->flags & ATA_QCFLAG_DMA;
ata_dev_select(ap, qc->dev->devno, 1, 0);
/* set up SG table */ /* set up SG table */
if (cmd->use_sg) { if (cmd->use_sg) {
...@@ -2365,17 +2409,58 @@ int ata_qc_issue(struct ata_queued_cmd *qc) ...@@ -2365,17 +2409,58 @@ int ata_qc_issue(struct ata_queued_cmd *qc)
qc->ap->active_tag = qc->tag; qc->ap->active_tag = qc->tag;
qc->flags |= ATA_QCFLAG_ACTIVE; qc->flags |= ATA_QCFLAG_ACTIVE;
if (likely(dma)) { return ata_qc_issue_prot(qc);
err_out:
return -1;
}
/**
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
* @qc: command to issue to device
*
* Using various libata functions and hooks, this function
* starts an ATA command. ATA commands are grouped into
* classes called "protocols", and issuing each type of protocol
* is slightly different.
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*
* RETURNS:
* Zero on success, negative on error.
*/
static int ata_qc_issue_prot(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
ata_dev_select(ap, qc->dev->devno, 1, 0);
switch (qc->tf.protocol) {
case ATA_PROT_NODATA:
ata_tf_to_host_nolock(ap, &qc->tf);
break;
case ATA_PROT_DMA:
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->bmdma_start(qc); /* initiate bmdma */ ap->ops->bmdma_start(qc); /* initiate bmdma */
} else break;
/* load tf registers, initiate polling pio */
ata_pio_start(qc);
return 0; case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
qc->flags |= ATA_QCFLAG_POLL;
qc->tf.ctl |= ATA_NIEN; /* disable interrupts */
ata_tf_to_host_nolock(ap, &qc->tf);
ap->pio_task_state = PIO_ST;
queue_work(ata_wq, &ap->pio_task);
break;
err_out: default:
WARN_ON(1);
return -1; return -1;
}
return 0;
} }
/** /**
...@@ -2613,36 +2698,6 @@ irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs) ...@@ -2613,36 +2698,6 @@ irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
return IRQ_RETVAL(handled); return IRQ_RETVAL(handled);
} }
/**
* ata_thread_wake -
* @ap:
* @thr_state:
*
* LOCKING:
* spin_lock_irqsave(host_set lock)
*/
void ata_thread_wake(struct ata_port *ap, unsigned int thr_state)
{
assert(ap->thr_state == THR_IDLE);
ap->thr_state = thr_state;
up(&ap->thr_sem);
}
/**
* ata_thread_timer -
* @opaque:
*
* LOCKING:
*/
static void ata_thread_timer(unsigned long opaque)
{
struct ata_port *ap = (struct ata_port *) opaque;
up(&ap->thr_sem);
}
/** /**
* ata_thread_iter - * ata_thread_iter -
* @ap: * @ap:
...@@ -2666,7 +2721,6 @@ static unsigned long ata_thread_iter(struct ata_port *ap) ...@@ -2666,7 +2721,6 @@ static unsigned long ata_thread_iter(struct ata_port *ap)
break; break;
case THR_PROBE_START: case THR_PROBE_START:
down(&ap->sem);
ap->thr_state = THR_PORT_RESET; ap->thr_state = THR_PORT_RESET;
break; break;
...@@ -2685,40 +2739,8 @@ static unsigned long ata_thread_iter(struct ata_port *ap) ...@@ -2685,40 +2739,8 @@ static unsigned long ata_thread_iter(struct ata_port *ap)
break; break;
case THR_AWAIT_DEATH: case THR_AWAIT_DEATH:
timeout = -1;
break;
case THR_IDLE: case THR_IDLE:
timeout = 30 * HZ; timeout = -1;
break;
case THR_PIO:
ata_pio_sector(ap);
break;
case THR_PIO_LAST:
ata_pio_complete(ap);
break;
case THR_PIO_POLL:
case THR_PIO_LAST_POLL:
timeout = ata_pio_poll(ap);
break;
case THR_PIO_TMOUT:
printk(KERN_ERR "ata%d: FIXME: THR_PIO_TMOUT\n", /* FIXME */
ap->id);
timeout = 11 * HZ;
break;
case THR_PIO_ERR:
printk(KERN_ERR "ata%d: FIXME: THR_PIO_ERR\n", /* FIXME */
ap->id);
timeout = 11 * HZ;
break;
case THR_PACKET:
atapi_cdb_send(ap);
break; break;
default: default:
...@@ -2732,87 +2754,23 @@ static unsigned long ata_thread_iter(struct ata_port *ap) ...@@ -2732,87 +2754,23 @@ static unsigned long ata_thread_iter(struct ata_port *ap)
return timeout; return timeout;
} }
/** void atapi_start(struct ata_queued_cmd *qc)
* ata_thread -
* @data:
*
* LOCKING:
*
* RETURNS:
*
*/
static int ata_thread (void *data)
{ {
struct ata_port *ap = data; struct ata_port *ap = qc->ap;
long timeout;
daemonize ("katad-%u", ap->id);
allow_signal(SIGTERM);
while (1) {
cond_resched();
timeout = ata_thread_iter(ap);
if (signal_pending (current))
flush_signals(current);
if (current->flags & PF_FREEZE)
refrigerator(PF_FREEZE);
if ((timeout < 0) || (ap->time_to_die))
break;
/* note sleeping for full timeout not guaranteed (that's ok) */
if (timeout) {
mod_timer(&ap->thr_timer, jiffies + timeout);
down_interruptible(&ap->thr_sem);
if (signal_pending (current))
flush_signals(current);
if (ap->time_to_die)
break;
}
}
printk(KERN_DEBUG "ata%u: thread exiting\n", ap->id);
ap->thr_pid = -1;
del_timer_sync(&ap->thr_timer);
complete_and_exit (&ap->thr_exited, 0);
}
/**
* ata_thread_kill - kill per-port kernel thread
* @ap: port those thread is to be killed
*
* LOCKING:
*
*/
static int ata_thread_kill(struct ata_port *ap) qc->flags |= ATA_QCFLAG_ACTIVE;
{ ap->active_tag = qc->tag;
int ret = 0;
if (ap->thr_pid >= 0) { ata_dev_select(ap, qc->dev->devno, 1, 0);
ap->time_to_die = 1; ata_tf_to_host_nolock(ap, &qc->tf);
wmb(); queue_work(ata_wq, &ap->packet_task);
ret = kill_proc(ap->thr_pid, SIGTERM, 1);
if (ret)
printk(KERN_ERR "ata%d: unable to kill kernel thread\n",
ap->id);
else
wait_for_completion(&ap->thr_exited);
}
return ret; VPRINTK("EXIT\n");
} }
/** /**
* atapi_cdb_send - Write CDB bytes to hardware * atapi_packet_task - Write CDB bytes to hardware
* @ap: Port to which ATAPI device is attached. * @_data: Port to which ATAPI device is attached.
* *
* When device has indicated its readiness to accept * When device has indicated its readiness to accept
* a CDB, this function is called. Send the CDB. * a CDB, this function is called. Send the CDB.
...@@ -2824,8 +2782,9 @@ static int ata_thread_kill(struct ata_port *ap) ...@@ -2824,8 +2782,9 @@ static int ata_thread_kill(struct ata_port *ap)
* Kernel thread context (may sleep) * Kernel thread context (may sleep)
*/ */
static void atapi_cdb_send(struct ata_port *ap) static void atapi_packet_task(void *_data)
{ {
struct ata_port *ap = _data;
struct ata_queued_cmd *qc; struct ata_queued_cmd *qc;
u8 status; u8 status;
...@@ -2850,30 +2809,17 @@ static void atapi_cdb_send(struct ata_port *ap) ...@@ -2850,30 +2809,17 @@ static void atapi_cdb_send(struct ata_port *ap)
qc->scsicmd->cmnd, ap->host->max_cmd_len / 4); qc->scsicmd->cmnd, ap->host->max_cmd_len / 4);
/* if we are DMA'ing, irq handler takes over from here */ /* if we are DMA'ing, irq handler takes over from here */
if (qc->tf.feature == ATAPI_PKT_DMA) if (qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
goto out; /* FIXME: start DMA here */
} else {
/* sleep-wait for BSY to clear */ ap->pio_task_state = PIO_ST;
DPRINTK("busy wait 2\n"); queue_work(ata_wq, &ap->pio_task);
if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) }
goto err_out;
/* wait for BSY,DRQ to clear */
status = ata_wait_idle(ap);
if (status & (ATA_BUSY | ATA_DRQ))
goto err_out;
/* transaction completed, indicate such to scsi stack */
ata_qc_complete(qc, status, 0);
ata_irq_on(ap);
out:
ap->thr_state = THR_IDLE;
return; return;
err_out: err_out:
ata_qc_complete(qc, ATA_ERR, 0); ata_qc_complete(qc, ATA_ERR, 0);
goto out;
} }
int ata_port_start (struct ata_port *ap) int ata_port_start (struct ata_port *ap)
...@@ -2896,6 +2842,21 @@ void ata_port_stop (struct ata_port *ap) ...@@ -2896,6 +2842,21 @@ void ata_port_stop (struct ata_port *ap)
pci_free_consistent(pdev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); pci_free_consistent(pdev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
} }
static void ata_probe_task(void *_data)
{
struct ata_port *ap = _data;
long timeout;
timeout = ata_thread_iter(ap);
if (timeout < 0)
return;
if (timeout > 0)
queue_delayed_work(ata_wq, &ap->probe_task, timeout);
else
queue_work(ata_wq, &ap->probe_task);
}
/** /**
* ata_host_remove - * ata_host_remove -
* @ap: * @ap:
...@@ -2913,8 +2874,6 @@ static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister) ...@@ -2913,8 +2874,6 @@ static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
if (do_unregister) if (do_unregister)
scsi_remove_host(sh); scsi_remove_host(sh);
ata_thread_kill(ap); /* FIXME: check return val */
ap->ops->port_stop(ap); ap->ops->port_stop(ap);
} }
...@@ -2958,21 +2917,14 @@ static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host, ...@@ -2958,21 +2917,14 @@ static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
ap->active_tag = ATA_TAG_POISON; ap->active_tag = ATA_TAG_POISON;
ap->last_ctl = 0xFF; ap->last_ctl = 0xFF;
/* ata_engine init */ INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
ap->eng.flags = 0; INIT_WORK(&ap->pio_task, ata_pio_task, ap);
INIT_LIST_HEAD(&ap->eng.q); INIT_WORK(&ap->probe_task, ata_probe_task, ap);
for (i = 0; i < ATA_MAX_DEVICES; i++) for (i = 0; i < ATA_MAX_DEVICES; i++)
ap->device[i].devno = i; ap->device[i].devno = i;
init_completion(&ap->thr_exited);
init_MUTEX_LOCKED(&ap->probe_sem); init_MUTEX_LOCKED(&ap->probe_sem);
init_MUTEX_LOCKED(&ap->sem);
init_MUTEX_LOCKED(&ap->thr_sem);
init_timer(&ap->thr_timer);
ap->thr_timer.function = ata_thread_timer;
ap->thr_timer.data = (unsigned long) ap;
#ifdef ATA_IRQ_TRAP #ifdef ATA_IRQ_TRAP
ap->stats.unhandled_irq = 1; ap->stats.unhandled_irq = 1;
...@@ -3015,18 +2967,8 @@ static struct ata_port * ata_host_add(struct ata_probe_ent *ent, ...@@ -3015,18 +2967,8 @@ static struct ata_port * ata_host_add(struct ata_probe_ent *ent,
if (rc) if (rc)
goto err_out; goto err_out;
ap->thr_pid = kernel_thread(ata_thread, ap, CLONE_FS | CLONE_FILES);
if (ap->thr_pid < 0) {
printk(KERN_ERR "ata%d: unable to start kernel thread\n",
ap->id);
goto err_out_free;
}
return ap; return ap;
err_out_free:
ap->ops->port_stop(ap);
err_out: err_out:
scsi_host_put(host); scsi_host_put(host);
return NULL; return NULL;
...@@ -3106,7 +3048,7 @@ int ata_device_add(struct ata_probe_ent *ent) ...@@ -3106,7 +3048,7 @@ int ata_device_add(struct ata_probe_ent *ent)
ap = host_set->ports[i]; ap = host_set->ports[i];
DPRINTK("ata%u: probe begin\n", ap->id); DPRINTK("ata%u: probe begin\n", ap->id);
up(&ap->sem); /* start probe */ queue_work(ata_wq, &ap->probe_task); /* start probe */
DPRINTK("ata%u: probe-wait begin\n", ap->id); DPRINTK("ata%u: probe-wait begin\n", ap->id);
down(&ap->probe_sem); /* wait for end */ down(&ap->probe_sem); /* wait for end */
...@@ -3489,11 +3431,21 @@ int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits) ...@@ -3489,11 +3431,21 @@ int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits)
static int __init ata_init(void) static int __init ata_init(void)
{ {
ata_wq = create_workqueue("ata");
if (!ata_wq)
return -ENOMEM;
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
return 0; return 0;
} }
static void __exit ata_exit(void)
{
destroy_workqueue(ata_wq);
}
module_init(ata_init); module_init(ata_init);
module_exit(ata_exit);
/* /*
* libata is essentially a library of internal helper functions for * libata is essentially a library of internal helper functions for
...@@ -3512,6 +3464,8 @@ EXPORT_SYMBOL_GPL(ata_tf_load_pio); ...@@ -3512,6 +3464,8 @@ EXPORT_SYMBOL_GPL(ata_tf_load_pio);
EXPORT_SYMBOL_GPL(ata_tf_load_mmio); EXPORT_SYMBOL_GPL(ata_tf_load_mmio);
EXPORT_SYMBOL_GPL(ata_tf_read_pio); EXPORT_SYMBOL_GPL(ata_tf_read_pio);
EXPORT_SYMBOL_GPL(ata_tf_read_mmio); EXPORT_SYMBOL_GPL(ata_tf_read_mmio);
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
EXPORT_SYMBOL_GPL(ata_check_status_pio); EXPORT_SYMBOL_GPL(ata_check_status_pio);
EXPORT_SYMBOL_GPL(ata_check_status_mmio); EXPORT_SYMBOL_GPL(ata_check_status_mmio);
EXPORT_SYMBOL_GPL(ata_exec_command_pio); EXPORT_SYMBOL_GPL(ata_exec_command_pio);
......
...@@ -167,8 +167,27 @@ int ata_scsi_slave_config(struct scsi_device *sdev) ...@@ -167,8 +167,27 @@ int ata_scsi_slave_config(struct scsi_device *sdev)
{ {
sdev->use_10_for_rw = 1; sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1; sdev->use_10_for_ms = 1;
blk_queue_max_phys_segments(sdev->request_queue, LIBATA_MAX_PRD); blk_queue_max_phys_segments(sdev->request_queue, LIBATA_MAX_PRD);
if (sdev->id < ATA_MAX_DEVICES) {
struct ata_port *ap;
struct ata_device *dev;
ap = (struct ata_port *) &sdev->host->hostdata[0];
dev = &ap->device[sdev->id];
/* TODO: 1024 is an arbitrary number, not the
* hardware maximum. This should be increased to
* 65534 when Jens Axboe's patch for dynamically
* determining max_sectors is merged.
*/
if (dev->flags & ATA_DFLAG_LBA48) {
sdev->host->max_sectors = 2048;
blk_queue_max_sectors(sdev->request_queue, 2048);
}
}
return 0; /* scsi layer doesn't check return value, sigh */ return 0; /* scsi layer doesn't check return value, sigh */
} }
...@@ -884,8 +903,7 @@ static void atapi_scsi_queuecmd(struct ata_port *ap, struct ata_device *dev, ...@@ -884,8 +903,7 @@ static void atapi_scsi_queuecmd(struct ata_port *ap, struct ata_device *dev,
struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{ {
struct ata_queued_cmd *qc; struct ata_queued_cmd *qc;
u8 *scsicmd = cmd->cmnd, status; u8 *scsicmd = cmd->cmnd;
unsigned int doing_dma = 0;
VPRINTK("ENTER, drv_stat = 0x%x\n", ata_chk_status(ap)); VPRINTK("ENTER, drv_stat = 0x%x\n", ata_chk_status(ap));
...@@ -925,52 +943,17 @@ static void atapi_scsi_queuecmd(struct ata_port *ap, struct ata_device *dev, ...@@ -925,52 +943,17 @@ static void atapi_scsi_queuecmd(struct ata_port *ap, struct ata_device *dev,
qc->tf.command = ATA_CMD_PACKET; qc->tf.command = ATA_CMD_PACKET;
/* set up SG table */
if (cmd->sc_data_direction == SCSI_DATA_NONE) { if (cmd->sc_data_direction == SCSI_DATA_NONE) {
ap->active_tag = qc->tag;
qc->flags |= ATA_QCFLAG_ACTIVE | ATA_QCFLAG_POLL;
qc->tf.protocol = ATA_PROT_ATAPI; qc->tf.protocol = ATA_PROT_ATAPI;
qc->flags |= ATA_QCFLAG_POLL;
ata_dev_select(ap, dev->devno, 1, 0);
DPRINTK("direction: none\n");
qc->tf.ctl |= ATA_NIEN; /* disable interrupts */ qc->tf.ctl |= ATA_NIEN; /* disable interrupts */
ata_tf_to_host_nolock(ap, &qc->tf);
} else { } else {
qc->flags |= ATA_QCFLAG_SG; /* data is present; dma-map it */
qc->tf.feature = ATAPI_PKT_DMA;
qc->tf.protocol = ATA_PROT_ATAPI_DMA; qc->tf.protocol = ATA_PROT_ATAPI_DMA;
qc->flags |= ATA_QCFLAG_SG; /* data is present; dma-map it */
doing_dma = 1; qc->tf.feature |= ATAPI_PKT_DMA;
/* select device, send command to hardware */
if (ata_qc_issue(qc))
goto err_out;
}
status = ata_busy_wait(ap, ATA_BUSY, 1000);
if (status & ATA_BUSY) {
ata_thread_wake(ap, THR_PACKET);
return;
} }
if ((status & ATA_DRQ) == 0)
goto err_out;
/* FIXME: mmio-ize */
DPRINTK("writing cdb\n");
outsl(ap->ioaddr.data_addr, scsicmd, ap->host->max_cmd_len / 4);
if (!doing_dma) atapi_start(qc);
ata_thread_wake(ap, THR_PACKET);
VPRINTK("EXIT\n");
return;
err_out:
if (!doing_dma)
ata_irq_on(ap); /* re-enable interrupts */
ata_bad_cdb(cmd, done);
DPRINTK("EXIT - badcmd\n");
} }
/** /**
......
...@@ -35,7 +35,6 @@ struct ata_scsi_args { ...@@ -35,7 +35,6 @@ struct ata_scsi_args {
void (*done)(struct scsi_cmnd *); void (*done)(struct scsi_cmnd *);
}; };
/* libata-core.c */ /* libata-core.c */
extern void ata_dev_id_string(struct ata_device *dev, unsigned char *s, extern void ata_dev_id_string(struct ata_device *dev, unsigned char *s,
unsigned int ofs, unsigned int len); unsigned int ofs, unsigned int len);
...@@ -45,7 +44,7 @@ extern int ata_qc_issue(struct ata_queued_cmd *qc); ...@@ -45,7 +44,7 @@ extern int ata_qc_issue(struct ata_queued_cmd *qc);
extern void ata_dev_select(struct ata_port *ap, unsigned int device, extern void ata_dev_select(struct ata_port *ap, unsigned int device,
unsigned int wait, unsigned int can_sleep); unsigned int wait, unsigned int can_sleep);
extern void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf);
extern void ata_thread_wake(struct ata_port *ap, unsigned int thr_state); extern void atapi_start(struct ata_queued_cmd *qc);
/* libata-scsi.c */ /* libata-scsi.c */
......
...@@ -33,16 +33,14 @@ ...@@ -33,16 +33,14 @@
#include "hosts.h" #include "hosts.h"
#include <linux/libata.h> #include <linux/libata.h>
#include <asm/io.h> #include <asm/io.h>
#include "sata_promise.h"
#define DRV_NAME "sata_promise" #define DRV_NAME "sata_promise"
#define DRV_VERSION "0.92" #define DRV_VERSION "1.00"
enum { enum {
PDC_PRD_TBL = 0x44, /* Direct command DMA table addr */
PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */ PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */
PDC_HDMA_PKT_SUBMIT = 0x100, /* Host DMA packet pointer addr */
PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */ PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */
PDC_TBG_MODE = 0x41, /* TBG mode */ PDC_TBG_MODE = 0x41, /* TBG mode */
PDC_FLASH_CTL = 0x44, /* Flash control register */ PDC_FLASH_CTL = 0x44, /* Flash control register */
...@@ -51,141 +49,38 @@ enum { ...@@ -51,141 +49,38 @@ enum {
PDC_CTLSTAT = 0x60, /* IDE control and status (per port) */ PDC_CTLSTAT = 0x60, /* IDE control and status (per port) */
PDC_SATA_PLUG_CSR = 0x6C, /* SATA Plug control/status reg */ PDC_SATA_PLUG_CSR = 0x6C, /* SATA Plug control/status reg */
PDC_SLEW_CTL = 0x470, /* slew rate control reg */ PDC_SLEW_CTL = 0x470, /* slew rate control reg */
PDC_HDMA_CTLSTAT = 0x12C, /* Host DMA control / status */
PDC_20621_SEQCTL = 0x400,
PDC_20621_SEQMASK = 0x480,
PDC_20621_GENERAL_CTL = 0x484,
PDC_20621_PAGE_SIZE = (32 * 1024),
/* chosen, not constant, values; we design our own DIMM mem map */
PDC_20621_DIMM_WINDOW = 0x0C, /* page# for 32K DIMM window */
PDC_20621_DIMM_BASE = 0x00200000,
PDC_20621_DIMM_DATA = (64 * 1024),
PDC_DIMM_DATA_STEP = (256 * 1024),
PDC_DIMM_WINDOW_STEP = (8 * 1024),
PDC_DIMM_HOST_PRD = (6 * 1024),
PDC_DIMM_HOST_PKT = (128 * 0),
PDC_DIMM_HPKT_PRD = (128 * 1),
PDC_DIMM_ATA_PKT = (128 * 2),
PDC_DIMM_APKT_PRD = (128 * 3),
PDC_DIMM_HEADER_SZ = PDC_DIMM_APKT_PRD + 128,
PDC_PAGE_WINDOW = 0x40,
PDC_PAGE_DATA = PDC_PAGE_WINDOW +
(PDC_20621_DIMM_DATA / PDC_20621_PAGE_SIZE),
PDC_PAGE_SET = PDC_DIMM_DATA_STEP / PDC_20621_PAGE_SIZE,
PDC_CHIP0_OFS = 0xC0000, /* offset of chip #0 */
PDC_20621_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
(1<<23),
PDC_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) | PDC_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
(1<<8) | (1<<9) | (1<<10), (1<<8) | (1<<9) | (1<<10),
board_2037x = 0, /* FastTrak S150 TX2plus */ board_2037x = 0, /* FastTrak S150 TX2plus */
board_20319 = 1, /* FastTrak S150 TX4 */ board_20319 = 1, /* FastTrak S150 TX4 */
board_20621 = 2, /* FastTrak S150 SX4 */
PDC_HAS_PATA = (1 << 1), /* PDC20375 has PATA */ PDC_HAS_PATA = (1 << 1), /* PDC20375 has PATA */
PDC_FLAG_20621 = (1 << 30), /* we have a 20621 */
PDC_RESET = (1 << 11), /* HDMA reset */ PDC_RESET = (1 << 11), /* HDMA reset */
PDC_MAX_HDMA = 32,
PDC_HDMA_Q_MASK = (PDC_MAX_HDMA - 1),
PDC_DIMM0_SPD_DEV_ADDRESS = 0x50,
PDC_DIMM1_SPD_DEV_ADDRESS = 0x51,
PDC_MAX_DIMM_MODULE = 0x02,
PDC_I2C_CONTROL_OFFSET = 0x48,
PDC_I2C_ADDR_DATA_OFFSET = 0x4C,
PDC_DIMM0_CONTROL_OFFSET = 0x80,
PDC_DIMM1_CONTROL_OFFSET = 0x84,
PDC_SDRAM_CONTROL_OFFSET = 0x88,
PDC_I2C_WRITE = 0x00000000,
PDC_I2C_READ = 0x00000040,
PDC_I2C_START = 0x00000080,
PDC_I2C_MASK_INT = 0x00000020,
PDC_I2C_COMPLETE = 0x00010000,
PDC_I2C_NO_ACK = 0x00100000,
PDC_DIMM_SPD_SUBADDRESS_START = 0x00,
PDC_DIMM_SPD_SUBADDRESS_END = 0x7F,
PDC_DIMM_SPD_ROW_NUM = 3,
PDC_DIMM_SPD_COLUMN_NUM = 4,
PDC_DIMM_SPD_MODULE_ROW = 5,
PDC_DIMM_SPD_TYPE = 11,
PDC_DIMM_SPD_FRESH_RATE = 12,
PDC_DIMM_SPD_BANK_NUM = 17,
PDC_DIMM_SPD_CAS_LATENCY = 18,
PDC_DIMM_SPD_ATTRIBUTE = 21,
PDC_DIMM_SPD_ROW_PRE_CHARGE = 27,
PDC_DIMM_SPD_ROW_ACTIVE_DELAY = 28,
PDC_DIMM_SPD_RAS_CAS_DELAY = 29,
PDC_DIMM_SPD_ACTIVE_PRECHARGE = 30,
PDC_DIMM_SPD_SYSTEM_FREQ = 126,
PDC_CTL_STATUS = 0x08,
PDC_DIMM_WINDOW_CTLR = 0x0C,
PDC_TIME_CONTROL = 0x3C,
PDC_TIME_PERIOD = 0x40,
PDC_TIME_COUNTER = 0x44,
PDC_GENERAL_CTLR = 0x484,
PCI_PLL_INIT = 0x8A531824,
PCI_X_TCOUNT = 0xEE1E5CFF
}; };
struct pdc_port_priv { struct pdc_port_priv {
u8 dimm_buf[(ATA_PRD_SZ * ATA_MAX_PRD) + 512];
u8 *pkt; u8 *pkt;
dma_addr_t pkt_dma; dma_addr_t pkt_dma;
}; };
struct pdc_host_priv {
void *dimm_mmio;
unsigned int doing_hdma;
unsigned int hdma_prod;
unsigned int hdma_cons;
struct {
struct ata_queued_cmd *qc;
unsigned int seq;
unsigned long pkt_ofs;
} hdma[32];
};
static u32 pdc_sata_scr_read (struct ata_port *ap, unsigned int sc_reg); static u32 pdc_sata_scr_read (struct ata_port *ap, unsigned int sc_reg);
static void pdc_sata_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val); static void pdc_sata_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val);
static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent); static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
static void pdc_dma_start(struct ata_queued_cmd *qc); static void pdc_dma_start(struct ata_queued_cmd *qc);
static void pdc20621_dma_start(struct ata_queued_cmd *qc);
static irqreturn_t pdc_interrupt (int irq, void *dev_instance, struct pt_regs *regs); static irqreturn_t pdc_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
static void pdc_eng_timeout(struct ata_port *ap); static void pdc_eng_timeout(struct ata_port *ap);
static void pdc_20621_phy_reset (struct ata_port *ap);
static int pdc_port_start(struct ata_port *ap); static int pdc_port_start(struct ata_port *ap);
static void pdc_port_stop(struct ata_port *ap); static void pdc_port_stop(struct ata_port *ap);
static void pdc_phy_reset(struct ata_port *ap); static void pdc_phy_reset(struct ata_port *ap);
static void pdc_fill_sg(struct ata_queued_cmd *qc); static void pdc_fill_sg(struct ata_queued_cmd *qc);
static void pdc20621_fill_sg(struct ata_queued_cmd *qc);
static void pdc_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf); static void pdc_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf);
static void pdc_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf); static void pdc_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf);
static void pdc20621_host_stop(struct ata_host_set *host_set);
static inline void pdc_dma_complete (struct ata_port *ap, static inline void pdc_dma_complete (struct ata_port *ap,
struct ata_queued_cmd *qc, int have_err); struct ata_queued_cmd *qc, int have_err);
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe);
static int pdc20621_detect_dimm(struct ata_probe_ent *pe);
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe,
u32 device, u32 subaddr, u32 *pdata);
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe);
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe);
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
static Scsi_Host_Template pdc_sata_sht = { static Scsi_Host_Template pdc_sata_sht = {
.module = THIS_MODULE, .module = THIS_MODULE,
...@@ -222,22 +117,6 @@ static struct ata_port_operations pdc_sata_ops = { ...@@ -222,22 +117,6 @@ static struct ata_port_operations pdc_sata_ops = {
.port_stop = pdc_port_stop, .port_stop = pdc_port_stop,
}; };
static struct ata_port_operations pdc_20621_ops = {
.port_disable = ata_port_disable,
.tf_load = pdc_tf_load_mmio,
.tf_read = ata_tf_read_mmio,
.check_status = ata_check_status_mmio,
.exec_command = pdc_exec_command_mmio,
.phy_reset = pdc_20621_phy_reset,
.bmdma_start = pdc20621_dma_start,
.fill_sg = pdc20621_fill_sg,
.eng_timeout = pdc_eng_timeout,
.irq_handler = pdc20621_interrupt,
.port_start = pdc_port_start,
.port_stop = pdc_port_stop,
.host_stop = pdc20621_host_stop,
};
static struct ata_port_info pdc_port_info[] = { static struct ata_port_info pdc_port_info[] = {
/* board_2037x */ /* board_2037x */
{ {
...@@ -258,18 +137,6 @@ static struct ata_port_info pdc_port_info[] = { ...@@ -258,18 +137,6 @@ static struct ata_port_info pdc_port_info[] = {
.udma_mask = 0x7f, /* udma0-6 ; FIXME */ .udma_mask = 0x7f, /* udma0-6 ; FIXME */
.port_ops = &pdc_sata_ops, .port_ops = &pdc_sata_ops,
}, },
/* board_20621 */
{
.sht = &pdc_sata_sht,
.host_flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SRST | ATA_FLAG_MMIO |
PDC_FLAG_20621,
.pio_mask = 0x03, /* pio3-4 */
.udma_mask = 0x7f, /* udma0-6 ; FIXME */
.port_ops = &pdc_20621_ops,
},
}; };
static struct pci_device_id pdc_sata_pci_tbl[] = { static struct pci_device_id pdc_sata_pci_tbl[] = {
...@@ -285,8 +152,6 @@ static struct pci_device_id pdc_sata_pci_tbl[] = { ...@@ -285,8 +152,6 @@ static struct pci_device_id pdc_sata_pci_tbl[] = {
board_20319 }, board_20319 },
{ PCI_VENDOR_ID_PROMISE, 0x3319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, { PCI_VENDOR_ID_PROMISE, 0x3319, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
board_20319 }, board_20319 },
{ PCI_VENDOR_ID_PROMISE, 0x6622, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
board_20621 },
{ } /* terminate list */ { } /* terminate list */
}; };
...@@ -299,15 +164,6 @@ static struct pci_driver pdc_sata_pci_driver = { ...@@ -299,15 +164,6 @@ static struct pci_driver pdc_sata_pci_driver = {
}; };
static void pdc20621_host_stop(struct ata_host_set *host_set)
{
struct pdc_host_priv *hpriv = host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
iounmap(dimm_mmio);
kfree(hpriv);
}
static int pdc_port_start(struct ata_port *ap) static int pdc_port_start(struct ata_port *ap)
{ {
struct pci_dev *pdev = ap->host_set->pdev; struct pci_dev *pdev = ap->host_set->pdev;
...@@ -355,14 +211,6 @@ static void pdc_port_stop(struct ata_port *ap) ...@@ -355,14 +211,6 @@ static void pdc_port_stop(struct ata_port *ap)
} }
static void pdc_20621_phy_reset (struct ata_port *ap)
{
VPRINTK("ENTER\n");
ap->cbl = ATA_CBL_SATA;
ata_port_probe(ap);
ata_bus_reset(ap);
}
static void pdc_reset_port(struct ata_port *ap) static void pdc_reset_port(struct ata_port *ap)
{ {
void *mmio = (void *) ap->ioaddr.cmd_addr + PDC_CTLSTAT; void *mmio = (void *) ap->ioaddr.cmd_addr + PDC_CTLSTAT;
...@@ -407,587 +255,6 @@ static void pdc_sata_scr_write (struct ata_port *ap, unsigned int sc_reg, ...@@ -407,587 +255,6 @@ static void pdc_sata_scr_write (struct ata_port *ap, unsigned int sc_reg,
writel(val, (void *) ap->ioaddr.scr_addr + (sc_reg * 4)); writel(val, (void *) ap->ioaddr.scr_addr + (sc_reg * 4));
} }
enum pdc_packet_bits {
PDC_PKT_READ = (1 << 2),
PDC_PKT_NODATA = (1 << 3),
PDC_PKT_SIZEMASK = (1 << 7) | (1 << 6) | (1 << 5),
PDC_PKT_CLEAR_BSY = (1 << 4),
PDC_PKT_WAIT_DRDY = (1 << 3) | (1 << 4),
PDC_LAST_REG = (1 << 3),
PDC_REG_DEVCTL = (1 << 3) | (1 << 2) | (1 << 1),
};
static inline unsigned int pdc_pkt_header(struct ata_taskfile *tf,
dma_addr_t sg_table,
unsigned int devno, u8 *buf)
{
u8 dev_reg;
u32 *buf32 = (u32 *) buf;
/* set control bits (byte 0), zero delay seq id (byte 3),
* and seq id (byte 2)
*/
switch (tf->protocol) {
case ATA_PROT_DMA:
if (!(tf->flags & ATA_TFLAG_WRITE))
buf32[0] = cpu_to_le32(PDC_PKT_READ);
else
buf32[0] = 0;
break;
case ATA_PROT_NODATA:
buf32[0] = cpu_to_le32(PDC_PKT_NODATA);
break;
default:
BUG();
break;
}
buf32[1] = cpu_to_le32(sg_table); /* S/G table addr */
buf32[2] = 0; /* no next-packet */
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[12] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[13] = dev_reg;
/* device control register */
buf[14] = (1 << 5) | PDC_REG_DEVCTL;
buf[15] = tf->ctl;
return 16; /* offset of next byte */
}
static inline unsigned int pdc_pkt_footer(struct ata_taskfile *tf, u8 *buf,
unsigned int i)
{
if (tf->flags & ATA_TFLAG_DEVICE) {
buf[i++] = (1 << 5) | ATA_REG_DEVICE;
buf[i++] = tf->device;
}
/* and finally the command itself; also includes end-of-pkt marker */
buf[i++] = (1 << 5) | PDC_LAST_REG | ATA_REG_CMD;
buf[i++] = tf->command;
return i;
}
static inline unsigned int pdc_prep_lba28(struct ata_taskfile *tf, u8 *buf, unsigned int i)
{
/* the "(1 << 5)" should be read "(count << 5)" */
/* ATA command block registers */
buf[i++] = (1 << 5) | ATA_REG_FEATURE;
buf[i++] = tf->feature;
buf[i++] = (1 << 5) | ATA_REG_NSECT;
buf[i++] = tf->nsect;
buf[i++] = (1 << 5) | ATA_REG_LBAL;
buf[i++] = tf->lbal;
buf[i++] = (1 << 5) | ATA_REG_LBAM;
buf[i++] = tf->lbam;
buf[i++] = (1 << 5) | ATA_REG_LBAH;
buf[i++] = tf->lbah;
return i;
}
static inline unsigned int pdc_prep_lba48(struct ata_taskfile *tf, u8 *buf, unsigned int i)
{
/* the "(2 << 5)" should be read "(count << 5)" */
/* ATA command block registers */
buf[i++] = (2 << 5) | ATA_REG_FEATURE;
buf[i++] = tf->hob_feature;
buf[i++] = tf->feature;
buf[i++] = (2 << 5) | ATA_REG_NSECT;
buf[i++] = tf->hob_nsect;
buf[i++] = tf->nsect;
buf[i++] = (2 << 5) | ATA_REG_LBAL;
buf[i++] = tf->hob_lbal;
buf[i++] = tf->lbal;
buf[i++] = (2 << 5) | ATA_REG_LBAM;
buf[i++] = tf->hob_lbam;
buf[i++] = tf->lbam;
buf[i++] = (2 << 5) | ATA_REG_LBAH;
buf[i++] = tf->hob_lbah;
buf[i++] = tf->lbah;
return i;
}
static inline void pdc20621_ata_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_APKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output ATA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
VPRINTK("ATA sg addr 0x%x, %d\n", addr, addr);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("ATA PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline void pdc20621_host_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_HPKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output Host DMA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("HOST PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline unsigned int pdc20621_ata_pkt(struct ata_taskfile *tf,
unsigned int devno, u8 *buf,
unsigned int portno)
{
unsigned int i, dw;
u32 *buf32 = (u32 *) buf;
u8 dev_reg;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
i = PDC_DIMM_ATA_PKT;
/*
* Set up ATA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
buf[i++] = PDC_PKT_READ;
else if (tf->protocol == ATA_PROT_NODATA)
buf[i++] = PDC_PKT_NODATA;
else
buf[i++] = 0;
buf[i++] = 0; /* reserved */
buf[i++] = portno + 1; /* seq. id */
buf[i++] = 0xff; /* delay seq. id */
/* dimm dma S/G, and next-pkt */
dw = i >> 2;
buf32[dw] = cpu_to_le32(dimm_sg);
buf32[dw + 1] = 0;
i += 8;
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[i++] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[i++] = dev_reg;
/* device control register */
buf[i++] = (1 << 5) | PDC_REG_DEVCTL;
buf[i++] = tf->ctl;
return i;
}
static inline void pdc20621_host_pkt(struct ata_taskfile *tf, u8 *buf,
unsigned int portno)
{
unsigned int dw;
u32 tmp, *buf32 = (u32 *) buf;
unsigned int host_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PRD;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
VPRINTK("host_sg == 0x%x, %d\n", host_sg, host_sg);
dw = PDC_DIMM_HOST_PKT >> 2;
/*
* Set up Host DMA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
tmp = PDC_PKT_READ;
else
tmp = 0;
tmp |= ((portno + 1 + 4) << 16); /* seq. id */
tmp |= (0xff << 24); /* delay seq. id */
buf32[dw + 0] = cpu_to_le32(tmp);
buf32[dw + 1] = cpu_to_le32(host_sg);
buf32[dw + 2] = cpu_to_le32(dimm_sg);
buf32[dw + 3] = 0;
VPRINTK("HOST PKT @ %x == (0x%x 0x%x 0x%x 0x%x)\n",
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PKT,
buf32[dw + 0],
buf32[dw + 1],
buf32[dw + 2],
buf32[dw + 3]);
}
static void pdc20621_fill_sg(struct ata_queued_cmd *qc)
{
struct scatterlist *sg = qc->sg;
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void *mmio = ap->host_set->mmio_base;
struct pdc_host_priv *hpriv = ap->host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
unsigned int portno = ap->port_no;
unsigned int i, last, idx, total_len = 0, sgt_len;
u32 *buf = (u32 *) &pp->dimm_buf[PDC_DIMM_HEADER_SZ];
VPRINTK("ata%u: ENTER\n", ap->id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Build S/G table
*/
last = qc->n_elem;
idx = 0;
for (i = 0; i < last; i++) {
buf[idx++] = cpu_to_le32(sg_dma_address(&sg[i]));
buf[idx++] = cpu_to_le32(sg_dma_len(&sg[i]));
total_len += sg[i].length;
}
buf[idx - 1] |= cpu_to_le32(ATA_PRD_EOT);
sgt_len = idx * 4;
/*
* Build ATA, host DMA packets
*/
pdc20621_host_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
pdc20621_host_pkt(&qc->tf, &pp->dimm_buf[0], portno);
pdc20621_ata_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP) +
PDC_DIMM_HOST_PRD,
&pp->dimm_buf[PDC_DIMM_HEADER_SZ], sgt_len);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, prd size %u, mmio copied\n", i, sgt_len);
}
static void __pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
void *mmio = host_set->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(pkt_ofs, mmio + PDC_HDMA_PKT_SUBMIT);
readl(mmio + PDC_HDMA_PKT_SUBMIT); /* flush */
}
static void pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host_set->private_data;
unsigned int idx = pp->hdma_prod & PDC_HDMA_Q_MASK;
if (!pp->doing_hdma) {
__pdc20621_push_hdma(qc, seq, pkt_ofs);
pp->doing_hdma = 1;
return;
}
pp->hdma[idx].qc = qc;
pp->hdma[idx].seq = seq;
pp->hdma[idx].pkt_ofs = pkt_ofs;
pp->hdma_prod++;
}
static void pdc20621_pop_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host_set->private_data;
unsigned int idx = pp->hdma_cons & PDC_HDMA_Q_MASK;
/* if nothing on queue, we're done */
if (pp->hdma_prod == pp->hdma_cons) {
pp->doing_hdma = 0;
return;
}
__pdc20621_push_hdma(pp->hdma[idx].qc, pp->hdma[idx].seq,
pp->hdma[idx].pkt_ofs);
pp->hdma_cons++;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_dump_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int port_no = ap->port_no;
struct pdc_host_priv *hpriv = ap->host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
dimm_mmio += (port_no * PDC_DIMM_WINDOW_STEP);
dimm_mmio += PDC_DIMM_HOST_PKT;
printk(KERN_ERR "HDMA[0] == 0x%08X\n", readl(dimm_mmio));
printk(KERN_ERR "HDMA[1] == 0x%08X\n", readl(dimm_mmio + 4));
printk(KERN_ERR "HDMA[2] == 0x%08X\n", readl(dimm_mmio + 8));
printk(KERN_ERR "HDMA[3] == 0x%08X\n", readl(dimm_mmio + 12));
}
#else
static inline void pdc20621_dump_hdma(struct ata_queued_cmd *qc) { }
#endif /* ATA_VERBOSE_DEBUG */
static void pdc20621_dma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
unsigned int port_no = ap->port_no;
void *mmio = host_set->mmio_base;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 seq = (u8) (port_no + 1);
unsigned int doing_hdma = 0, port_ofs;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
VPRINTK("ata%u: ENTER\n", ap->id);
port_ofs = PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
/* if writing, we (1) DMA to DIMM, then (2) do ATA command */
if (rw) {
doing_hdma = 1;
seq += 4;
}
wmb(); /* flush PRD, pkt writes */
if (doing_hdma) {
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq, port_ofs + PDC_DIMM_HOST_PKT);
VPRINTK("queued ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_HOST_PKT,
port_ofs + PDC_DIMM_HOST_PKT,
seq);
} else {
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
VPRINTK("submitted ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_ATA_PKT,
port_ofs + PDC_DIMM_ATA_PKT,
seq);
}
}
static inline unsigned int pdc20621_host_intr( struct ata_port *ap,
struct ata_queued_cmd *qc,
unsigned int doing_hdma,
void *mmio)
{
unsigned int port_no = ap->port_no;
unsigned int port_ofs =
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
u8 status;
unsigned int handled = 0;
VPRINTK("ENTER\n");
if ((qc->tf.protocol == ATA_PROT_DMA) && /* read */
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* step two - DMA from DIMM to host */
if (doing_hdma) {
VPRINTK("ata%u: read hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
pdc_dma_complete(ap, qc, 0);
pdc20621_pop_hdma(qc);
}
/* step one - exec ATA command */
else {
u8 seq = (u8) (port_no + 1 + 4);
VPRINTK("ata%u: read ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit hdma pkt */
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq,
port_ofs + PDC_DIMM_HOST_PKT);
}
handled = 1;
} else if (qc->tf.protocol == ATA_PROT_DMA) { /* write */
/* step one - DMA from host to DIMM */
if (doing_hdma) {
u8 seq = (u8) (port_no + 1);
VPRINTK("ata%u: write hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit ata pkt */
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4));
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
}
/* step two - execute ATA command */
else {
VPRINTK("ata%u: write ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
pdc_dma_complete(ap, qc, 0);
pdc20621_pop_hdma(qc);
}
handled = 1;
/* command completion, but no data xfer */
} else if (qc->tf.protocol == ATA_PROT_NODATA) {
status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
DPRINTK("BUS_NODATA (drv_stat 0x%X)\n", status);
ata_qc_complete(qc, status, 0);
handled = 1;
} else {
ap->stats.idle_irq++;
}
return handled;
}
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
struct ata_port *ap;
u32 mask = 0;
unsigned int i, tmp, port_no;
unsigned int handled = 0;
void *mmio_base;
VPRINTK("ENTER\n");
if (!host_set || !host_set->mmio_base) {
VPRINTK("QUICK EXIT\n");
return IRQ_NONE;
}
mmio_base = host_set->mmio_base;
/* reading should also clear interrupts */
mmio_base += PDC_CHIP0_OFS;
mask = readl(mmio_base + PDC_20621_SEQMASK);
VPRINTK("mask == 0x%x\n", mask);
if (mask == 0xffffffff) {
VPRINTK("QUICK EXIT 2\n");
return IRQ_NONE;
}
mask &= 0xffff; /* only 16 tags possible */
if (!mask) {
VPRINTK("QUICK EXIT 3\n");
return IRQ_NONE;
}
spin_lock(&host_set->lock);
for (i = 1; i < 9; i++) {
port_no = i - 1;
if (port_no > 3)
port_no -= 4;
if (port_no >= host_set->n_ports)
ap = NULL;
else
ap = host_set->ports[port_no];
tmp = mask & (1 << i);
VPRINTK("seq %u, port_no %u, ap %p, tmp %x\n", i, port_no, ap, tmp);
if (tmp && ap && (!(ap->flags & ATA_FLAG_PORT_DISABLED))) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && ((qc->flags & ATA_QCFLAG_POLL) == 0))
handled += pdc20621_host_intr(ap, qc, (i > 4),
mmio_base);
}
}
spin_unlock(&host_set->lock);
VPRINTK("mask == 0x%x\n", mask);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static void pdc_fill_sg(struct ata_queued_cmd *qc) static void pdc_fill_sg(struct ata_queued_cmd *qc)
{ {
struct pdc_port_priv *pp = qc->ap->private_data; struct pdc_port_priv *pp = qc->ap->private_data;
...@@ -1210,456 +477,11 @@ static void pdc_sata_setup_port(struct ata_ioports *port, unsigned long base) ...@@ -1210,456 +477,11 @@ static void pdc_sata_setup_port(struct ata_ioports *port, unsigned long base)
} }
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long) (window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_fromio((char *) psource, (char *) (dimm_mmio + offset / 4),
dist);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
window_size / 4);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
size / 4);
}
}
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long) (window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_toio((char *) (dimm_mmio + offset / 4), (char *) psource, dist);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio((char *) (dimm_mmio), (char *) psource,
window_size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio((char *) (dimm_mmio), (char *) psource, size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
}
}
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe, u32 device,
u32 subaddr, u32 *pdata)
{
void *mmio = pe->mmio_base;
u32 i2creg = 0;
u32 status;
u32 count =0;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i2creg |= device << 24;
i2creg |= subaddr << 16;
/* Set the device and subaddress */
writel(i2creg, mmio + PDC_I2C_ADDR_DATA_OFFSET);
readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
/* Write Control to perform read operation, mask int */
writel(PDC_I2C_READ | PDC_I2C_START | PDC_I2C_MASK_INT,
mmio + PDC_I2C_CONTROL_OFFSET);
for (count = 0; count <= 1000; count ++) {
status = readl(mmio + PDC_I2C_CONTROL_OFFSET);
if (status & PDC_I2C_COMPLETE) {
status = readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
break;
} else if (count == 1000)
return 0;
}
*pdata = (status >> 8) & 0x000000ff;
return 1;
}
static int pdc20621_detect_dimm(struct ata_probe_ent *pe)
{
u32 data=0 ;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_SYSTEM_FREQ, &data)) {
if (data == 100)
return 100;
} else
return 0;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS, 9, &data)) {
if(data <= 0x75)
return 133;
} else
return 0;
return 0;
}
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe)
{
u32 spd0[50];
u32 data = 0;
int size, i;
u8 bdimmsize;
void *mmio = pe->mmio_base;
static const struct {
unsigned int reg;
unsigned int ofs;
} pdc_i2c_read_data [] = {
{ PDC_DIMM_SPD_TYPE, 11 },
{ PDC_DIMM_SPD_FRESH_RATE, 12 },
{ PDC_DIMM_SPD_COLUMN_NUM, 4 },
{ PDC_DIMM_SPD_ATTRIBUTE, 21 },
{ PDC_DIMM_SPD_ROW_NUM, 3 },
{ PDC_DIMM_SPD_BANK_NUM, 17 },
{ PDC_DIMM_SPD_MODULE_ROW, 5 },
{ PDC_DIMM_SPD_ROW_PRE_CHARGE, 27 },
{ PDC_DIMM_SPD_ROW_ACTIVE_DELAY, 28 },
{ PDC_DIMM_SPD_RAS_CAS_DELAY, 29 },
{ PDC_DIMM_SPD_ACTIVE_PRECHARGE, 30 },
{ PDC_DIMM_SPD_CAS_LATENCY, 18 },
};
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
for(i=0; i<ARRAY_SIZE(pdc_i2c_read_data); i++)
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
pdc_i2c_read_data[i].reg,
&spd0[pdc_i2c_read_data[i].ofs]);
data |= (spd0[4] - 8) | ((spd0[21] != 0) << 3) | ((spd0[3]-11) << 4);
data |= ((spd0[17] / 4) << 6) | ((spd0[5] / 2) << 7) |
((((spd0[27] + 9) / 10) - 1) << 8) ;
data |= (((((spd0[29] > spd0[28])
? spd0[29] : spd0[28]) + 9) / 10) - 1) << 10;
data |= ((spd0[30] - spd0[29] + 9) / 10 - 2) << 12;
if (spd0[18] & 0x08)
data |= ((0x03) << 14);
else if (spd0[18] & 0x04)
data |= ((0x02) << 14);
else if (spd0[18] & 0x01)
data |= ((0x01) << 14);
else
data |= (0 << 14);
/*
Calculate the size of bDIMMSize (power of 2) and
merge the DIMM size by program start/end address.
*/
bdimmsize = spd0[4] + (spd0[5] / 2) + spd0[3] + (spd0[17] / 2) + 3;
size = (1 << bdimmsize) >> 20; /* size = xxx(MB) */
data |= (((size / 16) - 1) << 16);
data |= (0 << 23);
data |= 8;
writel(data, mmio + PDC_DIMM0_CONTROL_OFFSET);
readl(mmio + PDC_DIMM0_CONTROL_OFFSET);
return size;
}
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe)
{
u32 data, spd0;
int error, i;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
Set To Default : DIMM Module Global Control Register (0x022259F1)
DIMM Arbitration Disable (bit 20)
DIMM Data/Control Output Driving Selection (bit12 - bit15)
Refresh Enable (bit 17)
*/
data = 0x022259F1;
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
/* Turn on for ECC */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
data |= (0x01 << 16);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
printk(KERN_ERR "Local DIMM ECC Enabled\n");
}
/* DIMM Initialization Select/Enable (bit 18/19) */
data &= (~(1<<18));
data |= (1<<19);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
error = 1;
for (i = 1; i <= 10; i++) { /* polling ~5 secs */
data = readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
if (!(data & (1<<19))) {
error = 0;
break;
}
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout((i * 100) * HZ / 1000);
}
return error;
}
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe)
{
int speed, size, length;
u32 addr,spd0,pci_status;
u32 tmp=0;
u32 time_period=0;
u32 tcount=0;
u32 ticks=0;
u32 clock=0;
u32 fparam=0;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/* Initialize PLL based upon PCI Bus Frequency */
/* Initialize Time Period Register */
writel(0xffffffff, mmio + PDC_TIME_PERIOD);
time_period = readl(mmio + PDC_TIME_PERIOD);
VPRINTK("Time Period Register (0x40): 0x%x\n", time_period);
/* Enable timer */
writel(0x00001a0, mmio + PDC_TIME_CONTROL);
readl(mmio + PDC_TIME_CONTROL);
/* Wait 3 seconds */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(3 * HZ);
/*
When timer is enabled, counter is decreased every internal
clock cycle.
*/
tcount = readl(mmio + PDC_TIME_COUNTER);
VPRINTK("Time Counter Register (0x44): 0x%x\n", tcount);
/*
If SX4 is on PCI-X bus, after 3 seconds, the timer counter
register should be >= (0xffffffff - 3x10^8).
*/
if(tcount >= PCI_X_TCOUNT) {
ticks = (time_period - tcount);
VPRINTK("Num counters 0x%x (%d)\n", ticks, ticks);
clock = (ticks / 300000);
VPRINTK("10 * Internal clk = 0x%x (%d)\n", clock, clock);
clock = (clock * 33);
VPRINTK("10 * Internal clk * 33 = 0x%x (%d)\n", clock, clock);
/* PLL F Param (bit 22:16) */
fparam = (1400000 / clock) - 2;
VPRINTK("PLL F Param: 0x%x (%d)\n", fparam, fparam);
/* OD param = 0x2 (bit 31:30), R param = 0x5 (bit 29:25) */
pci_status = (0x8a001824 | (fparam << 16));
} else
pci_status = PCI_PLL_INIT;
/* Initialize PLL. */
VPRINTK("pci_status: 0x%x\n", pci_status);
writel(pci_status, mmio + PDC_CTL_STATUS);
readl(mmio + PDC_CTL_STATUS);
/*
Read SPD of DIMM by I2C interface,
and program the DIMM Module Controller.
*/
if (!(speed = pdc20621_detect_dimm(pe))) {
printk(KERN_ERR "Detect Local DIMM Fail\n");
return 1; /* DIMM error */
}
VPRINTK("Local DIMM Speed = %d\n", speed);
/* Programming DIMM0 Module Control Register (index_CID0:80h) */
size = pdc20621_prog_dimm0(pe);
VPRINTK("Local DIMM Size = %dMB\n",size);
/* Programming DIMM Module Global Control Register (index_CID0:88h) */
if (pdc20621_prog_dimm_global(pe)) {
printk(KERN_ERR "Programming DIMM Module Global Control Register Fail\n");
return 1;
}
#ifdef ATA_VERBOSE_DEBUG
{
u8 test_parttern1[40] = {0x55,0xAA,'P','r','o','m','i','s','e',' ',
'N','o','t',' ','Y','e','t',' ','D','e','f','i','n','e','d',' ',
'1','.','1','0',
'9','8','0','3','1','6','1','2',0,0};
u8 test_parttern2[40] = {0};
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x10040, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x40, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x10040, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x10040,
40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x40, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
}
#endif
/* ECC initiliazation. */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
VPRINTK("Start ECC initialization\n");
addr = 0;
length = size * 1024 * 1024;
while (addr < length) {
pdc20621_put_to_dimm(pe, (void *) &tmp, addr,
sizeof(u32));
addr += sizeof(u32);
}
VPRINTK("Finish ECC initialization\n");
}
return 0;
}
static void pdc_20621_init(struct ata_probe_ent *pe)
{
u32 tmp;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Select page 0x40 for our 32k DIMM window
*/
tmp = readl(mmio + PDC_20621_DIMM_WINDOW) & 0xffff0000;
tmp |= PDC_PAGE_WINDOW; /* page 40h; arbitrarily selected */
writel(tmp, mmio + PDC_20621_DIMM_WINDOW);
/*
* Reset Host DMA
*/
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp |= PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
udelay(10);
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp &= ~PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
}
static void pdc_host_init(unsigned int chip_id, struct ata_probe_ent *pe) static void pdc_host_init(unsigned int chip_id, struct ata_probe_ent *pe)
{ {
void *mmio = pe->mmio_base; void *mmio = pe->mmio_base;
u32 tmp; u32 tmp;
if (chip_id == board_20621)
BUG();
/* /*
* Except for the hotplug stuff, this is voodoo from the * Except for the hotplug stuff, this is voodoo from the
* Promise driver. Label this entire section * Promise driver. Label this entire section
...@@ -1687,7 +509,7 @@ static void pdc_host_init(unsigned int chip_id, struct ata_probe_ent *pe) ...@@ -1687,7 +509,7 @@ static void pdc_host_init(unsigned int chip_id, struct ata_probe_ent *pe)
readl(mmio + PDC_TBG_MODE); /* flush */ readl(mmio + PDC_TBG_MODE); /* flush */
set_current_state(TASK_UNINTERRUPTIBLE); set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(10)); schedule_timeout(msecs_to_jiffies(10) + 1);
/* adjust slew rate control register. */ /* adjust slew rate control register. */
tmp = readl(mmio + PDC_SLEW_CTL); tmp = readl(mmio + PDC_SLEW_CTL);
...@@ -1701,10 +523,8 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id * ...@@ -1701,10 +523,8 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *
static int printed_version; static int printed_version;
struct ata_probe_ent *probe_ent = NULL; struct ata_probe_ent *probe_ent = NULL;
unsigned long base; unsigned long base;
void *mmio_base, *dimm_mmio = NULL; void *mmio_base;
struct pdc_host_priv *hpriv = NULL;
unsigned int board_idx = (unsigned int) ent->driver_data; unsigned int board_idx = (unsigned int) ent->driver_data;
unsigned int have_20621 = (board_idx == board_20621);
int rc; int rc;
if (!printed_version++) if (!printed_version++)
...@@ -1747,25 +567,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id * ...@@ -1747,25 +567,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *
} }
base = (unsigned long) mmio_base; base = (unsigned long) mmio_base;
if (have_20621) {
hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
if (!hpriv) {
rc = -ENOMEM;
goto err_out_iounmap;
}
memset(hpriv, 0, sizeof(*hpriv));
dimm_mmio = ioremap(pci_resource_start(pdev, 4),
pci_resource_len(pdev, 4));
if (!dimm_mmio) {
kfree(hpriv);
rc = -ENOMEM;
goto err_out_iounmap;
}
hpriv->dimm_mmio = dimm_mmio;
}
probe_ent->sht = pdc_port_info[board_idx].sht; probe_ent->sht = pdc_port_info[board_idx].sht;
probe_ent->host_flags = pdc_port_info[board_idx].host_flags; probe_ent->host_flags = pdc_port_info[board_idx].host_flags;
probe_ent->pio_mask = pdc_port_info[board_idx].pio_mask; probe_ent->pio_mask = pdc_port_info[board_idx].pio_mask;
...@@ -1776,32 +577,22 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id * ...@@ -1776,32 +577,22 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *
probe_ent->irq_flags = SA_SHIRQ; probe_ent->irq_flags = SA_SHIRQ;
probe_ent->mmio_base = mmio_base; probe_ent->mmio_base = mmio_base;
if (have_20621) {
probe_ent->private_data = hpriv;
base += PDC_CHIP0_OFS;
}
pdc_sata_setup_port(&probe_ent->port[0], base + 0x200); pdc_sata_setup_port(&probe_ent->port[0], base + 0x200);
pdc_sata_setup_port(&probe_ent->port[1], base + 0x280); pdc_sata_setup_port(&probe_ent->port[1], base + 0x280);
if (!have_20621) {
probe_ent->port[0].scr_addr = base + 0x400; probe_ent->port[0].scr_addr = base + 0x400;
probe_ent->port[1].scr_addr = base + 0x500; probe_ent->port[1].scr_addr = base + 0x500;
}
/* notice 4-port boards */ /* notice 4-port boards */
switch (board_idx) { switch (board_idx) {
case board_20319: case board_20319:
case board_20621:
probe_ent->n_ports = 4; probe_ent->n_ports = 4;
pdc_sata_setup_port(&probe_ent->port[2], base + 0x300); pdc_sata_setup_port(&probe_ent->port[2], base + 0x300);
pdc_sata_setup_port(&probe_ent->port[3], base + 0x380); pdc_sata_setup_port(&probe_ent->port[3], base + 0x380);
if (!have_20621) {
probe_ent->port[2].scr_addr = base + 0x600; probe_ent->port[2].scr_addr = base + 0x600;
probe_ent->port[3].scr_addr = base + 0x700; probe_ent->port[3].scr_addr = base + 0x700;
}
break; break;
case board_2037x: case board_2037x:
probe_ent->n_ports = 2; probe_ent->n_ports = 2;
...@@ -1814,14 +605,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id * ...@@ -1814,14 +605,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *
pci_set_master(pdev); pci_set_master(pdev);
/* initialize adapter */ /* initialize adapter */
if (have_20621) {
/* initialize local dimm */
if (pdc20621_dimm_init(probe_ent)) {
rc = -ENOMEM;
goto err_out_iounmap_dimm;
}
pdc_20621_init(probe_ent);
} else
pdc_host_init(board_idx, probe_ent); pdc_host_init(board_idx, probe_ent);
/* FIXME: check ata_device_add return value */ /* FIXME: check ata_device_add return value */
...@@ -1830,11 +613,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id * ...@@ -1830,11 +613,6 @@ static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *
return 0; return 0;
err_out_iounmap_dimm: /* only get to this label if 20621 */
kfree(hpriv);
iounmap(dimm_mmio);
err_out_iounmap:
iounmap(mmio_base);
err_out_free_ent: err_out_free_ent:
kfree(probe_ent); kfree(probe_ent);
err_out_regions: err_out_regions:
...@@ -1858,7 +636,7 @@ static void __exit pdc_sata_exit(void) ...@@ -1858,7 +636,7 @@ static void __exit pdc_sata_exit(void)
MODULE_AUTHOR("Jeff Garzik"); MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Promise SATA low-level driver"); MODULE_DESCRIPTION("Promise SATA TX2/TX4 low-level driver");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl); MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl);
......
/*
* sata_promise.h - Promise SATA common definitions and inline funcs
*
* Copyright 2003-2004 Red Hat, Inc.
*
* The contents of this file are subject to the Open
* Software License version 1.1 that can be found at
* http://www.opensource.org/licenses/osl-1.1.txt and is included herein
* by reference.
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License version 2 (the "GPL") as distributed
* in the kernel source COPYING file, in which case the provisions of
* the GPL are applicable instead of the above. If you wish to allow
* the use of your version of this file only under the terms of the
* GPL and not to allow others to use your version of this file under
* the OSL, indicate your decision by deleting the provisions above and
* replace them with the notice and other provisions required by the GPL.
* If you do not delete the provisions above, a recipient may use your
* version of this file under either the OSL or the GPL.
*
*/
#ifndef __SATA_PROMISE_H__
#define __SATA_PROMISE_H__
#include <linux/ata.h>
enum pdc_packet_bits {
PDC_PKT_READ = (1 << 2),
PDC_PKT_NODATA = (1 << 3),
PDC_PKT_SIZEMASK = (1 << 7) | (1 << 6) | (1 << 5),
PDC_PKT_CLEAR_BSY = (1 << 4),
PDC_PKT_WAIT_DRDY = (1 << 3) | (1 << 4),
PDC_LAST_REG = (1 << 3),
PDC_REG_DEVCTL = (1 << 3) | (1 << 2) | (1 << 1),
};
static inline unsigned int pdc_pkt_header(struct ata_taskfile *tf,
dma_addr_t sg_table,
unsigned int devno, u8 *buf)
{
u8 dev_reg;
u32 *buf32 = (u32 *) buf;
/* set control bits (byte 0), zero delay seq id (byte 3),
* and seq id (byte 2)
*/
switch (tf->protocol) {
case ATA_PROT_DMA:
if (!(tf->flags & ATA_TFLAG_WRITE))
buf32[0] = cpu_to_le32(PDC_PKT_READ);
else
buf32[0] = 0;
break;
case ATA_PROT_NODATA:
buf32[0] = cpu_to_le32(PDC_PKT_NODATA);
break;
default:
BUG();
break;
}
buf32[1] = cpu_to_le32(sg_table); /* S/G table addr */
buf32[2] = 0; /* no next-packet */
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[12] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[13] = dev_reg;
/* device control register */
buf[14] = (1 << 5) | PDC_REG_DEVCTL;
buf[15] = tf->ctl;
return 16; /* offset of next byte */
}
static inline unsigned int pdc_pkt_footer(struct ata_taskfile *tf, u8 *buf,
unsigned int i)
{
if (tf->flags & ATA_TFLAG_DEVICE) {
buf[i++] = (1 << 5) | ATA_REG_DEVICE;
buf[i++] = tf->device;
}
/* and finally the command itself; also includes end-of-pkt marker */
buf[i++] = (1 << 5) | PDC_LAST_REG | ATA_REG_CMD;
buf[i++] = tf->command;
return i;
}
static inline unsigned int pdc_prep_lba28(struct ata_taskfile *tf, u8 *buf, unsigned int i)
{
/* the "(1 << 5)" should be read "(count << 5)" */
/* ATA command block registers */
buf[i++] = (1 << 5) | ATA_REG_FEATURE;
buf[i++] = tf->feature;
buf[i++] = (1 << 5) | ATA_REG_NSECT;
buf[i++] = tf->nsect;
buf[i++] = (1 << 5) | ATA_REG_LBAL;
buf[i++] = tf->lbal;
buf[i++] = (1 << 5) | ATA_REG_LBAM;
buf[i++] = tf->lbam;
buf[i++] = (1 << 5) | ATA_REG_LBAH;
buf[i++] = tf->lbah;
return i;
}
static inline unsigned int pdc_prep_lba48(struct ata_taskfile *tf, u8 *buf, unsigned int i)
{
/* the "(2 << 5)" should be read "(count << 5)" */
/* ATA command block registers */
buf[i++] = (2 << 5) | ATA_REG_FEATURE;
buf[i++] = tf->hob_feature;
buf[i++] = tf->feature;
buf[i++] = (2 << 5) | ATA_REG_NSECT;
buf[i++] = tf->hob_nsect;
buf[i++] = tf->nsect;
buf[i++] = (2 << 5) | ATA_REG_LBAL;
buf[i++] = tf->hob_lbal;
buf[i++] = tf->lbal;
buf[i++] = (2 << 5) | ATA_REG_LBAM;
buf[i++] = tf->hob_lbam;
buf[i++] = tf->lbam;
buf[i++] = (2 << 5) | ATA_REG_LBAH;
buf[i++] = tf->hob_lbah;
buf[i++] = tf->lbah;
return i;
}
#endif /* __SATA_PROMISE_H__ */
...@@ -56,7 +56,8 @@ static u32 sis_scr_read (struct ata_port *ap, unsigned int sc_reg); ...@@ -56,7 +56,8 @@ static u32 sis_scr_read (struct ata_port *ap, unsigned int sc_reg);
static void sis_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val); static void sis_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val);
static struct pci_device_id sis_pci_tbl[] = { static struct pci_device_id sis_pci_tbl[] = {
{ PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_180, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sis_180 }, { PCI_VENDOR_ID_SI, 0x180, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sis_180 },
{ PCI_VENDOR_ID_SI, 0x181, PCI_ANY_ID, PCI_ANY_ID, 0, 0, sis_180 },
{ } /* terminate list */ { } /* terminate list */
}; };
......
/*
* sata_sx4.c - Promise SATA
*
* Copyright 2003-2004 Red Hat, Inc.
*
* The contents of this file are subject to the Open
* Software License version 1.1 that can be found at
* http://www.opensource.org/licenses/osl-1.1.txt and is included herein
* by reference.
*
* Alternatively, the contents of this file may be used under the terms
* of the GNU General Public License version 2 (the "GPL") as distributed
* in the kernel source COPYING file, in which case the provisions of
* the GPL are applicable instead of the above. If you wish to allow
* the use of your version of this file only under the terms of the
* GPL and not to allow others to use your version of this file under
* the OSL, indicate your decision by deleting the provisions above and
* replace them with the notice and other provisions required by the GPL.
* If you do not delete the provisions above, a recipient may use your
* version of this file under either the OSL or the GPL.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include "scsi.h"
#include "hosts.h"
#include <linux/libata.h>
#include <asm/io.h>
#include "sata_promise.h"
#define DRV_NAME "sata_sx4"
#define DRV_VERSION "0.50"
enum {
PDC_PRD_TBL = 0x44, /* Direct command DMA table addr */
PDC_PKT_SUBMIT = 0x40, /* Command packet pointer addr */
PDC_HDMA_PKT_SUBMIT = 0x100, /* Host DMA packet pointer addr */
PDC_INT_SEQMASK = 0x40, /* Mask of asserted SEQ INTs */
PDC_HDMA_CTLSTAT = 0x12C, /* Host DMA control / status */
PDC_20621_SEQCTL = 0x400,
PDC_20621_SEQMASK = 0x480,
PDC_20621_GENERAL_CTL = 0x484,
PDC_20621_PAGE_SIZE = (32 * 1024),
/* chosen, not constant, values; we design our own DIMM mem map */
PDC_20621_DIMM_WINDOW = 0x0C, /* page# for 32K DIMM window */
PDC_20621_DIMM_BASE = 0x00200000,
PDC_20621_DIMM_DATA = (64 * 1024),
PDC_DIMM_DATA_STEP = (256 * 1024),
PDC_DIMM_WINDOW_STEP = (8 * 1024),
PDC_DIMM_HOST_PRD = (6 * 1024),
PDC_DIMM_HOST_PKT = (128 * 0),
PDC_DIMM_HPKT_PRD = (128 * 1),
PDC_DIMM_ATA_PKT = (128 * 2),
PDC_DIMM_APKT_PRD = (128 * 3),
PDC_DIMM_HEADER_SZ = PDC_DIMM_APKT_PRD + 128,
PDC_PAGE_WINDOW = 0x40,
PDC_PAGE_DATA = PDC_PAGE_WINDOW +
(PDC_20621_DIMM_DATA / PDC_20621_PAGE_SIZE),
PDC_PAGE_SET = PDC_DIMM_DATA_STEP / PDC_20621_PAGE_SIZE,
PDC_CHIP0_OFS = 0xC0000, /* offset of chip #0 */
PDC_20621_ERR_MASK = (1<<19) | (1<<20) | (1<<21) | (1<<22) |
(1<<23),
board_20621 = 0, /* FastTrak S150 SX4 */
PDC_RESET = (1 << 11), /* HDMA reset */
PDC_MAX_HDMA = 32,
PDC_HDMA_Q_MASK = (PDC_MAX_HDMA - 1),
PDC_DIMM0_SPD_DEV_ADDRESS = 0x50,
PDC_DIMM1_SPD_DEV_ADDRESS = 0x51,
PDC_MAX_DIMM_MODULE = 0x02,
PDC_I2C_CONTROL_OFFSET = 0x48,
PDC_I2C_ADDR_DATA_OFFSET = 0x4C,
PDC_DIMM0_CONTROL_OFFSET = 0x80,
PDC_DIMM1_CONTROL_OFFSET = 0x84,
PDC_SDRAM_CONTROL_OFFSET = 0x88,
PDC_I2C_WRITE = 0x00000000,
PDC_I2C_READ = 0x00000040,
PDC_I2C_START = 0x00000080,
PDC_I2C_MASK_INT = 0x00000020,
PDC_I2C_COMPLETE = 0x00010000,
PDC_I2C_NO_ACK = 0x00100000,
PDC_DIMM_SPD_SUBADDRESS_START = 0x00,
PDC_DIMM_SPD_SUBADDRESS_END = 0x7F,
PDC_DIMM_SPD_ROW_NUM = 3,
PDC_DIMM_SPD_COLUMN_NUM = 4,
PDC_DIMM_SPD_MODULE_ROW = 5,
PDC_DIMM_SPD_TYPE = 11,
PDC_DIMM_SPD_FRESH_RATE = 12,
PDC_DIMM_SPD_BANK_NUM = 17,
PDC_DIMM_SPD_CAS_LATENCY = 18,
PDC_DIMM_SPD_ATTRIBUTE = 21,
PDC_DIMM_SPD_ROW_PRE_CHARGE = 27,
PDC_DIMM_SPD_ROW_ACTIVE_DELAY = 28,
PDC_DIMM_SPD_RAS_CAS_DELAY = 29,
PDC_DIMM_SPD_ACTIVE_PRECHARGE = 30,
PDC_DIMM_SPD_SYSTEM_FREQ = 126,
PDC_CTL_STATUS = 0x08,
PDC_DIMM_WINDOW_CTLR = 0x0C,
PDC_TIME_CONTROL = 0x3C,
PDC_TIME_PERIOD = 0x40,
PDC_TIME_COUNTER = 0x44,
PDC_GENERAL_CTLR = 0x484,
PCI_PLL_INIT = 0x8A531824,
PCI_X_TCOUNT = 0xEE1E5CFF
};
struct pdc_port_priv {
u8 dimm_buf[(ATA_PRD_SZ * ATA_MAX_PRD) + 512];
u8 *pkt;
dma_addr_t pkt_dma;
};
struct pdc_host_priv {
void *dimm_mmio;
unsigned int doing_hdma;
unsigned int hdma_prod;
unsigned int hdma_cons;
struct {
struct ata_queued_cmd *qc;
unsigned int seq;
unsigned long pkt_ofs;
} hdma[32];
};
static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
static void pdc20621_dma_start(struct ata_queued_cmd *qc);
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
static void pdc_eng_timeout(struct ata_port *ap);
static void pdc_20621_phy_reset (struct ata_port *ap);
static int pdc_port_start(struct ata_port *ap);
static void pdc_port_stop(struct ata_port *ap);
static void pdc20621_fill_sg(struct ata_queued_cmd *qc);
static void pdc_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf);
static void pdc_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf);
static void pdc20621_host_stop(struct ata_host_set *host_set);
static inline void pdc_dma_complete (struct ata_port *ap,
struct ata_queued_cmd *qc, int have_err);
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe);
static int pdc20621_detect_dimm(struct ata_probe_ent *pe);
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe,
u32 device, u32 subaddr, u32 *pdata);
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe);
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe);
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe,
void *psource, u32 offset, u32 size);
static Scsi_Host_Template pdc_sata_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.queuecommand = ata_scsi_queuecmd,
.eh_strategy_handler = ata_scsi_error,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.max_sectors = ATA_MAX_SECTORS,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.bios_param = ata_std_bios_param,
};
static struct ata_port_operations pdc_20621_ops = {
.port_disable = ata_port_disable,
.tf_load = pdc_tf_load_mmio,
.tf_read = ata_tf_read_mmio,
.check_status = ata_check_status_mmio,
.exec_command = pdc_exec_command_mmio,
.phy_reset = pdc_20621_phy_reset,
.bmdma_start = pdc20621_dma_start,
.fill_sg = pdc20621_fill_sg,
.eng_timeout = pdc_eng_timeout,
.irq_handler = pdc20621_interrupt,
.port_start = pdc_port_start,
.port_stop = pdc_port_stop,
.host_stop = pdc20621_host_stop,
};
static struct ata_port_info pdc_port_info[] = {
/* board_20621 */
{
.sht = &pdc_sata_sht,
.host_flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_SRST | ATA_FLAG_MMIO,
.pio_mask = 0x03, /* pio3-4 */
.udma_mask = 0x7f, /* udma0-6 ; FIXME */
.port_ops = &pdc_20621_ops,
},
};
static struct pci_device_id pdc_sata_pci_tbl[] = {
{ PCI_VENDOR_ID_PROMISE, 0x6622, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
board_20621 },
{ } /* terminate list */
};
static struct pci_driver pdc_sata_pci_driver = {
.name = DRV_NAME,
.id_table = pdc_sata_pci_tbl,
.probe = pdc_sata_init_one,
.remove = ata_pci_remove_one,
};
static void pdc20621_host_stop(struct ata_host_set *host_set)
{
struct pdc_host_priv *hpriv = host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
iounmap(dimm_mmio);
kfree(hpriv);
}
static int pdc_port_start(struct ata_port *ap)
{
struct pci_dev *pdev = ap->host_set->pdev;
struct pdc_port_priv *pp;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
pp = kmalloc(sizeof(*pp), GFP_KERNEL);
if (!pp) {
rc = -ENOMEM;
goto err_out;
}
memset(pp, 0, sizeof(*pp));
pp->pkt = pci_alloc_consistent(pdev, 128, &pp->pkt_dma);
if (!pp->pkt) {
rc = -ENOMEM;
goto err_out_kfree;
}
ap->private_data = pp;
return 0;
err_out_kfree:
kfree(pp);
err_out:
ata_port_stop(ap);
return rc;
}
static void pdc_port_stop(struct ata_port *ap)
{
struct pci_dev *pdev = ap->host_set->pdev;
struct pdc_port_priv *pp = ap->private_data;
ap->private_data = NULL;
pci_free_consistent(pdev, 128, pp->pkt, pp->pkt_dma);
kfree(pp);
ata_port_stop(ap);
}
static void pdc_20621_phy_reset (struct ata_port *ap)
{
VPRINTK("ENTER\n");
ap->cbl = ATA_CBL_SATA;
ata_port_probe(ap);
ata_bus_reset(ap);
}
static inline void pdc20621_ata_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_APKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output ATA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
VPRINTK("ATA sg addr 0x%x, %d\n", addr, addr);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("ATA PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline void pdc20621_host_sg(struct ata_taskfile *tf, u8 *buf,
unsigned int portno,
unsigned int total_len)
{
u32 addr;
unsigned int dw = PDC_DIMM_HPKT_PRD >> 2;
u32 *buf32 = (u32 *) buf;
/* output Host DMA packet S/G table */
addr = PDC_20621_DIMM_BASE + PDC_20621_DIMM_DATA +
(PDC_DIMM_DATA_STEP * portno);
buf32[dw] = cpu_to_le32(addr);
buf32[dw + 1] = cpu_to_le32(total_len | ATA_PRD_EOT);
VPRINTK("HOST PSG @ %x == (0x%x, 0x%x)\n",
PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD,
buf32[dw], buf32[dw + 1]);
}
static inline unsigned int pdc20621_ata_pkt(struct ata_taskfile *tf,
unsigned int devno, u8 *buf,
unsigned int portno)
{
unsigned int i, dw;
u32 *buf32 = (u32 *) buf;
u8 dev_reg;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_APKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
i = PDC_DIMM_ATA_PKT;
/*
* Set up ATA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
buf[i++] = PDC_PKT_READ;
else if (tf->protocol == ATA_PROT_NODATA)
buf[i++] = PDC_PKT_NODATA;
else
buf[i++] = 0;
buf[i++] = 0; /* reserved */
buf[i++] = portno + 1; /* seq. id */
buf[i++] = 0xff; /* delay seq. id */
/* dimm dma S/G, and next-pkt */
dw = i >> 2;
buf32[dw] = cpu_to_le32(dimm_sg);
buf32[dw + 1] = 0;
i += 8;
if (devno == 0)
dev_reg = ATA_DEVICE_OBS;
else
dev_reg = ATA_DEVICE_OBS | ATA_DEV1;
/* select device */
buf[i++] = (1 << 5) | PDC_PKT_CLEAR_BSY | ATA_REG_DEVICE;
buf[i++] = dev_reg;
/* device control register */
buf[i++] = (1 << 5) | PDC_REG_DEVCTL;
buf[i++] = tf->ctl;
return i;
}
static inline void pdc20621_host_pkt(struct ata_taskfile *tf, u8 *buf,
unsigned int portno)
{
unsigned int dw;
u32 tmp, *buf32 = (u32 *) buf;
unsigned int host_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PRD;
unsigned int dimm_sg = PDC_20621_DIMM_BASE +
(PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HPKT_PRD;
VPRINTK("ENTER, dimm_sg == 0x%x, %d\n", dimm_sg, dimm_sg);
VPRINTK("host_sg == 0x%x, %d\n", host_sg, host_sg);
dw = PDC_DIMM_HOST_PKT >> 2;
/*
* Set up Host DMA packet
*/
if ((tf->protocol == ATA_PROT_DMA) && (!(tf->flags & ATA_TFLAG_WRITE)))
tmp = PDC_PKT_READ;
else
tmp = 0;
tmp |= ((portno + 1 + 4) << 16); /* seq. id */
tmp |= (0xff << 24); /* delay seq. id */
buf32[dw + 0] = cpu_to_le32(tmp);
buf32[dw + 1] = cpu_to_le32(host_sg);
buf32[dw + 2] = cpu_to_le32(dimm_sg);
buf32[dw + 3] = 0;
VPRINTK("HOST PKT @ %x == (0x%x 0x%x 0x%x 0x%x)\n",
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * portno) +
PDC_DIMM_HOST_PKT,
buf32[dw + 0],
buf32[dw + 1],
buf32[dw + 2],
buf32[dw + 3]);
}
static void pdc20621_fill_sg(struct ata_queued_cmd *qc)
{
struct scatterlist *sg = qc->sg;
struct ata_port *ap = qc->ap;
struct pdc_port_priv *pp = ap->private_data;
void *mmio = ap->host_set->mmio_base;
struct pdc_host_priv *hpriv = ap->host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
unsigned int portno = ap->port_no;
unsigned int i, last, idx, total_len = 0, sgt_len;
u32 *buf = (u32 *) &pp->dimm_buf[PDC_DIMM_HEADER_SZ];
VPRINTK("ata%u: ENTER\n", ap->id);
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Build S/G table
*/
last = qc->n_elem;
idx = 0;
for (i = 0; i < last; i++) {
buf[idx++] = cpu_to_le32(sg_dma_address(&sg[i]));
buf[idx++] = cpu_to_le32(sg_dma_len(&sg[i]));
total_len += sg[i].length;
}
buf[idx - 1] |= cpu_to_le32(ATA_PRD_EOT);
sgt_len = idx * 4;
/*
* Build ATA, host DMA packets
*/
pdc20621_host_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
pdc20621_host_pkt(&qc->tf, &pp->dimm_buf[0], portno);
pdc20621_ata_sg(&qc->tf, &pp->dimm_buf[0], portno, total_len);
i = pdc20621_ata_pkt(&qc->tf, qc->dev->devno, &pp->dimm_buf[0], portno);
if (qc->tf.flags & ATA_TFLAG_LBA48)
i = pdc_prep_lba48(&qc->tf, &pp->dimm_buf[0], i);
else
i = pdc_prep_lba28(&qc->tf, &pp->dimm_buf[0], i);
pdc_pkt_footer(&qc->tf, &pp->dimm_buf[0], i);
/* copy three S/G tables and two packets to DIMM MMIO window */
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP),
&pp->dimm_buf, PDC_DIMM_HEADER_SZ);
memcpy_toio(dimm_mmio + (portno * PDC_DIMM_WINDOW_STEP) +
PDC_DIMM_HOST_PRD,
&pp->dimm_buf[PDC_DIMM_HEADER_SZ], sgt_len);
/* force host FIFO dump */
writel(0x00000001, mmio + PDC_20621_GENERAL_CTL);
readl(dimm_mmio); /* MMIO PCI posting flush */
VPRINTK("ata pkt buf ofs %u, prd size %u, mmio copied\n", i, sgt_len);
}
static void __pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
void *mmio = host_set->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(pkt_ofs, mmio + PDC_HDMA_PKT_SUBMIT);
readl(mmio + PDC_HDMA_PKT_SUBMIT); /* flush */
}
static void pdc20621_push_hdma(struct ata_queued_cmd *qc,
unsigned int seq,
u32 pkt_ofs)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host_set->private_data;
unsigned int idx = pp->hdma_prod & PDC_HDMA_Q_MASK;
if (!pp->doing_hdma) {
__pdc20621_push_hdma(qc, seq, pkt_ofs);
pp->doing_hdma = 1;
return;
}
pp->hdma[idx].qc = qc;
pp->hdma[idx].seq = seq;
pp->hdma[idx].pkt_ofs = pkt_ofs;
pp->hdma_prod++;
}
static void pdc20621_pop_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pdc_host_priv *pp = ap->host_set->private_data;
unsigned int idx = pp->hdma_cons & PDC_HDMA_Q_MASK;
/* if nothing on queue, we're done */
if (pp->hdma_prod == pp->hdma_cons) {
pp->doing_hdma = 0;
return;
}
__pdc20621_push_hdma(pp->hdma[idx].qc, pp->hdma[idx].seq,
pp->hdma[idx].pkt_ofs);
pp->hdma_cons++;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_dump_hdma(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int port_no = ap->port_no;
struct pdc_host_priv *hpriv = ap->host_set->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
dimm_mmio += (port_no * PDC_DIMM_WINDOW_STEP);
dimm_mmio += PDC_DIMM_HOST_PKT;
printk(KERN_ERR "HDMA[0] == 0x%08X\n", readl(dimm_mmio));
printk(KERN_ERR "HDMA[1] == 0x%08X\n", readl(dimm_mmio + 4));
printk(KERN_ERR "HDMA[2] == 0x%08X\n", readl(dimm_mmio + 8));
printk(KERN_ERR "HDMA[3] == 0x%08X\n", readl(dimm_mmio + 12));
}
#else
static inline void pdc20621_dump_hdma(struct ata_queued_cmd *qc) { }
#endif /* ATA_VERBOSE_DEBUG */
static void pdc20621_dma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct ata_host_set *host_set = ap->host_set;
unsigned int port_no = ap->port_no;
void *mmio = host_set->mmio_base;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 seq = (u8) (port_no + 1);
unsigned int doing_hdma = 0, port_ofs;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
VPRINTK("ata%u: ENTER\n", ap->id);
port_ofs = PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
/* if writing, we (1) DMA to DIMM, then (2) do ATA command */
if (rw) {
doing_hdma = 1;
seq += 4;
}
wmb(); /* flush PRD, pkt writes */
if (doing_hdma) {
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq, port_ofs + PDC_DIMM_HOST_PKT);
VPRINTK("queued ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_HOST_PKT,
port_ofs + PDC_DIMM_HOST_PKT,
seq);
} else {
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4)); /* flush */
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
VPRINTK("submitted ofs 0x%x (%u), seq %u\n",
port_ofs + PDC_DIMM_ATA_PKT,
port_ofs + PDC_DIMM_ATA_PKT,
seq);
}
}
static inline unsigned int pdc20621_host_intr( struct ata_port *ap,
struct ata_queued_cmd *qc,
unsigned int doing_hdma,
void *mmio)
{
unsigned int port_no = ap->port_no;
unsigned int port_ofs =
PDC_20621_DIMM_BASE + (PDC_DIMM_WINDOW_STEP * port_no);
u8 status;
unsigned int handled = 0;
VPRINTK("ENTER\n");
if ((qc->tf.protocol == ATA_PROT_DMA) && /* read */
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
/* step two - DMA from DIMM to host */
if (doing_hdma) {
VPRINTK("ata%u: read hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
pdc_dma_complete(ap, qc, 0);
pdc20621_pop_hdma(qc);
}
/* step one - exec ATA command */
else {
u8 seq = (u8) (port_no + 1 + 4);
VPRINTK("ata%u: read ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit hdma pkt */
pdc20621_dump_hdma(qc);
pdc20621_push_hdma(qc, seq,
port_ofs + PDC_DIMM_HOST_PKT);
}
handled = 1;
} else if (qc->tf.protocol == ATA_PROT_DMA) { /* write */
/* step one - DMA from host to DIMM */
if (doing_hdma) {
u8 seq = (u8) (port_no + 1);
VPRINTK("ata%u: write hdma, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
/* submit ata pkt */
writel(0x00000001, mmio + PDC_20621_SEQCTL + (seq * 4));
readl(mmio + PDC_20621_SEQCTL + (seq * 4));
writel(port_ofs + PDC_DIMM_ATA_PKT,
(void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
readl((void *) ap->ioaddr.cmd_addr + PDC_PKT_SUBMIT);
}
/* step two - execute ATA command */
else {
VPRINTK("ata%u: write ata, 0x%x 0x%x\n", ap->id,
readl(mmio + 0x104), readl(mmio + PDC_HDMA_CTLSTAT));
pdc_dma_complete(ap, qc, 0);
pdc20621_pop_hdma(qc);
}
handled = 1;
/* command completion, but no data xfer */
} else if (qc->tf.protocol == ATA_PROT_NODATA) {
status = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
DPRINTK("BUS_NODATA (drv_stat 0x%X)\n", status);
ata_qc_complete(qc, status, 0);
handled = 1;
} else {
ap->stats.idle_irq++;
}
return handled;
}
static irqreturn_t pdc20621_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
{
struct ata_host_set *host_set = dev_instance;
struct ata_port *ap;
u32 mask = 0;
unsigned int i, tmp, port_no;
unsigned int handled = 0;
void *mmio_base;
VPRINTK("ENTER\n");
if (!host_set || !host_set->mmio_base) {
VPRINTK("QUICK EXIT\n");
return IRQ_NONE;
}
mmio_base = host_set->mmio_base;
/* reading should also clear interrupts */
mmio_base += PDC_CHIP0_OFS;
mask = readl(mmio_base + PDC_20621_SEQMASK);
VPRINTK("mask == 0x%x\n", mask);
if (mask == 0xffffffff) {
VPRINTK("QUICK EXIT 2\n");
return IRQ_NONE;
}
mask &= 0xffff; /* only 16 tags possible */
if (!mask) {
VPRINTK("QUICK EXIT 3\n");
return IRQ_NONE;
}
spin_lock(&host_set->lock);
for (i = 1; i < 9; i++) {
port_no = i - 1;
if (port_no > 3)
port_no -= 4;
if (port_no >= host_set->n_ports)
ap = NULL;
else
ap = host_set->ports[port_no];
tmp = mask & (1 << i);
VPRINTK("seq %u, port_no %u, ap %p, tmp %x\n", i, port_no, ap, tmp);
if (tmp && ap && (!(ap->flags & ATA_FLAG_PORT_DISABLED))) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->active_tag);
if (qc && ((qc->flags & ATA_QCFLAG_POLL) == 0))
handled += pdc20621_host_intr(ap, qc, (i > 4),
mmio_base);
}
}
spin_unlock(&host_set->lock);
VPRINTK("mask == 0x%x\n", mask);
VPRINTK("EXIT\n");
return IRQ_RETVAL(handled);
}
static inline void pdc_dma_complete (struct ata_port *ap,
struct ata_queued_cmd *qc,
int have_err)
{
u8 err_bit = have_err ? ATA_ERR : 0;
/* get drive status; clear intr; complete txn */
ata_qc_complete(ata_qc_from_tag(ap, ap->active_tag),
ata_wait_idle(ap) | err_bit, 0);
}
static void pdc_eng_timeout(struct ata_port *ap)
{
u8 drv_stat;
struct ata_queued_cmd *qc;
DPRINTK("ENTER\n");
qc = ata_qc_from_tag(ap, ap->active_tag);
if (!qc) {
printk(KERN_ERR "ata%u: BUG: timeout without command\n",
ap->id);
goto out;
}
/* hack alert! We cannot use the supplied completion
* function from inside the ->eh_strategy_handler() thread.
* libata is the only user of ->eh_strategy_handler() in
* any kernel, so the default scsi_done() assumes it is
* not being called from the SCSI EH.
*/
qc->scsidone = scsi_finish_command;
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
printk(KERN_ERR "ata%u: DMA timeout\n", ap->id);
ata_qc_complete(ata_qc_from_tag(ap, ap->active_tag),
ata_wait_idle(ap) | ATA_ERR, 0);
break;
case ATA_PROT_NODATA:
drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x\n",
ap->id, qc->tf.command, drv_stat);
ata_qc_complete(qc, drv_stat, 1);
break;
default:
drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000);
printk(KERN_ERR "ata%u: unknown timeout, cmd 0x%x stat 0x%x\n",
ap->id, qc->tf.command, drv_stat);
ata_qc_complete(qc, drv_stat, 1);
break;
}
out:
DPRINTK("EXIT\n");
}
static void pdc_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
{
if (tf->protocol == ATA_PROT_PIO)
ata_tf_load_mmio(ap, tf);
}
static void pdc_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
{
if (tf->protocol == ATA_PROT_PIO)
ata_exec_command_mmio(ap, tf);
}
static void pdc_sata_setup_port(struct ata_ioports *port, unsigned long base)
{
port->cmd_addr = base;
port->data_addr = base;
port->feature_addr =
port->error_addr = base + 0x4;
port->nsect_addr = base + 0x8;
port->lbal_addr = base + 0xc;
port->lbam_addr = base + 0x10;
port->lbah_addr = base + 0x14;
port->device_addr = base + 0x18;
port->command_addr =
port->status_addr = base + 0x1c;
port->altstatus_addr =
port->ctl_addr = base + 0x38;
}
#ifdef ATA_VERBOSE_DEBUG
static void pdc20621_get_from_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long) (window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_fromio((char *) psource, (char *) (dimm_mmio + offset / 4),
dist);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
window_size / 4);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_fromio((char *) psource, (char *) (dimm_mmio),
size / 4);
}
}
#endif
static void pdc20621_put_to_dimm(struct ata_probe_ent *pe, void *psource,
u32 offset, u32 size)
{
u32 window_size;
u16 idx;
u8 page_mask;
long dist;
void *mmio = pe->mmio_base;
struct pdc_host_priv *hpriv = pe->private_data;
void *dimm_mmio = hpriv->dimm_mmio;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
page_mask = 0x00;
window_size = 0x2000 * 4; /* 32K byte uchar size */
idx = (u16) (offset / window_size);
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
offset -= (idx * window_size);
idx++;
dist = ((long)(s32)(window_size - (offset + size))) >= 0 ? size :
(long) (window_size - offset);
memcpy_toio((char *) (dimm_mmio + offset / 4), (char *) psource, dist);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += dist;
size -= dist;
for (; (long) size >= (long) window_size ;) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio((char *) (dimm_mmio), (char *) psource,
window_size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
psource += window_size;
size -= window_size;
idx ++;
}
if (size) {
writel(((idx) << page_mask), mmio + PDC_DIMM_WINDOW_CTLR);
readl(mmio + PDC_DIMM_WINDOW_CTLR);
memcpy_toio((char *) (dimm_mmio), (char *) psource, size / 4);
writel(0x01, mmio + PDC_GENERAL_CTLR);
readl(mmio + PDC_GENERAL_CTLR);
}
}
static unsigned int pdc20621_i2c_read(struct ata_probe_ent *pe, u32 device,
u32 subaddr, u32 *pdata)
{
void *mmio = pe->mmio_base;
u32 i2creg = 0;
u32 status;
u32 count =0;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
i2creg |= device << 24;
i2creg |= subaddr << 16;
/* Set the device and subaddress */
writel(i2creg, mmio + PDC_I2C_ADDR_DATA_OFFSET);
readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
/* Write Control to perform read operation, mask int */
writel(PDC_I2C_READ | PDC_I2C_START | PDC_I2C_MASK_INT,
mmio + PDC_I2C_CONTROL_OFFSET);
for (count = 0; count <= 1000; count ++) {
status = readl(mmio + PDC_I2C_CONTROL_OFFSET);
if (status & PDC_I2C_COMPLETE) {
status = readl(mmio + PDC_I2C_ADDR_DATA_OFFSET);
break;
} else if (count == 1000)
return 0;
}
*pdata = (status >> 8) & 0x000000ff;
return 1;
}
static int pdc20621_detect_dimm(struct ata_probe_ent *pe)
{
u32 data=0 ;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_SYSTEM_FREQ, &data)) {
if (data == 100)
return 100;
} else
return 0;
if (pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS, 9, &data)) {
if(data <= 0x75)
return 133;
} else
return 0;
return 0;
}
static int pdc20621_prog_dimm0(struct ata_probe_ent *pe)
{
u32 spd0[50];
u32 data = 0;
int size, i;
u8 bdimmsize;
void *mmio = pe->mmio_base;
static const struct {
unsigned int reg;
unsigned int ofs;
} pdc_i2c_read_data [] = {
{ PDC_DIMM_SPD_TYPE, 11 },
{ PDC_DIMM_SPD_FRESH_RATE, 12 },
{ PDC_DIMM_SPD_COLUMN_NUM, 4 },
{ PDC_DIMM_SPD_ATTRIBUTE, 21 },
{ PDC_DIMM_SPD_ROW_NUM, 3 },
{ PDC_DIMM_SPD_BANK_NUM, 17 },
{ PDC_DIMM_SPD_MODULE_ROW, 5 },
{ PDC_DIMM_SPD_ROW_PRE_CHARGE, 27 },
{ PDC_DIMM_SPD_ROW_ACTIVE_DELAY, 28 },
{ PDC_DIMM_SPD_RAS_CAS_DELAY, 29 },
{ PDC_DIMM_SPD_ACTIVE_PRECHARGE, 30 },
{ PDC_DIMM_SPD_CAS_LATENCY, 18 },
};
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
for(i=0; i<ARRAY_SIZE(pdc_i2c_read_data); i++)
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
pdc_i2c_read_data[i].reg,
&spd0[pdc_i2c_read_data[i].ofs]);
data |= (spd0[4] - 8) | ((spd0[21] != 0) << 3) | ((spd0[3]-11) << 4);
data |= ((spd0[17] / 4) << 6) | ((spd0[5] / 2) << 7) |
((((spd0[27] + 9) / 10) - 1) << 8) ;
data |= (((((spd0[29] > spd0[28])
? spd0[29] : spd0[28]) + 9) / 10) - 1) << 10;
data |= ((spd0[30] - spd0[29] + 9) / 10 - 2) << 12;
if (spd0[18] & 0x08)
data |= ((0x03) << 14);
else if (spd0[18] & 0x04)
data |= ((0x02) << 14);
else if (spd0[18] & 0x01)
data |= ((0x01) << 14);
else
data |= (0 << 14);
/*
Calculate the size of bDIMMSize (power of 2) and
merge the DIMM size by program start/end address.
*/
bdimmsize = spd0[4] + (spd0[5] / 2) + spd0[3] + (spd0[17] / 2) + 3;
size = (1 << bdimmsize) >> 20; /* size = xxx(MB) */
data |= (((size / 16) - 1) << 16);
data |= (0 << 23);
data |= 8;
writel(data, mmio + PDC_DIMM0_CONTROL_OFFSET);
readl(mmio + PDC_DIMM0_CONTROL_OFFSET);
return size;
}
static unsigned int pdc20621_prog_dimm_global(struct ata_probe_ent *pe)
{
u32 data, spd0;
int error, i;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
Set To Default : DIMM Module Global Control Register (0x022259F1)
DIMM Arbitration Disable (bit 20)
DIMM Data/Control Output Driving Selection (bit12 - bit15)
Refresh Enable (bit 17)
*/
data = 0x022259F1;
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
/* Turn on for ECC */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
data |= (0x01 << 16);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
printk(KERN_ERR "Local DIMM ECC Enabled\n");
}
/* DIMM Initialization Select/Enable (bit 18/19) */
data &= (~(1<<18));
data |= (1<<19);
writel(data, mmio + PDC_SDRAM_CONTROL_OFFSET);
error = 1;
for (i = 1; i <= 10; i++) { /* polling ~5 secs */
data = readl(mmio + PDC_SDRAM_CONTROL_OFFSET);
if (!(data & (1<<19))) {
error = 0;
break;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((i * 100) * HZ / 1000 + 1);
}
return error;
}
static unsigned int pdc20621_dimm_init(struct ata_probe_ent *pe)
{
int speed, size, length;
u32 addr,spd0,pci_status;
u32 tmp=0;
u32 time_period=0;
u32 tcount=0;
u32 ticks=0;
u32 clock=0;
u32 fparam=0;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/* Initialize PLL based upon PCI Bus Frequency */
/* Initialize Time Period Register */
writel(0xffffffff, mmio + PDC_TIME_PERIOD);
time_period = readl(mmio + PDC_TIME_PERIOD);
VPRINTK("Time Period Register (0x40): 0x%x\n", time_period);
/* Enable timer */
writel(0x00001a0, mmio + PDC_TIME_CONTROL);
readl(mmio + PDC_TIME_CONTROL);
/* Wait 3 seconds */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(3 * HZ);
/*
When timer is enabled, counter is decreased every internal
clock cycle.
*/
tcount = readl(mmio + PDC_TIME_COUNTER);
VPRINTK("Time Counter Register (0x44): 0x%x\n", tcount);
/*
If SX4 is on PCI-X bus, after 3 seconds, the timer counter
register should be >= (0xffffffff - 3x10^8).
*/
if(tcount >= PCI_X_TCOUNT) {
ticks = (time_period - tcount);
VPRINTK("Num counters 0x%x (%d)\n", ticks, ticks);
clock = (ticks / 300000);
VPRINTK("10 * Internal clk = 0x%x (%d)\n", clock, clock);
clock = (clock * 33);
VPRINTK("10 * Internal clk * 33 = 0x%x (%d)\n", clock, clock);
/* PLL F Param (bit 22:16) */
fparam = (1400000 / clock) - 2;
VPRINTK("PLL F Param: 0x%x (%d)\n", fparam, fparam);
/* OD param = 0x2 (bit 31:30), R param = 0x5 (bit 29:25) */
pci_status = (0x8a001824 | (fparam << 16));
} else
pci_status = PCI_PLL_INIT;
/* Initialize PLL. */
VPRINTK("pci_status: 0x%x\n", pci_status);
writel(pci_status, mmio + PDC_CTL_STATUS);
readl(mmio + PDC_CTL_STATUS);
/*
Read SPD of DIMM by I2C interface,
and program the DIMM Module Controller.
*/
if (!(speed = pdc20621_detect_dimm(pe))) {
printk(KERN_ERR "Detect Local DIMM Fail\n");
return 1; /* DIMM error */
}
VPRINTK("Local DIMM Speed = %d\n", speed);
/* Programming DIMM0 Module Control Register (index_CID0:80h) */
size = pdc20621_prog_dimm0(pe);
VPRINTK("Local DIMM Size = %dMB\n",size);
/* Programming DIMM Module Global Control Register (index_CID0:88h) */
if (pdc20621_prog_dimm_global(pe)) {
printk(KERN_ERR "Programming DIMM Module Global Control Register Fail\n");
return 1;
}
#ifdef ATA_VERBOSE_DEBUG
{
u8 test_parttern1[40] = {0x55,0xAA,'P','r','o','m','i','s','e',' ',
'N','o','t',' ','Y','e','t',' ','D','e','f','i','n','e','d',' ',
'1','.','1','0',
'9','8','0','3','1','6','1','2',0,0};
u8 test_parttern2[40] = {0};
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x10040, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern2, 0x40, 40);
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x10040, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x10040,
40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
pdc20621_put_to_dimm(pe, (void *) test_parttern1, 0x40, 40);
pdc20621_get_from_dimm(pe, (void *) test_parttern2, 0x40, 40);
printk(KERN_ERR "%x, %x, %s\n", test_parttern2[0],
test_parttern2[1], &(test_parttern2[2]));
}
#endif
/* ECC initiliazation. */
pdc20621_i2c_read(pe, PDC_DIMM0_SPD_DEV_ADDRESS,
PDC_DIMM_SPD_TYPE, &spd0);
if (spd0 == 0x02) {
VPRINTK("Start ECC initialization\n");
addr = 0;
length = size * 1024 * 1024;
while (addr < length) {
pdc20621_put_to_dimm(pe, (void *) &tmp, addr,
sizeof(u32));
addr += sizeof(u32);
}
VPRINTK("Finish ECC initialization\n");
}
return 0;
}
static void pdc_20621_init(struct ata_probe_ent *pe)
{
u32 tmp;
void *mmio = pe->mmio_base;
/* hard-code chip #0 */
mmio += PDC_CHIP0_OFS;
/*
* Select page 0x40 for our 32k DIMM window
*/
tmp = readl(mmio + PDC_20621_DIMM_WINDOW) & 0xffff0000;
tmp |= PDC_PAGE_WINDOW; /* page 40h; arbitrarily selected */
writel(tmp, mmio + PDC_20621_DIMM_WINDOW);
/*
* Reset Host DMA
*/
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp |= PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
udelay(10);
tmp = readl(mmio + PDC_HDMA_CTLSTAT);
tmp &= ~PDC_RESET;
writel(tmp, mmio + PDC_HDMA_CTLSTAT);
readl(mmio + PDC_HDMA_CTLSTAT); /* flush */
}
static int pdc_sata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int printed_version;
struct ata_probe_ent *probe_ent = NULL;
unsigned long base;
void *mmio_base, *dimm_mmio = NULL;
struct pdc_host_priv *hpriv = NULL;
unsigned int board_idx = (unsigned int) ent->driver_data;
int rc;
if (!printed_version++)
printk(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n");
/*
* If this driver happens to only be useful on Apple's K2, then
* we should check that here as it has a normal Serverworks ID
*/
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out_regions;
probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
if (probe_ent == NULL) {
rc = -ENOMEM;
goto err_out_regions;
}
memset(probe_ent, 0, sizeof(*probe_ent));
probe_ent->pdev = pdev;
INIT_LIST_HEAD(&probe_ent->node);
mmio_base = ioremap(pci_resource_start(pdev, 3),
pci_resource_len(pdev, 3));
if (mmio_base == NULL) {
rc = -ENOMEM;
goto err_out_free_ent;
}
base = (unsigned long) mmio_base;
hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
if (!hpriv) {
rc = -ENOMEM;
goto err_out_iounmap;
}
memset(hpriv, 0, sizeof(*hpriv));
dimm_mmio = ioremap(pci_resource_start(pdev, 4),
pci_resource_len(pdev, 4));
if (!dimm_mmio) {
kfree(hpriv);
rc = -ENOMEM;
goto err_out_iounmap;
}
hpriv->dimm_mmio = dimm_mmio;
probe_ent->sht = pdc_port_info[board_idx].sht;
probe_ent->host_flags = pdc_port_info[board_idx].host_flags;
probe_ent->pio_mask = pdc_port_info[board_idx].pio_mask;
probe_ent->udma_mask = pdc_port_info[board_idx].udma_mask;
probe_ent->port_ops = pdc_port_info[board_idx].port_ops;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = SA_SHIRQ;
probe_ent->mmio_base = mmio_base;
probe_ent->private_data = hpriv;
base += PDC_CHIP0_OFS;
pdc_sata_setup_port(&probe_ent->port[0], base + 0x200);
pdc_sata_setup_port(&probe_ent->port[1], base + 0x280);
/* notice 4-port boards */
switch (board_idx) {
case board_20621:
probe_ent->n_ports = 4;
pdc_sata_setup_port(&probe_ent->port[2], base + 0x300);
pdc_sata_setup_port(&probe_ent->port[3], base + 0x380);
break;
default:
BUG();
break;
}
pci_set_master(pdev);
/* initialize adapter */
/* initialize local dimm */
if (pdc20621_dimm_init(probe_ent)) {
rc = -ENOMEM;
goto err_out_iounmap_dimm;
}
pdc_20621_init(probe_ent);
/* FIXME: check ata_device_add return value */
ata_device_add(probe_ent);
kfree(probe_ent);
return 0;
err_out_iounmap_dimm: /* only get to this label if 20621 */
kfree(hpriv);
iounmap(dimm_mmio);
err_out_iounmap:
iounmap(mmio_base);
err_out_free_ent:
kfree(probe_ent);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
return rc;
}
static int __init pdc_sata_init(void)
{
return pci_module_init(&pdc_sata_pci_driver);
}
static void __exit pdc_sata_exit(void)
{
pci_unregister_driver(&pdc_sata_pci_driver);
}
MODULE_AUTHOR("Jeff Garzik");
MODULE_DESCRIPTION("Promise SATA low-level driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pdc_sata_pci_tbl);
module_init(pdc_sata_init);
module_exit(pdc_sata_exit);
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <asm/io.h> #include <asm/io.h>
#include <linux/ata.h> #include <linux/ata.h>
#include <linux/workqueue.h>
/* /*
* compile-time options * compile-time options
...@@ -113,9 +114,6 @@ enum { ...@@ -113,9 +114,6 @@ enum {
ATA_QCFLAG_SG = (1 << 4), /* have s/g table? */ ATA_QCFLAG_SG = (1 << 4), /* have s/g table? */
ATA_QCFLAG_POLL = (1 << 5), /* polling, no interrupts */ ATA_QCFLAG_POLL = (1 << 5), /* polling, no interrupts */
/* struct ata_engine atomic flags (use test_bit, etc.) */
ATA_EFLG_ACTIVE = 0, /* engine is active */
/* various lengths of time */ /* various lengths of time */
ATA_TMOUT_EDD = 5 * HZ, /* hueristic */ ATA_TMOUT_EDD = 5 * HZ, /* hueristic */
ATA_TMOUT_PIO = 30 * HZ, ATA_TMOUT_PIO = 30 * HZ,
...@@ -144,13 +142,6 @@ enum { ...@@ -144,13 +142,6 @@ enum {
THR_IDLE = (THR_PROBE_FAILED + 1), THR_IDLE = (THR_PROBE_FAILED + 1),
THR_PROBE_SUCCESS = (THR_IDLE + 1), THR_PROBE_SUCCESS = (THR_IDLE + 1),
THR_PROBE_START = (THR_PROBE_SUCCESS + 1), THR_PROBE_START = (THR_PROBE_SUCCESS + 1),
THR_PIO_POLL = (THR_PROBE_START + 1),
THR_PIO_TMOUT = (THR_PIO_POLL + 1),
THR_PIO = (THR_PIO_TMOUT + 1),
THR_PIO_LAST = (THR_PIO + 1),
THR_PIO_LAST_POLL = (THR_PIO_LAST + 1),
THR_PIO_ERR = (THR_PIO_LAST_POLL + 1),
THR_PACKET = (THR_PIO_ERR + 1),
/* SATA port states */ /* SATA port states */
PORT_UNKNOWN = 0, PORT_UNKNOWN = 0,
...@@ -163,6 +154,17 @@ enum { ...@@ -163,6 +154,17 @@ enum {
ATA_QCFLAG_TIMEOUT = (1 << 0), ATA_QCFLAG_TIMEOUT = (1 << 0),
}; };
enum pio_task_states {
PIO_ST_UNKNOWN,
PIO_ST_IDLE,
PIO_ST_POLL,
PIO_ST_TMOUT,
PIO_ST,
PIO_ST_LAST,
PIO_ST_LAST_POLL,
PIO_ST_ERR,
};
/* forward declarations */ /* forward declarations */
struct scsi_device; struct scsi_device;
struct ata_port_operations; struct ata_port_operations;
...@@ -224,7 +226,6 @@ struct ata_queued_cmd { ...@@ -224,7 +226,6 @@ struct ata_queued_cmd {
struct scsi_cmnd *scsicmd; struct scsi_cmnd *scsicmd;
void (*scsidone)(struct scsi_cmnd *); void (*scsidone)(struct scsi_cmnd *);
struct list_head node;
unsigned long flags; /* ATA_QCFLAG_xxx */ unsigned long flags; /* ATA_QCFLAG_xxx */
unsigned int tag; unsigned int tag;
unsigned int n_elem; unsigned int n_elem;
...@@ -239,7 +240,7 @@ struct ata_queued_cmd { ...@@ -239,7 +240,7 @@ struct ata_queued_cmd {
ata_qc_cb_t callback; ata_qc_cb_t callback;
struct semaphore sem; struct completion *waiting;
void *private_data; void *private_data;
}; };
...@@ -271,11 +272,6 @@ struct ata_device { ...@@ -271,11 +272,6 @@ struct ata_device {
u8 write_cmd; /* opcode to use on write */ u8 write_cmd; /* opcode to use on write */
}; };
struct ata_engine {
unsigned long flags;
struct list_head q;
};
struct ata_port { struct ata_port {
struct Scsi_Host *host; /* our co-allocated scsi host */ struct Scsi_Host *host; /* our co-allocated scsi host */
struct ata_port_operations *ops; struct ata_port_operations *ops;
...@@ -296,8 +292,6 @@ struct ata_port { ...@@ -296,8 +292,6 @@ struct ata_port {
unsigned int udma_mask; unsigned int udma_mask;
unsigned int cbl; /* cable type; ATA_CBL_xxx */ unsigned int cbl; /* cable type; ATA_CBL_xxx */
struct ata_engine eng;
struct ata_device device[ATA_MAX_DEVICES]; struct ata_device device[ATA_MAX_DEVICES];
struct ata_queued_cmd qcmd[ATA_MAX_QUEUE]; struct ata_queued_cmd qcmd[ATA_MAX_QUEUE];
...@@ -307,16 +301,17 @@ struct ata_port { ...@@ -307,16 +301,17 @@ struct ata_port {
struct ata_host_stats stats; struct ata_host_stats stats;
struct ata_host_set *host_set; struct ata_host_set *host_set;
struct semaphore sem;
struct semaphore probe_sem; struct semaphore probe_sem;
unsigned int thr_state; unsigned int thr_state;
int time_to_die;
pid_t thr_pid; struct work_struct packet_task;
struct completion thr_exited;
struct semaphore thr_sem; struct work_struct pio_task;
struct timer_list thr_timer; unsigned int pio_task_state;
unsigned long thr_timeout; unsigned long pio_task_timeout;
struct work_struct probe_task;
void *private_data; void *private_data;
}; };
...@@ -392,6 +387,8 @@ extern void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf); ...@@ -392,6 +387,8 @@ extern void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf);
extern void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf);
extern void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf);
extern void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf);
extern void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp);
extern void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf);
extern u8 ata_check_status_pio(struct ata_port *ap); extern u8 ata_check_status_pio(struct ata_port *ap);
extern u8 ata_check_status_mmio(struct ata_port *ap); extern u8 ata_check_status_mmio(struct ata_port *ap);
extern void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf);
......
...@@ -572,7 +572,6 @@ ...@@ -572,7 +572,6 @@
#define PCI_DEVICE_ID_SI_503 0x0008 #define PCI_DEVICE_ID_SI_503 0x0008
#define PCI_DEVICE_ID_SI_ACPI 0x0009 #define PCI_DEVICE_ID_SI_ACPI 0x0009
#define PCI_DEVICE_ID_SI_LPC 0x0018 #define PCI_DEVICE_ID_SI_LPC 0x0018
#define PCI_DEVICE_ID_SI_180 0x0180
#define PCI_DEVICE_ID_SI_5597_VGA 0x0200 #define PCI_DEVICE_ID_SI_5597_VGA 0x0200
#define PCI_DEVICE_ID_SI_6205 0x0205 #define PCI_DEVICE_ID_SI_6205 0x0205
#define PCI_DEVICE_ID_SI_501 0x0406 #define PCI_DEVICE_ID_SI_501 0x0406
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment