Commit ff945afb authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging-2.6:
  Staging: comedi: fix build on arches that don't want comedi drivers
  Staging: comedi: pcmcia irq fixes
  Staging: comedi: ni_pcimio: Added device id for pxi-6225.
  Staging: comedi: ni_65xx.c: fix output inversion problem.
  Staging: comedi: ni_65xx.c: fix insn_bits shift calculation.
  Staging: comedi: s526: fixes for pulse generator
  Staging: comedi: s526: Take account of arch's byte order.
  Staging: comedi: s526: Get rid of global variable 'cmReg'.
  Staging: comedi: s526: Fix number of channels on DIO subdevice
  Staging: comedi: cb_pcidio: fix "section mismatch" error
  Staging: comedi: jr3_pci: Initialize transf variable fully in jr3_pci_poll_subdevice().
  Staging: comedi: Corrected type of a printk argument in resize_async_buffer().
  Staging: p9auth: a few fixes
  Staging: rtl8192e: Add #include <linux/vmalloc.h>
  Staging: iio: Don't build on s390
  Staging: winbond: implement prepare_multicast and fix API usage
  Staging: w35und: Fix ->beacon_int breakage
  Staging: remove cowloop driver
  Staging: remove agnx driver
  Staging: comedi: serial2002: fix include build issue
parents 4c274fff cad9e3c7
......@@ -59,8 +59,6 @@ source "drivers/staging/echo/Kconfig"
source "drivers/staging/poch/Kconfig"
source "drivers/staging/agnx/Kconfig"
source "drivers/staging/otus/Kconfig"
source "drivers/staging/rt2860/Kconfig"
......@@ -129,7 +127,5 @@ source "drivers/staging/sep/Kconfig"
source "drivers/staging/iio/Kconfig"
source "drivers/staging/cowloop/Kconfig"
endif # !STAGING_EXCLUDE_BUILD
endif # STAGING
......@@ -12,7 +12,6 @@ obj-$(CONFIG_W35UND) += winbond/
obj-$(CONFIG_PRISM2_USB) += wlan-ng/
obj-$(CONFIG_ECHO) += echo/
obj-$(CONFIG_POCH) += poch/
obj-$(CONFIG_AGNX) += agnx/
obj-$(CONFIG_OTUS) += otus/
obj-$(CONFIG_RT2860) += rt2860/
obj-$(CONFIG_RT2870) += rt2870/
......@@ -46,4 +45,3 @@ obj-$(CONFIG_VME_BUS) += vme/
obj-$(CONFIG_RAR_REGISTER) += rar/
obj-$(CONFIG_DX_SEP) += sep/
obj-$(CONFIG_IIO) += iio/
obj-$(CONFIG_COWLOOP) += cowloop/
config AGNX
tristate "Wireless Airgo AGNX support"
depends on WLAN_80211 && MAC80211
---help---
This is an experimental driver for Airgo AGNX00 wireless chip.
obj-$(CONFIG_AGNX) += agnx.o
agnx-objs := rf.o \
pci.o \
xmit.o \
table.o \
sta.o \
phy.o
2008 7/18
The RX has can't receive OFDM packet correctly,
Guess it need be do RX calibrate.
before 2008 3/1
1: The RX get too much "CRC failed" pakets, it make the card work very unstable,
2: After running a while, the card will get infinity "RX Frame" and "Error"
interrupt, not know the root reason so far, try to fix it
3: Using two tx queue txd and txm but not only txm.
4: Set the hdr correctly.
5: Try to do recalibrate correvtly
6: To support G mode in future
7: Fix the mac address can't be readed and set correctly in BE machine.
8: Fix include and exclude FCS in promisous mode and manage mode
9: Using sta_notify to notice sta change
10: Turn on frame reception at the end of start
11: Guess the card support HW_MULTICAST_FILTER
12: The tx process should be implment atomic?
13: Using mac80211 function to control the TX&RX LED.
#ifndef AGNX_H_
#define AGNX_H_
#include <linux/io.h>
#include "xmit.h"
#define PFX KBUILD_MODNAME ": "
static inline u32 agnx_read32(void __iomem *mem_region, u32 offset)
{
return ioread32(mem_region + offset);
}
static inline void agnx_write32(void __iomem *mem_region, u32 offset, u32 val)
{
iowrite32(val, mem_region + offset);
}
/* static const struct ieee80211_rate agnx_rates_80211b[] = { */
/* { .rate = 10, */
/* .val = 0xa, */
/* .flags = IEEE80211_RATE_CCK }, */
/* { .rate = 20, */
/* .val = 0x14, */
/* .hw_value = -0x14, */
/* .flags = IEEE80211_RATE_CCK_2 }, */
/* { .rate = 55, */
/* .val = 0x37, */
/* .val2 = -0x37, */
/* .flags = IEEE80211_RATE_CCK_2 }, */
/* { .rate = 110, */
/* .val = 0x6e, */
/* .val2 = -0x6e, */
/* .flags = IEEE80211_RATE_CCK_2 } */
/* }; */
static const struct ieee80211_rate agnx_rates_80211g[] = {
/* { .bitrate = 10, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, */
/* { .bitrate = 20, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, */
/* { .bitrate = 55, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, */
/* { .bitrate = 110, .hw_value = 4, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, */
{ .bitrate = 10, .hw_value = 1, },
{ .bitrate = 20, .hw_value = 2, },
{ .bitrate = 55, .hw_value = 3, },
{ .bitrate = 110, .hw_value = 4,},
{ .bitrate = 60, .hw_value = 0xB, },
{ .bitrate = 90, .hw_value = 0xF, },
{ .bitrate = 120, .hw_value = 0xA },
{ .bitrate = 180, .hw_value = 0xE, },
/* { .bitrate = 240, .hw_value = 0xd, }, */
{ .bitrate = 360, .hw_value = 0xD, },
{ .bitrate = 480, .hw_value = 0x8, },
{ .bitrate = 540, .hw_value = 0xC, },
};
static const struct ieee80211_channel agnx_channels[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
{ .center_freq = 2467, .hw_value = 12, },
{ .center_freq = 2472, .hw_value = 13, },
{ .center_freq = 2484, .hw_value = 14, },
};
#define NUM_DRIVE_MODES 2
/* Agnx operate mode */
enum {
AGNX_MODE_80211A,
AGNX_MODE_80211A_OOB,
AGNX_MODE_80211A_MIMO,
AGNX_MODE_80211B_SHORT,
AGNX_MODE_80211B_LONG,
AGNX_MODE_80211G,
AGNX_MODE_80211G_OOB,
AGNX_MODE_80211G_MIMO,
};
enum {
AGNX_UNINIT,
AGNX_START,
AGNX_STOP,
};
struct agnx_priv {
struct pci_dev *pdev;
struct ieee80211_hw *hw;
spinlock_t lock;
struct mutex mutex;
unsigned int init_status;
void __iomem *ctl; /* pointer to base ram address */
void __iomem *data; /* pointer to mem region #2 */
struct agnx_ring rx;
struct agnx_ring txm;
struct agnx_ring txd;
/* Need volatile? */
u32 irq_status;
struct delayed_work periodic_work; /* Periodic tasks like recalibrate */
struct ieee80211_low_level_stats stats;
/* unsigned int phymode; */
int mode;
int channel;
u8 bssid[ETH_ALEN];
u8 mac_addr[ETH_ALEN];
u8 revid;
struct ieee80211_supported_band band;
};
#define AGNX_CHAINS_MAX 6
#define AGNX_PERIODIC_DELAY 60000 /* unit: ms */
#define LOCAL_STAID 0 /* the station entry for the card itself */
#define BSSID_STAID 1 /* the station entry for the bsssid AP */
#define spi_delay() udelay(40)
#define eeprom_delay() udelay(40)
#define routing_table_delay() udelay(50)
/* PDU pool MEM region #2 */
#define AGNX_PDUPOOL 0x40000 /* PDU pool */
#define AGNX_PDUPOOL_SIZE 0x8000 /* PDU pool size*/
#define AGNX_PDU_TX_WQ 0x41000 /* PDU list TX workqueue */
#define AGNX_PDU_FREE 0x41800 /* Free Pool */
#define PDU_SIZE 0x80 /* Free Pool node size */
#define PDU_FREE_CNT 0xd0 /* Free pool node count */
/* RF stuffs */
extern void rf_chips_init(struct agnx_priv *priv);
extern void spi_rc_write(void __iomem *mem_region, u32 chip_ids, u32 sw);
extern void calibrate_oscillator(struct agnx_priv *priv);
extern void do_calibration(struct agnx_priv *priv);
extern void antenna_calibrate(struct agnx_priv *priv);
extern void __antenna_calibrate(struct agnx_priv *priv);
extern void print_offsets(struct agnx_priv *priv);
extern int agnx_set_channel(struct agnx_priv *priv, unsigned int channel);
#endif /* AGNX_H_ */
#ifndef AGNX_DEBUG_H_
#define AGNX_DEBUG_H_
#include "agnx.h"
#include "phy.h"
#include "sta.h"
#include "xmit.h"
#define AGNX_TRACE printk(KERN_ERR PFX "function:%s line:%d\n", __func__, __LINE__)
#define PRINTK_LE16(prefix, var) printk(KERN_DEBUG PFX #prefix ": " #var " 0x%.4x\n", le16_to_cpu(var))
#define PRINTK_LE32(prefix, var) printk(KERN_DEBUG PFX #prefix ": " #var " 0x%.8x\n", le32_to_cpu(var))
#define PRINTK_U8(prefix, var) printk(KERN_DEBUG PFX #prefix ": " #var " 0x%.2x\n", var)
#define PRINTK_BE16(prefix, var) printk(KERN_DEBUG PFX #prefix ": " #var " 0x%.4x\n", be16_to_cpu(var))
#define PRINTK_BE32(prefix, var) printk(KERN_DEBUG PFX #prefix ": " #var " 0x%.8x\n", be32_to_cpu(var))
#define PRINTK_BITS(prefix, field) printk(KERN_DEBUG PFX #prefix ": " #field ": 0x%x\n", (reg & field) >> field##_SHIFT)
static inline void agnx_bug(char *reason)
{
printk(KERN_ERR PFX "%s\n", reason);
BUG();
}
static inline void agnx_print_desc(struct agnx_desc *desc)
{
u32 reg = be32_to_cpu(desc->frag);
PRINTK_BITS(DESC, PACKET_LEN);
if (reg & FIRST_FRAG) {
PRINTK_BITS(DESC, FIRST_PACKET_MASK);
PRINTK_BITS(DESC, FIRST_RESERV2);
PRINTK_BITS(DESC, FIRST_TKIP_ERROR);
PRINTK_BITS(DESC, FIRST_TKIP_PACKET);
PRINTK_BITS(DESC, FIRST_RESERV1);
PRINTK_BITS(DESC, FIRST_FRAG_LEN);
} else {
PRINTK_BITS(DESC, SUB_RESERV2);
PRINTK_BITS(DESC, SUB_TKIP_ERROR);
PRINTK_BITS(DESC, SUB_TKIP_PACKET);
PRINTK_BITS(DESC, SUB_RESERV1);
PRINTK_BITS(DESC, SUB_FRAG_LEN);
}
PRINTK_BITS(DESC, FIRST_FRAG);
PRINTK_BITS(DESC, LAST_FRAG);
PRINTK_BITS(DESC, OWNER);
}
static inline void dump_ieee80211b_phy_hdr(__be32 _11b0, __be32 _11b1)
{
}
static inline void agnx_print_hdr(struct agnx_hdr *hdr)
{
u32 reg;
int i;
reg = be32_to_cpu(hdr->reg0);
PRINTK_BITS(HDR, RTS);
PRINTK_BITS(HDR, MULTICAST);
PRINTK_BITS(HDR, ACK);
PRINTK_BITS(HDR, TM);
PRINTK_BITS(HDR, RELAY);
PRINTK_BITS(HDR, REVISED_FCS);
PRINTK_BITS(HDR, NEXT_BUFFER_ADDR);
reg = be32_to_cpu(hdr->reg1);
PRINTK_BITS(HDR, MAC_HDR_LEN);
PRINTK_BITS(HDR, DURATION_OVERIDE);
PRINTK_BITS(HDR, PHY_HDR_OVERIDE);
PRINTK_BITS(HDR, CRC_FAIL);
PRINTK_BITS(HDR, SEQUENCE_NUMBER);
PRINTK_BITS(HDR, BUFF_HEAD_ADDR);
reg = be32_to_cpu(hdr->reg2);
PRINTK_BITS(HDR, PDU_COUNT);
PRINTK_BITS(HDR, WEP_KEY);
PRINTK_BITS(HDR, USES_WEP_KEY);
PRINTK_BITS(HDR, KEEP_ALIVE);
PRINTK_BITS(HDR, BUFF_TAIL_ADDR);
reg = be32_to_cpu(hdr->reg3);
PRINTK_BITS(HDR, CTS_11G);
PRINTK_BITS(HDR, RTS_11G);
PRINTK_BITS(HDR, FRAG_SIZE);
PRINTK_BITS(HDR, PAYLOAD_LEN);
PRINTK_BITS(HDR, FRAG_NUM);
reg = be32_to_cpu(hdr->reg4);
PRINTK_BITS(HDR, RELAY_STAID);
PRINTK_BITS(HDR, STATION_ID);
PRINTK_BITS(HDR, WORKQUEUE_ID);
reg = be32_to_cpu(hdr->reg5);
/* printf the route flag */
PRINTK_BITS(HDR, ROUTE_HOST);
PRINTK_BITS(HDR, ROUTE_CARD_CPU);
PRINTK_BITS(HDR, ROUTE_ENCRYPTION);
PRINTK_BITS(HDR, ROUTE_TX);
PRINTK_BITS(HDR, ROUTE_RX1);
PRINTK_BITS(HDR, ROUTE_RX2);
PRINTK_BITS(HDR, ROUTE_COMPRESSION);
PRINTK_BE32(HDR, hdr->_11g0);
PRINTK_BE32(HDR, hdr->_11g1);
PRINTK_BE32(HDR, hdr->_11b0);
PRINTK_BE32(HDR, hdr->_11b1);
dump_ieee80211b_phy_hdr(hdr->_11b0, hdr->_11b1);
/* Fixme */
for (i = 0; i < ARRAY_SIZE(hdr->mac_hdr); i++) {
if (i == 0)
printk(KERN_DEBUG PFX "IEEE80211 HDR: ");
printk("%.2x ", hdr->mac_hdr[i]);
if (i + 1 == ARRAY_SIZE(hdr->mac_hdr))
printk("\n");
}
PRINTK_BE16(HDR, hdr->rts_duration);
PRINTK_BE16(HDR, hdr->last_duration);
PRINTK_BE16(HDR, hdr->sec_last_duration);
PRINTK_BE16(HDR, hdr->other_duration);
PRINTK_BE16(HDR, hdr->tx_other_duration);
PRINTK_BE16(HDR, hdr->last_11g_len);
PRINTK_BE16(HDR, hdr->other_11g_len);
PRINTK_BE16(HDR, hdr->last_11b_len);
PRINTK_BE16(HDR, hdr->other_11b_len);
/* FIXME */
reg = be16_to_cpu(hdr->reg6);
PRINTK_BITS(HDR, MBF);
PRINTK_BITS(HDR, RSVD4);
PRINTK_BE16(HDR, hdr->rx_frag_stat);
PRINTK_BE32(HDR, hdr->time_stamp);
PRINTK_BE32(HDR, hdr->phy_stats_hi);
PRINTK_BE32(HDR, hdr->phy_stats_lo);
PRINTK_BE32(HDR, hdr->mic_key0);
PRINTK_BE32(HDR, hdr->mic_key1);
} /* agnx_print_hdr */
static inline void agnx_print_rx_hdr(struct agnx_hdr *hdr)
{
agnx_print_hdr(hdr);
PRINTK_BE16(HDR, hdr->rx.rx_packet_duration);
PRINTK_BE16(HDR, hdr->rx.replay_cnt);
PRINTK_U8(HDR, hdr->rx_channel);
}
static inline void agnx_print_tx_hdr(struct agnx_hdr *hdr)
{
agnx_print_hdr(hdr);
PRINTK_U8(HDR, hdr->tx.long_retry_limit);
PRINTK_U8(HDR, hdr->tx.short_retry_limit);
PRINTK_U8(HDR, hdr->tx.long_retry_cnt);
PRINTK_U8(HDR, hdr->tx.short_retry_cnt);
PRINTK_U8(HDR, hdr->rx_channel);
}
static inline void
agnx_print_sta_power(struct agnx_priv *priv, unsigned int sta_idx)
{
struct agnx_sta_power power;
u32 reg;
get_sta_power(priv, &power, sta_idx);
reg = le32_to_cpu(power.reg);
PRINTK_BITS(STA_POWER, SIGNAL);
PRINTK_BITS(STA_POWER, RATE);
PRINTK_BITS(STA_POWER, TIFS);
PRINTK_BITS(STA_POWER, EDCF);
PRINTK_BITS(STA_POWER, CHANNEL_BOND);
PRINTK_BITS(STA_POWER, PHY_MODE);
PRINTK_BITS(STA_POWER, POWER_LEVEL);
PRINTK_BITS(STA_POWER, NUM_TRANSMITTERS);
}
static inline void
agnx_print_sta_tx_wq(struct agnx_priv *priv, unsigned int sta_idx, unsigned int wq_idx)
{
struct agnx_sta_tx_wq tx_wq;
u32 reg;
get_sta_tx_wq(priv, &tx_wq, sta_idx, wq_idx);
reg = le32_to_cpu(tx_wq.reg0);
PRINTK_BITS(STA_TX_WQ, TAIL_POINTER);
PRINTK_BITS(STA_TX_WQ, HEAD_POINTER_LOW);
reg = le32_to_cpu(tx_wq.reg3);
PRINTK_BITS(STA_TX_WQ, HEAD_POINTER_HIGH);
PRINTK_BITS(STA_TX_WQ, ACK_POINTER_LOW);
reg = le32_to_cpu(tx_wq.reg1);
PRINTK_BITS(STA_TX_WQ, ACK_POINTER_HIGH);
PRINTK_BITS(STA_TX_WQ, HEAD_TIMOUT_TAIL_PACK_CNT);
PRINTK_BITS(STA_TX_WQ, ACK_TIMOUT_TAIL_PACK_CNT);
reg = le32_to_cpu(tx_wq.reg2);
PRINTK_BITS(STA_TX_WQ, HEAD_TIMOUT_WIN_LIM_BYTE_CNT);
PRINTK_BITS(STA_TX_WQ, HEAD_TIMOUT_WIN_LIM_FRAG_CNT);
PRINTK_BITS(STA_TX_WQ, WORK_QUEUE_ACK_TYPE);
PRINTK_BITS(STA_TX_WQ, WORK_QUEUE_VALID);
}
static inline void agnx_print_sta_traffic(struct agnx_sta_traffic *traffic)
{
u32 reg;
reg = le32_to_cpu(traffic->reg0);
PRINTK_BITS(STA_TRAFFIC, ACK_TIMOUT_CNT);
PRINTK_BITS(STA_TRAFFIC, TRAFFIC_ACK_TYPE);
PRINTK_BITS(STA_TRAFFIC, NEW_PACKET);
PRINTK_BITS(STA_TRAFFIC, TRAFFIC_VALID);
PRINTK_BITS(STA_TRAFFIC, RX_HDR_DESC_POINTER);
reg = le32_to_cpu(traffic->reg1);
PRINTK_BITS(STA_TRAFFIC, RX_PACKET_TIMESTAMP);
PRINTK_BITS(STA_TRAFFIC, TRAFFIC_RESERVED);
PRINTK_BITS(STA_TRAFFIC, SV);
PRINTK_BITS(STA_TRAFFIC, RX_SEQUENCE_NUM);
PRINTK_LE32(STA_TRAFFIC, traffic->tx_replay_cnt_low);
PRINTK_LE16(STA_TRAFFIC, traffic->tx_replay_cnt_high);
PRINTK_LE16(STA_TRAFFIC, traffic->rx_replay_cnt_high);
PRINTK_LE32(STA_TRAFFIC, traffic->rx_replay_cnt_low);
}
static inline void agnx_print_sta(struct agnx_priv *priv, unsigned int sta_idx)
{
struct agnx_sta station;
struct agnx_sta *sta = &station;
u32 reg;
unsigned int i;
get_sta(priv, sta, sta_idx);
for (i = 0; i < 4; i++)
PRINTK_LE32(STA, sta->tx_session_keys[i]);
for (i = 0; i < 4; i++)
PRINTK_LE32(STA, sta->rx_session_keys[i]);
reg = le32_to_cpu(sta->reg);
PRINTK_BITS(STA, ID_1);
PRINTK_BITS(STA, ID_0);
PRINTK_BITS(STA, ENABLE_CONCATENATION);
PRINTK_BITS(STA, ENABLE_DECOMPRESSION);
PRINTK_BITS(STA, STA_RESERVED);
PRINTK_BITS(STA, EAP);
PRINTK_BITS(STA, ED_NULL);
PRINTK_BITS(STA, ENCRYPTION_POLICY);
PRINTK_BITS(STA, DEFINED_KEY_ID);
PRINTK_BITS(STA, FIXED_KEY);
PRINTK_BITS(STA, KEY_VALID);
PRINTK_BITS(STA, STATION_VALID);
PRINTK_LE32(STA, sta->tx_aes_blks_unicast);
PRINTK_LE32(STA, sta->rx_aes_blks_unicast);
PRINTK_LE16(STA, sta->aes_format_err_unicast_cnt);
PRINTK_LE16(STA, sta->aes_replay_unicast);
PRINTK_LE16(STA, sta->aes_decrypt_err_unicast);
PRINTK_LE16(STA, sta->aes_decrypt_err_default);
PRINTK_LE16(STA, sta->single_retry_packets);
PRINTK_LE16(STA, sta->failed_tx_packets);
PRINTK_LE16(STA, sta->muti_retry_packets);
PRINTK_LE16(STA, sta->ack_timeouts);
PRINTK_LE16(STA, sta->frag_tx_cnt);
PRINTK_LE16(STA, sta->rts_brq_sent);
PRINTK_LE16(STA, sta->tx_packets);
PRINTK_LE16(STA, sta->cts_back_timeout);
PRINTK_LE32(STA, sta->phy_stats_high);
PRINTK_LE32(STA, sta->phy_stats_low);
/* for (i = 0; i < 8; i++) */
agnx_print_sta_traffic(sta->traffic + 0);
PRINTK_LE16(STA, sta->traffic_class0_frag_success);
PRINTK_LE16(STA, sta->traffic_class1_frag_success);
PRINTK_LE16(STA, sta->traffic_class2_frag_success);
PRINTK_LE16(STA, sta->traffic_class3_frag_success);
PRINTK_LE16(STA, sta->traffic_class4_frag_success);
PRINTK_LE16(STA, sta->traffic_class5_frag_success);
PRINTK_LE16(STA, sta->traffic_class6_frag_success);
PRINTK_LE16(STA, sta->traffic_class7_frag_success);
PRINTK_LE16(STA, sta->num_frag_non_prime_rates);
PRINTK_LE16(STA, sta->ack_timeout_non_prime_rates);
}
static inline void dump_ieee80211_hdr(struct ieee80211_hdr *hdr, char *tag)
{
u16 fctl;
int hdrlen;
fctl = le16_to_cpu(hdr->frame_control);
switch (fctl & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_DATA:
printk(PFX "%s DATA ", tag);
break;
case IEEE80211_FTYPE_CTL:
printk(PFX "%s CTL ", tag);
break;
case IEEE80211_FTYPE_MGMT:
printk(PFX "%s MGMT ", tag);
switch (fctl & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_ASSOC_REQ:
printk("SubType: ASSOC_REQ ");
break;
case IEEE80211_STYPE_ASSOC_RESP:
printk("SubType: ASSOC_RESP ");
break;
case IEEE80211_STYPE_REASSOC_REQ:
printk("SubType: REASSOC_REQ ");
break;
case IEEE80211_STYPE_REASSOC_RESP:
printk("SubType: REASSOC_RESP ");
break;
case IEEE80211_STYPE_PROBE_REQ:
printk("SubType: PROBE_REQ ");
break;
case IEEE80211_STYPE_PROBE_RESP:
printk("SubType: PROBE_RESP ");
break;
case IEEE80211_STYPE_BEACON:
printk("SubType: BEACON ");
break;
case IEEE80211_STYPE_ATIM:
printk("SubType: ATIM ");
break;
case IEEE80211_STYPE_DISASSOC:
printk("SubType: DISASSOC ");
break;
case IEEE80211_STYPE_AUTH:
printk("SubType: AUTH ");
break;
case IEEE80211_STYPE_DEAUTH:
printk("SubType: DEAUTH ");
break;
case IEEE80211_STYPE_ACTION:
printk("SubType: ACTION ");
break;
default:
printk("SubType: Unknow\n");
}
break;
default:
printk(PFX "%s Packet type: Unknow\n", tag);
}
hdrlen = ieee80211_hdrlen(fctl);
if (hdrlen >= 4)
printk("FC=0x%04x DUR=0x%04x",
fctl, le16_to_cpu(hdr->duration_id));
if (hdrlen >= 10)
printk(" A1=%pM", hdr->addr1);
if (hdrlen >= 16)
printk(" A2=%pM", hdr->addr2);
if (hdrlen >= 24)
printk(" A3=%pM", hdr->addr3);
if (hdrlen >= 30)
printk(" A4=%pM", hdr->addr4);
printk("\n");
}
static inline void dump_txm_registers(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i <= 0x1e8; i += 4)
printk(KERN_DEBUG PFX "TXM: %x---> 0x%.8x\n", i, ioread32(ctl + i));
}
static inline void dump_rxm_registers(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i <= 0x108; i += 4)
printk(KERN_DEBUG PFX "RXM: %x---> 0x%.8x\n", i, ioread32(ctl + 0x2000 + i));
}
static inline void dump_bm_registers(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i <= 0x90; i += 4)
printk(KERN_DEBUG PFX "BM: %x---> 0x%.8x\n", i, ioread32(ctl + 0x2c00 + i));
}
static inline void dump_cir_registers(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i <= 0xb8; i += 4)
printk(KERN_DEBUG PFX "CIR: %x---> 0x%.8x\n", i, ioread32(ctl + 0x3000 + i));
}
#endif /* AGNX_DEBUG_H_ */
/**
* Airgo MIMO wireless driver
*
* Copyright (c) 2007 Li YanBo <dreamfly281@gmail.com>
* Thanks for Jeff Williams <angelbane@gmail.com> do reverse engineer
* works and published the SPECS at http://airgo.wdwconsulting.net/mymoin
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "agnx.h"
#include "debug.h"
#include "xmit.h"
#include "phy.h"
MODULE_AUTHOR("Li YanBo <dreamfly281@gmail.com>");
MODULE_DESCRIPTION("Airgo MIMO PCI wireless driver");
MODULE_LICENSE("GPL");
static struct pci_device_id agnx_pci_id_tbl[] __devinitdata = {
{ PCI_DEVICE(0x17cb, 0x0001) }, /* Beklin F5d8010, Netgear WGM511 etc */
{ PCI_DEVICE(0x17cb, 0x0002) }, /* Netgear Wpnt511 */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, agnx_pci_id_tbl);
static inline void agnx_interrupt_ack(struct agnx_priv *priv, u32 *reason)
{
void __iomem *ctl = priv->ctl;
u32 reg;
if (*reason & AGNX_STAT_RX) {
/* Mark complete RX */
reg = ioread32(ctl + AGNX_CIR_RXCTL);
reg |= 0x4;
iowrite32(reg, ctl + AGNX_CIR_RXCTL);
/* disable Rx interrupt */
}
if (*reason & AGNX_STAT_TX) {
reg = ioread32(ctl + AGNX_CIR_TXDCTL);
if (reg & 0x4) {
iowrite32(reg, ctl + AGNX_CIR_TXDCTL);
*reason |= AGNX_STAT_TXD;
}
reg = ioread32(ctl + AGNX_CIR_TXMCTL);
if (reg & 0x4) {
iowrite32(reg, ctl + AGNX_CIR_TXMCTL);
*reason |= AGNX_STAT_TXM;
}
}
#if 0
if (*reason & AGNX_STAT_X) {
reg = ioread32(ctl + AGNX_INT_STAT);
iowrite32(reg, ctl + AGNX_INT_STAT);
/* FIXME reinit interrupt mask */
reg = 0xc390bf9 & ~IRQ_TX_BEACON;
reg &= ~IRQ_TX_DISABLE;
iowrite32(reg, ctl + AGNX_INT_MASK);
iowrite32(0x800, ctl + AGNX_CIR_BLKCTL);
}
#endif
} /* agnx_interrupt_ack */
static irqreturn_t agnx_interrupt_handler(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct agnx_priv *priv = dev->priv;
void __iomem *ctl = priv->ctl;
irqreturn_t ret = IRQ_NONE;
u32 irq_reason;
spin_lock(&priv->lock);
/* printk(KERN_ERR PFX "Get a interrupt %s\n", __func__); */
if (priv->init_status != AGNX_START)
goto out;
/* FiXME Here has no lock, Is this will lead to race? */
irq_reason = ioread32(ctl + AGNX_CIR_BLKCTL);
if (!(irq_reason & 0x7))
goto out;
ret = IRQ_HANDLED;
priv->irq_status = ioread32(ctl + AGNX_INT_STAT);
/* printk(PFX "Interrupt reason is 0x%x\n", irq_reason); */
/* Make sure the txm and txd flags don't conflict with other unknown
interrupt flag, maybe is not necessary */
irq_reason &= 0xF;
disable_rx_interrupt(priv);
/* TODO Make sure the card finished initialized */
agnx_interrupt_ack(priv, &irq_reason);
if (irq_reason & AGNX_STAT_RX)
handle_rx_irq(priv);
if (irq_reason & AGNX_STAT_TXD)
handle_txd_irq(priv);
if (irq_reason & AGNX_STAT_TXM)
handle_txm_irq(priv);
if (irq_reason & AGNX_STAT_X)
handle_other_irq(priv);
enable_rx_interrupt(priv);
out:
spin_unlock(&priv->lock);
return ret;
} /* agnx_interrupt_handler */
/* FIXME */
static int agnx_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
AGNX_TRACE;
return _agnx_tx(dev->priv, skb);
} /* agnx_tx */
static int agnx_get_mac_address(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
/* Attention! directly read the MAC or other date from EEPROM will
lead to cardbus(WGM511) lock up when write to PM PLL register */
reg = agnx_read32(ctl, 0x3544);
udelay(40);
reg = agnx_read32(ctl, 0x354c);
udelay(50);
/* Get the mac address */
reg = agnx_read32(ctl, 0x3544);
udelay(40);
/* HACK */
reg = cpu_to_le32(reg);
priv->mac_addr[0] = ((u8 *)&reg)[2];
priv->mac_addr[1] = ((u8 *)&reg)[3];
reg = agnx_read32(ctl, 0x3548);
udelay(50);
*((u32 *)(priv->mac_addr + 2)) = cpu_to_le32(reg);
if (!is_valid_ether_addr(priv->mac_addr)) {
printk(KERN_WARNING PFX "read mac %pM\n", priv->mac_addr);
printk(KERN_WARNING PFX "Invalid hwaddr! Using random hwaddr\n");
random_ether_addr(priv->mac_addr);
}
return 0;
} /* agnx_get_mac_address */
static int agnx_alloc_rings(struct agnx_priv *priv)
{
unsigned int len;
AGNX_TRACE;
/* Allocate RX/TXM/TXD rings info */
priv->rx.size = AGNX_RX_RING_SIZE;
priv->txm.size = AGNX_TXM_RING_SIZE;
priv->txd.size = AGNX_TXD_RING_SIZE;
len = priv->rx.size + priv->txm.size + priv->txd.size;
/* priv->rx.info = kzalloc(sizeof(struct agnx_info) * len, GFP_KERNEL); */
priv->rx.info = kzalloc(sizeof(struct agnx_info) * len, GFP_ATOMIC);
if (!priv->rx.info)
return -ENOMEM;
priv->txm.info = priv->rx.info + priv->rx.size;
priv->txd.info = priv->txm.info + priv->txm.size;
/* Allocate RX/TXM/TXD descriptors */
priv->rx.desc = pci_alloc_consistent(priv->pdev, sizeof(struct agnx_desc) * len,
&priv->rx.dma);
if (!priv->rx.desc) {
kfree(priv->rx.info);
return -ENOMEM;
}
priv->txm.desc = priv->rx.desc + priv->rx.size;
priv->txm.dma = priv->rx.dma + sizeof(struct agnx_desc) * priv->rx.size;
priv->txd.desc = priv->txm.desc + priv->txm.size;
priv->txd.dma = priv->txm.dma + sizeof(struct agnx_desc) * priv->txm.size;
return 0;
} /* agnx_alloc_rings */
static void rings_free(struct agnx_priv *priv)
{
unsigned int len = priv->rx.size + priv->txm.size + priv->txd.size;
unsigned long flags;
AGNX_TRACE;
spin_lock_irqsave(&priv->lock, flags);
kfree(priv->rx.info);
pci_free_consistent(priv->pdev, sizeof(struct agnx_desc) * len,
priv->rx.desc, priv->rx.dma);
spin_unlock_irqrestore(&priv->lock, flags);
}
#if 0
static void agnx_periodic_work_handler(struct work_struct *work)
{
struct agnx_priv *priv = container_of(work, struct agnx_priv, periodic_work.work);
/* unsigned long flags; */
unsigned long delay;
/* fixme: using mutex?? */
/* spin_lock_irqsave(&priv->lock, flags); */
/* TODO Recalibrate*/
/* calibrate_oscillator(priv); */
/* antenna_calibrate(priv); */
/* agnx_send_packet(priv, 997); */
/* FIXME */
/* if (debug == 3) */
/* delay = msecs_to_jiffies(AGNX_PERIODIC_DELAY); */
/* else */
delay = msecs_to_jiffies(AGNX_PERIODIC_DELAY);
/* delay = round_jiffies(HZ * 15); */
queue_delayed_work(priv->hw->workqueue, &priv->periodic_work, delay);
/* spin_unlock_irqrestore(&priv->lock, flags); */
}
#endif
static int agnx_start(struct ieee80211_hw *dev)
{
struct agnx_priv *priv = dev->priv;
/* unsigned long delay; */
int err = 0;
AGNX_TRACE;
err = agnx_alloc_rings(priv);
if (err) {
printk(KERN_ERR PFX "Can't alloc RX/TXM/TXD rings\n");
goto out;
}
err = request_irq(priv->pdev->irq, &agnx_interrupt_handler,
IRQF_SHARED, "agnx_pci", dev);
if (err) {
printk(KERN_ERR PFX "Failed to register IRQ handler\n");
rings_free(priv);
goto out;
}
/* mdelay(500); */
might_sleep();
agnx_hw_init(priv);
/* mdelay(500); */
might_sleep();
priv->init_status = AGNX_START;
/* INIT_DELAYED_WORK(&priv->periodic_work, agnx_periodic_work_handler); */
/* delay = msecs_to_jiffies(AGNX_PERIODIC_DELAY); */
/* queue_delayed_work(priv->hw->workqueue, &priv->periodic_work, delay); */
out:
return err;
} /* agnx_start */
static void agnx_stop(struct ieee80211_hw *dev)
{
struct agnx_priv *priv = dev->priv;
AGNX_TRACE;
priv->init_status = AGNX_STOP;
/* make sure hardware will not generate irq */
agnx_hw_reset(priv);
free_irq(priv->pdev->irq, dev);
/* flush_workqueue(priv->hw->workqueue); */
/* cancel_delayed_work_sync(&priv->periodic_work); */
unfill_rings(priv);
rings_free(priv);
}
static int agnx_config(struct ieee80211_hw *dev, u32 changed)
{
struct agnx_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
int channel = ieee80211_frequency_to_channel(conf->channel->center_freq);
AGNX_TRACE;
spin_lock(&priv->lock);
/* FIXME need priv lock? */
if (channel != priv->channel) {
priv->channel = channel;
agnx_set_channel(priv, priv->channel);
}
spin_unlock(&priv->lock);
return 0;
}
static void agnx_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *conf,
u32 changed)
{
struct agnx_priv *priv = dev->priv;
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
if (!(changed & BSS_CHANGED_BSSID))
return;
spin_lock(&priv->lock);
if (memcmp(conf->bssid, priv->bssid, ETH_ALEN)) {
agnx_set_bssid(priv, conf->bssid);
memcpy(priv->bssid, conf->bssid, ETH_ALEN);
hash_write(priv, conf->bssid, BSSID_STAID);
sta_init(priv, BSSID_STAID);
/* FIXME needed? */
sta_power_init(priv, BSSID_STAID);
agnx_write32(ctl, AGNX_BM_MTSM, 0xff & ~0x1);
}
spin_unlock(&priv->lock);
} /* agnx_bss_info_changed */
static void agnx_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_mc_list *mclist)
{
unsigned int new_flags = 0;
*total_flags = new_flags;
/* TODO */
}
static int agnx_add_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct agnx_priv *priv = dev->priv;
AGNX_TRACE;
spin_lock(&priv->lock);
/* FIXME */
if (priv->mode != NL80211_IFTYPE_MONITOR)
return -EOPNOTSUPP;
switch (conf->type) {
case NL80211_IFTYPE_STATION:
priv->mode = conf->type;
break;
default:
return -EOPNOTSUPP;
}
spin_unlock(&priv->lock);
return 0;
}
static void agnx_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct agnx_priv *priv = dev->priv;
AGNX_TRACE;
/* TODO */
priv->mode = NL80211_IFTYPE_MONITOR;
}
static int agnx_get_stats(struct ieee80211_hw *dev,
struct ieee80211_low_level_stats *stats)
{
struct agnx_priv *priv = dev->priv;
AGNX_TRACE;
spin_lock(&priv->lock);
/* TODO !! */
memcpy(stats, &priv->stats, sizeof(*stats));
spin_unlock(&priv->lock);
return 0;
}
static u64 agnx_get_tsft(struct ieee80211_hw *dev)
{
void __iomem *ctl = ((struct agnx_priv *)dev->priv)->ctl;
u32 tsftl;
u64 tsft;
AGNX_TRACE;
/* FIXME */
tsftl = ioread32(ctl + AGNX_TXM_TIMESTAMPLO);
tsft = ioread32(ctl + AGNX_TXM_TIMESTAMPHI);
tsft <<= 32;
tsft |= tsftl;
return tsft;
}
static int agnx_get_tx_stats(struct ieee80211_hw *dev,
struct ieee80211_tx_queue_stats *stats)
{
struct agnx_priv *priv = dev->priv;
AGNX_TRACE;
/* FIXME now we just using txd queue, but should using txm queue too */
stats[0].len = (priv->txd.idx - priv->txd.idx_sent) / 2;
stats[0].limit = priv->txd.size - 2;
stats[0].count = priv->txd.idx / 2;
return 0;
}
static struct ieee80211_ops agnx_ops = {
.tx = agnx_tx,
.start = agnx_start,
.stop = agnx_stop,
.add_interface = agnx_add_interface,
.remove_interface = agnx_remove_interface,
.config = agnx_config,
.bss_info_changed = agnx_bss_info_changed,
.configure_filter = agnx_configure_filter,
.get_stats = agnx_get_stats,
.get_tx_stats = agnx_get_tx_stats,
.get_tsf = agnx_get_tsft
};
static void __devexit agnx_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
struct agnx_priv *priv;
AGNX_TRACE;
if (!dev)
return;
priv = dev->priv;
ieee80211_unregister_hw(dev);
pci_iounmap(pdev, priv->ctl);
pci_iounmap(pdev, priv->data);
pci_release_regions(pdev);
pci_disable_device(pdev);
ieee80211_free_hw(dev);
}
static int __devinit agnx_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *dev;
struct agnx_priv *priv;
int err;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "can't enable pci device\n");
return err;
}
err = pci_request_regions(pdev, "agnx-pci");
if (err) {
dev_err(&pdev->dev, "can't reserve PCI resources\n");
return err;
}
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
dev_err(&pdev->dev, "no suitable DMA available\n");
err = -EIO;
goto err_free_reg;
}
pci_set_master(pdev);
dev = ieee80211_alloc_hw(sizeof(*priv), &agnx_ops);
if (!dev) {
dev_err(&pdev->dev, "ieee80211 alloc failed\n");
err = -ENOMEM;
goto err_free_reg;
}
priv = dev->priv;
memset(priv, 0, sizeof(*priv));
priv->mode = NL80211_IFTYPE_MONITOR;
priv->pdev = pdev;
priv->hw = dev;
spin_lock_init(&priv->lock);
priv->init_status = AGNX_UNINIT;
priv->ctl = pci_iomap(pdev, 0, 0);
/* dev_dbg(&pdev->dev, "MEM1 mapped address is 0x%p\n", priv->ctl); */
if (!priv->ctl) {
dev_err(&pdev->dev, "can't map device memory\n");
err = -ENOMEM;
goto err_free_dev;
}
priv->data = pci_iomap(pdev, 1, 0);
if (!priv->data) {
dev_err(&pdev->dev, "can't map device memory\n");
err = -ENOMEM;
goto err_iounmap2;
}
pci_read_config_byte(pdev, PCI_REVISION_ID, &priv->revid);
priv->band.channels = (struct ieee80211_channel *)agnx_channels;
priv->band.n_channels = ARRAY_SIZE(agnx_channels);
priv->band.bitrates = (struct ieee80211_rate *)agnx_rates_80211g;
priv->band.n_bitrates = ARRAY_SIZE(agnx_rates_80211g);
/* Init ieee802.11 dev */
SET_IEEE80211_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
dev->extra_tx_headroom = sizeof(struct agnx_hdr);
/* FIXME It only include FCS in promious mode but not manage mode */
/* dev->flags = IEEE80211_HW_RX_INCLUDES_FCS; */
dev->channel_change_time = 5000;
dev->max_signal = 100;
/* FIXME */
dev->queues = 1;
agnx_get_mac_address(priv);
SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
/* /\* FIXME *\/ */
/* for (i = 1; i < NUM_DRIVE_MODES; i++) { */
/* err = ieee80211_register_hwmode(dev, &priv->modes[i]); */
/* if (err) { */
/* printk(KERN_ERR PFX "Can't register hwmode\n"); */
/* goto err_iounmap; */
/* } */
/* } */
priv->channel = 1;
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
err = ieee80211_register_hw(dev);
if (err) {
dev_err(&pdev->dev, "can't register hardware\n");
goto err_iounmap;
}
agnx_hw_reset(priv);
dev_info(&pdev->dev, "%s: hwaddr %pM, Rev 0x%02x\n",
wiphy_name(dev->wiphy),
dev->wiphy->perm_addr, priv->revid);
return 0;
err_iounmap:
pci_iounmap(pdev, priv->data);
err_iounmap2:
pci_iounmap(pdev, priv->ctl);
err_free_dev:
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(dev);
err_free_reg:
pci_release_regions(pdev);
pci_disable_device(pdev);
return err;
} /* agnx_pci_probe*/
#ifdef CONFIG_PM
static int agnx_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
AGNX_TRACE;
ieee80211_stop_queues(dev);
agnx_stop(dev);
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int agnx_pci_resume(struct pci_dev *pdev)
{
struct ieee80211_hw *dev = pci_get_drvdata(pdev);
AGNX_TRACE;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
agnx_start(dev);
ieee80211_wake_queues(dev);
return 0;
}
#else
#define agnx_pci_suspend NULL
#define agnx_pci_resume NULL
#endif /* CONFIG_PM */
static struct pci_driver agnx_pci_driver = {
.name = "agnx-pci",
.id_table = agnx_pci_id_tbl,
.probe = agnx_pci_probe,
.remove = __devexit_p(agnx_pci_remove),
.suspend = agnx_pci_suspend,
.resume = agnx_pci_resume,
};
static int __init agnx_pci_init(void)
{
AGNX_TRACE;
return pci_register_driver(&agnx_pci_driver);
}
static void __exit agnx_pci_exit(void)
{
AGNX_TRACE;
pci_unregister_driver(&agnx_pci_driver);
}
module_init(agnx_pci_init);
module_exit(agnx_pci_exit);
/**
* Airgo MIMO wireless driver
*
* Copyright (c) 2007 Li YanBo <dreamfly281@gmail.com>
* Thanks for Jeff Williams <angelbane@gmail.com> do reverse engineer
* works and published the SPECS at http://airgo.wdwconsulting.net/mymoin
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "agnx.h"
#include "debug.h"
#include "phy.h"
#include "table.h"
#include "sta.h"
#include "xmit.h"
u8 read_from_eeprom(struct agnx_priv *priv, u16 address)
{
void __iomem *ctl = priv->ctl;
struct agnx_eeprom cmd;
u32 reg;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = EEPROM_CMD_READ << AGNX_EEPROM_COMMAND_SHIFT;
cmd.address = address;
/* Verify that the Status bit is clear */
/* Read Command and Address are written to the Serial Interface */
iowrite32(*(__le32 *)&cmd, ctl + AGNX_CIR_SERIALITF);
/* Wait for the Status bit to clear again */
eeprom_delay();
/* Read from Data */
reg = ioread32(ctl + AGNX_CIR_SERIALITF);
cmd = *(struct agnx_eeprom *)&reg;
return cmd.data;
}
static int card_full_reset(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
reg = agnx_read32(ctl, AGNX_CIR_BLKCTL);
agnx_write32(ctl, AGNX_CIR_BLKCTL, 0x80);
reg = agnx_read32(ctl, AGNX_CIR_BLKCTL);
return 0;
}
inline void enable_power_saving(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg &= ~0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
}
inline void disable_power_saving(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
}
void disable_receiver(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
/* FIXME Disable the receiver */
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x0);
/* Set gain control reset */
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x1);
/* Reset gain control reset */
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x0);
}
/* Fixme this shoule be disable RX, above is enable RX */
void enable_receiver(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
/* Set adaptive gain control discovery mode */
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
/* Set gain control reset */
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x1);
/* Clear gain control reset */
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x0);
}
static void mac_address_set(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u8 *mac_addr = priv->mac_addr;
u32 reg;
/* FIXME */
reg = (mac_addr[0] << 24) | (mac_addr[1] << 16) | mac_addr[2] << 8 | mac_addr[3];
iowrite32(reg, ctl + AGNX_RXM_MACHI);
reg = (mac_addr[4] << 8) | mac_addr[5];
iowrite32(reg, ctl + AGNX_RXM_MACLO);
}
static void receiver_bssid_set(struct agnx_priv *priv, const u8 *bssid)
{
void __iomem *ctl = priv->ctl;
u32 reg;
disable_receiver(priv);
/* FIXME */
reg = bssid[0] << 24 | (bssid[1] << 16) | (bssid[2] << 8) | bssid[3];
iowrite32(reg, ctl + AGNX_RXM_BSSIDHI);
reg = (bssid[4] << 8) | bssid[5];
iowrite32(reg, ctl + AGNX_RXM_BSSIDLO);
/* Enable the receiver */
enable_receiver(priv);
/* Clear the TSF */
/* agnx_write32(ctl, AGNX_TXM_TSFLO, 0x0); */
/* agnx_write32(ctl, AGNX_TXM_TSFHI, 0x0); */
/* Clear the TBTT */
agnx_write32(ctl, AGNX_TXM_TBTTLO, 0x0);
agnx_write32(ctl, AGNX_TXM_TBTTHI, 0x0);
disable_receiver(priv);
} /* receiver_bssid_set */
static void band_management_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
void __iomem *data = priv->data;
u32 reg;
int i;
AGNX_TRACE;
agnx_write32(ctl, AGNX_BM_TXWADDR, AGNX_PDU_TX_WQ);
agnx_write32(ctl, AGNX_CIR_ADDRWIN, 0x0);
memset_io(data + AGNX_PDUPOOL, 0x0, AGNX_PDUPOOL_SIZE);
agnx_write32(ctl, AGNX_BM_BMCTL, 0x200);
agnx_write32(ctl, AGNX_BM_CIPDUWCNT, 0x40);
agnx_write32(ctl, AGNX_BM_SPPDUWCNT, 0x2);
agnx_write32(ctl, AGNX_BM_RFPPDUWCNT, 0x0);
agnx_write32(ctl, AGNX_BM_RHPPDUWCNT, 0x22);
/* FIXME Initialize the Free Pool Linked List */
/* 1. Write the Address of the Next Node ((0x41800 + node*size)/size)
to the first word of each node. */
for (i = 0; i < PDU_FREE_CNT; i++) {
iowrite32((AGNX_PDU_FREE + (i+1)*PDU_SIZE)/PDU_SIZE,
data + AGNX_PDU_FREE + (PDU_SIZE * i));
/* The last node should be set to 0x0 */
if ((i + 1) == PDU_FREE_CNT)
memset_io(data + AGNX_PDU_FREE + (PDU_SIZE * i),
0x0, PDU_SIZE);
}
/* Head is First Pool address (0x41800) / size (0x80) */
agnx_write32(ctl, AGNX_BM_FPLHP, AGNX_PDU_FREE/PDU_SIZE);
/* Tail is Last Pool Address (0x47f80) / size (0x80) */
agnx_write32(ctl, AGNX_BM_FPLTP, 0x47f80/PDU_SIZE);
/* Count is Number of Nodes in the Pool (0xd0) */
agnx_write32(ctl, AGNX_BM_FPCNT, PDU_FREE_CNT);
/* Start all workqueue */
agnx_write32(ctl, AGNX_BM_CIWQCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_CPULWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_CPUHWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_CPUTXWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_CPURXWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_SPRXWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_SPTXWCTL, 0x80000);
agnx_write32(ctl, AGNX_BM_RFPWCTL, 0x80000);
/* Enable the Band Management */
reg = agnx_read32(ctl, AGNX_BM_BMCTL);
reg |= 0x1;
agnx_write32(ctl, AGNX_BM_BMCTL, reg);
} /* band_managment_init */
static void system_itf_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, 0x0);
agnx_write32(ctl, AGNX_PM_TESTPHY, 0x11e143a);
if (priv->revid == 0) {
reg = agnx_read32(ctl, AGNX_SYSITF_SYSMODE);
reg |= 0x11;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, reg);
}
/* ??? What is that means? it should difference for differice type
of cards */
agnx_write32(ctl, AGNX_CIR_SERIALITF, 0xfff81006);
agnx_write32(ctl, AGNX_SYSITF_GPIOIN, 0x1f0000);
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, 0x5);
reg = agnx_read32(ctl, AGNX_SYSITF_GPIOIN);
}
static void encryption_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
agnx_write32(ctl, AGNX_ENCRY_WEPKEY0, 0x0);
agnx_write32(ctl, AGNX_ENCRY_WEPKEY1, 0x0);
agnx_write32(ctl, AGNX_ENCRY_WEPKEY2, 0x0);
agnx_write32(ctl, AGNX_ENCRY_WEPKEY3, 0x0);
agnx_write32(ctl, AGNX_ENCRY_CCMRECTL, 0x8);
}
static void tx_management_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
void __iomem *data = priv->data;
u32 reg;
AGNX_TRACE;
/* Fill out the ComputationalEngineLookupTable
* starting at memory #2 offset 0x800
*/
tx_engine_lookup_tbl_init(priv);
memset_io(data + 0x1000, 0, 0xfe0);
/* Enable Transmission Management Functions */
agnx_write32(ctl, AGNX_TXM_ETMF, 0x3ff);
/* Write 0x3f to Transmission Template */
agnx_write32(ctl, AGNX_TXM_TXTEMP, 0x3f);
if (priv->revid >= 2)
agnx_write32(ctl, AGNX_TXM_SIFSPIFS, 0x1e140a0b);
else
agnx_write32(ctl, AGNX_TXM_SIFSPIFS, 0x1e190a0b);
reg = agnx_read32(ctl, AGNX_TXM_TIFSEIFS);
reg &= 0xff00;
reg |= 0xb;
agnx_write32(ctl, AGNX_TXM_TIFSEIFS, reg);
reg = agnx_read32(ctl, AGNX_TXM_TIFSEIFS);
reg &= 0xffff00ff;
reg |= 0xa00;
agnx_write32(ctl, AGNX_TXM_TIFSEIFS, reg);
/* Enable TIFS */
agnx_write32(ctl, AGNX_TXM_CTL, 0x40000);
reg = agnx_read32(ctl, AGNX_TXM_TIFSEIFS);
reg &= 0xff00ffff;
reg |= 0x510000;
agnx_write32(ctl, AGNX_TXM_TIFSEIFS, reg);
reg = agnx_read32(ctl, AGNX_TXM_PROBDELAY);
reg &= 0xff00ffff;
agnx_write32(ctl, AGNX_TXM_PROBDELAY, reg);
reg = agnx_read32(ctl, AGNX_TXM_TIFSEIFS);
reg &= 0x00ffffff;
reg |= 0x1c000000;
agnx_write32(ctl, AGNX_TXM_TIFSEIFS, reg);
reg = agnx_read32(ctl, AGNX_TXM_PROBDELAY);
reg &= 0x00ffffff;
reg |= 0x01000000;
agnx_write32(ctl, AGNX_TXM_PROBDELAY, reg);
/* # Set DIF 0-1,2-3,4-5,6-7 to defaults */
agnx_write32(ctl, AGNX_TXM_DIF01, 0x321d321d);
agnx_write32(ctl, AGNX_TXM_DIF23, 0x321d321d);
agnx_write32(ctl, AGNX_TXM_DIF45, 0x321d321d);
agnx_write32(ctl, AGNX_TXM_DIF67, 0x321d321d);
/* Max Ack timeout limit */
agnx_write32(ctl, AGNX_TXM_MAXACKTIM, 0x1e19);
/* Max RX Data Timeout count, */
reg = agnx_read32(ctl, AGNX_TXM_MAXRXTIME);
reg &= 0xffff0000;
reg |= 0xff;
agnx_write32(ctl, AGNX_TXM_MAXRXTIME, reg);
/* CF poll RX Timeout count */
reg = agnx_read32(ctl, AGNX_TXM_CFPOLLRXTIM);
reg &= 0xffff;
reg |= 0xff0000;
agnx_write32(ctl, AGNX_TXM_CFPOLLRXTIM, reg);
/* Max Timeout Exceeded count, */
reg = agnx_read32(ctl, AGNX_TXM_MAXTIMOUT);
reg &= 0xff00ffff;
reg |= 0x190000;
agnx_write32(ctl, AGNX_TXM_MAXTIMOUT, reg);
/* CF ack timeout limit for 11b */
reg = agnx_read32(ctl, AGNX_TXM_CFACKT11B);
reg &= 0xff00;
reg |= 0x1e;
agnx_write32(ctl, AGNX_TXM_CFACKT11B, reg);
/* Max CF Poll Timeout Count */
reg = agnx_read32(ctl, AGNX_TXM_CFPOLLRXTIM);
reg &= 0xffff0000;
reg |= 0x19;
agnx_write32(ctl, AGNX_TXM_CFPOLLRXTIM, reg);
/* CF Poll RX Timeout Count */
reg = agnx_read32(ctl, AGNX_TXM_CFPOLLRXTIM);
reg &= 0xffff0000;
reg |= 0x1e;
agnx_write32(ctl, AGNX_TXM_CFPOLLRXTIM, reg);
/* # write default to */
/* 1. Schedule Empty Count */
agnx_write32(ctl, AGNX_TXM_SCHEMPCNT, 0x5);
/* 2. CFP Period Count */
agnx_write32(ctl, AGNX_TXM_CFPERCNT, 0x1);
/* 3. CFP MDV */
agnx_write32(ctl, AGNX_TXM_CFPMDV, 0x10000);
/* Probe Delay */
reg = agnx_read32(ctl, AGNX_TXM_PROBDELAY);
reg &= 0xffff0000;
reg |= 0x400;
agnx_write32(ctl, AGNX_TXM_PROBDELAY, reg);
/* Max CCA count Slot */
reg = agnx_read32(ctl, AGNX_TXM_MAXCCACNTSLOT);
reg &= 0xffff00ff;
reg |= 0x900;
agnx_write32(ctl, AGNX_TXM_MAXCCACNTSLOT, reg);
/* Slot limit/1 msec Limit */
reg = agnx_read32(ctl, AGNX_TXM_SLOTLIMIT);
reg &= 0xff00ffff;
reg |= 0x140077;
agnx_write32(ctl, AGNX_TXM_SLOTLIMIT, reg);
/* # Set CW #(0-7) to default */
agnx_write32(ctl, AGNX_TXM_CW0, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW1, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW2, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW3, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW4, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW5, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW6, 0xff0007);
agnx_write32(ctl, AGNX_TXM_CW7, 0xff0007);
/* # Set Short/Long limit #(0-7) to default */
agnx_write32(ctl, AGNX_TXM_SLBEALIM0, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM1, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM2, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM3, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM4, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM5, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM6, 0xa000a);
agnx_write32(ctl, AGNX_TXM_SLBEALIM7, 0xa000a);
reg = agnx_read32(ctl, AGNX_TXM_CTL);
reg |= 0x1400;
agnx_write32(ctl, AGNX_TXM_CTL, reg);
/* Wait for bit 0 in Control Reg to clear */
udelay(80);
reg = agnx_read32(ctl, AGNX_TXM_CTL);
/* Or 0x18000 to Control reg */
reg = agnx_read32(ctl, AGNX_TXM_CTL);
reg |= 0x18000;
agnx_write32(ctl, AGNX_TXM_CTL, reg);
/* Wait for bit 0 in Control Reg to clear */
udelay(80);
reg = agnx_read32(ctl, AGNX_TXM_CTL);
/* Set Listen Interval Count to default */
agnx_write32(ctl, AGNX_TXM_LISINTERCNT, 0x1);
/* Set DTIM period count to default */
agnx_write32(ctl, AGNX_TXM_DTIMPERICNT, 0x2000);
} /* tx_management_init */
static void rx_management_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
/* Initialize the Routing Table */
routing_table_init(priv);
if (priv->revid >= 3) {
agnx_write32(ctl, 0x2074, 0x1f171710);
agnx_write32(ctl, 0x2078, 0x10100d0d);
agnx_write32(ctl, 0x207c, 0x11111010);
} else {
agnx_write32(ctl, AGNX_RXM_DELAY11, 0x0);
}
agnx_write32(ctl, AGNX_RXM_REQRATE, 0x8195e00);
}
static void agnx_timer_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
AGNX_TRACE;
/* /\* Write 0x249f00 (tick duration?) to Timer 1 *\/ */
/* agnx_write32(ctl, AGNX_TIMCTL_TIMER1, 0x249f00); */
/* /\* Write 0xe2 to Timer 1 Control *\/ */
/* agnx_write32(ctl, AGNX_TIMCTL_TIM1CTL, 0xe2); */
/* Write 0x249f00 (tick duration?) to Timer 1 */
agnx_write32(ctl, AGNX_TIMCTL_TIMER1, 0x0);
/* Write 0xe2 to Timer 1 Control */
agnx_write32(ctl, AGNX_TIMCTL_TIM1CTL, 0x0);
iowrite32(0xFFFFFFFF, priv->ctl + AGNX_TXM_BEACON_CTL);
}
static void power_manage_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
agnx_write32(ctl, AGNX_PM_MACMSW, 0x1f);
agnx_write32(ctl, AGNX_PM_RFCTL, 0x1f);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg &= 0xf00f;
reg |= 0xa0;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
if (priv->revid >= 3) {
reg = agnx_read32(ctl, AGNX_PM_SOFTRST);
reg |= 0x18;
agnx_write32(ctl, AGNX_PM_SOFTRST, reg);
}
} /* power_manage_init */
static void gain_ctlcnt_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
agnx_write32(ctl, AGNX_GCR_TRACNT5, 0x119);
agnx_write32(ctl, AGNX_GCR_TRACNT6, 0x118);
agnx_write32(ctl, AGNX_GCR_TRACNT7, 0x117);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg &= ~0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
agnx_write32(ctl, AGNX_CIR_ADDRWIN, 0x0);
/* FIXME Write the initial Station Descriptor for the card */
sta_init(priv, LOCAL_STAID);
sta_init(priv, BSSID_STAID);
/* Enable staion 0 and 1 can do TX */
/* It seemed if we set other bit to 1 the bit 0 will
be auto change to 0 */
agnx_write32(ctl, AGNX_BM_TXTOPEER, 0x2 | 0x1);
/* agnx_write32(ctl, AGNX_BM_TXTOPEER, 0x1); */
} /* gain_ctlcnt_init */
static void phy_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
void __iomem *data = priv->data;
u32 reg;
AGNX_TRACE;
/* Load InitialGainTable */
gain_table_init(priv);
agnx_write32(ctl, AGNX_CIR_ADDRWIN, 0x2000000);
/* Clear the following offsets in Memory Range #2: */
memset_io(data + 0x5040, 0, 0xa * 4);
memset_io(data + 0x5080, 0, 0xa * 4);
memset_io(data + 0x50c0, 0, 0xa * 4);
memset_io(data + 0x5400, 0, 0x80 * 4);
memset_io(data + 0x6000, 0, 0x280 * 4);
memset_io(data + 0x7000, 0, 0x280 * 4);
memset_io(data + 0x8000, 0, 0x280 * 4);
/* Initialize the Following Registers According to PCI Revision ID */
if (priv->revid == 0) {
/* fixme the part hasn't been update but below has been update
based on WGM511 */
agnx_write32(ctl, AGNX_ACI_LEN, 0xf);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x1d);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x3);
agnx_write32(ctl, AGNX_ACI_AICCHA0OVE, 0x11);
agnx_write32(ctl, AGNX_ACI_AICCHA1OVE, 0x0);
agnx_write32(ctl, AGNX_GCR_THD0A, 0x64);
agnx_write32(ctl, AGNX_GCR_THD0AL, 0x4b);
agnx_write32(ctl, AGNX_GCR_THD0B, 0x4b);
agnx_write32(ctl, AGNX_GCR_DUNSAT, 0x14);
agnx_write32(ctl, AGNX_GCR_DSAT, 0x24);
agnx_write32(ctl, AGNX_GCR_DFIRCAL, 0x8);
agnx_write32(ctl, AGNX_GCR_DGCTL11A, 0x1a);
agnx_write32(ctl, AGNX_GCR_DGCTL11B, 0x3);
agnx_write32(ctl, AGNX_GCR_GAININIT, 0xd);
agnx_write32(ctl, AGNX_GCR_THNOSIG, 0x1);
agnx_write32(ctl, AGNX_GCR_COARSTEP, 0x7);
agnx_write32(ctl, AGNX_GCR_SIFST11A, 0x28);
agnx_write32(ctl, AGNX_GCR_SIFST11B, 0x28);
reg = agnx_read32(ctl, AGNX_GCR_CWDETEC);
reg |= 0x1;
agnx_write32(ctl, AGNX_GCR_CWDETEC, reg);
agnx_write32(ctl, AGNX_GCR_0X38, 0x1e);
agnx_write32(ctl, AGNX_GCR_BOACT, 0x26);
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
agnx_write32(ctl, AGNX_GCR_NLISTANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NACTIANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NMEASANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NCAPTANT, 0x3);
agnx_write32(ctl, AGNX_GCR_THCAP11A, 0x0);
agnx_write32(ctl, AGNX_GCR_THCAP11B, 0x0);
agnx_write32(ctl, AGNX_GCR_THCAPRX11A, 0x0);
agnx_write32(ctl, AGNX_GCR_THCAPRX11B, 0x0);
agnx_write32(ctl, AGNX_GCR_THLEVDRO, 0x10);
agnx_write32(ctl, AGNX_GCR_MAXRXTIME11A, 0x1);
agnx_write32(ctl, AGNX_GCR_MAXRXTIME11B, 0x1);
agnx_write32(ctl, AGNX_GCR_CORRTIME, 0x190);
agnx_write32(ctl, AGNX_GCR_SIGHTH, 0x78);
agnx_write32(ctl, AGNX_GCR_SIGLTH, 0x1c);
agnx_write32(ctl, AGNX_GCR_CORRDROP, 0x0);
agnx_write32(ctl, AGNX_GCR_THCD, 0x0);
agnx_write32(ctl, AGNX_GCR_MAXPOWDIFF, 0x1);
agnx_write32(ctl, AGNX_GCR_TESTBUS, 0x0);
agnx_write32(ctl, AGNX_GCR_ANTCFG, 0x1f);
agnx_write32(ctl, AGNX_GCR_THJUMP, 0x14);
agnx_write32(ctl, AGNX_GCR_THPOWER, 0x0);
agnx_write32(ctl, AGNX_GCR_THPOWCLIP, 0x30);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 0x32);
agnx_write32(ctl, AGNX_GCR_THRX11BPOWMIN, 0x19);
agnx_write32(ctl, AGNX_GCR_0X14c, 0x0);
agnx_write32(ctl, AGNX_GCR_0X150, 0x0);
agnx_write32(ctl, 0x9400, 0x0);
agnx_write32(ctl, 0x940c, 0x6ff);
agnx_write32(ctl, 0x9428, 0xa0);
agnx_write32(ctl, 0x9434, 0x0);
agnx_write32(ctl, 0x9c04, 0x15);
agnx_write32(ctl, 0x9c0c, 0x7f);
agnx_write32(ctl, 0x9c34, 0x0);
agnx_write32(ctl, 0xc000, 0x38d);
agnx_write32(ctl, 0x14018, 0x0);
agnx_write32(ctl, 0x16000, 0x1);
agnx_write32(ctl, 0x11004, 0x0);
agnx_write32(ctl, 0xec54, 0xa);
agnx_write32(ctl, 0xec1c, 0x5);
} else if (priv->revid > 0) {
agnx_write32(ctl, AGNX_ACI_LEN, 0xf);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x21);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
agnx_write32(ctl, AGNX_ACI_AICCHA0OVE, 0x11);
agnx_write32(ctl, AGNX_ACI_AICCHA1OVE, 0x0);
agnx_write32(ctl, AGNX_GCR_DUNSAT, 0x14);
agnx_write32(ctl, AGNX_GCR_DSAT, 0x24);
agnx_write32(ctl, AGNX_GCR_DFIRCAL, 0x8);
agnx_write32(ctl, AGNX_GCR_DGCTL11A, 0x1a);
agnx_write32(ctl, AGNX_GCR_DGCTL11B, 0x3);
agnx_write32(ctl, AGNX_GCR_GAININIT, 0xd);
agnx_write32(ctl, AGNX_GCR_THNOSIG, 0x1);
agnx_write32(ctl, AGNX_GCR_COARSTEP, 0x7);
agnx_write32(ctl, AGNX_GCR_SIFST11A, 0x28);
agnx_write32(ctl, AGNX_GCR_SIFST11B, 0x28);
agnx_write32(ctl, AGNX_GCR_CWDETEC, 0x0);
agnx_write32(ctl, AGNX_GCR_0X38, 0x1e);
/* agnx_write32(ctl, AGNX_GCR_BOACT, 0x26);*/
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
agnx_write32(ctl, AGNX_GCR_THCAP11A, 0x32);
agnx_write32(ctl, AGNX_GCR_THCAP11B, 0x32);
agnx_write32(ctl, AGNX_GCR_THCAPRX11A, 0x32);
agnx_write32(ctl, AGNX_GCR_THCAPRX11B, 0x32);
agnx_write32(ctl, AGNX_GCR_THLEVDRO, 0x10);
agnx_write32(ctl, AGNX_GCR_MAXRXTIME11A, 0x1ad);
agnx_write32(ctl, AGNX_GCR_MAXRXTIME11B, 0xa10);
agnx_write32(ctl, AGNX_GCR_CORRTIME, 0x190);
agnx_write32(ctl, AGNX_GCR_CORRDROP, 0x0);
agnx_write32(ctl, AGNX_GCR_THCD, 0x0);
agnx_write32(ctl, AGNX_GCR_THCS, 0x0);
agnx_write32(ctl, AGNX_GCR_MAXPOWDIFF, 0x4);
agnx_write32(ctl, AGNX_GCR_TESTBUS, 0x0);
agnx_write32(ctl, AGNX_GCR_THJUMP, 0x1e);
agnx_write32(ctl, AGNX_GCR_THPOWER, 0x0);
agnx_write32(ctl, AGNX_GCR_THPOWCLIP, 0x2a);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 0x3c);
agnx_write32(ctl, AGNX_GCR_THRX11BPOWMIN, 0x19);
agnx_write32(ctl, AGNX_GCR_0X14c, 0x0);
agnx_write32(ctl, AGNX_GCR_0X150, 0x0);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
agnx_write32(ctl, AGNX_GCR_WATCHDOG, 0x37);
agnx_write32(ctl, 0x9400, 0x0);
agnx_write32(ctl, 0x940c, 0x6ff);
agnx_write32(ctl, 0x9428, 0xa0);
agnx_write32(ctl, 0x9434, 0x0);
agnx_write32(ctl, 0x9c04, 0x15);
agnx_write32(ctl, 0x9c0c, 0x7f);
agnx_write32(ctl, 0x9c34, 0x0);
agnx_write32(ctl, 0xc000, 0x38d);
agnx_write32(ctl, 0x14014, 0x1000);
agnx_write32(ctl, 0x14018, 0x0);
agnx_write32(ctl, 0x16000, 0x1);
agnx_write32(ctl, 0x11004, 0x0);
agnx_write32(ctl, 0xec54, 0xa);
agnx_write32(ctl, 0xec1c, 0x50);
} else if (priv->revid > 1) {
reg = agnx_read32(ctl, 0xec18);
reg |= 0x8;
agnx_write32(ctl, 0xec18, reg);
}
/* Write the TX Fir Coefficient Table */
tx_fir_table_init(priv);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg &= ~0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
reg = agnx_read32(ctl, AGNX_PM_PLLCTL);
reg |= 0x1;
agnx_write32(ctl, AGNX_PM_PLLCTL, reg);
/* reg = agnx_read32(ctl, 0x1a030); */
/* reg &= ~0x4; */
/* agnx_write32(ctl, 0x1a030, reg); */
agnx_write32(ctl, AGNX_GCR_TRACNT4, 0x113);
} /* phy_init */
static void chip_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
band_management_init(priv);
rf_chips_init(priv);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
/* Initialize the PHY */
phy_init(priv);
encryption_init(priv);
tx_management_init(priv);
rx_management_init(priv);
power_manage_init(priv);
/* Initialize the Timers */
agnx_timer_init(priv);
/* Write 0xc390bf9 to Interrupt Mask (Disable TX) */
reg = 0xc390bf9 & ~IRQ_TX_BEACON;
reg &= ~IRQ_TX_DISABLE;
agnx_write32(ctl, AGNX_INT_MASK, reg);
reg = agnx_read32(ctl, AGNX_CIR_BLKCTL);
reg |= 0x800;
agnx_write32(ctl, AGNX_CIR_BLKCTL, reg);
/* set it when need get multicast enable? */
agnx_write32(ctl, AGNX_BM_MTSM, 0xff);
} /* chip_init */
static inline void set_promis_and_managed(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x10 | 0x2);
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x10 | 0x2);
}
static inline void set_learn_mode(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x8);
}
static inline void set_scan_mode(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x20);
}
static inline void set_promiscuous_mode(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
/* agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x210);*/
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x10);
}
static inline void set_managed_mode(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x2);
}
static inline void set_adhoc_mode(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, 0x0);
}
#if 0
static void unknow_register_write(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x0, 0x3e);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x4, 0xb2);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x8, 0x140);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0xc, 0x1C0);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x10, 0x1FF);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x14, 0x1DD);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x18, 0x15F);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x1c, 0xA1);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x20, 0x3E7);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x24, 0x36B);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x28, 0x348);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x2c, 0x37D);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x30, 0x3DE);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x34, 0x36);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x38, 0x64);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x3c, 0x57);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x40, 0x23);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x44, 0x3ED);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x48, 0x3C9);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x4c, 0x3CA);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x50, 0x3E7);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x54, 0x8);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x58, 0x1F);
agnx_write32(ctl, AGNX_UNKNOWN_BASE + 0x5c, 0x1a);
}
#endif
static void card_interface_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u8 bssid[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u32 reg;
unsigned int i;
AGNX_TRACE;
might_sleep();
/* Clear RX Control and Enable RX queues */
agnx_write32(ctl, AGNX_CIR_RXCTL, 0x8);
might_sleep();
/* Do a full reset of the card */
card_full_reset(priv);
might_sleep();
/* Check and set Card Endianness */
reg = ioread32(priv->ctl + AGNX_CIR_ENDIAN);
/* TODO If not 0xB3B2B1B0 set to 0xB3B2B1B0 */
printk(KERN_INFO PFX "CIR_ENDIAN is %x\n", reg);
/* Config the eeprom */
agnx_write32(ctl, AGNX_CIR_SERIALITF, 0x7000086);
udelay(10);
reg = agnx_read32(ctl, AGNX_CIR_SERIALITF);
agnx_write32(ctl, AGNX_PM_SOFTRST, 0x80000033);
reg = agnx_read32(ctl, 0xec50);
reg |= 0xf;
agnx_write32(ctl, 0xec50, reg);
agnx_write32(ctl, AGNX_PM_SOFTRST, 0x0);
reg = agnx_read32(ctl, AGNX_SYSITF_GPIOIN);
udelay(10);
reg = agnx_read32(ctl, AGNX_CIR_SERIALITF);
/* Dump the eeprom */
do {
char eeprom[0x100000/0x100];
for (i = 0; i < 0x100000; i += 0x100) {
agnx_write32(ctl, AGNX_CIR_SERIALITF, 0x3000000 + i);
udelay(13);
reg = agnx_read32(ctl, AGNX_CIR_SERIALITF);
udelay(70);
reg = agnx_read32(ctl, AGNX_CIR_SERIALITF);
eeprom[i/0x100] = reg & 0xFF;
udelay(10);
}
print_hex_dump_bytes(PFX "EEPROM: ", DUMP_PREFIX_NONE, eeprom,
ARRAY_SIZE(eeprom));
} while (0);
spi_rc_write(ctl, RF_CHIP0, 0x26);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
/* Initialize the system interface */
system_itf_init(priv);
might_sleep();
/* Chip Initialization (Polaris) */
chip_init(priv);
might_sleep();
/* Calibrate the antennae */
antenna_calibrate(priv);
reg = agnx_read32(ctl, 0xec50);
reg &= ~0x40;
agnx_write32(ctl, 0xec50, reg);
agnx_write32(ctl, AGNX_PM_SOFTRST, 0x0);
agnx_write32(ctl, AGNX_PM_PLLCTL, 0x1);
reg = agnx_read32(ctl, AGNX_BM_BMCTL);
reg |= 0x8000;
agnx_write32(ctl, AGNX_BM_BMCTL, reg);
enable_receiver(priv);
reg = agnx_read32(ctl, AGNX_SYSITF_SYSMODE);
reg |= 0x200;
agnx_write32(ctl, AGNX_SYSITF_SYSMODE, reg);
enable_receiver(priv);
might_sleep();
/* Initialize Gain Control Counts */
gain_ctlcnt_init(priv);
/* Write Initial Station Power Template for this station(#0) */
sta_power_init(priv, LOCAL_STAID);
might_sleep();
/* Initialize the rx,td,tm rings, for each node in the ring */
fill_rings(priv);
might_sleep();
agnx_write32(ctl, AGNX_PM_SOFTRST, 0x80000033);
agnx_write32(ctl, 0xec50, 0xc);
agnx_write32(ctl, AGNX_PM_SOFTRST, 0x0);
/* FIXME Initialize the transmit control register */
agnx_write32(ctl, AGNX_TXM_CTL, 0x194c1);
enable_receiver(priv);
might_sleep();
/* FIXME Set the Receive Control Mac Address to card address */
mac_address_set(priv);
enable_receiver(priv);
might_sleep();
/* Set the recieve request rate */
/* FIXME Enable the request */
/* Check packet length */
/* Set maximum packet length */
/* agnx_write32(ctl, AGNX_RXM_REQRATE, 0x88195e00); */
/* enable_receiver(priv); */
/* Set the Receiver BSSID */
receiver_bssid_set(priv, bssid);
/* FIXME Set to managed mode */
set_managed_mode(priv);
/* set_promiscuous_mode(priv); */
/* set_scan_mode(priv); */
/* set_learn_mode(priv); */
/* set_promis_and_managed(priv); */
/* set_adhoc_mode(priv); */
/* Set the recieve request rate */
/* Check packet length */
agnx_write32(ctl, AGNX_RXM_REQRATE, 0x08000000);
reg = agnx_read32(ctl, AGNX_RXM_REQRATE);
/* Set maximum packet length */
reg |= 0x00195e00;
agnx_write32(ctl, AGNX_RXM_REQRATE, reg);
/* Configure the RX and TX interrupt */
reg = ENABLE_RX_INTERRUPT | RX_CACHE_LINE | FRAG_LEN_2048 | FRAG_BE;
agnx_write32(ctl, AGNX_CIR_RXCFG, reg);
/* FIXME */
reg = ENABLE_TX_INTERRUPT | TX_CACHE_LINE | FRAG_LEN_2048 | FRAG_BE;
agnx_write32(ctl, AGNX_CIR_TXCFG, reg);
/* Enable RX TX Interrupts */
agnx_write32(ctl, AGNX_CIR_RXCTL, 0x80);
agnx_write32(ctl, AGNX_CIR_TXMCTL, 0x80);
agnx_write32(ctl, AGNX_CIR_TXDCTL, 0x80);
/* FIXME Set the master control interrupt in block control */
agnx_write32(ctl, AGNX_CIR_BLKCTL, 0x800);
/* Enable RX and TX queues */
reg = agnx_read32(ctl, AGNX_CIR_RXCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_CIR_RXCTL, reg);
reg = agnx_read32(ctl, AGNX_CIR_TXMCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_CIR_TXMCTL, reg);
reg = agnx_read32(ctl, AGNX_CIR_TXDCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_CIR_TXDCTL, reg);
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, 0x5);
/* FIXME */
/* unknow_register_write(priv); */
/* Update local card hash entry */
hash_write(priv, priv->mac_addr, LOCAL_STAID);
might_sleep();
/* FIXME */
agnx_set_channel(priv, 1);
might_sleep();
} /* agnx_card_interface_init */
void agnx_hw_init(struct agnx_priv *priv)
{
AGNX_TRACE;
might_sleep();
card_interface_init(priv);
}
int agnx_hw_reset(struct agnx_priv *priv)
{
return card_full_reset(priv);
}
int agnx_set_ssid(struct agnx_priv *priv, u8 *ssid, size_t ssid_len)
{
AGNX_TRACE;
return 0;
}
void agnx_set_bssid(struct agnx_priv *priv, const u8 *bssid)
{
receiver_bssid_set(priv, bssid);
}
#ifndef AGNX_PHY_H_
#define AGNX_PHY_H_
#include "agnx.h"
/* Transmission Managment Registers */
#define AGNX_TXM_BASE 0x0000
#define AGNX_TXM_CTL 0x0000 /* control register */
#define AGNX_TXM_ETMF 0x0004 /* enable transmission management functions */
#define AGNX_TXM_TXTEMP 0x0008 /* transmission template */
#define AGNX_TXM_RETRYSTAID 0x000c /* Retry Station ID */
#define AGNX_TXM_TIMESTAMPLO 0x0010 /* Timestamp Lo */
#define AGNX_TXM_TIMESTAMPHI 0x0014 /* Timestamp Hi */
#define AGNX_TXM_TXDELAY 0x0018 /* tx delay */
#define AGNX_TXM_TBTTLO 0x0020 /* tbtt Lo */
#define AGNX_TXM_TBTTHI 0x0024 /* tbtt Hi */
#define AGNX_TXM_BEAINTER 0x0028 /* Beacon Interval */
#define AGNX_TXM_NAV 0x0030 /* NAV */
#define AGNX_TXM_CFPMDV 0x0034 /* CFP MDV */
#define AGNX_TXM_CFPERCNT 0x0038 /* CFP period count */
#define AGNX_TXM_PROBDELAY 0x003c /* probe delay */
#define AGNX_TXM_LISINTERCNT 0x0040 /* listen interval count */
#define AGNX_TXM_DTIMPERICNT 0x004c /* DTIM period count */
#define AGNX_TXM_BEACON_CTL 0x005c /* beacon control */
#define AGNX_TXM_SCHEMPCNT 0x007c /* schedule empty count */
#define AGNX_TXM_MAXTIMOUT 0x0084 /* max timeout exceed count */
#define AGNX_TXM_MAXCFPTIM 0x0088 /* max CF poll timeout count */
#define AGNX_TXM_MAXRXTIME 0x008c /* max RX timeout count */
#define AGNX_TXM_MAXACKTIM 0x0090 /* max ACK timeout count */
#define AGNX_TXM_DIF01 0x00a0 /* DIF 0-1 */
#define AGNX_TXM_DIF23 0x00a4 /* DIF 2-3 */
#define AGNX_TXM_DIF45 0x00a8 /* DIF 4-5 */
#define AGNX_TXM_DIF67 0x00ac /* DIF 6-7 */
#define AGNX_TXM_SIFSPIFS 0x00b0 /* SIFS/PIFS */
#define AGNX_TXM_TIFSEIFS 0x00b4 /* TIFS/EIFS */
#define AGNX_TXM_MAXCCACNTSLOT 0x00b8 /* max CCA count slot */
#define AGNX_TXM_SLOTLIMIT 0x00bc /* slot limit/1 msec limit */
#define AGNX_TXM_CFPOLLRXTIM 0x00f0 /* CF poll RX timeout count */
#define AGNX_TXM_CFACKT11B 0x00f4 /* CF ack timeout limit for 11b */
#define AGNX_TXM_CW0 0x0100 /* CW 0 */
#define AGNX_TXM_SLBEALIM0 0x0108 /* short/long beacon limit 0 */
#define AGNX_TXM_CW1 0x0120 /* CW 1 */
#define AGNX_TXM_SLBEALIM1 0x0128 /* short/long beacon limit 1 */
#define AGNX_TXM_CW2 0x0140 /* CW 2 */
#define AGNX_TXM_SLBEALIM2 0x0148 /* short/long beacon limit 2 */
#define AGNX_TXM_CW3 0x0160 /* CW 3 */
#define AGNX_TXM_SLBEALIM3 0x0168 /* short/long beacon limit 3 */
#define AGNX_TXM_CW4 0x0180 /* CW 4 */
#define AGNX_TXM_SLBEALIM4 0x0188 /* short/long beacon limit 4 */
#define AGNX_TXM_CW5 0x01a0 /* CW 5 */
#define AGNX_TXM_SLBEALIM5 0x01a8 /* short/long beacon limit 5 */
#define AGNX_TXM_CW6 0x01c0 /* CW 6 */
#define AGNX_TXM_SLBEALIM6 0x01c8 /* short/long beacon limit 6 */
#define AGNX_TXM_CW7 0x01e0 /* CW 7 */
#define AGNX_TXM_SLBEALIM7 0x01e8 /* short/long beacon limit 7 */
#define AGNX_TXM_BEACONTEMP 0x1000 /* beacon template */
#define AGNX_TXM_STAPOWTEMP 0x1a00 /* Station Power Template */
/* Receive Management Control Registers */
#define AGNX_RXM_BASE 0x2000
#define AGNX_RXM_REQRATE 0x2000 /* requested rate */
#define AGNX_RXM_MACHI 0x2004 /* first 4 bytes of mac address */
#define AGNX_RXM_MACLO 0x2008 /* last 2 bytes of mac address */
#define AGNX_RXM_BSSIDHI 0x200c /* bssid hi */
#define AGNX_RXM_BSSIDLO 0x2010 /* bssid lo */
#define AGNX_RXM_HASH_CMD_FLAG 0x2014 /* Flags for the RX Hash Command Default:0 */
#define AGNX_RXM_HASH_CMD_HIGH 0x2018 /* The High half of the Hash Command */
#define AGNX_RXM_HASH_CMD_LOW 0x201c /* The Low half of the Hash Command */
#define AGNX_RXM_ROUTAB 0x2020 /* routing table */
#define ROUTAB_SUBTYPE_SHIFT 24
#define ROUTAB_TYPE_SHIFT 28
#define ROUTAB_STATUS_SHIFT 30
#define ROUTAB_RW_SHIFT 31
#define ROUTAB_ROUTE_DROP 0xf00000 /* Drop */
#define ROUTAB_ROUTE_CPU 0x400000 /* CPU */
#define ROUTAB_ROUTE_ENCRY 0x500800 /* Encryption */
#define ROUTAB_ROUTE_RFP 0x800000 /* RFP */
#define ROUTAB_TYPE_MANAG 0x0 /* Management */
#define ROUTAB_TYPE_CTL 0x1 /* Control */
#define ROUTAB_TYPE_DATA 0x2 /* Data */
#define ROUTAB_SUBTYPE_DATA 0x0
#define ROUTAB_SUBTYPE_DATAACK 0x1
#define ROUTAB_SUBTYPE_DATAPOLL 0x2
#define ROUTAB_SUBTYPE_DATAPOLLACK 0x3
#define ROUTAB_SUBTYPE_NULL 0x4 /* NULL */
#define ROUTAB_SUBTYPE_NULLACK 0x5
#define ROUTAB_SUBTYPE_NULLPOLL 0x6
#define ROUTAB_SUBTYPE_NULLPOLLACK 0x7
#define ROUTAB_SUBTYPE_QOSDATA 0x8 /* QOS DATA */
#define ROUTAB_SUBTYPE_QOSDATAACK 0x9
#define ROUTAB_SUBTYPE_QOSDATAPOLL 0xa
#define ROUTAB_SUBTYPE_QOSDATAACKPOLL 0xb
#define ROUTAB_SUBTYPE_QOSNULL 0xc
#define ROUTAB_SUBTYPE_QOSNULLACK 0xd
#define ROUTAB_SUBTYPE_QOSNULLPOLL 0xe
#define ROUTAB_SUBTYPE_QOSNULLPOLLACK 0xf
#define AGNX_RXM_DELAY11 0x2024 /* delay 11(AB) */
#define AGNX_RXM_SOF_CNT 0x2028 /* SOF Count */
#define AGNX_RXM_FRAG_CNT 0x202c /* Fragment Count*/
#define AGNX_RXM_FCS_CNT 0x2030 /* FCS Count */
#define AGNX_RXM_BSSID_MISS_CNT 0x2034 /* BSSID Miss Count */
#define AGNX_RXM_PDU_ERR_CNT 0x2038 /* PDU Error Count */
#define AGNX_RXM_DEST_MISS_CNT 0x203C /* Destination Miss Count */
#define AGNX_RXM_DROP_CNT 0x2040 /* Drop Count */
#define AGNX_RXM_ABORT_CNT 0x2044 /* Abort Count */
#define AGNX_RXM_RELAY_CNT 0x2048 /* Relay Count */
#define AGNX_RXM_HASH_MISS_CNT 0x204c /* Hash Miss Count */
#define AGNX_RXM_SA_HI 0x2050 /* Address of received packet Hi */
#define AGNX_RXM_SA_LO 0x2054 /* Address of received packet Lo */
#define AGNX_RXM_HASH_DUMP_LST 0x2100 /* Contains Hash Data */
#define AGNX_RXM_HASH_DUMP_MST 0x2104 /* Contains Hash Data */
#define AGNX_RXM_HASH_DUMP_DATA 0x2108 /* The Station ID to dump */
/* Encryption Managment */
#define AGNX_ENCRY_BASE 0x2400
#define AGNX_ENCRY_WEPKEY0 0x2440 /* wep key #0 */
#define AGNX_ENCRY_WEPKEY1 0x2444 /* wep key #1 */
#define AGNX_ENCRY_WEPKEY2 0x2448 /* wep key #2 */
#define AGNX_ENCRY_WEPKEY3 0x244c /* wep key #3 */
#define AGNX_ENCRY_CCMRECTL 0x2460 /* ccm replay control */
/* Band Management Registers */
#define AGNX_BM_BASE 0x2c00
#define AGNX_BM_BMCTL 0x2c00 /* band management control */
#define AGNX_BM_TXWADDR 0x2c18 /* tx workqueue address start */
#define AGNX_BM_TXTOPEER 0x2c24 /* transmit to peers */
#define AGNX_BM_FPLHP 0x2c2c /* free pool list head pointer */
#define AGNX_BM_FPLTP 0x2c30 /* free pool list tail pointer */
#define AGNX_BM_FPCNT 0x2c34 /* free pool count */
#define AGNX_BM_CIPDUWCNT 0x2c38 /* card interface pdu workqueue count */
#define AGNX_BM_SPPDUWCNT 0x2c3c /* sp pdu workqueue count */
#define AGNX_BM_RFPPDUWCNT 0x2c40 /* rfp pdu workqueue count */
#define AGNX_BM_RHPPDUWCNT 0x2c44 /* rhp pdu workqueue count */
#define AGNX_BM_CIWQCTL 0x2c48 /* Card Interface WorkQueue Control */
#define AGNX_BM_CPUTXWCTL 0x2c50 /* cpu tx workqueue control */
#define AGNX_BM_CPURXWCTL 0x2c58 /* cpu rx workqueue control */
#define AGNX_BM_CPULWCTL 0x2c60 /* cpu low workqueue control */
#define AGNX_BM_CPUHWCTL 0x2c68 /* cpu high workqueue control */
#define AGNX_BM_SPTXWCTL 0x2c70 /* sp tx workqueue control */
#define AGNX_BM_SPRXWCTL 0x2c78 /* sp rx workqueue control */
#define AGNX_BM_RFPWCTL 0x2c80 /* RFP workqueue control */
#define AGNX_BM_MTSM 0x2c90 /* Multicast Transmit Station Mask */
/* Card Interface Registers (32bits) */
#define AGNX_CIR_BASE 0x3000
#define AGNX_CIR_BLKCTL 0x3000 /* block control*/
#define AGNX_STAT_TX 0x1
#define AGNX_STAT_RX 0x2
#define AGNX_STAT_X 0x4
/* Below two interrupt flags will be set by our but not CPU or the card */
#define AGNX_STAT_TXD 0x10
#define AGNX_STAT_TXM 0x20
#define AGNX_CIR_ADDRWIN 0x3004 /* Addressable Windows*/
#define AGNX_CIR_ENDIAN 0x3008 /* card endianness */
#define AGNX_CIR_SERIALITF 0x3020 /* serial interface */
#define AGNX_CIR_RXCFG 0x3040 /* receive config */
#define ENABLE_RX_INTERRUPT 0x20
#define RX_CACHE_LINE 0x8
/* the RX fragment length */
#define FRAG_LEN_256 0x0 /* 256B */
#define FRAG_LEN_512 0x1
#define FRAG_LEN_1024 0x2
#define FRAG_LEN_2048 0x3
#define FRAG_BE 0x10
#define AGNX_CIR_RXCTL 0x3050 /* receive control */
/* memory address, chipside */
#define AGNX_CIR_RXCMSTART 0x3054 /* receive client memory start */
#define AGNX_CIR_RXCMEND 0x3058 /* receive client memory end */
/* memory address, pci */
#define AGNX_CIR_RXHOSTADDR 0x3060 /* receive hostside address */
/* memory address, chipside */
#define AGNX_CIR_RXCLIADDR 0x3064 /* receive clientside address */
#define AGNX_CIR_RXDMACTL 0x3068 /* receive dma control */
#define AGNX_CIR_TXCFG 0x3080 /* transmit config */
#define AGNX_CIR_TXMCTL 0x3090 /* Transmit Management Control */
#define ENABLE_TX_INTERRUPT 0x20
#define TX_CACHE_LINE 0x8
#define AGNX_CIR_TXMSTART 0x3094 /* Transmit Management Start */
#define AGNX_CIR_TXMEND 0x3098 /* Transmit Management End */
#define AGNX_CIR_TXDCTL 0x30a0 /* transmit data control */
/* memeory address, chipset */
#define AGNX_CIR_TXDSTART 0x30a4 /* transmit data start */
#define AGNX_CIR_TXDEND 0x30a8 /* transmit data end */
#define AGNX_CIR_TXMHADDR 0x30b0 /* Transmit Management Hostside Address */
#define AGNX_CIR_TXMCADDR 0x30b4 /* Transmit Management Clientside Address */
#define AGNX_CIR_TXDMACTL 0x30b8 /* transmit dma control */
/* Power Managment Unit */
#define AGNX_PM_BASE 0x3c00
#define AGNX_PM_PMCTL 0x3c00 /* PM Control*/
#define AGNX_PM_MACMSW 0x3c08 /* MAC Manual Slow Work Enable */
#define AGNX_PM_RFCTL 0x3c0c /* RF Control */
#define AGNX_PM_PHYMW 0x3c14 /* Phy Mannal Work */
#define AGNX_PM_SOFTRST 0x3c18 /* PMU Soft Reset */
#define AGNX_PM_PLLCTL 0x3c1c /* PMU PLL control*/
#define AGNX_PM_TESTPHY 0x3c24 /* PMU Test Phy */
/* Interrupt Control interface */
#define AGNX_INT_BASE 0x4000
#define AGNX_INT_STAT 0x4000 /* interrupt status */
#define AGNX_INT_MASK 0x400c /* interrupt mask */
/* FIXME */
#define IRQ_TX_BEACON 0x1 /* TX Beacon */
#define IRQ_TX_RETRY 0x8 /* TX Retry Interrupt */
#define IRQ_TX_ACTIVITY 0x10 /* TX Activity */
#define IRQ_RX_ACTIVITY 0x20 /* RX Activity */
/* FIXME I guess that instead RX a none exist staion's packet or
the station hasn't been init */
#define IRQ_RX_X 0x40
#define IRQ_RX_Y 0x80 /* RX ? */
#define IRQ_RX_HASHHIT 0x100 /* RX Hash Hit */
#define IRQ_RX_FRAME 0x200 /* RX Frame */
#define IRQ_ERR_INT 0x400 /* Error Interrupt */
#define IRQ_TX_QUE_FULL 0x800 /* TX Workqueue Full */
#define IRQ_BANDMAN_ERR 0x10000 /* Bandwidth Management Error */
#define IRQ_TX_DISABLE 0x20000 /* TX Disable */
#define IRQ_RX_IVASESKEY 0x80000 /* RX Invalid Session Key */
#define IRQ_RX_KEYIDMIS 0x100000 /* RX key ID Mismatch */
#define IRQ_REP_THHIT 0x200000 /* Replay Threshold Hit */
#define IRQ_TIMER1 0x4000000 /* Timer1 */
#define IRQ_TIMER_CNT 0x10000000 /* Timer Count */
#define IRQ_PHY_FASTINT 0x20000000 /* Phy Fast Interrupt */
#define IRQ_PHY_SLOWINT 0x40000000 /* Phy Slow Interrupt */
#define IRQ_OTHER 0x80000000 /* Unknow interrupt */
#define AGNX_IRQ_ALL 0xffffffff
/* System Interface */
#define AGNX_SYSITF_BASE 0x4400
#define AGNX_SYSITF_SYSMODE 0x4400 /* system mode */
#define AGNX_SYSITF_GPIOIN 0x4410 /* GPIO In */
/* PIN lines for leds? */
#define AGNX_SYSITF_GPIOUT 0x4414 /* GPIO Out */
/* Timer Control */
#define AGNX_TIMCTL_TIMER1 0x4800 /* Timer 1 */
#define AGNX_TIMCTL_TIM1CTL 0x4808 /* Timer 1 Control */
/* Antenna Calibration Interface */
#define AGNX_ACI_BASE 0x5000
#define AGNX_ACI_MODE 0x5000 /* Mode */
#define AGNX_ACI_MEASURE 0x5004 /* Measure */
#define AGNX_ACI_SELCHAIN 0x5008 /* Select Chain */
#define AGNX_ACI_LEN 0x500c /* Length */
#define AGNX_ACI_TIMER1 0x5018 /* Timer 1 */
#define AGNX_ACI_TIMER2 0x501c /* Timer 2 */
#define AGNX_ACI_OFFSET 0x5020 /* Offset */
#define AGNX_ACI_STATUS 0x5030 /* Status */
#define CALI_IDLE 0x0
#define CALI_DONE 0x1
#define CALI_BUSY 0x2
#define CALI_ERR 0x3
#define AGNX_ACI_AICCHA0OVE 0x5034 /* AIC Channel 0 Override */
#define AGNX_ACI_AICCHA1OVE 0x5038 /* AIC Channel 1 Override */
/* Gain Control Registers */
#define AGNX_GCR_BASE 0x9000
/* threshold of primary antenna */
#define AGNX_GCR_THD0A 0x9000 /* threshold? D0 A */
/* low threshold of primary antenna */
#define AGNX_GCR_THD0AL 0x9004 /* threshold? D0 A low */
/* threshold of secondary antenna */
#define AGNX_GCR_THD0B 0x9008 /* threshold? D0_B */
#define AGNX_GCR_DUNSAT 0x900c /* d unsaturated */
#define AGNX_GCR_DSAT 0x9010 /* d saturated */
#define AGNX_GCR_DFIRCAL 0x9014 /* D Fir/Cal */
#define AGNX_GCR_DGCTL11A 0x9018 /* d gain control 11a */
#define AGNX_GCR_DGCTL11B 0x901c /* d gain control 11b */
/* strength of gain */
#define AGNX_GCR_GAININIT 0x9020 /* gain initialization */
#define AGNX_GCR_THNOSIG 0x9024 /* threhold no signal */
#define AGNX_GCR_COARSTEP 0x9028 /* coarse stepping */
#define AGNX_GCR_SIFST11A 0x902c /* sifx time 11a */
#define AGNX_GCR_SIFST11B 0x9030 /* sifx time 11b */
#define AGNX_GCR_CWDETEC 0x9034 /* cw detection */
#define AGNX_GCR_0X38 0x9038 /* ???? */
#define AGNX_GCR_BOACT 0x903c /* BO Active */
#define AGNX_GCR_BOINACT 0x9040 /* BO Inactive */
#define AGNX_GCR_BODYNA 0x9044 /* BO dynamic */
/* 802.11 mode(a,b,g) */
#define AGNX_GCR_DISCOVMOD 0x9048 /* discovery mode */
#define AGNX_GCR_NLISTANT 0x904c /* number of listening antenna */
#define AGNX_GCR_NACTIANT 0x9050 /* number of active antenna */
#define AGNX_GCR_NMEASANT 0x9054 /* number of measuring antenna */
#define AGNX_GCR_NCAPTANT 0x9058 /* number of capture antenna */
#define AGNX_GCR_THCAP11A 0x905c /* threshold capture 11a */
#define AGNX_GCR_THCAP11B 0x9060 /* threshold capture 11b */
#define AGNX_GCR_THCAPRX11A 0x9064 /* threshold capture rx 11a */
#define AGNX_GCR_THCAPRX11B 0x9068 /* threshold capture rx 11b */
#define AGNX_GCR_THLEVDRO 0x906c /* threshold level drop */
#define AGNX_GCR_GAINSET0 0x9070 /* Gainset 0 */
#define AGNX_GCR_GAINSET1 0x9074 /* Gainset 1 */
#define AGNX_GCR_GAINSET2 0x9078 /* Gainset 2 */
#define AGNX_GCR_MAXRXTIME11A 0x907c /* maximum rx time 11a */
#define AGNX_GCR_MAXRXTIME11B 0x9080 /* maximum rx time 11b */
#define AGNX_GCR_CORRTIME 0x9084 /* correction time */
/* reset the subsystem, 0 = disable, 1 = enable */
#define AGNX_GCR_RSTGCTL 0x9088 /* reset gain control */
/* channel receiving */
#define AGNX_GCR_RXCHANEL 0x908c /* receive channel */
#define AGNX_GCR_NOISE0 0x9090 /* Noise 0 */
#define AGNX_GCR_NOISE1 0x9094 /* Noise 1 */
#define AGNX_GCR_NOISE2 0x9098 /* Noise 2 */
#define AGNX_GCR_SIGHTH 0x909c /* Signal High Threshold */
#define AGNX_GCR_SIGLTH 0x90a0 /* Signal Low Threshold */
#define AGNX_GCR_CORRDROP 0x90a4 /* correction drop */
/* threshold of tertiay antenna */
#define AGNX_GCR_THCD 0x90a8 /* threshold? CD */
#define AGNX_GCR_THCS 0x90ac /* threshold? CS */
#define AGNX_GCR_MAXPOWDIFF 0x90b8 /* maximum power difference */
#define AGNX_GCR_TRACNT4 0x90ec /* Transition Count 4 */
#define AGNX_GCR_TRACNT5 0x90f0 /* transition count 5 */
#define AGNX_GCR_TRACNT6 0x90f4 /* transition count 6 */
#define AGNX_GCR_TRACNT7 0x90f8 /* transition coutn 7 */
#define AGNX_GCR_TESTBUS 0x911c /* test bus */
#define AGNX_GCR_CHAINNUM 0x9120 /* Number of Chains */
#define AGNX_GCR_ANTCFG 0x9124 /* Antenna Config */
#define AGNX_GCR_THJUMP 0x912c /* threhold jump */
#define AGNX_GCR_THPOWER 0x9130 /* threshold power */
#define AGNX_GCR_THPOWCLIP 0x9134 /* threshold power clip*/
#define AGNX_GCR_FORCECTLCLK 0x9138 /* Force Gain Control Clock */
#define AGNX_GCR_GAINSETWRITE 0x913c /* Gainset Write */
#define AGNX_GCR_THD0BTFEST 0x9140 /* threshold d0 b tf estimate */
#define AGNX_GCR_THRX11BPOWMIN 0x9144 /* threshold rx 11b power minimum */
#define AGNX_GCR_0X14c 0x914c /* ?? */
#define AGNX_GCR_0X150 0x9150 /* ?? */
#define AGNX_GCR_RXOVERIDE 0x9194 /* recieve override */
#define AGNX_GCR_WATCHDOG 0x91b0 /* watchdog timeout */
/* Spi Interface */
#define AGNX_SPI_BASE 0xdc00
#define AGNX_SPI_CFG 0xdc00 /* spi configuration */
/* Only accept 16 bits */
#define AGNX_SPI_WMSW 0xdc04 /* write most significant word */
/* Only accept 16 bits */
#define AGNX_SPI_WLSW 0xdc08 /* write least significant word */
#define AGNX_SPI_CTL 0xdc0c /* spi control */
#define AGNX_SPI_RMSW 0xdc10 /* read most significant word */
#define AGNX_SPI_RLSW 0xdc14 /* read least significant word */
/* SPI Control Mask */
#define SPI_READ_CTL 0x4000 /* read control */
#define SPI_BUSY_CTL 0x8000 /* busy control */
/* RF and synth chips in spi */
#define RF_CHIP0 0x400
#define RF_CHIP1 0x800
#define RF_CHIP2 0x1000
#define SYNTH_CHIP 0x2000
/* Unknown register */
#define AGNX_UNKNOWN_BASE 0x7800
/* FIXME MonitorGain */
#define AGNX_MONGCR_BASE 0x12000
/* Gain Table */
#define AGNX_GAIN_TABLE 0x12400
/* The initial FIR coefficient table */
#define AGNX_FIR_BASE 0x19804
#define AGNX_ENGINE_LOOKUP_TBL 0x800
/* eeprom commands */
#define EEPROM_CMD_NULL 0x0 /* NULL */
#define EEPROM_CMD_WRITE 0x2 /* write */
#define EEPROM_CMD_READ 0x3 /* read */
#define EEPROM_CMD_STATUSREAD 0x5 /* status register read */
#define EEPROM_CMD_WRITEENABLE 0x6 /* write enable */
#define EEPROM_CMD_CONFIGURE 0x7 /* configure */
#define EEPROM_DATAFORCOFIGURE 0x6 /* ??? */
/* eeprom address */
#define EEPROM_ADDR_SUBVID 0x0 /* Sub Vendor ID */
#define EEPROM_ADDR_SUBSID 0x2 /* Sub System ID */
#define EEPROM_ADDR_MACADDR 0x146 /* MAC Address */
#define EEPROM_ADDR_LOTYPE 0x14f /* LO type */
struct agnx_eeprom {
u8 data; /* date */
u16 address; /* address in EEPROM */
u8 cmd; /* command, unknown, status */
} __attribute__((__packed__));
#define AGNX_EEPROM_COMMAND_SHIFT 5
#define AGNX_EEPROM_COMMAND_STAT 0x01
void disable_receiver(struct agnx_priv *priv);
void enable_receiver(struct agnx_priv *priv);
u8 read_from_eeprom(struct agnx_priv *priv, u16 address);
void agnx_hw_init(struct agnx_priv *priv);
int agnx_hw_reset(struct agnx_priv *priv);
int agnx_set_ssid(struct agnx_priv *priv, u8 *ssid, size_t ssid_len);
void agnx_set_bssid(struct agnx_priv *priv, const u8 *bssid);
void enable_power_saving(struct agnx_priv *priv);
void disable_power_saving(struct agnx_priv *priv);
void calibrate_antenna_period(unsigned long data);
#endif /* AGNX_PHY_H_ */
/**
* Airgo MIMO wireless driver
*
* Copyright (c) 2007 Li YanBo <dreamfly281@gmail.com>
* Thanks for Jeff Williams <angelbane@gmail.com> do reverse engineer
* works and published the SPECS at http://airgo.wdwconsulting.net/mymoin
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include "agnx.h"
#include "debug.h"
#include "phy.h"
#include "table.h"
/* FIXME! */
static inline void spi_write(void __iomem *region, u32 chip_ids, u32 sw,
u16 size, u32 control)
{
u32 reg;
u32 lsw = sw & 0xffff; /* lower 16 bits of sw*/
u32 msw = sw >> 16; /* high 16 bits of sw */
/* FIXME Write Most Significant Word of the 32bit data to MSW */
/* FIXME And Least Significant Word to LSW */
iowrite32((lsw), region + AGNX_SPI_WLSW);
iowrite32((msw), region + AGNX_SPI_WMSW);
reg = chip_ids | size | control;
/* Write chip id(s), write size and busy control to Control Register */
iowrite32((reg), region + AGNX_SPI_CTL);
/* Wait for Busy control to clear */
spi_delay();
}
/*
* Write to SPI Synth register
*/
static inline void spi_sy_write(void __iomem *region, u32 chip_ids, u32 sw)
{
/* FIXME the size 0x15 is a magic value*/
spi_write(region, chip_ids, sw, 0x15, SPI_BUSY_CTL);
}
/*
* Write to SPI RF register
*/
static inline void spi_rf_write(void __iomem *region, u32 chip_ids, u32 sw)
{
/* FIXME the size 0xd is a magic value*/
spi_write(region, chip_ids, sw, 0xd, SPI_BUSY_CTL);
} /* spi_rf_write */
/*
* Write to SPI with Read Control bit set
*/
inline void spi_rc_write(void __iomem *region, u32 chip_ids, u32 sw)
{
/* FIXME the size 0xe5 is a magic value */
spi_write(region, chip_ids, sw, 0xe5, SPI_BUSY_CTL|SPI_READ_CTL);
}
/* Get the active chains's count */
static int get_active_chains(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int num = 0;
u32 reg;
AGNX_TRACE;
spi_rc_write(ctl, RF_CHIP0, 0x21);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (reg == 1)
num++;
spi_rc_write(ctl, RF_CHIP1, 0x21);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (reg == 1)
num++;
spi_rc_write(ctl, RF_CHIP2, 0x21);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (reg == 1)
num++;
spi_rc_write(ctl, RF_CHIP0, 0x26);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (0x33 != reg)
printk(KERN_WARNING PFX "Unmatched rf chips result\n");
return num;
} /* get_active_chains */
void rf_chips_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
int num;
AGNX_TRACE;
if (priv->revid == 1) {
reg = agnx_read32(ctl, AGNX_SYSITF_GPIOUT);
reg |= 0x8;
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, reg);
}
/* Set SPI clock speed to 200NS */
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xF;
reg |= 0x3;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
/* Set SPI clock speed to 50NS */
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xF;
reg |= 0x1;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1101);
num = get_active_chains(priv);
printk(KERN_INFO PFX "Active chains are %d\n", num);
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xF;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1908);
} /* rf_chips_init */
static u32 channel_tbl[15][9] = {
{0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{1, 0x00, 0x00, 0x624, 0x00, 0x1a4, 0x28, 0x00, 0x1e},
{2, 0x00, 0x00, 0x615, 0x00, 0x1ae, 0x28, 0x00, 0x1e},
{3, 0x00, 0x00, 0x61a, 0x00, 0x1ae, 0x28, 0x00, 0x1e},
{4, 0x00, 0x00, 0x61f, 0x00, 0x1ae, 0x28, 0x00, 0x1e},
{5, 0x00, 0x00, 0x624, 0x00, 0x1ae, 0x28, 0x00, 0x1e},
{6, 0x00, 0x00, 0x61f, 0x00, 0x1b3, 0x28, 0x00, 0x1e},
{7, 0x00, 0x00, 0x624, 0x00, 0x1b3, 0x28, 0x00, 0x1e},
{8, 0x00, 0x00, 0x629, 0x00, 0x1b3, 0x28, 0x00, 0x1e},
{9, 0x00, 0x00, 0x624, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
{10, 0x00, 0x00, 0x629, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
{11, 0x00, 0x00, 0x62e, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
{12, 0x00, 0x00, 0x633, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
{13, 0x00, 0x00, 0x628, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
{14, 0x00, 0x00, 0x644, 0x00, 0x1b8, 0x28, 0x00, 0x1e},
};
static inline void
channel_tbl_write(struct agnx_priv *priv, unsigned int channel, unsigned int reg_num)
{
void __iomem *ctl = priv->ctl;
u32 reg;
reg = channel_tbl[channel][reg_num];
reg <<= 4;
reg |= reg_num;
spi_sy_write(ctl, SYNTH_CHIP, reg);
}
static void synth_freq_set(struct agnx_priv *priv, unsigned int channel)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
/* Set the Clock bits to 50NS */
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xF;
reg |= 0x1;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
/* Write 0x00c0 to LSW and 0x3 to MSW of Synth Chip */
spi_sy_write(ctl, SYNTH_CHIP, 0x300c0);
spi_sy_write(ctl, SYNTH_CHIP, 0x32);
/* # Write to Register 1 on the Synth Chip */
channel_tbl_write(priv, channel, 1);
/* # Write to Register 3 on the Synth Chip */
channel_tbl_write(priv, channel, 3);
/* # Write to Register 6 on the Synth Chip */
channel_tbl_write(priv, channel, 6);
/* # Write to Register 5 on the Synth Chip */
channel_tbl_write(priv, channel, 5);
/* # Write to register 8 on the Synth Chip */
channel_tbl_write(priv, channel, 8);
/* FIXME Clear the clock bits */
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xf;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
} /* synth_chip_init */
static void antenna_init(struct agnx_priv *priv, int num_antenna)
{
void __iomem *ctl = priv->ctl;
switch (num_antenna) {
case 1:
agnx_write32(ctl, AGNX_GCR_NLISTANT, 1);
agnx_write32(ctl, AGNX_GCR_NMEASANT, 1);
agnx_write32(ctl, AGNX_GCR_NACTIANT, 1);
agnx_write32(ctl, AGNX_GCR_NCAPTANT, 1);
agnx_write32(ctl, AGNX_GCR_ANTCFG, 7);
agnx_write32(ctl, AGNX_GCR_BOACT, 34);
agnx_write32(ctl, AGNX_GCR_BOINACT, 34);
agnx_write32(ctl, AGNX_GCR_BODYNA, 30);
agnx_write32(ctl, AGNX_GCR_THD0A, 125);
agnx_write32(ctl, AGNX_GCR_THD0AL, 100);
agnx_write32(ctl, AGNX_GCR_THD0B, 90);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 80);
agnx_write32(ctl, AGNX_GCR_SIGHTH, 100);
agnx_write32(ctl, AGNX_GCR_SIGLTH, 16);
break;
case 2:
agnx_write32(ctl, AGNX_GCR_NLISTANT, 2);
agnx_write32(ctl, AGNX_GCR_NMEASANT, 2);
agnx_write32(ctl, AGNX_GCR_NACTIANT, 2);
agnx_write32(ctl, AGNX_GCR_NCAPTANT, 2);
agnx_write32(ctl, AGNX_GCR_ANTCFG, 15);
agnx_write32(ctl, AGNX_GCR_BOACT, 36);
agnx_write32(ctl, AGNX_GCR_BOINACT, 36);
agnx_write32(ctl, AGNX_GCR_BODYNA, 32);
agnx_write32(ctl, AGNX_GCR_THD0A, 120);
agnx_write32(ctl, AGNX_GCR_THD0AL, 100);
agnx_write32(ctl, AGNX_GCR_THD0B, 80);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 70);
agnx_write32(ctl, AGNX_GCR_SIGHTH, 100);
agnx_write32(ctl, AGNX_GCR_SIGLTH, 32);
break;
case 3:
agnx_write32(ctl, AGNX_GCR_NLISTANT, 3);
agnx_write32(ctl, AGNX_GCR_NMEASANT, 3);
agnx_write32(ctl, AGNX_GCR_NACTIANT, 3);
agnx_write32(ctl, AGNX_GCR_NCAPTANT, 3);
agnx_write32(ctl, AGNX_GCR_ANTCFG, 31);
agnx_write32(ctl, AGNX_GCR_BOACT, 36);
agnx_write32(ctl, AGNX_GCR_BOINACT, 36);
agnx_write32(ctl, AGNX_GCR_BODYNA, 32);
agnx_write32(ctl, AGNX_GCR_THD0A, 100);
agnx_write32(ctl, AGNX_GCR_THD0AL, 100);
agnx_write32(ctl, AGNX_GCR_THD0B, 70);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 70);
agnx_write32(ctl, AGNX_GCR_SIGHTH, 100);
agnx_write32(ctl, AGNX_GCR_SIGLTH, 48);
/* agnx_write32(ctl, AGNX_GCR_SIGLTH, 16); */
break;
default:
printk(KERN_WARNING PFX "Unknow antenna number\n");
}
} /* antenna_init */
static void chain_update(struct agnx_priv *priv, u32 chain)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
spi_rc_write(ctl, RF_CHIP0, 0x20);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (reg == 0x4)
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, reg|0x1000);
else if (reg != 0x0)
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, reg|0x1000);
else {
if (chain == 3 || chain == 6) {
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, reg|0x1000);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
} else if (chain == 2 || chain == 4) {
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, reg|0x1000);
spi_rf_write(ctl, RF_CHIP2, 0x1005);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x824);
} else if (chain == 1) {
spi_rf_write(ctl, RF_CHIP0, reg|0x1000);
spi_rf_write(ctl, RF_CHIP1|RF_CHIP2, 0x1004);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0xc36);
}
}
spi_rc_write(ctl, RF_CHIP0, 0x22);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
switch (reg) {
case 0:
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1005);
break;
case 1:
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
break;
case 2:
if (chain == 6 || chain == 4) {
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1202);
spi_rf_write(ctl, RF_CHIP2, 0x1005);
} else if (chain < 3) {
spi_rf_write(ctl, RF_CHIP0, 0x1202);
spi_rf_write(ctl, RF_CHIP1|RF_CHIP2, 0x1005);
}
break;
default:
if (chain == 3) {
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1203);
spi_rf_write(ctl, RF_CHIP2, 0x1201);
} else if (chain == 2) {
spi_rf_write(ctl, RF_CHIP0, 0x1203);
spi_rf_write(ctl, RF_CHIP2, 0x1200);
spi_rf_write(ctl, RF_CHIP1, 0x1201);
} else if (chain == 1) {
spi_rf_write(ctl, RF_CHIP0, 0x1203);
spi_rf_write(ctl, RF_CHIP1|RF_CHIP2, 0x1200);
} else if (chain == 4) {
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1203);
spi_rf_write(ctl, RF_CHIP2, 0x1201);
} else {
spi_rf_write(ctl, RF_CHIP0, 0x1203);
spi_rf_write(ctl, RF_CHIP1|RF_CHIP2, 0x1201);
}
}
} /* chain_update */
static void antenna_config(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
/* Write 0x0 to the TX Management Control Register Enable bit */
reg = agnx_read32(ctl, AGNX_TXM_CTL);
reg &= ~0x1;
agnx_write32(ctl, AGNX_TXM_CTL, reg);
/* FIXME */
/* Set initial value based on number of Antennae */
antenna_init(priv, 3);
/* FIXME Update Power Templates for current valid Stations */
/* sta_power_init(priv, 0);*/
/* FIXME the number of chains should get from eeprom*/
chain_update(priv, AGNX_CHAINS_MAX);
} /* antenna_config */
void calibrate_oscillator(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
spi_rc_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET1);
reg |= 0x10;
agnx_write32(ctl, AGNX_GCR_GAINSET1, reg);
agnx_write32(ctl, AGNX_GCR_GAINSETWRITE, 1);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 1);
agnx_write32(ctl, AGNX_ACI_LEN, 0x3ff);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x27);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
/* (Residual DC Calibration) to Calibration Mode */
agnx_write32(ctl, AGNX_ACI_MODE, 0x2);
spi_rc_write(ctl, RF_CHIP0|RF_CHIP1, 0x1004);
agnx_write32(ctl, AGNX_ACI_LEN, 0x3ff);
/* (TX LO Calibration) to Calibration Mode */
agnx_write32(ctl, AGNX_ACI_MODE, 0x4);
do {
u32 reg1, reg2, reg3;
/* Enable Power Saving Control */
enable_power_saving(priv);
/* Save the following registers to restore */
reg1 = ioread32(ctl + 0x11000);
reg2 = ioread32(ctl + 0xec50);
reg3 = ioread32(ctl + 0xec54);
wmb();
agnx_write32(ctl, 0x11000, 0xcfdf);
agnx_write32(ctl, 0xec50, 0x70);
/* Restore the registers */
agnx_write32(ctl, 0x11000, reg1);
agnx_write32(ctl, 0xec50, reg2);
agnx_write32(ctl, 0xec54, reg3);
/* Disable Power Saving Control */
disable_power_saving(priv);
} while (0);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0);
} /* calibrate_oscillator */
static void radio_channel_set(struct agnx_priv *priv, unsigned int channel)
{
void __iomem *ctl = priv->ctl;
unsigned int freq = priv->band.channels[channel - 1].center_freq;
u32 reg;
AGNX_TRACE;
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
/* Set SPI Clock to 50 Ns */
reg = agnx_read32(ctl, AGNX_SPI_CFG);
reg &= ~0xF;
reg |= 0x1;
agnx_write32(ctl, AGNX_SPI_CFG, reg);
/* Clear the Disable Tx interrupt bit in Interrupt Mask */
/* reg = agnx_read32(ctl, AGNX_INT_MASK); */
/* reg &= ~IRQ_TX_DISABLE; */
/* agnx_write32(ctl, AGNX_INT_MASK, reg); */
/* Band Selection */
reg = agnx_read32(ctl, AGNX_SYSITF_GPIOUT);
reg |= 0x8;
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, reg);
/* FIXME Set the SiLabs Chip Frequency */
synth_freq_set(priv, channel);
reg = agnx_read32(ctl, AGNX_PM_SOFTRST);
reg |= 0x80100030;
agnx_write32(ctl, AGNX_PM_SOFTRST, reg);
reg = agnx_read32(ctl, AGNX_PM_PLLCTL);
reg |= 0x20009;
agnx_write32(ctl, AGNX_PM_PLLCTL, reg);
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, 0x5);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1100);
/* Load the MonitorGain Table */
monitor_gain_table_init(priv);
/* Load the TX Fir table */
tx_fir_table_init(priv);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg |= 0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
spi_rc_write(ctl, RF_CHIP0|RF_CHIP1, 0x22);
udelay(80);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0xff);
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
reg = agnx_read32(ctl, 0xec50);
reg |= 0x4f;
agnx_write32(ctl, 0xec50, reg);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
agnx_write32(ctl, 0x11008, 0x1);
agnx_write32(ctl, 0x1100c, 0x0);
agnx_write32(ctl, 0x11008, 0x0);
agnx_write32(ctl, 0xec50, 0xc);
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
agnx_write32(ctl, 0x11010, 0x6e);
agnx_write32(ctl, 0x11014, 0x6c);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1201);
/* Calibrate the Antenna */
/* antenna_calibrate(priv); */
/* Calibrate the TxLocalOscillator */
calibrate_oscillator(priv);
reg = agnx_read32(ctl, AGNX_PM_PMCTL);
reg &= ~0x8;
agnx_write32(ctl, AGNX_PM_PMCTL, reg);
agnx_write32(ctl, AGNX_GCR_GAININIT, 0xa);
agnx_write32(ctl, AGNX_GCR_THCD, 0x0);
agnx_write32(ctl, 0x11018, 0xb);
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x0);
/* Write Frequency to Gain Control Channel */
agnx_write32(ctl, AGNX_GCR_RXCHANEL, freq);
/* Write 0x140000/Freq to 0x9c08 */
reg = 0x140000/freq;
agnx_write32(ctl, 0x9c08, reg);
reg = agnx_read32(ctl, AGNX_PM_SOFTRST);
reg &= ~0x80100030;
agnx_write32(ctl, AGNX_PM_SOFTRST, reg);
reg = agnx_read32(ctl, AGNX_PM_PLLCTL);
reg &= ~0x20009;
reg |= 0x1;
agnx_write32(ctl, AGNX_PM_PLLCTL, reg);
agnx_write32(ctl, AGNX_ACI_MODE, 0x0);
/* FIXME According to Number of Chains: */
/* 1. 1: */
/* 1. Write 0x1203 to RF Chip 0 */
/* 2. Write 0x1200 to RF Chips 1 +2 */
/* 2. 2: */
/* 1. Write 0x1203 to RF Chip 0 */
/* 2. Write 0x1200 to RF Chip 2 */
/* 3. Write 0x1201 to RF Chip 1 */
/* 3. 3: */
/* 1. Write 0x1203 to RF Chip 0 */
/* 2. Write 0x1201 to RF Chip 1 + 2 */
/* 4. 4: */
/* 1. Write 0x1203 to RF Chip 0 + 1 */
/* 2. Write 0x1200 to RF Chip 2 */
/* 5. 6: */
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1, 0x1203);
spi_rf_write(ctl, RF_CHIP2, 0x1201);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1000);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
/* FIXME Set the Disable Tx interrupt bit in Interrupt Mask
(Or 0x20000 to Interrupt Mask) */
/* reg = agnx_read32(ctl, AGNX_INT_MASK); */
/* reg |= IRQ_TX_DISABLE; */
/* agnx_write32(ctl, AGNX_INT_MASK, reg); */
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x1);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x0);
/* Configure the Antenna */
antenna_config(priv);
/* Write 0x0 to Discovery Mode Enable detect G, B, A packet? */
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0);
reg = agnx_read32(ctl, AGNX_RXM_REQRATE);
reg |= 0x80000000;
agnx_write32(ctl, AGNX_RXM_REQRATE, reg);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x1);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x0);
/* enable radio on and the power LED */
reg = agnx_read32(ctl, AGNX_SYSITF_GPIOUT);
reg &= ~0x1;
reg |= 0x2;
agnx_write32(ctl, AGNX_SYSITF_GPIOUT, reg);
reg = agnx_read32(ctl, AGNX_TXM_CTL);
reg |= 0x1;
agnx_write32(ctl, AGNX_TXM_CTL, reg);
} /* radio_channel_set */
static void base_band_filter_calibrate(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1700);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1001);
agnx_write32(ctl, AGNX_GCR_FORCECTLCLK, 0x0);
spi_rc_write(ctl, RF_CHIP0, 0x27);
spi_rc_write(ctl, RF_CHIP1, 0x27);
spi_rc_write(ctl, RF_CHIP2, 0x27);
agnx_write32(ctl, AGNX_GCR_FORCECTLCLK, 0x1);
}
static void print_offset(struct agnx_priv *priv, u32 chain)
{
void __iomem *ctl = priv->ctl;
u32 offset;
iowrite32((chain), ctl + AGNX_ACI_SELCHAIN);
udelay(10);
offset = (ioread32(ctl + AGNX_ACI_OFFSET));
printk(PFX "Chain is 0x%x, Offset is 0x%x\n", chain, offset);
}
void print_offsets(struct agnx_priv *priv)
{
print_offset(priv, 0);
print_offset(priv, 4);
print_offset(priv, 1);
print_offset(priv, 5);
print_offset(priv, 2);
print_offset(priv, 6);
}
struct chains {
u32 cali; /* calibrate value*/
#define NEED_CALIBRATE 0
#define SUCCESS_CALIBRATE 1
int status;
};
static void chain_calibrate(struct agnx_priv *priv, struct chains *chains,
unsigned int num)
{
void __iomem *ctl = priv->ctl;
u32 calibra = chains[num].cali;
if (num < 3)
calibra |= 0x1400;
else
calibra |= 0x1500;
switch (num) {
case 0:
case 4:
spi_rf_write(ctl, RF_CHIP0, calibra);
break;
case 1:
case 5:
spi_rf_write(ctl, RF_CHIP1, calibra);
break;
case 2:
case 6:
spi_rf_write(ctl, RF_CHIP2, calibra);
break;
default:
BUG();
}
} /* chain_calibrate */
static inline void get_calibrete_value(struct agnx_priv *priv, struct chains *chains,
unsigned int num)
{
void __iomem *ctl = priv->ctl;
u32 offset;
iowrite32((num), ctl + AGNX_ACI_SELCHAIN);
/* FIXME */
udelay(10);
offset = (ioread32(ctl + AGNX_ACI_OFFSET));
if (offset < 0xf) {
chains[num].status = SUCCESS_CALIBRATE;
return;
}
if (num == 0 || num == 1 || num == 2) {
if (0 == chains[num].cali)
chains[num].cali = 0xff;
else
chains[num].cali--;
} else
chains[num].cali++;
chains[num].status = NEED_CALIBRATE;
}
static inline void calibra_delay(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
unsigned int i = 100;
wmb();
while (--i) {
reg = (ioread32(ctl + AGNX_ACI_STATUS));
if (reg == 0x4000)
break;
udelay(10);
}
if (!i)
printk(PFX "calibration failed\n");
}
void do_calibration(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
struct chains chains[7];
unsigned int i, j;
AGNX_TRACE;
for (i = 0; i < 7; i++) {
if (i == 3)
continue;
chains[i].cali = 0x7f;
chains[i].status = NEED_CALIBRATE;
}
/* FIXME 0x300 is a magic number */
for (j = 0; j < 0x300; j++) {
if (chains[0].status == SUCCESS_CALIBRATE &&
chains[1].status == SUCCESS_CALIBRATE &&
chains[2].status == SUCCESS_CALIBRATE &&
chains[4].status == SUCCESS_CALIBRATE &&
chains[5].status == SUCCESS_CALIBRATE &&
chains[6].status == SUCCESS_CALIBRATE)
break;
/* Attention, there is no chain 3 */
for (i = 0; i < 7; i++) {
if (i == 3)
continue;
if (chains[i].status == NEED_CALIBRATE)
chain_calibrate(priv, chains, i);
}
/* Write 0x1 to Calibration Measure */
iowrite32((0x1), ctl + AGNX_ACI_MEASURE);
calibra_delay(priv);
for (i = 0; i < 7; i++) {
if (i == 3)
continue;
get_calibrete_value(priv, chains, i);
}
}
printk(PFX "Clibrate times is %d\n", j);
print_offsets(priv);
} /* do_calibration */
void antenna_calibrate(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
AGNX_TRACE;
agnx_write32(ctl, AGNX_GCR_NLISTANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NMEASANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NACTIANT, 0x3);
agnx_write32(ctl, AGNX_GCR_NCAPTANT, 0x3);
agnx_write32(ctl, AGNX_GCR_ANTCFG, 0x1f);
agnx_write32(ctl, AGNX_GCR_BOACT, 0x24);
agnx_write32(ctl, AGNX_GCR_BOINACT, 0x24);
agnx_write32(ctl, AGNX_GCR_BODYNA, 0x20);
agnx_write32(ctl, AGNX_GCR_THD0A, 0x64);
agnx_write32(ctl, AGNX_GCR_THD0AL, 0x64);
agnx_write32(ctl, AGNX_GCR_THD0B, 0x46);
agnx_write32(ctl, AGNX_GCR_THD0BTFEST, 0x3c);
agnx_write32(ctl, AGNX_GCR_SIGHTH, 0x64);
agnx_write32(ctl, AGNX_GCR_SIGLTH, 0x30);
spi_rc_write(ctl, RF_CHIP0, 0x20);
/* Fixme */
udelay(80);
/* 1. Should read 0x0 */
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (0x0 != reg)
printk(KERN_WARNING PFX "Unmatched rf chips result\n");
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1000);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
spi_rc_write(ctl, RF_CHIP0, 0x22);
udelay(80);
reg = agnx_read32(ctl, AGNX_SPI_RLSW);
if (0x0 != reg)
printk(KERN_WARNING PFX "Unmatched rf chips result\n");
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1005);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x1);
agnx_write32(ctl, AGNX_GCR_RSTGCTL, 0x0);
reg = agnx_read32(ctl, AGNX_PM_SOFTRST);
reg |= 0x1c000032;
agnx_write32(ctl, AGNX_PM_SOFTRST, reg);
reg = agnx_read32(ctl, AGNX_PM_PLLCTL);
reg |= 0x0003f07;
agnx_write32(ctl, AGNX_PM_PLLCTL, reg);
reg = agnx_read32(ctl, 0xec50);
reg |= 0x40;
agnx_write32(ctl, 0xec50, reg);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0xff8);
agnx_write32(ctl, AGNX_GCR_DISCOVMOD, 0x3);
agnx_write32(ctl, AGNX_GCR_CHAINNUM, 0x6);
agnx_write32(ctl, 0x19874, 0x0);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1700);
/* Calibrate the BaseBandFilter */
base_band_filter_calibrate(priv);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1002);
agnx_write32(ctl, AGNX_GCR_GAINSET0, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSET1, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSET2, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSETWRITE, 0x1);
agnx_write32(ctl, AGNX_ACI_MODE, 0x1);
agnx_write32(ctl, AGNX_ACI_LEN, 0x3ff);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x27);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1400);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1500);
/* Measure Calibration */
agnx_write32(ctl, AGNX_ACI_MEASURE, 0x1);
calibra_delay(priv);
/* do calibration */
do_calibration(priv);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x21);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
agnx_write32(ctl, AGNX_ACI_LEN, 0xf);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET0);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET0, reg);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET1);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET1, reg);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET2);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET2, reg);
agnx_write32(ctl, AGNX_GCR_GAINSETWRITE, 0x0);
disable_receiver(priv);
} /* antenna_calibrate */
void __antenna_calibrate(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
/* Calibrate the BaseBandFilter */
/* base_band_filter_calibrate(priv); */
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1002);
agnx_write32(ctl, AGNX_GCR_GAINSET0, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSET1, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSET2, 0x1d);
agnx_write32(ctl, AGNX_GCR_GAINSETWRITE, 0x1);
agnx_write32(ctl, AGNX_ACI_MODE, 0x1);
agnx_write32(ctl, AGNX_ACI_LEN, 0x3ff);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x27);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1400);
spi_rf_write(ctl, RF_CHIP0|RF_CHIP1|RF_CHIP2, 0x1500);
/* Measure Calibration */
agnx_write32(ctl, AGNX_ACI_MEASURE, 0x1);
calibra_delay(priv);
do_calibration(priv);
agnx_write32(ctl, AGNX_GCR_RXOVERIDE, 0x0);
agnx_write32(ctl, AGNX_ACI_TIMER1, 0x21);
agnx_write32(ctl, AGNX_ACI_TIMER2, 0x27);
agnx_write32(ctl, AGNX_ACI_LEN, 0xf);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET0);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET0, reg);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET1);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET1, reg);
reg = agnx_read32(ctl, AGNX_GCR_GAINSET2);
reg &= 0xf;
agnx_write32(ctl, AGNX_GCR_GAINSET2, reg);
agnx_write32(ctl, AGNX_GCR_GAINSETWRITE, 0x0);
/* Write 0x3 Gain Control Discovery Mode */
enable_receiver(priv);
}
int agnx_set_channel(struct agnx_priv *priv, unsigned int channel)
{
AGNX_TRACE;
printk(KERN_ERR PFX "Channel is %d %s\n", channel, __func__);
radio_channel_set(priv, channel);
return 0;
}
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include "phy.h"
#include "sta.h"
#include "debug.h"
void hash_read(struct agnx_priv *priv, u32 reghi, u32 reglo, u8 sta_id)
{
void __iomem *ctl = priv->ctl;
reglo &= 0xFFFF;
reglo |= 0x30000000;
reglo |= 0x40000000; /* Set status busy */
reglo |= sta_id << 16;
iowrite32(0, ctl + AGNX_RXM_HASH_CMD_FLAG);
iowrite32(reghi, ctl + AGNX_RXM_HASH_CMD_HIGH);
iowrite32(reglo, ctl + AGNX_RXM_HASH_CMD_LOW);
reghi = ioread32(ctl + AGNX_RXM_HASH_CMD_HIGH);
reglo = ioread32(ctl + AGNX_RXM_HASH_CMD_LOW);
printk(PFX "RX hash cmd are : %.8x%.8x\n", reghi, reglo);
}
void hash_write(struct agnx_priv *priv, const u8 *mac_addr, u8 sta_id)
{
void __iomem *ctl = priv->ctl;
u32 reghi, reglo;
if (!is_valid_ether_addr(mac_addr))
printk(KERN_WARNING PFX "Update hash table: Invalid hwaddr!\n");
reghi = mac_addr[0] << 24 | mac_addr[1] << 16 | mac_addr[2] << 8 | mac_addr[3];
reglo = mac_addr[4] << 8 | mac_addr[5];
reglo |= 0x10000000; /* Set hash commmand */
reglo |= 0x40000000; /* Set status busy */
reglo |= sta_id << 16;
iowrite32(0, ctl + AGNX_RXM_HASH_CMD_FLAG);
iowrite32(reghi, ctl + AGNX_RXM_HASH_CMD_HIGH);
iowrite32(reglo, ctl + AGNX_RXM_HASH_CMD_LOW);
reglo = ioread32(ctl + AGNX_RXM_HASH_CMD_LOW);
if (!(reglo & 0x80000000))
printk(KERN_WARNING PFX "Update hash table failed\n");
}
void hash_delete(struct agnx_priv *priv, u32 reghi, u32 reglo, u8 sta_id)
{
void __iomem *ctl = priv->ctl;
reglo &= 0xFFFF;
reglo |= 0x20000000;
reglo |= 0x40000000; /* Set status busy */
reglo |= sta_id << 16;
iowrite32(0, ctl + AGNX_RXM_HASH_CMD_FLAG);
iowrite32(reghi, ctl + AGNX_RXM_HASH_CMD_HIGH);
iowrite32(reglo, ctl + AGNX_RXM_HASH_CMD_LOW);
reghi = ioread32(ctl + AGNX_RXM_HASH_CMD_HIGH);
reglo = ioread32(ctl + AGNX_RXM_HASH_CMD_LOW);
printk(PFX "RX hash cmd are : %.8x%.8x\n", reghi, reglo);
}
void hash_dump(struct agnx_priv *priv, u8 sta_id)
{
void __iomem *ctl = priv->ctl;
u32 reghi, reglo;
reglo = 0x40000000; /* status bit */
iowrite32(reglo, ctl + AGNX_RXM_HASH_CMD_LOW);
iowrite32(sta_id << 16, ctl + AGNX_RXM_HASH_DUMP_DATA);
udelay(80);
reghi = ioread32(ctl + AGNX_RXM_HASH_CMD_HIGH);
reglo = ioread32(ctl + AGNX_RXM_HASH_CMD_LOW);
printk(PFX "hash cmd are : %.8x%.8x\n", reghi, reglo);
reghi = ioread32(ctl + AGNX_RXM_HASH_CMD_FLAG);
printk(PFX "hash flag is : %.8x\n", reghi);
reghi = ioread32(ctl + AGNX_RXM_HASH_DUMP_MST);
reglo = ioread32(ctl + AGNX_RXM_HASH_DUMP_LST);
printk(PFX "hash dump mst lst: %.8x%.8x\n", reghi, reglo);
reghi = ioread32(ctl + AGNX_RXM_HASH_DUMP_DATA);
printk(PFX "hash dump data: %.8x\n", reghi);
}
void get_sta_power(struct agnx_priv *priv, struct agnx_sta_power *power, unsigned int sta_idx)
{
void __iomem *ctl = priv->ctl;
memcpy_fromio(power, ctl + AGNX_TXM_STAPOWTEMP + sizeof(*power) * sta_idx,
sizeof(*power));
}
inline void
set_sta_power(struct agnx_priv *priv, struct agnx_sta_power *power, unsigned int sta_idx)
{
void __iomem *ctl = priv->ctl;
/* FIXME 2. Write Template to offset + station number */
memcpy_toio(ctl + AGNX_TXM_STAPOWTEMP + sizeof(*power) * sta_idx,
power, sizeof(*power));
}
void get_sta_tx_wq(struct agnx_priv *priv, struct agnx_sta_tx_wq *tx_wq,
unsigned int sta_idx, unsigned int wq_idx)
{
void __iomem *data = priv->data;
memcpy_fromio(tx_wq, data + AGNX_PDU_TX_WQ + sizeof(*tx_wq) * STA_TX_WQ_NUM * sta_idx +
sizeof(*tx_wq) * wq_idx, sizeof(*tx_wq));
}
inline void set_sta_tx_wq(struct agnx_priv *priv, struct agnx_sta_tx_wq *tx_wq,
unsigned int sta_idx, unsigned int wq_idx)
{
void __iomem *data = priv->data;
memcpy_toio(data + AGNX_PDU_TX_WQ + sizeof(*tx_wq) * STA_TX_WQ_NUM * sta_idx +
sizeof(*tx_wq) * wq_idx, tx_wq, sizeof(*tx_wq));
}
void get_sta(struct agnx_priv *priv, struct agnx_sta *sta, unsigned int sta_idx)
{
void __iomem *data = priv->data;
memcpy_fromio(sta, data + AGNX_PDUPOOL + sizeof(*sta) * sta_idx,
sizeof(*sta));
}
inline void set_sta(struct agnx_priv *priv, struct agnx_sta *sta, unsigned int sta_idx)
{
void __iomem *data = priv->data;
memcpy_toio(data + AGNX_PDUPOOL + sizeof(*sta) * sta_idx,
sta, sizeof(*sta));
}
/* FIXME */
void sta_power_init(struct agnx_priv *priv, unsigned int sta_idx)
{
struct agnx_sta_power power;
u32 reg;
AGNX_TRACE;
memset(&power, 0, sizeof(power));
reg = agnx_set_bits(EDCF, EDCF_SHIFT, 0x1);
power.reg = cpu_to_le32(reg);
set_sta_power(priv, &power, sta_idx);
udelay(40);
} /* add_power_template */
/* @num: The #number of station that is visible to the card */
static void sta_tx_workqueue_init(struct agnx_priv *priv, unsigned int sta_idx)
{
struct agnx_sta_tx_wq tx_wq;
u32 reg;
unsigned int i;
memset(&tx_wq, 0, sizeof(tx_wq));
reg = agnx_set_bits(WORK_QUEUE_VALID, WORK_QUEUE_VALID_SHIFT, 1);
reg |= agnx_set_bits(WORK_QUEUE_ACK_TYPE, WORK_QUEUE_ACK_TYPE_SHIFT, 1);
/* reg |= agnx_set_bits(WORK_QUEUE_ACK_TYPE, WORK_QUEUE_ACK_TYPE_SHIFT, 0); */
tx_wq.reg2 |= cpu_to_le32(reg);
/* Suppose all 8 traffic class are used */
for (i = 0; i < STA_TX_WQ_NUM; i++)
set_sta_tx_wq(priv, &tx_wq, sta_idx, i);
} /* sta_tx_workqueue_init */
static void sta_traffic_init(struct agnx_sta_traffic *traffic)
{
u32 reg;
memset(traffic, 0, sizeof(*traffic));
reg = agnx_set_bits(NEW_PACKET, NEW_PACKET_SHIFT, 1);
reg |= agnx_set_bits(TRAFFIC_VALID, TRAFFIC_VALID_SHIFT, 1);
/* reg |= agnx_set_bits(TRAFFIC_ACK_TYPE, TRAFFIC_ACK_TYPE_SHIFT, 1); */
traffic->reg0 = cpu_to_le32(reg);
/* 3. setting RX Sequence Number to 4095 */
reg = agnx_set_bits(RX_SEQUENCE_NUM, RX_SEQUENCE_NUM_SHIFT, 4095);
traffic->reg1 = cpu_to_le32(reg);
}
/* @num: The #number of station that is visible to the card */
void sta_init(struct agnx_priv *priv, unsigned int sta_idx)
{
/* FIXME the length of sta is 256 bytes Is that
* dangerous to stack overflow? */
struct agnx_sta sta;
u32 reg;
int i;
memset(&sta, 0, sizeof(sta));
/* Set valid to 1 */
reg = agnx_set_bits(STATION_VALID, STATION_VALID_SHIFT, 1);
/* Set Enable Concatenation to 0 (?) */
reg |= agnx_set_bits(ENABLE_CONCATENATION, ENABLE_CONCATENATION_SHIFT, 0);
/* Set Enable Decompression to 0 (?) */
reg |= agnx_set_bits(ENABLE_DECOMPRESSION, ENABLE_DECOMPRESSION_SHIFT, 0);
sta.reg = cpu_to_le32(reg);
/* Initialize each of the Traffic Class Structures by: */
for (i = 0; i < 8; i++)
sta_traffic_init(sta.traffic + i);
set_sta(priv, &sta, sta_idx);
sta_tx_workqueue_init(priv, sta_idx);
} /* sta_descriptor_init */
#ifndef AGNX_STA_H_
#define AGNX_STA_H_
#define STA_TX_WQ_NUM 8 /* The number of TX workqueue one STA has */
struct agnx_hash_cmd {
__be32 cmdhi;
#define MACLO 0xFFFF0000
#define MACLO_SHIFT 16
#define STA_ID 0x0000FFF0
#define STA_ID_SHIFT 4
#define CMD 0x0000000C
#define CMD_SHIFT 2
#define STATUS 0x00000002
#define STATUS_SHIFT 1
#define PASS 0x00000001
#define PASS_SHIFT 1
__be32 cmdlo;
} __attribute__((__packed__));
/*
* Station Power Template
* FIXME Just for agn100 yet
*/
struct agnx_sta_power {
__le32 reg;
#define SIGNAL 0x000000FF /* signal */
#define SIGNAL_SHIFT 0
#define RATE 0x00000F00
#define RATE_SHIFT 8
#define TIFS 0x00001000
#define TIFS_SHIFT 12
#define EDCF 0x00002000
#define EDCF_SHIFT 13
#define CHANNEL_BOND 0x00004000
#define CHANNEL_BOND_SHIFT 14
#define PHY_MODE 0x00038000
#define PHY_MODE_SHIFT 15
#define POWER_LEVEL 0x007C0000
#define POWER_LEVEL_SHIFT 18
#define NUM_TRANSMITTERS 0x00800000
#define NUM_TRANSMITTERS_SHIFT 23
} __attribute__((__packed__));
/*
* TX Workqueue Descriptor
*/
struct agnx_sta_tx_wq {
__le32 reg0;
#define HEAD_POINTER_LOW 0xFF000000 /* Head pointer low */
#define HEAD_POINTER_LOW_SHIFT 24
#define TAIL_POINTER 0x00FFFFFF /* Tail pointer */
#define TAIL_POINTER_SHIFT 0
__le32 reg3;
#define ACK_POINTER_LOW 0xFFFF0000 /* ACK pointer low */
#define ACK_POINTER_LOW_SHIFT 16
#define HEAD_POINTER_HIGH 0x0000FFFF /* Head pointer high */
#define HEAD_POINTER_HIGH_SHIFT 0
__le32 reg1;
/* ACK timeout tail packet count */
#define ACK_TIMOUT_TAIL_PACK_CNT 0xFFF00000
#define ACK_TIMOUT_TAIL_PACK_CNT_SHIFT 20
/* Head timeout tail packet count */
#define HEAD_TIMOUT_TAIL_PACK_CNT 0x000FFF00
#define HEAD_TIMOUT_TAIL_PACK_CNT_SHIFT 8
#define ACK_POINTER_HIGH 0x000000FF /* ACK pointer high */
#define ACK_POINTER_HIGH_SHIFT 0
__le32 reg2;
#define WORK_QUEUE_VALID 0x80000000 /* valid */
#define WORK_QUEUE_VALID_SHIFT 31
#define WORK_QUEUE_ACK_TYPE 0x40000000 /* ACK type */
#define WORK_QUEUE_ACK_TYPE_SHIFT 30
/* Head timeout window limit fragmentation count */
#define HEAD_TIMOUT_WIN_LIM_FRAG_CNT 0x3FFF0000
#define HEAD_TIMOUT_WIN_LIM_FRAG_CNT_SHIFT 16
/* Head timeout window limit byte count */
#define HEAD_TIMOUT_WIN_LIM_BYTE_CNT 0x0000FFFF
#define HEAD_TIMOUT_WIN_LIM_BYTE_CNT_SHIFT 0
} __attribute__((__packed__));
/*
* Traffic Class Structure
*/
struct agnx_sta_traffic {
__le32 reg0;
#define ACK_TIMOUT_CNT 0xFF800000 /* ACK Timeout Counts */
#define ACK_TIMOUT_CNT_SHIFT 23
#define TRAFFIC_ACK_TYPE 0x00600000 /* ACK Type */
#define TRAFFIC_ACK_TYPE_SHIFT 21
#define NEW_PACKET 0x00100000 /* New Packet */
#define NEW_PACKET_SHIFT 20
#define TRAFFIC_VALID 0x00080000 /* Valid */
#define TRAFFIC_VALID_SHIFT 19
#define RX_HDR_DESC_POINTER 0x0007FFFF /* RX Header Descripter pointer */
#define RX_HDR_DESC_POINTER_SHIFT 0
__le32 reg1;
#define RX_PACKET_TIMESTAMP 0xFFFF0000 /* RX Packet Timestamp */
#define RX_PACKET_TIMESTAMP_SHIFT 16
#define TRAFFIC_RESERVED 0x0000E000 /* Reserved */
#define TRAFFIC_RESERVED_SHIFT 13
#define SV 0x00001000 /* sv */
#define SV_SHIFT 12
#define RX_SEQUENCE_NUM 0x00000FFF /* RX Sequence Number */
#define RX_SEQUENCE_NUM_SHIFT 0
__le32 tx_replay_cnt_low; /* TX Replay Counter Low */
__le16 tx_replay_cnt_high; /* TX Replay Counter High */
__le16 rx_replay_cnt_high; /* RX Replay Counter High */
__be32 rx_replay_cnt_low; /* RX Replay Counter Low */
} __attribute__((__packed__));
/*
* Station Descriptors
*/
struct agnx_sta {
__le32 tx_session_keys[4]; /* Transmit Session Key (0-3) */
__le32 rx_session_keys[4]; /* Receive Session Key (0-3) */
__le32 reg;
#define ID_1 0xC0000000 /* id 1 */
#define ID_1_SHIFT 30
#define ID_0 0x30000000 /* id 0 */
#define ID_0_SHIFT 28
#define ENABLE_CONCATENATION 0x0FF00000 /* Enable concatenation */
#define ENABLE_CONCATENATION_SHIFT 20
#define ENABLE_DECOMPRESSION 0x000FF000 /* Enable decompression */
#define ENABLE_DECOMPRESSION_SHIFT 12
#define STA_RESERVED 0x00000C00 /* Reserved */
#define STA_RESERVED_SHIFT 10
#define EAP 0x00000200 /* EAP */
#define EAP_SHIFT 9
#define ED_NULL 0x00000100 /* ED NULL */
#define ED_NULL_SHIFT 8
#define ENCRYPTION_POLICY 0x000000E0 /* Encryption Policy */
#define ENCRYPTION_POLICY_SHIFT 5
#define DEFINED_KEY_ID 0x00000018 /* Defined Key ID */
#define DEFINED_KEY_ID_SHIFT 3
#define FIXED_KEY 0x00000004 /* Fixed Key */
#define FIXED_KEY_SHIFT 2
#define KEY_VALID 0x00000002 /* Key Valid */
#define KEY_VALID_SHIFT 1
#define STATION_VALID 0x00000001 /* Station Valid */
#define STATION_VALID_SHIFT 0
__le32 tx_aes_blks_unicast; /* TX AES Blks Unicast */
__le32 rx_aes_blks_unicast; /* RX AES Blks Unicast */
__le16 aes_format_err_unicast_cnt; /* AES Format Error Unicast Counts */
__le16 aes_replay_unicast; /* AES Replay Unicast */
__le16 aes_decrypt_err_unicast; /* AES Decrypt Error Unicast */
__le16 aes_decrypt_err_default; /* AES Decrypt Error default */
__le16 single_retry_packets; /* Single Retry Packets */
__le16 failed_tx_packets; /* Failed Tx Packets */
__le16 muti_retry_packets; /* Multiple Retry Packets */
__le16 ack_timeouts; /* ACK Timeouts */
__le16 frag_tx_cnt; /* Fragment TX Counts */
__le16 rts_brq_sent; /* RTS Brq Sent */
__le16 tx_packets; /* TX Packets */
__le16 cts_back_timeout; /* CTS Back Timeout */
__le32 phy_stats_high; /* PHY Stats High */
__le32 phy_stats_low; /* PHY Stats Low */
struct agnx_sta_traffic traffic[8]; /* Traffic Class Structure (8) */
__le16 traffic_class0_frag_success; /* Traffic Class 0 Fragment Success */
__le16 traffic_class1_frag_success; /* Traffic Class 1 Fragment Success */
__le16 traffic_class2_frag_success; /* Traffic Class 2 Fragment Success */
__le16 traffic_class3_frag_success; /* Traffic Class 3 Fragment Success */
__le16 traffic_class4_frag_success; /* Traffic Class 4 Fragment Success */
__le16 traffic_class5_frag_success; /* Traffic Class 5 Fragment Success */
__le16 traffic_class6_frag_success; /* Traffic Class 6 Fragment Success */
__le16 traffic_class7_frag_success; /* Traffic Class 7 Fragment Success */
__le16 num_frag_non_prime_rates; /* number of Fragments for non-prime rates */
__le16 ack_timeout_non_prime_rates; /* ACK Timeout for non-prime rates */
} __attribute__((__packed__));
struct agnx_beacon_hdr {
struct agnx_sta_power power; /* Tx Station Power Template */
u8 phy_hdr[6]; /* PHY Hdr */
u8 frame_len_lo; /* Frame Length Lo */
u8 frame_len_hi; /* Frame Length Hi */
u8 mac_hdr[24]; /* MAC Header */
/* FIXME */
/* 802.11(abg) beacon */
} __attribute__((__packed__));
void hash_write(struct agnx_priv *priv, const u8 *mac_addr, u8 sta_id);
void hash_dump(struct agnx_priv *priv, u8 sta_id);
void hash_read(struct agnx_priv *priv, u32 reghi, u32 reglo, u8 sta_id);
void hash_delete(struct agnx_priv *priv, u32 reghi, u32 reglo, u8 sta_id);
void get_sta_power(struct agnx_priv *priv, struct agnx_sta_power *power, unsigned int sta_idx);
void set_sta_power(struct agnx_priv *priv, struct agnx_sta_power *power,
unsigned int sta_idx);
void get_sta_tx_wq(struct agnx_priv *priv, struct agnx_sta_tx_wq *tx_wq,
unsigned int sta_idx, unsigned int wq_idx);
void set_sta_tx_wq(struct agnx_priv *priv, struct agnx_sta_tx_wq *tx_wq,
unsigned int sta_idx, unsigned int wq_idx);
void get_sta(struct agnx_priv *priv, struct agnx_sta *sta, unsigned int sta_idx);
void set_sta(struct agnx_priv *priv, struct agnx_sta *sta, unsigned int sta_idx);
void sta_power_init(struct agnx_priv *priv, unsigned int num);
void sta_init(struct agnx_priv *priv, unsigned int num);
#endif /* AGNX_STA_H_ */
#include <linux/pci.h>
#include <linux/delay.h>
#include "agnx.h"
#include "debug.h"
#include "phy.h"
static const u32
tx_fir_table[] = { 0x19, 0x5d, 0xce, 0x151, 0x1c3, 0x1ff, 0x1ea, 0x17c, 0xcf,
0x19, 0x38e, 0x350, 0x362, 0x3ad, 0x5, 0x44, 0x59, 0x49,
0x21, 0x3f7, 0x3e0, 0x3e3, 0x3f3, 0x0 };
void tx_fir_table_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i < ARRAY_SIZE(tx_fir_table); i++)
iowrite32(tx_fir_table[i], ctl + AGNX_FIR_BASE + i*4);
} /* fir_table_setup */
static const u32
gain_table[] = { 0x8, 0x8, 0xf, 0x13, 0x17, 0x1b, 0x1f, 0x23, 0x27, 0x2b,
0x2f, 0x33, 0x37, 0x3b, 0x3f, 0x43, 0x47, 0x4b, 0x4f,
0x53, 0x57, 0x5b, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f, 0x5f,
0x5f, 0x5f, 0x5f, 0x5f };
void gain_table_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
int i;
for (i = 0; i < ARRAY_SIZE(gain_table); i++) {
iowrite32(gain_table[i], ctl + AGNX_GAIN_TABLE + i*4);
iowrite32(gain_table[i], ctl + AGNX_GAIN_TABLE + i*4 + 0x80);
}
} /* gain_table_init */
void monitor_gain_table_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
unsigned int i;
for (i = 0; i < 0x44; i += 4) {
iowrite32(0x61, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0x61, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0x44; i < 0x64; i += 4) {
iowrite32(0x6e, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0x6e, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0x64; i < 0x94; i += 4) {
iowrite32(0x7a, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0x7a, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0x94; i < 0xdc; i += 4) {
iowrite32(0x87, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0x87, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0xdc; i < 0x148; i += 4) {
iowrite32(0x95, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0x95, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0x148; i < 0x1e8; i += 4) {
iowrite32(0xa2, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0xa2, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
for (i = 0x1e8; i <= 0x1fc; i += 4) {
iowrite32(0xb0, ctl + AGNX_MONGCR_BASE + i);
iowrite32(0xb0, ctl + AGNX_MONGCR_BASE + 0x200 + i);
}
} /* monitor_gain_table_init */
void routing_table_init(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
unsigned int type, subtype;
u32 reg;
disable_receiver(priv);
for (type = 0; type < 0x3; type++) {
for (subtype = 0; subtype < 0x10; subtype++) {
/* 1. Set Routing table to R/W and to Return status on Read */
reg = (type << ROUTAB_TYPE_SHIFT) |
(subtype << ROUTAB_SUBTYPE_SHIFT);
reg |= (1 << ROUTAB_RW_SHIFT) | (1 << ROUTAB_STATUS_SHIFT);
if (type == ROUTAB_TYPE_DATA) {
/* NULL goes to RFP */
if (subtype == ROUTAB_SUBTYPE_NULL)
/* reg |= ROUTAB_ROUTE_RFP; */
reg |= ROUTAB_ROUTE_CPU;
/* QOS NULL goes to CPU */
else if (subtype == ROUTAB_SUBTYPE_QOSNULL)
reg |= ROUTAB_ROUTE_CPU;
/* All Data and QOS data subtypes go to Encryption */
else if ((subtype == ROUTAB_SUBTYPE_DATA) ||
(subtype == ROUTAB_SUBTYPE_DATAACK) ||
(subtype == ROUTAB_SUBTYPE_DATAPOLL) ||
(subtype == ROUTAB_SUBTYPE_DATAPOLLACK) ||
(subtype == ROUTAB_SUBTYPE_QOSDATA) ||
(subtype == ROUTAB_SUBTYPE_QOSDATAACK) ||
(subtype == ROUTAB_SUBTYPE_QOSDATAPOLL) ||
(subtype == ROUTAB_SUBTYPE_QOSDATAACKPOLL))
reg |= ROUTAB_ROUTE_ENCRY;
/* reg |= ROUTAB_ROUTE_CPU; */
/*Drop NULL and QOS NULL ack, poll and poll ack*/
else if ((subtype == ROUTAB_SUBTYPE_NULLACK) ||
(subtype == ROUTAB_SUBTYPE_QOSNULLACK) ||
(subtype == ROUTAB_SUBTYPE_NULLPOLL) ||
(subtype == ROUTAB_SUBTYPE_QOSNULLPOLL) ||
(subtype == ROUTAB_SUBTYPE_NULLPOLLACK) ||
(subtype == ROUTAB_SUBTYPE_QOSNULLPOLLACK))
/* reg |= ROUTAB_ROUTE_DROP; */
reg |= ROUTAB_ROUTE_CPU;
} else {
reg |= (ROUTAB_ROUTE_CPU);
}
iowrite32(reg, ctl + AGNX_RXM_ROUTAB);
/* Check to verify that the status bit cleared */
routing_table_delay();
}
}
enable_receiver(priv);
} /* routing_table_init */
void tx_engine_lookup_tbl_init(struct agnx_priv *priv)
{
void __iomem *data = priv->data;
unsigned int i;
for (i = 0; i <= 28; i += 4)
iowrite32(0xb00c, data + AGNX_ENGINE_LOOKUP_TBL + i);
for (i = 32; i <= 120; i += 8) {
iowrite32(0x1e58, data + AGNX_ENGINE_LOOKUP_TBL + i);
iowrite32(0xb00c, data + AGNX_ENGINE_LOOKUP_TBL + i + 4);
}
for (i = 128; i <= 156; i += 4)
iowrite32(0x980c, data + AGNX_ENGINE_LOOKUP_TBL + i);
for (i = 160; i <= 248; i += 8) {
iowrite32(0x1858, data + AGNX_ENGINE_LOOKUP_TBL + i);
iowrite32(0x980c, data + AGNX_ENGINE_LOOKUP_TBL + i + 4);
}
for (i = 256; i <= 284; i += 4)
iowrite32(0x980c, data + AGNX_ENGINE_LOOKUP_TBL + i);
for (i = 288; i <= 376; i += 8) {
iowrite32(0x1a58, data + AGNX_ENGINE_LOOKUP_TBL + i);
iowrite32(0x1858, data + AGNX_ENGINE_LOOKUP_TBL + i + 4);
}
for (i = 512; i <= 540; i += 4)
iowrite32(0xc00c, data + AGNX_ENGINE_LOOKUP_TBL + i);
for (i = 544; i <= 632; i += 8) {
iowrite32(0x2058, data + AGNX_ENGINE_LOOKUP_TBL + i);
iowrite32(0xc00c, data + AGNX_ENGINE_LOOKUP_TBL + i + 4);
}
for (i = 640; i <= 668; i += 4)
iowrite32(0xc80c, data + AGNX_ENGINE_LOOKUP_TBL + i);
for (i = 672; i <= 764; i += 8) {
iowrite32(0x2258, data + AGNX_ENGINE_LOOKUP_TBL + i);
iowrite32(0xc80c, data + AGNX_ENGINE_LOOKUP_TBL + i + 4);
}
}
#ifndef AGNX_TABLE_H_
#define AGNX_TABLE_H_
void tx_fir_table_init(struct agnx_priv *priv);
void gain_table_init(struct agnx_priv *priv);
void monitor_gain_table_init(struct agnx_priv *priv);
void routing_table_init(struct agnx_priv *priv);
void tx_engine_lookup_tbl_init(struct agnx_priv *priv);
#endif /* AGNX_TABLE_H_ */
/**
* Airgo MIMO wireless driver
*
* Copyright (c) 2007 Li YanBo <dreamfly281@gmail.com>
* Thanks for Jeff Williams <angelbane@gmail.com> do reverse engineer
* works and published the SPECS at http://airgo.wdwconsulting.net/mymoin
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include "agnx.h"
#include "debug.h"
#include "phy.h"
unsigned int rx_frame_cnt;
/* unsigned int local_tx_sent_cnt = 0; */
static inline void disable_rx_engine(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
iowrite32(0x100, ctl + AGNX_CIR_RXCTL);
/* Wait for RX Control to have the Disable Rx Interrupt (0x100) set */
ioread32(ctl + AGNX_CIR_RXCTL);
}
static inline void enable_rx_engine(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
iowrite32(0x80, ctl + AGNX_CIR_RXCTL);
ioread32(ctl + AGNX_CIR_RXCTL);
}
inline void disable_rx_interrupt(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
disable_rx_engine(priv);
reg = ioread32(ctl + AGNX_CIR_RXCFG);
reg &= ~0x20;
iowrite32(reg, ctl + AGNX_CIR_RXCFG);
ioread32(ctl + AGNX_CIR_RXCFG);
}
inline void enable_rx_interrupt(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
u32 reg;
reg = ioread32(ctl + AGNX_CIR_RXCFG);
reg |= 0x20;
iowrite32(reg, ctl + AGNX_CIR_RXCFG);
ioread32(ctl + AGNX_CIR_RXCFG);
enable_rx_engine(priv);
}
static inline void rx_desc_init(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_desc *desc = priv->rx.desc + idx;
struct agnx_info *info = priv->rx.info + idx;
memset(info, 0, sizeof(*info));
info->dma_len = IEEE80211_MAX_RTS_THRESHOLD + sizeof(struct agnx_hdr);
info->skb = dev_alloc_skb(info->dma_len);
if (info->skb == NULL)
agnx_bug("refill err");
info->mapping = pci_map_single(priv->pdev, skb_tail_pointer(info->skb),
info->dma_len, PCI_DMA_FROMDEVICE);
memset(desc, 0, sizeof(*desc));
desc->dma_addr = cpu_to_be32(info->mapping);
/* Set the owner to the card */
desc->frag = cpu_to_be32(be32_to_cpu(desc->frag) | OWNER);
}
static inline void rx_desc_reinit(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_info *info = priv->rx.info + idx;
/* Cause ieee80211 will free the skb buffer, so we needn't to free it again?! */
pci_unmap_single(priv->pdev, info->mapping, info->dma_len, PCI_DMA_FROMDEVICE);
rx_desc_init(priv, idx);
}
static inline void rx_desc_reusing(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_desc *desc = priv->rx.desc + idx;
struct agnx_info *info = priv->rx.info + idx;
memset(desc, 0, sizeof(*desc));
desc->dma_addr = cpu_to_be32(info->mapping);
/* Set the owner to the card */
desc->frag = cpu_to_be32(be32_to_cpu(desc->frag) | OWNER);
}
static void rx_desc_free(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_desc *desc = priv->rx.desc + idx;
struct agnx_info *info = priv->rx.info + idx;
BUG_ON(!desc || !info);
if (info->mapping)
pci_unmap_single(priv->pdev, info->mapping, info->dma_len, PCI_DMA_FROMDEVICE);
if (info->skb)
dev_kfree_skb(info->skb);
memset(info, 0, sizeof(*info));
memset(desc, 0, sizeof(*desc));
}
static inline void __tx_desc_free(struct agnx_priv *priv,
struct agnx_desc *desc, struct agnx_info *info)
{
BUG_ON(!desc || !info);
/* TODO make sure mapping, skb and len are consistency */
if (info->mapping)
pci_unmap_single(priv->pdev, info->mapping,
info->dma_len, PCI_DMA_TODEVICE);
if (info->type == PACKET)
dev_kfree_skb(info->skb);
memset(info, 0, sizeof(*info));
memset(desc, 0, sizeof(*desc));
}
static void txm_desc_free(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_desc *desc = priv->txm.desc + idx;
struct agnx_info *info = priv->txm.info + idx;
__tx_desc_free(priv, desc, info);
}
static void txd_desc_free(struct agnx_priv *priv, unsigned int idx)
{
struct agnx_desc *desc = priv->txd.desc + idx;
struct agnx_info *info = priv->txd.info + idx;
__tx_desc_free(priv, desc, info);
}
int fill_rings(struct agnx_priv *priv)
{
void __iomem *ctl = priv->ctl;
unsigned int i;
u32 reg;
AGNX_TRACE;
priv->txd.idx_sent = priv->txm.idx_sent = 0;
priv->rx.idx = priv->txm.idx = priv->txd.idx = 0;
for (i = 0; i < priv->rx.size; i++)
rx_desc_init(priv, i);
for (i = 0; i < priv->txm.size; i++) {
memset(priv->txm.desc + i, 0, sizeof(struct agnx_desc));
memset(priv->txm.info + i, 0, sizeof(struct agnx_info));
}
for (i = 0; i < priv->txd.size; i++) {
memset(priv->txd.desc + i, 0, sizeof(struct agnx_desc));
memset(priv->txd.info + i, 0, sizeof(struct agnx_info));
}
/* FIXME Set the card RX TXM and TXD address */
agnx_write32(ctl, AGNX_CIR_RXCMSTART, priv->rx.dma);
agnx_write32(ctl, AGNX_CIR_RXCMEND, priv->txm.dma);
agnx_write32(ctl, AGNX_CIR_TXMSTART, priv->txm.dma);
agnx_write32(ctl, AGNX_CIR_TXMEND, priv->txd.dma);
agnx_write32(ctl, AGNX_CIR_TXDSTART, priv->txd.dma);
agnx_write32(ctl, AGNX_CIR_TXDEND, priv->txd.dma +
sizeof(struct agnx_desc) * priv->txd.size);
/* FIXME Relinquish control of rings to card */
reg = agnx_read32(ctl, AGNX_CIR_BLKCTL);
reg &= ~0x800;
agnx_write32(ctl, AGNX_CIR_BLKCTL, reg);
return 0;
} /* fill_rings */
void unfill_rings(struct agnx_priv *priv)
{
unsigned long flags;
unsigned int i;
AGNX_TRACE;
spin_lock_irqsave(&priv->lock, flags);
for (i = 0; i < priv->rx.size; i++)
rx_desc_free(priv, i);
for (i = 0; i < priv->txm.size; i++)
txm_desc_free(priv, i);
for (i = 0; i < priv->txd.size; i++)
txd_desc_free(priv, i);
spin_unlock_irqrestore(&priv->lock, flags);
}
/* Extract the bitrate out of a CCK PLCP header.
copy from bcm43xx driver */
static inline u8 agnx_plcp_get_bitrate_cck(__be32 *phyhdr_11b)
{
/* FIXME */
switch (*(u8 *)phyhdr_11b) {
case 0x0A:
return 0;
case 0x14:
return 1;
case 0x37:
return 2;
case 0x6E:
return 3;
}
agnx_bug("Wrong plcp rate");
return 0;
}
/* FIXME */
static inline u8 agnx_plcp_get_bitrate_ofdm(__be32 *phyhdr_11g)
{
u8 rate = *(u8 *)phyhdr_11g & 0xF;
printk(PFX "G mode rate is 0x%x\n", rate);
return rate;
}
/* FIXME */
static void get_rx_stats(struct agnx_priv *priv, struct agnx_hdr *hdr,
struct ieee80211_rx_status *stat)
{
void __iomem *ctl = priv->ctl;
u8 *rssi;
u32 noise;
/* FIXME just for test */
int snr = 40; /* signal-to-noise ratio */
memset(stat, 0, sizeof(*stat));
/* RSSI */
rssi = (u8 *)&hdr->phy_stats_lo;
/* stat->ssi = (rssi[0] + rssi[1] + rssi[2]) / 3; */
/* Noise */
noise = ioread32(ctl + AGNX_GCR_NOISE0);
noise += ioread32(ctl + AGNX_GCR_NOISE1);
noise += ioread32(ctl + AGNX_GCR_NOISE2);
stat->noise = noise / 3;
/* Signal quality */
/* snr = stat->ssi - stat->noise; */
if (snr >= 0 && snr < 40)
stat->signal = 5 * snr / 2;
else if (snr >= 40)
stat->signal = 100;
else
stat->signal = 0;
if (hdr->_11b0 && !hdr->_11g0) {
stat->rate_idx = agnx_plcp_get_bitrate_cck(&hdr->_11b0);
} else if (!hdr->_11b0 && hdr->_11g0) {
printk(PFX "RX: Found G mode packet\n");
stat->rate_idx = agnx_plcp_get_bitrate_ofdm(&hdr->_11g0);
} else
agnx_bug("Unknown packets type");
stat->band = IEEE80211_BAND_2GHZ;
stat->freq = agnx_channels[priv->channel - 1].center_freq;
/* stat->antenna = 3;
stat->mactime = be32_to_cpu(hdr->time_stamp);
stat->channel = priv->channel; */
}
static inline void combine_hdr_frag(struct ieee80211_hdr *ieeehdr,
struct sk_buff *skb)
{
u16 fctl;
unsigned int hdrlen;
fctl = le16_to_cpu(ieeehdr->frame_control);
hdrlen = ieee80211_hdrlen(fctl);
/* FIXME */
if (hdrlen < (2+2+6)/*minimum hdr*/ ||
hdrlen > sizeof(struct ieee80211_mgmt)) {
printk(KERN_ERR PFX "hdr len is %d\n", hdrlen);
agnx_bug("Wrong ieee80211 hdr detected");
}
skb_push(skb, hdrlen);
memcpy(skb->data, ieeehdr, hdrlen);
} /* combine_hdr_frag */
static inline int agnx_packet_check(struct agnx_priv *priv, struct agnx_hdr *agnxhdr,
unsigned packet_len)
{
if (agnx_get_bits(CRC_FAIL, CRC_FAIL_SHIFT, be32_to_cpu(agnxhdr->reg1)) == 1) {
printk(PFX "RX: CRC check fail\n");
goto drop;
}
if (packet_len > 2048) {
printk(PFX "RX: Too long packet detected\n");
goto drop;
}
/* FIXME Just usable for Promious Mode, for Manage mode exclude FCS */
/* if (packet_len - sizeof(*agnxhdr) < FCS_LEN) { */
/* printk(PFX "RX: Too short packet detected\n"); */
/* goto drop; */
/* } */
return 0;
drop:
priv->stats.dot11FCSErrorCount++;
return -1;
}
void handle_rx_irq(struct agnx_priv *priv)
{
struct ieee80211_rx_status status;
unsigned int len;
/* AGNX_TRACE; */
do {
struct agnx_desc *desc;
u32 frag;
struct agnx_info *info;
struct agnx_hdr *hdr;
struct sk_buff *skb;
unsigned int i = priv->rx.idx % priv->rx.size;
desc = priv->rx.desc + i;
frag = be32_to_cpu(desc->frag);
if (frag & OWNER)
break;
info = priv->rx.info + i;
skb = info->skb;
hdr = (struct agnx_hdr *)(skb->data);
len = (frag & PACKET_LEN) >> PACKET_LEN_SHIFT;
if (agnx_packet_check(priv, hdr, len) == -1) {
rx_desc_reusing(priv, i);
continue;
}
skb_put(skb, len);
do {
u16 fctl;
fctl = le16_to_cpu(((struct ieee80211_hdr *)hdr->mac_hdr)->frame_control);
if ((fctl & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_BEACON)/* && !(fctl & IEEE80211_STYPE_BEACON)) */
dump_ieee80211_hdr((struct ieee80211_hdr *)hdr->mac_hdr, "RX");
} while (0);
if (hdr->_11b0 && !hdr->_11g0) {
/* int j;
u16 fctl = le16_to_cpu(((struct ieee80211_hdr *)hdr->mac_hdr)
->frame_control);
if ( (fctl & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) {
agnx_print_rx_hdr(hdr);
agnx_print_sta(priv, BSSID_STAID);
for (j = 0; j < 8; j++)
agnx_print_sta_tx_wq(priv, BSSID_STAID, j);
} */
get_rx_stats(priv, hdr, &status);
skb_pull(skb, sizeof(*hdr));
combine_hdr_frag((struct ieee80211_hdr *)hdr->mac_hdr, skb);
} else if (!hdr->_11b0 && hdr->_11g0) {
/* int j; */
agnx_print_rx_hdr(hdr);
agnx_print_sta(priv, BSSID_STAID);
/* for (j = 0; j < 8; j++) */
agnx_print_sta_tx_wq(priv, BSSID_STAID, 0);
print_hex_dump_bytes("agnx: RX_PACKET: ", DUMP_PREFIX_NONE,
skb->data, skb->len + 8);
/* if (agnx_plcp_get_bitrate_ofdm(&hdr->_11g0) == 0) */
get_rx_stats(priv, hdr, &status);
skb_pull(skb, sizeof(*hdr));
combine_hdr_frag((struct ieee80211_hdr *)
((void *)&hdr->mac_hdr), skb);
/* dump_ieee80211_hdr((struct ieee80211_hdr *)skb->data, "RX G"); */
} else
agnx_bug("Unknown packets type");
memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
ieee80211_rx_irqsafe(priv->hw, skb);
rx_desc_reinit(priv, i);
} while (priv->rx.idx++);
} /* handle_rx_irq */
static inline void handle_tx_irq(struct agnx_priv *priv, struct agnx_ring *ring)
{
struct agnx_desc *desc;
struct agnx_info *info;
unsigned int idx;
for (idx = ring->idx_sent; idx < ring->idx; idx++) {
unsigned int i = idx % ring->size;
u32 frag;
desc = ring->desc + i;
info = ring->info + i;
frag = be32_to_cpu(desc->frag);
if (frag & OWNER) {
if (info->type == HEADER)
break;
else
agnx_bug("TX error");
}
pci_unmap_single(priv->pdev, info->mapping, info->dma_len, PCI_DMA_TODEVICE);
do {
/* int j; */
size_t len;
len = info->skb->len - sizeof(struct agnx_hdr) + info->hdr_len;
/* if (len == 614) { */
/* agnx_print_desc(desc); */
if (info->type == PACKET) {
/* agnx_print_tx_hdr((struct agnx_hdr *)info->skb->data); */
/* agnx_print_sta_power(priv, LOCAL_STAID); */
/* agnx_print_sta(priv, LOCAL_STAID); */
/* for (j = 0; j < 8; j++) */
/* agnx_print_sta_tx_wq(priv, LOCAL_STAID, 0); */
/* agnx_print_sta_power(priv, BSSID_STAID); */
/* agnx_print_sta(priv, BSSID_STAID); */
/* for (j = 0; j < 8; j++) */
/* agnx_print_sta_tx_wq(priv, BSSID_STAID, 0); */
}
/* } */
} while (0);
if (info->type == PACKET) {
/* dump_txm_registers(priv);
dump_rxm_registers(priv);
dump_bm_registers(priv);
dump_cir_registers(priv); */
}
if (info->type == PACKET) {
/* struct ieee80211_hdr *hdr; */
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(info->skb);
skb_pull(info->skb, sizeof(struct agnx_hdr));
memcpy(skb_push(info->skb, info->hdr_len), &info->hdr, info->hdr_len);
/* dump_ieee80211_hdr((struct ieee80211_hdr *)info->skb->data, "TX_HANDLE"); */
/* print_hex_dump_bytes("agnx: TX_HANDLE: ", DUMP_PREFIX_NONE, */
/* info->skb->data, info->skb->len); */
if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK))
txi->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(priv->hw, info->skb);
/* info->tx_status.queue_number = (ring->size - i) / 2; */
/* ieee80211_tx_status_irqsafe(priv->hw, info->skb, &(info->tx_status)); */
/* } else */
/* dev_kfree_skb_irq(info->skb); */
}
memset(desc, 0, sizeof(*desc));
memset(info, 0, sizeof(*info));
}
ring->idx_sent = idx;
/* TODO fill the priv->low_level_stats */
/* ieee80211_wake_queue(priv->hw, 0); */
}
void handle_txm_irq(struct agnx_priv *priv)
{
handle_tx_irq(priv, &priv->txm);
}
void handle_txd_irq(struct agnx_priv *priv)
{
handle_tx_irq(priv, &priv->txd);
}
void handle_other_irq(struct agnx_priv *priv)
{
/* void __iomem *ctl = priv->ctl; */
u32 status = priv->irq_status;
void __iomem *ctl = priv->ctl;
u32 reg;
if (status & IRQ_TX_BEACON) {
iowrite32(IRQ_TX_BEACON, ctl + AGNX_INT_STAT);
printk(PFX "IRQ: TX Beacon control is 0X%.8X\n", ioread32(ctl + AGNX_TXM_BEACON_CTL));
printk(PFX "IRQ: TX Beacon rx frame num: %d\n", rx_frame_cnt);
}
if (status & IRQ_TX_RETRY) {
reg = ioread32(ctl + AGNX_TXM_RETRYSTAID);
printk(PFX "IRQ: TX Retry, RETRY STA ID is %x\n", reg);
}
if (status & IRQ_TX_ACTIVITY)
printk(PFX "IRQ: TX Activity\n");
if (status & IRQ_RX_ACTIVITY)
printk(PFX "IRQ: RX Activity\n");
if (status & IRQ_RX_X)
printk(PFX "IRQ: RX X\n");
if (status & IRQ_RX_Y) {
reg = ioread32(ctl + AGNX_INT_MASK);
reg &= ~IRQ_RX_Y;
iowrite32(reg, ctl + AGNX_INT_MASK);
iowrite32(IRQ_RX_Y, ctl + AGNX_INT_STAT);
printk(PFX "IRQ: RX Y\n");
}
if (status & IRQ_RX_HASHHIT) {
reg = ioread32(ctl + AGNX_INT_MASK);
reg &= ~IRQ_RX_HASHHIT;
iowrite32(reg, ctl + AGNX_INT_MASK);
iowrite32(IRQ_RX_HASHHIT, ctl + AGNX_INT_STAT);
printk(PFX "IRQ: RX Hash Hit\n");
}
if (status & IRQ_RX_FRAME) {
reg = ioread32(ctl + AGNX_INT_MASK);
reg &= ~IRQ_RX_FRAME;
iowrite32(reg, ctl + AGNX_INT_MASK);
iowrite32(IRQ_RX_FRAME, ctl + AGNX_INT_STAT);
printk(PFX "IRQ: RX Frame\n");
rx_frame_cnt++;
}
if (status & IRQ_ERR_INT) {
iowrite32(IRQ_ERR_INT, ctl + AGNX_INT_STAT);
/* agnx_hw_reset(priv); */
printk(PFX "IRQ: Error Interrupt\n");
}
if (status & IRQ_TX_QUE_FULL)
printk(PFX "IRQ: TX Workqueue Full\n");
if (status & IRQ_BANDMAN_ERR)
printk(PFX "IRQ: Bandwidth Management Error\n");
if (status & IRQ_TX_DISABLE)
printk(PFX "IRQ: TX Disable\n");
if (status & IRQ_RX_IVASESKEY)
printk(PFX "IRQ: RX Invalid Session Key\n");
if (status & IRQ_REP_THHIT)
printk(PFX "IRQ: Replay Threshold Hit\n");
if (status & IRQ_TIMER1)
printk(PFX "IRQ: Timer1\n");
if (status & IRQ_TIMER_CNT)
printk(PFX "IRQ: Timer Count\n");
if (status & IRQ_PHY_FASTINT)
printk(PFX "IRQ: Phy Fast Interrupt\n");
if (status & IRQ_PHY_SLOWINT)
printk(PFX "IRQ: Phy Slow Interrupt\n");
if (status & IRQ_OTHER)
printk(PFX "IRQ: 0x80000000\n");
} /* handle_other_irq */
static inline void route_flag_set(struct agnx_hdr *txhdr)
{
/* u32 reg = 0; */
/* FIXME */
/* reg = (0x7 << ROUTE_COMPRESSION_SHIFT) & ROUTE_COMPRESSION; */
/* txhdr->reg5 = cpu_to_be32(reg); */
txhdr->reg5 = (0xa << 0x0) | (0x7 << 0x18);
/* txhdr->reg5 = cpu_to_be32((0xa << 0x0) | (0x7 << 0x18)); */
/* txhdr->reg5 = cpu_to_be32(0x7 << 0x0); */
}
/* Return 0 if no match */
static inline unsigned int get_power_level(unsigned int rate, unsigned int antennas_num)
{
unsigned int power_level;
switch (rate) {
case 10:
case 20:
case 55:
case 60:
case 90:
case 120:
power_level = 22;
break;
case 180:
power_level = 19;
break;
case 240:
power_level = 18;
break;
case 360:
power_level = 16;
break;
case 480:
power_level = 15;
break;
case 540:
power_level = 14;
break;
default:
agnx_bug("Error rate setting\n");
}
if (power_level && (antennas_num == 2))
power_level -= 3;
return power_level;
}
static inline void fill_agnx_hdr(struct agnx_priv *priv, struct agnx_info *tx_info)
{
struct agnx_hdr *txhdr = (struct agnx_hdr *)tx_info->skb->data;
size_t len;
u16 fc = le16_to_cpu(*(__le16 *)&tx_info->hdr);
u32 reg;
memset(txhdr, 0, sizeof(*txhdr));
/* reg = agnx_set_bits(STATION_ID, STATION_ID_SHIFT, LOCAL_STAID); */
reg = agnx_set_bits(STATION_ID, STATION_ID_SHIFT, BSSID_STAID);
reg |= agnx_set_bits(WORKQUEUE_ID, WORKQUEUE_ID_SHIFT, 0);
txhdr->reg4 = cpu_to_be32(reg);
/* Set the Hardware Sequence Number to 1? */
reg = agnx_set_bits(SEQUENCE_NUMBER, SEQUENCE_NUMBER_SHIFT, 0);
/* reg = agnx_set_bits(SEQUENCE_NUMBER, SEQUENCE_NUMBER_SHIFT, 1); */
reg |= agnx_set_bits(MAC_HDR_LEN, MAC_HDR_LEN_SHIFT, tx_info->hdr_len);
txhdr->reg1 = cpu_to_be32(reg);
/* Set the agnx_hdr's MAC header */
memcpy(txhdr->mac_hdr, &tx_info->hdr, tx_info->hdr_len);
reg = agnx_set_bits(ACK, ACK_SHIFT, 1);
/* reg = agnx_set_bits(ACK, ACK_SHIFT, 0); */
reg |= agnx_set_bits(MULTICAST, MULTICAST_SHIFT, 0);
/* reg |= agnx_set_bits(MULTICAST, MULTICAST_SHIFT, 1); */
reg |= agnx_set_bits(RELAY, RELAY_SHIFT, 0);
reg |= agnx_set_bits(TM, TM_SHIFT, 0);
txhdr->reg0 = cpu_to_be32(reg);
/* Set the long and short retry limits */
txhdr->tx.short_retry_limit = tx_info->txi->control.rates[0].count;
txhdr->tx.long_retry_limit = tx_info->txi->control.rates[0].count;
/* FIXME */
len = tx_info->skb->len - sizeof(*txhdr) + tx_info->hdr_len + FCS_LEN;
if (fc & IEEE80211_FCTL_PROTECTED)
len += 8;
len = 2398;
reg = agnx_set_bits(FRAG_SIZE, FRAG_SIZE_SHIFT, len);
len = tx_info->skb->len - sizeof(*txhdr);
reg |= agnx_set_bits(PAYLOAD_LEN, PAYLOAD_LEN_SHIFT, len);
txhdr->reg3 = cpu_to_be32(reg);
route_flag_set(txhdr);
} /* fill_hdr */
static void txm_power_set(struct agnx_priv *priv,
struct ieee80211_tx_info *txi)
{
struct agnx_sta_power power;
u32 reg;
/* FIXME */
if (txi->control.rates[0].idx < 0) {
/* For B mode Short Preamble */
reg = agnx_set_bits(PHY_MODE, PHY_MODE_SHIFT, AGNX_MODE_80211B_SHORT);
/* control->tx_rate = -control->tx_rate; */
} else
reg = agnx_set_bits(PHY_MODE, PHY_MODE_SHIFT, AGNX_MODE_80211G);
/* reg = agnx_set_bits(PHY_MODE, PHY_MODE_SHIFT, AGNX_MODE_80211B_LONG); */
reg |= agnx_set_bits(SIGNAL, SIGNAL_SHIFT, 0xB);
reg |= agnx_set_bits(RATE, RATE_SHIFT, 0xB);
/* reg |= agnx_set_bits(POWER_LEVEL, POWER_LEVEL_SHIFT, 15); */
reg |= agnx_set_bits(POWER_LEVEL, POWER_LEVEL_SHIFT, 20);
/* if rate < 11M set it to 0 */
reg |= agnx_set_bits(NUM_TRANSMITTERS, NUM_TRANSMITTERS_SHIFT, 1);
/* reg |= agnx_set_bits(EDCF, EDCF_SHIFT, 1); */
/* reg |= agnx_set_bits(TIFS, TIFS_SHIFT, 1); */
power.reg = reg;
/* power.reg = cpu_to_le32(reg); */
/* set_sta_power(priv, &power, LOCAL_STAID); */
set_sta_power(priv, &power, BSSID_STAID);
}
static inline int tx_packet_check(struct sk_buff *skb)
{
unsigned int ieee_len = ieee80211_get_hdrlen_from_skb(skb);
if (skb->len > 2048) {
printk(KERN_ERR PFX "length is %d\n", skb->len);
agnx_bug("Too long TX skb");
return -1;
}
/* FIXME */
if (skb->len == ieee_len) {
printk(PFX "A strange TX packet\n");
return -1;
/* tx_faile_irqsafe(); */
}
return 0;
}
static int __agnx_tx(struct agnx_priv *priv, struct sk_buff *skb,
struct agnx_ring *ring)
{
struct agnx_desc *hdr_desc, *frag_desc;
struct agnx_info *hdr_info, *frag_info;
struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&priv->lock, flags);
/* The RX interrupt need be Disable until this TX packet
is handled in the next tx interrupt */
disable_rx_interrupt(priv);
i = ring->idx;
ring->idx += 2;
/* if (priv->txm_idx - priv->txm_idx_sent == AGNX_TXM_RING_SIZE - 2) */
/* ieee80211_stop_queue(priv->hw, 0); */
/* Set agnx header's info and desc */
i %= ring->size;
hdr_desc = ring->desc + i;
hdr_info = ring->info + i;
hdr_info->hdr_len = ieee80211_get_hdrlen_from_skb(skb);
memcpy(&hdr_info->hdr, skb->data, hdr_info->hdr_len);
/* Add the agnx header to the front of the SKB */
skb_push(skb, sizeof(struct agnx_hdr) - hdr_info->hdr_len);
hdr_info->txi = txi;
hdr_info->dma_len = sizeof(struct agnx_hdr);
hdr_info->skb = skb;
hdr_info->type = HEADER;
fill_agnx_hdr(priv, hdr_info);
hdr_info->mapping = pci_map_single(priv->pdev, skb->data,
hdr_info->dma_len, PCI_DMA_TODEVICE);
do {
u32 frag = 0;
frag |= agnx_set_bits(FIRST_FRAG, FIRST_FRAG_SHIFT, 1);
frag |= agnx_set_bits(LAST_FRAG, LAST_FRAG_SHIFT, 0);
frag |= agnx_set_bits(PACKET_LEN, PACKET_LEN_SHIFT, skb->len);
frag |= agnx_set_bits(FIRST_FRAG_LEN, FIRST_FRAG_LEN_SHIFT, 1);
frag |= agnx_set_bits(OWNER, OWNER_SHIFT, 1);
hdr_desc->frag = cpu_to_be32(frag);
} while (0);
hdr_desc->dma_addr = cpu_to_be32(hdr_info->mapping);
/* Set Frag's info and desc */
i = (i + 1) % ring->size;
frag_desc = ring->desc + i;
frag_info = ring->info + i;
memcpy(frag_info, hdr_info, sizeof(struct agnx_info));
frag_info->type = PACKET;
frag_info->dma_len = skb->len - hdr_info->dma_len;
frag_info->mapping = pci_map_single(priv->pdev, skb->data + hdr_info->dma_len,
frag_info->dma_len, PCI_DMA_TODEVICE);
do {
u32 frag = 0;
frag |= agnx_set_bits(FIRST_FRAG, FIRST_FRAG_SHIFT, 0);
frag |= agnx_set_bits(LAST_FRAG, LAST_FRAG_SHIFT, 1);
frag |= agnx_set_bits(PACKET_LEN, PACKET_LEN_SHIFT, skb->len);
frag |= agnx_set_bits(SUB_FRAG_LEN, SUB_FRAG_LEN_SHIFT, frag_info->dma_len);
frag_desc->frag = cpu_to_be32(frag);
} while (0);
frag_desc->dma_addr = cpu_to_be32(frag_info->mapping);
txm_power_set(priv, txi);
/* do { */
/* int j; */
/* size_t len; */
/* len = skb->len - hdr_info->dma_len + hdr_info->hdr_len; */
/* if (len == 614) { */
/* agnx_print_desc(hdr_desc); */
/* agnx_print_desc(frag_desc); */
/* agnx_print_tx_hdr((struct agnx_hdr *)skb->data); */
/* agnx_print_sta_power(priv, LOCAL_STAID); */
/* agnx_print_sta(priv, LOCAL_STAID); */
/* for (j = 0; j < 8; j++) */
/* agnx_print_sta_tx_wq(priv, LOCAL_STAID, j); */
/* agnx_print_sta_power(priv, BSSID_STAID); */
/* agnx_print_sta(priv, BSSID_STAID); */
/* for (j = 0; j < 8; j++) */
/* agnx_print_sta_tx_wq(priv, BSSID_STAID, j); */
/* } */
/* } while (0); */
spin_unlock_irqrestore(&priv->lock, flags);
/* FIXME ugly code */
/* Trigger TXM */
do {
u32 reg;
reg = (ioread32(priv->ctl + AGNX_CIR_TXMCTL));
reg |= 0x8;
iowrite32((reg), priv->ctl + AGNX_CIR_TXMCTL);
} while (0);
/* Trigger TXD */
do {
u32 reg;
reg = (ioread32(priv->ctl + AGNX_CIR_TXDCTL));
reg |= 0x8;
iowrite32((reg), priv->ctl + AGNX_CIR_TXDCTL);
} while (0);
return 0;
}
int _agnx_tx(struct agnx_priv *priv, struct sk_buff *skb)
{
u16 fctl;
if (tx_packet_check(skb))
return 0;
/* print_hex_dump_bytes("agnx: TX_PACKET: ", DUMP_PREFIX_NONE, */
/* skb->data, skb->len); */
fctl = le16_to_cpu(*((__le16 *)skb->data));
if ((fctl & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
return __agnx_tx(priv, skb, &priv->txd);
else
return __agnx_tx(priv, skb, &priv->txm);
}
#ifndef AGNX_XMIT_H_
#define AGNX_XMIT_H_
#include <net/mac80211.h>
struct agnx_priv;
static inline u32 agnx_set_bits(u32 mask, u8 shift, u32 value)
{
return (value << shift) & mask;
}
static inline u32 agnx_get_bits(u32 mask, u8 shift, u32 value)
{
return (value & mask) >> shift;
}
struct agnx_rx {
__be16 rx_packet_duration; /* RX Packet Duration */
__be16 replay_cnt; /* Replay Count */
} __attribute__((__packed__));
struct agnx_tx {
u8 long_retry_limit; /* Long Retry Limit */
u8 short_retry_limit; /* Short Retry Limit */
u8 long_retry_cnt; /* Long Retry Count */
u8 short_retry_cnt; /* Short Retry Count */
} __attribute__((__packed__));
/* Copy from bcm43xx */
#define P4D_BYT3S(magic, nr_bytes) u8 __p4dding##magic[nr_bytes]
#define P4D_BYTES(line, nr_bytes) P4D_BYT3S(line, nr_bytes)
#define PAD_BYTES(nr_bytes) P4D_BYTES(__LINE__, nr_bytes)
#define P4D_BIT3S(magic, nr_bits) __be32 __padding##magic:nr_bits
#define P4D_BITS(line, nr_bits) P4D_BIT3S(line, nr_bits)
#define PAD_BITS(nr_bits) P4D_BITS(__LINE__, nr_bits)
struct agnx_hdr {
__be32 reg0;
#define RTS 0x80000000 /* RTS */
#define RTS_SHIFT 31
#define MULTICAST 0x40000000 /* multicast */
#define MULTICAST_SHIFT 30
#define ACK 0x30000000 /* ACK */
#define ACK_SHIFT 28
#define TM 0x08000000 /* TM */
#define TM_SHIFT 27
#define RELAY 0x04000000 /* Relay */
#define RELAY_SHIFT 26
/* PAD_BITS(4); */
#define REVISED_FCS 0x00380000 /* revised FCS */
#define REVISED_FCS_SHIFT 19
#define NEXT_BUFFER_ADDR 0x0007FFFF /* Next Buffer Address */
#define NEXT_BUFFER_ADDR_SHIFT 0
__be32 reg1;
#define MAC_HDR_LEN 0xFC000000 /* MAC Header Length */
#define MAC_HDR_LEN_SHIFT 26
#define DURATION_OVERIDE 0x02000000 /* Duration Override */
#define DURATION_OVERIDE_SHIFT 25
#define PHY_HDR_OVERIDE 0x01000000 /* PHY Header Override */
#define PHY_HDR_OVERIDE_SHIFT 24
#define CRC_FAIL 0x00800000 /* CRC fail */
#define CRC_FAIL_SHIFT 23
/* PAD_BITS(1); */
#define SEQUENCE_NUMBER 0x00200000 /* Sequence Number */
#define SEQUENCE_NUMBER_SHIFT 21
/* PAD_BITS(2); */
#define BUFF_HEAD_ADDR 0x0007FFFF /* Buffer Head Address */
#define BUFF_HEAD_ADDR_SHIFT 0
__be32 reg2;
#define PDU_COUNT 0xFC000000 /* PDU Count */
#define PDU_COUNT_SHIFT 26
/* PAD_BITS(3); */
#define WEP_KEY 0x00600000 /* WEP Key # */
#define WEP_KEY_SHIFT 21
#define USES_WEP_KEY 0x00100000 /* Uses WEP Key */
#define USES_WEP_KEY_SHIFT 20
#define KEEP_ALIVE 0x00080000 /* Keep alive */
#define KEEP_ALIVE_SHIFT 19
#define BUFF_TAIL_ADDR 0x0007FFFF /* Buffer Tail Address */
#define BUFF_TAIL_ADDR_SHIFT 0
__be32 reg3;
#define CTS_11G 0x80000000 /* CTS in 11g */
#define CTS_11G_SHIFT 31
#define RTS_11G 0x40000000 /* RTS in 11g */
#define RTS_11G_SHIFT 30
/* PAD_BITS(2); */
#define FRAG_SIZE 0x0FFF0000 /* fragment size */
#define FRAG_SIZE_SHIFT 16
#define PAYLOAD_LEN 0x0000FFF0 /* payload length */
#define PAYLOAD_LEN_SHIFT 4
#define FRAG_NUM 0x0000000F /* number of frags */
#define FRAG_NUM_SHIFT 0
__be32 reg4;
/* PAD_BITS(4); */
#define RELAY_STAID 0x0FFF0000 /* relayStald */
#define RELAY_STAID_SHIFT 16
#define STATION_ID 0x0000FFF0 /* Station ID */
#define STATION_ID_SHIFT 4
#define WORKQUEUE_ID 0x0000000F /* Workqueue ID */
#define WORKQUEUE_ID_SHIFT 0
/* FIXME this register maybe is LE? */
__be32 reg5;
/* PAD_BITS(4); */
#define ROUTE_HOST 0x0F000000
#define ROUTE_HOST_SHIFT 24
#define ROUTE_CARD_CPU 0x00F00000
#define ROUTE_CARD_CPU_SHIFT 20
#define ROUTE_ENCRYPTION 0x000F0000
#define ROUTE_ENCRYPTION_SHIFT 16
#define ROUTE_TX 0x0000F000
#define ROUTE_TX_SHIFT 12
#define ROUTE_RX1 0x00000F00
#define ROUTE_RX1_SHIFT 8
#define ROUTE_RX2 0x000000F0
#define ROUTE_RX2_SHIFT 4
#define ROUTE_COMPRESSION 0x0000000F
#define ROUTE_COMPRESSION_SHIFT 0
__be32 _11g0; /* 11g */
__be32 _11g1; /* 11g */
__be32 _11b0; /* 11b */
__be32 _11b1; /* 11b */
u8 mac_hdr[32]; /* MAC header */
__be16 rts_duration; /* RTS duration */
__be16 last_duration; /* Last duration */
__be16 sec_last_duration; /* Second to Last duration */
__be16 other_duration; /* Other duration */
__be16 tx_last_duration; /* TX Last duration */
__be16 tx_other_duration; /* TX Other Duration */
__be16 last_11g_len; /* Length of last 11g */
__be16 other_11g_len; /* Lenght of other 11g */
__be16 last_11b_len; /* Length of last 11b */
__be16 other_11b_len; /* Lenght of other 11b */
__be16 reg6;
#define MBF 0xF000 /* mbf */
#define MBF_SHIFT 12
#define RSVD4 0x0FFF /* rsvd4 */
#define RSVD4_SHIFT 0
__be16 rx_frag_stat; /* RX fragmentation status */
__be32 time_stamp; /* TimeStamp */
__be32 phy_stats_hi; /* PHY stats hi */
__be32 phy_stats_lo; /* PHY stats lo */
__be32 mic_key0; /* MIC key 0 */
__be32 mic_key1; /* MIC key 1 */
union { /* RX/TX Union */
struct agnx_rx rx;
struct agnx_tx tx;
};
u8 rx_channel; /* Recieve Channel */
PAD_BYTES(3);
u8 reserved[4];
} __attribute__((__packed__));
struct agnx_desc {
#define PACKET_LEN 0xFFF00000
#define PACKET_LEN_SHIFT 20
/* ------------------------------------------------ */
#define FIRST_PACKET_MASK 0x00080000
#define FIRST_PACKET_MASK_SHIFT 19
#define FIRST_RESERV2 0x00040000
#define FIRST_RESERV2_SHIFT 18
#define FIRST_TKIP_ERROR 0x00020000
#define FIRST_TKIP_ERROR_SHIFT 17
#define FIRST_TKIP_PACKET 0x00010000
#define FIRST_TKIP_PACKET_SHIFT 16
#define FIRST_RESERV1 0x0000F000
#define FIRST_RESERV1_SHIFT 12
#define FIRST_FRAG_LEN 0x00000FF8
#define FIRST_FRAG_LEN_SHIFT 3
/* ------------------------------------------------ */
#define SUB_RESERV2 0x000c0000
#define SUB_RESERV2_SHIFT 18
#define SUB_TKIP_ERROR 0x00020000
#define SUB_TKIP_ERROR_SHIFT 17
#define SUB_TKIP_PACKET 0x00010000
#define SUB_TKIP_PACKET_SHIFT 16
#define SUB_RESERV1 0x00008000
#define SUB_RESERV1_SHIFT 15
#define SUB_FRAG_LEN 0x00007FF8
#define SUB_FRAG_LEN_SHIFT 3
/* ------------------------------------------------ */
#define FIRST_FRAG 0x00000004
#define FIRST_FRAG_SHIFT 2
#define LAST_FRAG 0x00000002
#define LAST_FRAG_SHIFT 1
#define OWNER 0x00000001
#define OWNER_SHIFT 0
__be32 frag;
__be32 dma_addr;
} __attribute__((__packed__));
enum {HEADER, PACKET};
struct agnx_info {
struct sk_buff *skb;
dma_addr_t mapping;
u32 dma_len; /* dma buffer len */
/* Below fields only usful for tx */
u32 hdr_len; /* ieee80211 header length */
unsigned int type;
struct ieee80211_tx_info *txi;
struct ieee80211_hdr hdr;
};
struct agnx_ring {
struct agnx_desc *desc;
dma_addr_t dma;
struct agnx_info *info;
/* Will lead to overflow when sent packet number enough? */
unsigned int idx;
unsigned int idx_sent; /* only usful for txd and txm */
unsigned int size;
};
#define AGNX_RX_RING_SIZE 128
#define AGNX_TXD_RING_SIZE 256
#define AGNX_TXM_RING_SIZE 128
void disable_rx_interrupt(struct agnx_priv *priv);
void enable_rx_interrupt(struct agnx_priv *priv);
int fill_rings(struct agnx_priv *priv);
void unfill_rings(struct agnx_priv *priv);
void handle_rx_irq(struct agnx_priv *priv);
void handle_txd_irq(struct agnx_priv *priv);
void handle_txm_irq(struct agnx_priv *priv);
void handle_other_irq(struct agnx_priv *priv);
int _agnx_tx(struct agnx_priv *priv, struct sk_buff *skb);
#endif /* AGNX_XMIT_H_ */
config COMEDI
tristate "Data acquisition support (comedi)"
default N
depends on m
depends on m && (PCI || PCMCIA || PCCARD || USB)
---help---
Enable support a wide range of data acquisition devices
for Linux.
......
......@@ -2337,7 +2337,7 @@ static int resize_async_buffer(struct comedi_device *dev,
}
DPRINTK("comedi%i subd %d buffer resized to %i bytes\n",
dev->minor, s - dev->subdevices, async->prealloc_bufsz);
dev->minor, (int)(s - dev->subdevices), async->prealloc_bufsz);
return 0;
}
......
......@@ -744,7 +744,7 @@ static int das16cs_pcmcia_attach(struct pcmcia_device *link)
/* Initialize the pcmcia_device structure */
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = NULL;
......
......@@ -53,7 +53,8 @@ Passing a zero for an option is the same as leaving it unspecified.
* Some drivers use arrays such as this, other do not.
*/
struct pcidio_board {
const char *name; /* anme of the board */
const char *name; /* name of the board */
int dev_id;
int n_8255; /* number of 8255 chips on board */
/* indices of base address regions */
......@@ -64,18 +65,21 @@ struct pcidio_board {
static const struct pcidio_board pcidio_boards[] = {
{
.name = "pci-dio24",
.dev_id = 0x0028,
.n_8255 = 1,
.pcicontroler_badrindex = 1,
.dioregs_badrindex = 2,
},
{
.name = "pci-dio24h",
.dev_id = 0x0014,
.n_8255 = 1,
.pcicontroler_badrindex = 1,
.dioregs_badrindex = 2,
},
{
.name = "pci-dio48h",
.dev_id = 0x000b,
.n_8255 = 2,
.pcicontroler_badrindex = 0,
.dioregs_badrindex = 1,
......@@ -206,7 +210,7 @@ static int pcidio_attach(struct comedi_device *dev, struct comedi_devconfig *it)
continue;
/* loop through cards supported by this driver */
for (index = 0; index < ARRAY_SIZE(pcidio_boards); index++) {
if (pcidio_pci_table[index].device != pcidev->device)
if (pcidio_boards[index].dev_id != pcidev->device)
continue;
/* was a particular bus/slot requested? */
......
......@@ -515,6 +515,7 @@ static struct poll_delay_t jr3_pci_poll_subdevice(struct comedi_subdevice *s)
{
struct poll_delay_t result = poll_delay_min_max(1000, 2000);
struct jr3_pci_subdev_private *p = s->private;
int i;
if (p) {
volatile struct jr3_channel *channel = p->channel;
......@@ -570,18 +571,11 @@ static struct poll_delay_t jr3_pci_poll_subdevice(struct comedi_subdevice *s)
p->serial_no);
/* Transformation all zeros */
transf.link[0].link_type =
(enum link_types)0;
transf.link[0].link_amount = 0;
transf.link[1].link_type =
(enum link_types)0;
transf.link[1].link_amount = 0;
transf.link[2].link_type =
for (i = 0; i < ARRAY_SIZE(transf.link); i++) {
transf.link[i].link_type =
(enum link_types)0;
transf.link[2].link_amount = 0;
transf.link[3].link_type =
(enum link_types)0;
transf.link[3].link_amount = 0;
transf.link[i].link_amount = 0;
}
set_transforms(channel, transf, 0);
use_transform(channel, 0);
......
......@@ -418,15 +418,15 @@ static int ni_65xx_dio_insn_bits(struct comedi_device *dev,
return -EINVAL;
base_bitfield_channel = CR_CHAN(insn->chanspec);
for (j = 0; j < max_ports_per_bitfield; ++j) {
const unsigned port_offset = ni_65xx_port_by_channel(base_bitfield_channel) + j;
const unsigned port =
sprivate(s)->base_port +
ni_65xx_port_by_channel(base_bitfield_channel) + j;
sprivate(s)->base_port + port_offset;
unsigned base_port_channel;
unsigned port_mask, port_data, port_read_bits;
int bitshift;
if (port >= ni_65xx_total_num_ports(board(dev)))
break;
base_port_channel = port * ni_65xx_channels_per_port;
base_port_channel = port_offset * ni_65xx_channels_per_port;
port_mask = data[0];
port_data = data[1];
bitshift = base_port_channel - base_bitfield_channel;
......@@ -457,6 +457,12 @@ static int ni_65xx_dio_insn_bits(struct comedi_device *dev,
port_read_bits =
readb(private(dev)->mite->daq_io_addr + Port_Data(port));
/* printk("read 0x%x from port %i\n", port_read_bits, port); */
if (s->type == COMEDI_SUBD_DO && board(dev)->invert_outputs) {
/* Outputs inverted, so invert value read back from
* DO subdevice. (Does not apply to boards with DIO
* subdevice.) */
port_read_bits ^= 0xFF;
}
if (bitshift > 0) {
port_read_bits <<= bitshift;
} else {
......
......@@ -520,7 +520,7 @@ static int dio700_cs_attach(struct pcmcia_device *link)
link->priv = local;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = NULL;
......
......@@ -271,7 +271,7 @@ static int dio24_cs_attach(struct pcmcia_device *link)
link->priv = local;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = NULL;
......
......@@ -246,7 +246,7 @@ static int labpc_cs_attach(struct pcmcia_device *link)
link->priv = local;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_FORCED_PULSE;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING | IRQ_FORCED_PULSE;
link->irq.IRQInfo1 = IRQ_INFO2_VALID | IRQ_PULSE_ID;
link->irq.Handler = NULL;
......
......@@ -273,7 +273,7 @@ static int cs_attach(struct pcmcia_device *link)
{
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
link->io.NumPorts1 = 16;
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->conf.Attributes = CONF_ENABLE_IRQ;
link->conf.IntType = INT_MEMORY_AND_IO;
......
......@@ -29,7 +29,7 @@ Devices: [National Instruments] PCI-MIO-16XE-50 (ni_pcimio),
PCI-MIO-16XE-10, PXI-6030E, PCI-MIO-16E-1, PCI-MIO-16E-4, PCI-6014, PCI-6040E,
PXI-6040E, PCI-6030E, PCI-6031E, PCI-6032E, PCI-6033E, PCI-6071E, PCI-6023E,
PCI-6024E, PCI-6025E, PXI-6025E, PCI-6034E, PCI-6035E, PCI-6052E,
PCI-6110, PCI-6111, PCI-6220, PCI-6221, PCI-6224, PXI-6224, PCI-6225,
PCI-6110, PCI-6111, PCI-6220, PCI-6221, PCI-6224, PXI-6224, PCI-6225, PXI-6225,
PCI-6229, PCI-6250, PCI-6251, PCIe-6251, PCI-6254, PCI-6259, PCIe-6259,
PCI-6280, PCI-6281, PXI-6281, PCI-6284, PCI-6289,
PCI-6711, PXI-6711, PCI-6713, PXI-6713,
......@@ -179,6 +179,7 @@ static DEFINE_PCI_DEVICE_TABLE(ni_pci_table) = {
PCI_VENDOR_ID_NATINST, 0x70f2, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x710d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x716c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x716d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x717f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x71bc, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
PCI_VENDOR_ID_NATINST, 0x717d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {
......@@ -952,6 +953,25 @@ static const struct ni_board_struct ni_boards[] = {
.caldac = {caldac_none},
.has_8255 = 0,
},
{
.device_id = 0x716d,
.name = "pxi-6225",
.n_adchan = 80,
.adbits = 16,
.ai_fifo_depth = 4095,
.gainlkup = ai_gain_622x,
.ai_speed = 4000,
.n_aochan = 2,
.aobits = 16,
.ao_fifo_depth = 8191,
.ao_range_table = &range_ni_M_622x_ao,
.reg_type = ni_reg_622x,
.ao_unipolar = 0,
.ao_speed = 1200,
.num_p0_dio_channels = 32,
.caldac = {caldac_none},
.has_8255 = 0,
},
{
.device_id = 0x70aa,
.name = "pci-6229",
......
......@@ -1079,7 +1079,7 @@ static int daqp_cs_attach(struct pcmcia_device *link)
link->priv = local;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
link->irq.Attributes = IRQ_TYPE_DYNAMIC_SHARING | IRQ_HANDLE_PRESENT;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = daqp_interrupt;
link->irq.Instance = local;
......
......@@ -43,6 +43,7 @@ comedi_config /dev/comedi0 s526 0x2C0,0x3
#include "../comedidev.h"
#include <linux/ioport.h>
#include <asm/byteorder.h>
#define S526_SIZE 64
......@@ -113,6 +114,7 @@ static const int s526_ports[] = {
};
struct counter_mode_register_t {
#if defined (__LITTLE_ENDIAN_BITFIELD)
unsigned short coutSource:1;
unsigned short coutPolarity:1;
unsigned short autoLoadResetRcap:3;
......@@ -124,12 +126,27 @@ struct counter_mode_register_t {
unsigned short outputRegLatchCtrl:1;
unsigned short preloadRegSel:1;
unsigned short reserved:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
unsigned short reserved:1;
unsigned short preloadRegSel:1;
unsigned short outputRegLatchCtrl:1;
unsigned short countDirCtrl:1;
unsigned short countDir:1;
unsigned short clockSource:2;
unsigned short ctEnableCtrl:2;
unsigned short hwCtEnableSource:2;
unsigned short autoLoadResetRcap:3;
unsigned short coutPolarity:1;
unsigned short coutSource:1;
#else
#error Unknown bit field order
#endif
};
union {
union cmReg {
struct counter_mode_register_t reg;
unsigned short value;
} cmReg;
};
#define MAX_GPCT_CONFIG_DATA 6
......@@ -285,6 +302,7 @@ static int s526_attach(struct comedi_device *dev, struct comedi_devconfig *it)
int i, n;
/* short value; */
/* int subdev_channel = 0; */
union cmReg cmReg;
printk("comedi%d: s526: ", dev->minor);
......@@ -375,7 +393,7 @@ static int s526_attach(struct comedi_device *dev, struct comedi_devconfig *it)
if (thisboard->have_dio) {
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = 2;
s->n_chan = 8;
s->maxdata = 1;
s->range_table = &range_digital;
s->insn_bits = s526_dio_insn_bits;
......@@ -435,11 +453,11 @@ static int s526_attach(struct comedi_device *dev, struct comedi_devconfig *it)
udelay(1000);
printk("Read back mode reg=0x%04x\n", inw(ADDR_CHAN_REG(REG_C0M, n)));
/* Load the pre-laod register high word */
/* Load the pre-load register high word */
/* value = (short) (0x55); */
/* outw(value, ADDR_CHAN_REG(REG_C0H, n)); */
/* Load the pre-laod register low word */
/* Load the pre-load register low word */
/* value = (short)(0xaa55); */
/* outw(value, ADDR_CHAN_REG(REG_C0L, n)); */
......@@ -516,6 +534,7 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
int subdev_channel = CR_CHAN(insn->chanspec); /* Unpack chanspec */
int i;
short value;
union cmReg cmReg;
/* printk("s526: GPCT_INSN_CONFIG: Configuring Channel %d\n", subdev_channel); */
......@@ -568,19 +587,8 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
#if 1
/* Set Counter Mode Register */
cmReg.reg.coutSource = 0; /* out RCAP */
cmReg.reg.coutPolarity = 0; /* Polarity inverted */
cmReg.reg.autoLoadResetRcap = 0; /* Auto load disabled */
cmReg.reg.hwCtEnableSource = 2; /* NOT RCAP */
cmReg.reg.ctEnableCtrl = 1; /* 1: Software, >1 : Hardware */
cmReg.reg.clockSource = 3; /* x4 */
cmReg.reg.countDir = 0; /* up */
cmReg.reg.countDirCtrl = 0; /* quadrature */
cmReg.reg.outputRegLatchCtrl = 0; /* latch on read */
cmReg.reg.preloadRegSel = 0; /* PR0 */
cmReg.reg.reserved = 0;
cmReg.value = insn->data[1] & 0xFFFF;
/* Set Counter Mode Register */
/* printk("s526: Counter Mode register=%x\n", cmReg.value); */
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
......@@ -615,11 +623,11 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
cmReg.value = (short)(insn->data[1] & 0xFFFF);
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
/* Load the pre-laod register high word */
/* Load the pre-load register high word */
value = (short)((insn->data[2] >> 16) & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
/* Load the pre-laod register low word */
/* Load the pre-load register low word */
value = (short)(insn->data[2] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
......@@ -653,11 +661,11 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
cmReg.reg.preloadRegSel = 0; /* PR0 */
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
/* Load the pre-laod register 0 high word */
/* Load the pre-load register 0 high word */
value = (short)((insn->data[2] >> 16) & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
/* Load the pre-laod register 0 low word */
/* Load the pre-load register 0 low word */
value = (short)(insn->data[2] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
......@@ -666,17 +674,17 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
cmReg.reg.preloadRegSel = 1; /* PR1 */
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
/* Load the pre-laod register 1 high word */
/* Load the pre-load register 1 high word */
value = (short)((insn->data[3] >> 16) & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
/* Load the pre-laod register 1 low word */
/* Load the pre-load register 1 low word */
value = (short)(insn->data[3] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
/* Write the Counter Control Register */
if (insn->data[3] != 0) {
value = (short)(insn->data[3] & 0xFFFF);
if (insn->data[4] != 0) {
value = (short)(insn->data[4] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0C, subdev_channel));
}
break;
......@@ -698,11 +706,11 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
cmReg.reg.preloadRegSel = 0; /* PR0 */
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
/* Load the pre-laod register 0 high word */
/* Load the pre-load register 0 high word */
value = (short)((insn->data[2] >> 16) & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
/* Load the pre-laod register 0 low word */
/* Load the pre-load register 0 low word */
value = (short)(insn->data[2] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
......@@ -711,17 +719,17 @@ static int s526_gpct_insn_config(struct comedi_device *dev,
cmReg.reg.preloadRegSel = 1; /* PR1 */
outw(cmReg.value, ADDR_CHAN_REG(REG_C0M, subdev_channel));
/* Load the pre-laod register 1 high word */
/* Load the pre-load register 1 high word */
value = (short)((insn->data[3] >> 16) & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0H, subdev_channel));
/* Load the pre-laod register 1 low word */
/* Load the pre-load register 1 low word */
value = (short)(insn->data[3] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0L, subdev_channel));
/* Write the Counter Control Register */
if (insn->data[3] != 0) {
value = (short)(insn->data[3] & 0xFFFF);
if (insn->data[4] != 0) {
value = (short)(insn->data[4] & 0xFFFF);
outw(value, ADDR_CHAN_REG(REG_C0C, subdev_channel));
}
break;
......@@ -741,6 +749,7 @@ static int s526_gpct_winsn(struct comedi_device *dev,
{
int subdev_channel = CR_CHAN(insn->chanspec); /* Unpack chanspec */
short value;
union cmReg cmReg;
printk("s526: GPCT_INSN_WRITE on channel %d\n", subdev_channel);
cmReg.value = inw(ADDR_CHAN_REG(REG_C0M, subdev_channel));
......@@ -775,9 +784,8 @@ static int s526_gpct_winsn(struct comedi_device *dev,
(devpriv->s526_gpct_config[subdev_channel]).data[1] =
insn->data[1];
} else {
printk("%d \t %d\n", insn->data[1], insn->data[2]);
printk
("s526: INSN_WRITE: PTG: Problem with Pulse params\n");
printk("s526: INSN_WRITE: PTG: Problem with Pulse params -> %d %d\n",
insn->data[0], insn->data[1]);
return -EINVAL;
}
......@@ -949,7 +957,7 @@ static int s526_dio_insn_bits(struct comedi_device *dev,
data[1] = inw(ADDR_REG(REG_DIO)) & 0xFF; /* low 8 bits are the data */
/* or we could just return the software copy of the output values if
* it was a purely digital output subdevice */
/* data[1]=s->state; */
/* data[1]=s->state & 0xFF; */
return 2;
}
......@@ -959,28 +967,33 @@ static int s526_dio_insn_config(struct comedi_device *dev,
struct comedi_insn *insn, unsigned int *data)
{
int chan = CR_CHAN(insn->chanspec);
short value;
int group, mask;
printk("S526 DIO insn_config\n");
if (insn->n != 1)
return -EINVAL;
value = inw(ADDR_REG(REG_DIO));
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
if (data[0] == COMEDI_OUTPUT) {
value |= 1 << (chan + 10); /* bit 10/11 set the group 1/2's mode */
s->io_bits |= (0xF << chan);
} else {
value &= ~(1 << (chan + 10)); /* 1 is output, 0 is input. */
s->io_bits &= ~(0xF << chan);
group = chan >> 2;
mask = 0xF << (group << 2);
switch (data[0]) {
case INSN_CONFIG_DIO_OUTPUT:
s->state |= 1 << (group + 10); // bit 10/11 set the group 1/2's mode
s->io_bits |= mask;
break;
case INSN_CONFIG_DIO_INPUT:
s->state &= ~(1 << (group + 10));// 1 is output, 0 is input.
s->io_bits &= ~mask;
break;
case INSN_CONFIG_DIO_QUERY:
data[1] = (s->io_bits & mask) ? COMEDI_OUTPUT : COMEDI_INPUT;
return insn->n;
default:
return -EINVAL;
}
outw(value, ADDR_REG(REG_DIO));
outw(s->state, ADDR_REG(REG_DIO));
return 1;
}
......
......@@ -35,6 +35,7 @@ Status: in development
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <asm/termios.h>
#include <asm/ioctls.h>
......
config COWLOOP
tristate "copy-on-write pseudo Block Driver"
depends on BLOCK
default n
---help---
Cowloop is a "copy-on-write" pseudo block driver. It can be
stacked on top of a "real" block driver, and catches all write
operations on their way from the file systems layer above to
the real driver below, effectively shielding the lower driver
from those write accesses. The requests are then diverted to
an ordinary file, located somewhere else (configurable). Later
read requests are checked to see whether they can be serviced
by the "real" block driver below, or must be pulled in from
the diverted location. More information and userspace tools to
use the driver are on the project's website
http://www.ATComputing.nl/cowloop/
obj-$(CONFIG_COWLOOP) += cowloop.o
TODO:
- checkpatch.pl cleanups
- run sparse to ensure clean
- fix up 32/64bit ioctl issues
- move proc file usage to debugfs
- audit ioctls
- add documentation
- get linux-fsdevel to review it
Please send patches to "H.J. Thomassen" <hjt@ATComputing.nl> and
Greg Kroah-Hartman <gregkh@suse.de>
/*
** COWLOOP block device driver (2.6 kernel compliant)
** =======================================================================
** Read-write loop-driver with copy-on-write functionality.
**
** Synopsis:
**
** modprobe cowloop [maxcows=..] [rdofile=..... cowfile=.... [option=r]]
**
** Definition of number of configured cowdevices:
** maxcows= number of configured cowdevices (default: 16)
** (do not confuse this with MAXCOWS: absolute maximum as compiled)
**
** One pair of filenames can be supplied during insmod/modprobe to open
** the first cowdevice:
** rdofile= read-only file (or filesystem)
** cowfile= storage-space for modified blocks of read-only file(system)
** option=r repair cowfile automatically if it appears to be dirty
**
** Other cowdevices can be activated via the command "cowdev"
** whenever the cowloop-driver is loaded.
**
** The read-only file may be of type 'regular' or 'block-device'.
**
** The cowfile must be of type 'regular'.
** If an existing regular file is used as cowfile, its contents will be
** used again for the current read-only file. When the cowfile has not been
** closed properly during a previous session (i.e. rmmod cowloop), the
** cowloop-driver refuses to open it unless the parameter "option=r" is
** specified.
**
** Layout of cowfile:
**
** +-----------------------------+
** | cow head block | MAPUNIT bytes
** |-----------------------------|
** | | MAPUNIT bytes
** |--- ---|
** | | MAPUNIT bytes
** |--- ---|
** | used-block bitmap | MAPUNIT bytes
** |-----------------------------|
** | gap to align start-offset |
** | to 4K multiple |
** |-----------------------------| <---- start-offset cow blocks
** | |
** | written cow blocks | MAPUNIT bytes
** | ..... |
**
** cowhead block:
** - contains general info about the rdofile which is related
** to this cowfile
**
** used-block bitmap:
** - contains one bit per block with a size of MAPUNIT bytes
** - bit-value '1' = block has been written on cow
** '0' = block unused on cow
** - total bitmap rounded to multiples of MAPUNIT
**
** ============================================================================
** Author: Gerlof Langeveld - AT Computing (March 2003)
** Current maintainer: Hendrik-Jan Thomassen - AT Computing (Summer 2006)
** Email: hjt@ATComputing.nl
** ----------------------------------------------------------------------------
** Copyright (C) 2003-2009 AT Consultancy
**
** This program is free software; you can redistribute it and/or modify it
** under the terms of the GNU General Public License as published by the
** Free Software Foundation; either version 2, or (at your option) any
** later version.
**
** This program is distributed in the hope that it will be useful, but
** WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
** See the GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
** ----------------------------------------------------------------------------
**
** Major modifications:
**
** 200405 Ported to kernel-version 2.6 Hendrik-Jan Thomassen
** 200405 Added cowhead to cowfile to garantee
** consistency with read-only file Gerlof Langeveld
** 200405 Postponed flushing of bitmaps to improve
** performance. Gerlof Langeveld
** 200405 Inline recovery for dirty cowfiles. Gerlof Langeveld
** 200502 Redesign to support more cowdevices. Gerlof Langeveld
** 200502 Support devices/file > 2 Gbytes. Gerlof Langeveld
** 200507 Check for free space to expand cowfile. Gerlof Langeveld
** 200902 Upgrade for kernel 2.6.28 Hendrik-Jan Thomassen
**
** Inspired by
** loop.c by Theodore Ts'o and
** cloop.c by Paul `Rusty' Russell & Klaus Knopper.
**
** Design-considerations:
**
** For the first experiments with the cowloop-driver, the request-queue
** made use of the do_generic_file_read() which worked fine except
** in combination with the cloop-driver; that combination
** resulted in a non-interruptible hangup of the system during
** heavy load. Other experiments using the `make_request' interface also
** resulted in unpredictable system hangups (with proper use of spinlocks).
**
** To overcome these problems, the cowloop-driver starts a kernel-thread
** for every active cowdevice.
** All read- and write-request on the read-only file and copy-on-write file
** are handled in the context of that thread.
** A scheme has been designed to wakeup the kernel-thread as
** soon as I/O-requests are available in the request-queue; this thread
** handles the requests one-by-one by calling the proper read- or
** write-function related to the open read-only file or copy-on-write file.
** When all pending requests have been handled, the kernel-thread goes
** back to sleep-state.
** This approach requires some additional context-switches; however the
** performance loss during heavy I/O is less than 3%.
**
** -------------------------------------------------------------------------*/
/* The following is the cowloop package version number. It must be
identical to the content of the include-file "version.h" that is
used in all supporting utilities: */
char revision[] = "$Revision: 3.1 $"; /* cowlo_init_module() has
assumptions about this string's format */
/* Note that the following numbers are *not* the cowloop package version
numbers, but separate revision history numbers to track the
modifications of this particular source file: */
/* $Log: cowloop.c,v $
**
** Revision 1.30 2009/02/08 hjt
** Integrated earlier fixes
** Upgraded to kernel 2.6.28 (thanks Jerome Poulin)
**
** Revision 1.29 2006/12/03 22:12:00 hjt
** changed 'cowdevlock' from spinlock to semaphore, to avoid
** "scheduling while atomic". Contributed by Juergen Christ.
** Added version.h again
**
** Revision 1.28 2006/08/16 16:00:00 hjt
** malloc each individual cowloopdevice struct separately
**
** Revision 1.27 2006/03/14 14:57:03 root
** Removed include version.h
**
** Revision 1.26 2005/08/08 11:22:48 root
** Implement possibility to close a cow file or reopen a cowfile read-only.
**
** Revision 1.25 2005/08/03 14:00:39 root
** Added modinfo info to driver.
**
** Revision 1.24 2005/07/21 06:14:53 root
** Cosmetic changes source code.
**
** Revision 1.23 2005/07/20 13:07:32 root
** Supply ioctl to write watchdog program to react on lack of cowfile space.
**
** Revision 1.22 2005/07/20 07:53:34 root
** Regular verification of free space in filesystem holding the cowfile
** (give warnings whenever space is almost exhausted).
** Terminology change: checksum renamed to fingerprint.
**
** Revision 1.21 2005/07/19 09:21:52 root
** Removing maximum limit of 16 Gb per cowdevice.
**
** Revision 1.20 2005/07/19 07:50:33 root
** Minor bugfixes and cosmetic changes.
**
** Revision 1.19 2005/06/10 12:29:55 root
** Removed lock/unlock operation from cowlo_open().
**
** Revision 1.18 2005/05/09 12:56:26 root
** Allow a cowdevice to be open more than once
** (needed for support of ReiserFS and XFS).
**
** Revision 1.17 2005/03/17 14:36:16 root
** Fixed some license issues.
**
** Revision 1.16 2005/03/07 14:42:05 root
** Only allow one parallel open per cowdevice.
**
** Revision 1.15 2005/02/18 11:52:04 gerlof
** Redesign to support more than one cowdevice > 2 Gb space.
**
** Revision 1.14 2004/08/17 14:19:16 gerlof
** Modified output of /proc/cowloop.
**
** Revision 1.13 2004/08/16 07:21:10 gerlof
** Separate statistical counter for read on rdofile and cowfile.
**
** Revision 1.12 2004/08/11 06:52:11 gerlof
** Modified messages.
**
** Revision 1.11 2004/08/11 06:44:11 gerlof
** Modified log messages.
**
** Revision 1.10 2004/08/10 12:27:27 gerlof
** Cosmetic changes.
**
** Revision 1.9 2004/08/09 11:43:37 gerlof
** Removed double definition of major number (COWMAJOR).
**
** Revision 1.8 2004/08/09 08:03:39 gerlof
** Cleanup of messages.
**
** Revision 1.7 2004/05/27 06:37:33 gerlof
** Modified /proc message.
**
** Revision 1.6 2004/05/26 21:23:28 gerlof
** Modified /proc output.
**
** Revision 1.5 2004/05/26 13:23:34 gerlof
** Support cowsync to force flushing the bitmaps and cowhead.
**
** Revision 1.4 2004/05/26 11:11:10 gerlof
** Updated the comment to the actual situation.
**
** Revision 1.3 2004/05/26 10:50:00 gerlof
** Implemented recovery-option.
**
** Revision 1.2 2004/05/25 15:14:41 gerlof
** Modified bitmap flushing strategy.
**
*/
#define COWMAJOR 241
// #define COWDEBUG
#ifdef COWDEBUG
#define DEBUGP printk
#define DCOW KERN_ALERT
#else
#define DEBUGP(format, x...)
#endif
#include <linux/types.h>
#include <linux/autoconf.h>
#ifndef AUTOCONF_INCLUDED
#include <linux/config.h>
#endif
#include <linux/module.h>
#include <linux/version.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/stat.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <linux/semaphore.h>
#include <asm/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/hdreg.h>
#include <linux/genhd.h>
#include <linux/statfs.h>
#include "cowloop.h"
MODULE_LICENSE("GPL");
/* MODULE_AUTHOR("Gerlof Langeveld <gerlof@ATComputing.nl>"); obsolete address */
MODULE_AUTHOR("Hendrik-Jan Thomassen <hjt@ATComputing.nl>"); /* current maintainer */
MODULE_DESCRIPTION("Copy-on-write loop driver");
MODULE_PARM_DESC(maxcows, " Number of configured cowdevices (default 16)");
MODULE_PARM_DESC(rdofile, " Read-only file for /dev/cow/0");
MODULE_PARM_DESC(cowfile, " Cowfile for /dev/cow/0");
MODULE_PARM_DESC(option, " Repair cowfile if inconsistent: option=r");
#define DEVICE_NAME "cow"
#define DFLCOWS 16 /* default cowloop devices */
static int maxcows = DFLCOWS;
module_param(maxcows, int, 0);
static char *rdofile = "";
module_param(rdofile, charp, 0);
static char *cowfile = "";
module_param(cowfile, charp, 0);
static char *option = "";
module_param(option, charp, 0);
/*
** per cowdevice several bitmap chunks are allowed of MAPCHUNKSZ each
**
** each bitmap chunk can describe MAPCHUNKSZ * 8 * MAPUNIT bytes of data
** suppose:
** MAPCHUNKSZ 4096 and MAPUNIT 1024 --> 4096 * 8 * 1024 = 32 Mb per chunk
*/
#define MAPCHUNKSZ 4096 /* #bytes per bitmap chunk (do not change) */
#define SPCMINBLK 100 /* space threshold to give warning messages */
#define SPCDFLINTVL 16 /* once every SPCDFLINTVL writes to cowfile, */
/* available space in filesystem is checked */
#define CALCMAP(x) ((x)/(MAPCHUNKSZ*8))
#define CALCBYTE(x) (((x)%(MAPCHUNKSZ*8))>>3)
#define CALCBIT(x) ((x)&7)
#define ALLCOW 1
#define ALLRDO 2
#define MIXEDUP 3
static char allzeroes[MAPUNIT];
/*
** administration per cowdevice (pair of cowfile/rdofile)
*/
/* bit-values for state */
#define COWDEVOPEN 0x01 /* cowdevice opened */
#define COWRWCOWOPEN 0x02 /* cowfile opened read-write */
#define COWRDCOWOPEN 0x04 /* cowfile opened read-only */
#define COWWATCHDOG 0x08 /* ioctl for watchdog cowfile space active */
#define COWCOWOPEN (COWRWCOWOPEN|COWRDCOWOPEN)
struct cowloop_device
{
/*
** current status
*/
int state; /* bit-values (see above) */
int opencnt; /* # opens for cowdevice */
/*
** open file pointers
*/
struct file *rdofp, *cowfp; /* open file pointers */
char *rdoname, *cowname; /* file names */
/*
** request queue administration
*/
struct request_queue *rqueue;
spinlock_t rqlock;
struct gendisk *gd;
/*
** administration about read-only file
*/
unsigned int numblocks; /* # blocks input file in MAPUNIT */
unsigned int blocksz; /* minimum unit to access this dev */
unsigned long fingerprint; /* fingerprint of current rdofile */
struct block_device *belowdev; /* block device below us */
struct gendisk *belowgd; /* gendisk for blk dev below us */
struct request_queue *belowq; /* req. queue of blk dev below us */
/*
** bitmap administration to register which blocks are modified
*/
long int mapsize; /* total size of bitmap (bytes) */
long int mapremain; /* remaining bytes in last bitmap */
int mapcount; /* number of bitmaps in use */
char **mapcache; /* area with pointers to bitmaps */
char *iobuf; /* databuffer of MAPUNIT bytes */
struct cowhead *cowhead; /* buffer containing cowhead */
/*
** administration for interface with the kernel-thread
*/
int pid; /* pid==0: no thread available */
struct request *req; /* request to be handled now */
wait_queue_head_t waitq; /* wait-Q: thread waits for work */
char closedown; /* boolean: thread exit required */
char qfilled; /* boolean: I/O request pending */
char iobusy; /* boolean: req under treatment */
/*
** administration to keep track of free space in cowfile filesystem
*/
unsigned long blksize; /* block size of fs (bytes) */
unsigned long blktotal; /* recent total space in fs (blocks) */
unsigned long blkavail; /* recent free space in fs (blocks) */
wait_queue_head_t watchq; /* wait-Q: watcher awaits threshold */
unsigned long watchthresh; /* threshold of watcher (blocks) */
/*
** statistical counters
*/
unsigned long rdoreads; /* number of read-actions rdo */
unsigned long cowreads; /* number of read-actions cow */
unsigned long cowwrites; /* number of write-actions */
unsigned long nrcowblocks; /* number of blocks in use on cow */
};
static struct cowloop_device **cowdevall; /* ptr to ptrs to all cowdevices */
static struct semaphore cowdevlock; /* generic lock for cowdevs */
static struct gendisk *cowctlgd; /* gendisk control channel */
static spinlock_t cowctlrqlock; /* for req.q. of ctrl. channel */
/*
** private directory /proc/cow
*/
struct proc_dir_entry *cowlo_procdir;
/*
** function prototypes
*/
static long int cowlo_do_request (struct request *req);
static void cowlo_sync (void);
static int cowlo_checkio (struct cowloop_device *, int, loff_t);
static int cowlo_readmix (struct cowloop_device *, void *, int, loff_t);
static int cowlo_writemix (struct cowloop_device *, void *, int, loff_t);
static long int cowlo_readrdo (struct cowloop_device *, void *, int, loff_t);
static long int cowlo_readcow (struct cowloop_device *, void *, int, loff_t);
static long int cowlo_readcowraw (struct cowloop_device *, void *, int, loff_t);
static long int cowlo_writecow (struct cowloop_device *, void *, int, loff_t);
static long int cowlo_writecowraw(struct cowloop_device *, void *, int, loff_t);
static int cowlo_ioctl (struct block_device *, fmode_t,
unsigned int, unsigned long);
static int cowlo_makepair (struct cowpair __user *);
static int cowlo_removepair (unsigned long __user *);
static int cowlo_watch (struct cowpair __user *);
static int cowlo_cowctl (unsigned long __user *, int);
static int cowlo_openpair (char *, char *, int, int);
static int cowlo_closepair (struct cowloop_device *);
static int cowlo_openrdo (struct cowloop_device *, char *);
static int cowlo_opencow (struct cowloop_device *, char *, int);
static void cowlo_undo_openrdo(struct cowloop_device *);
static void cowlo_undo_opencow(struct cowloop_device *);
/*****************************************************************************/
/* System call handling */
/*****************************************************************************/
/*
** handle system call open()/mount()
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int cowlo_open(struct block_device *bdev, fmode_t mode)
{
struct inode *inode = bdev->bd_inode;
if (!inode)
return -EINVAL;
if (imajor(inode) != COWMAJOR) {
printk(KERN_WARNING
"cowloop - unexpected major %d\n", imajor(inode));
return -ENODEV;
}
switch (iminor(inode)) {
case COWCTL:
DEBUGP(DCOW"cowloop - open %d control\n", COWCTL);
break;
default:
DEBUGP(DCOW"cowloop - open minor %d\n", iminor(inode));
if ( iminor(inode) >= maxcows )
return -ENODEV;
if ( !((cowdevall[iminor(inode)])->state & COWDEVOPEN) )
return -ENODEV;
(cowdevall[iminor(inode)])->opencnt++;
}
return 0;
}
/*
** handle system call close()/umount()
**
** returns:
** 0 - okay
*/
static int cowlo_release(struct gendisk *gd, fmode_t mode)
{
struct block_device *bdev;
struct inode *inode;
bdev = bdget_disk(gd, 0);
inode = bdev->bd_inode;
if (!inode)
return 0;
DEBUGP(DCOW"cowloop - release (close) minor %d\n", iminor(inode));
if ( iminor(inode) != COWCTL)
(cowdevall[iminor(inode)])->opencnt--;
return 0;
}
/*
** handle system call ioctl()
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int cowlo_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct hd_geometry geo;
struct inode *inode = bdev->bd_inode;
DEBUGP(DCOW "cowloop - ioctl cmd %x\n", cmd);
switch ( iminor(inode) ) {
/*
** allowed via control device only
*/
case COWCTL:
switch (cmd) {
/*
** write all bitmap chunks and cowheaders to cowfiles
*/
case COWSYNC:
down(&cowdevlock);
cowlo_sync();
up(&cowdevlock);
return 0;
/*
** open a new cowdevice (pair of rdofile/cowfile)
*/
case COWMKPAIR:
return cowlo_makepair((void __user *)arg);
/*
** close a cowdevice (pair of rdofile/cowfile)
*/
case COWRMPAIR:
return cowlo_removepair((void __user *)arg);
/*
** watch free space of filesystem containing cowfile
*/
case COWWATCH:
return cowlo_watch((void __user *)arg);
/*
** close cowfile for active device
*/
case COWCLOSE:
return cowlo_cowctl((void __user *)arg, COWCLOSE);
/*
** reopen cowfile read-only for active device
*/
case COWRDOPEN:
return cowlo_cowctl((void __user *)arg, COWRDOPEN);
default:
return -EINVAL;
} /* end of switch on command */
/*
** allowed for any other cowdevice
*/
default:
switch (cmd) {
/*
** HDIO_GETGEO must be supported for fdisk, etc
*/
case HDIO_GETGEO:
geo.cylinders = 0;
geo.heads = 0;
geo.sectors = 0;
if (copy_to_user((void __user *)arg, &geo, sizeof geo))
return -EFAULT;
return 0;
default:
return -EINVAL;
} /* end of switch on ioctl-cmd code parameter */
} /* end of switch on minor number */
}
static struct block_device_operations cowlo_fops =
{
.owner = THIS_MODULE,
.open = cowlo_open, /* called upon open */
.release = cowlo_release, /* called upon close */
.ioctl = cowlo_ioctl, /* called upon ioctl */
};
/*
** handle ioctl-command COWMKPAIR:
** open a new cowdevice (pair of rdofile/cowfile) on-the-fly
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_makepair(struct cowpair __user *arg)
{
int i, rv=0;
struct cowpair cowpair;
unsigned char *cowpath;
unsigned char *rdopath;
/*
** retrieve info about pathnames
*/
if ( copy_from_user(&cowpair, arg, sizeof cowpair) )
return -EFAULT;
if ( (MAJOR(cowpair.device) != COWMAJOR) && (cowpair.device != ANYDEV) )
return -EINVAL;
if ( (MINOR(cowpair.device) >= maxcows) && (cowpair.device != ANYDEV) )
return -EINVAL;
/*
** retrieve pathname strings
*/
if ( (cowpair.cowflen > PATH_MAX) || (cowpair.rdoflen > PATH_MAX) )
return -ENAMETOOLONG;
if ( !(cowpath = kmalloc(cowpair.cowflen+1, GFP_KERNEL)) )
return -ENOMEM;
if ( copy_from_user(cowpath, (void __user *)cowpair.cowfile,
cowpair.cowflen) ) {
kfree(cowpath);
return -EFAULT;
}
*(cowpath+cowpair.cowflen) = 0;
if ( !(rdopath = kmalloc(cowpair.rdoflen+1, GFP_KERNEL)) ) {
kfree(cowpath);
return -ENOMEM;
}
if ( copy_from_user(rdopath, (void __user *)cowpair.rdofile,
cowpair.rdoflen) ) {
kfree(rdopath);
kfree(cowpath);
return -EFAULT;
}
*(rdopath+cowpair.rdoflen) = 0;
/*
** open new cowdevice
*/
if ( cowpair.device == ANYDEV) {
/*
** search first unused minor
*/
for (i=0, rv=-EBUSY; i < maxcows; i++) {
if ( !((cowdevall[i])->state & COWDEVOPEN) ) {
rv = cowlo_openpair(rdopath, cowpath, 0, i);
break;
}
}
if (rv) { /* open failed? */
kfree(rdopath);
kfree(cowpath);
return rv;
}
/*
** return newly allocated cowdevice to user space
*/
cowpair.device = MKDEV(COWMAJOR, i);
if ( copy_to_user(arg, &cowpair, sizeof cowpair)) {
kfree(rdopath);
kfree(cowpath);
return -EFAULT;
}
} else { /* specific minor requested */
if ( (rv = cowlo_openpair(rdopath, cowpath, 0,
MINOR(cowpair.device)))) {
kfree(rdopath);
kfree(cowpath);
return rv;
}
}
return 0;
}
/*
** handle ioctl-command COWRMPAIR:
** deactivate an existing cowdevice (pair of rdofile/cowfile) on-the-fly
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_removepair(unsigned long __user *arg)
{
unsigned long cowdevice;
struct cowloop_device *cowdev;
/*
** retrieve info about device to be removed
*/
if ( copy_from_user(&cowdevice, arg, sizeof cowdevice))
return -EFAULT;
/*
** verify major-minor number
*/
if ( MAJOR(cowdevice) != COWMAJOR)
return -EINVAL;
if ( MINOR(cowdevice) >= maxcows)
return -EINVAL;
cowdev = cowdevall[MINOR(cowdevice)];
if ( !(cowdev->state & COWDEVOPEN) )
return -ENODEV;
/*
** synchronize bitmaps and close cowdevice
*/
if (cowdev->state & COWRWCOWOPEN) {
down(&cowdevlock);
cowlo_sync();
up(&cowdevlock);
}
return cowlo_closepair(cowdev);
}
/*
** handle ioctl-command COWWATCH:
** watch the free space of the filesystem containing a cowfile
** of an open cowdevice
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_watch(struct cowpair __user *arg)
{
struct cowloop_device *cowdev;
struct cowwatch cowwatch;
/*
** retrieve structure holding info
*/
if ( copy_from_user(&cowwatch, arg, sizeof cowwatch))
return -EFAULT;
/*
** verify if cowdevice exists and is currently open
*/
if ( MINOR(cowwatch.device) >= maxcows)
return -EINVAL;
cowdev = cowdevall[MINOR(cowwatch.device)];
if ( !(cowdev->state & COWDEVOPEN) )
return -ENODEV;
/*
** if the WATCHWAIT-option is set, wait until the indicated
** threshold is reached (only one waiter allowed)
*/
if (cowwatch.flags & WATCHWAIT) {
/*
** check if already another waiter active
** for this cowdevice
*/
if (cowdev->state & COWWATCHDOG)
return -EAGAIN;
cowdev->state |= COWWATCHDOG;
cowdev->watchthresh = (unsigned long long)
cowwatch.threshold /
(cowdev->blksize / 1024);
if (wait_event_interruptible(cowdev->watchq,
cowdev->watchthresh >= cowdev->blkavail)) {
cowdev->state &= ~COWWATCHDOG;
return EINTR;
}
cowdev->state &= ~COWWATCHDOG;
}
cowwatch.totalkb = (unsigned long long)cowdev->blktotal *
cowdev->blksize / 1024;
cowwatch.availkb = (unsigned long long)cowdev->blkavail *
cowdev->blksize / 1024;
if ( copy_to_user(arg, &cowwatch, sizeof cowwatch))
return -EFAULT;
return 0;
}
/*
** handle ioctl-commands COWCLOSE and COWRDOPEN:
** COWCLOSE - close the cowfile while the cowdevice remains open;
** this allows an unmount of the filesystem on which
** the cowfile resides
** COWRDOPEN - close the cowfile and reopen it for read-only;
** this allows a remount read-ony of the filesystem
** on which the cowfile resides
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_cowctl(unsigned long __user *arg, int cmd)
{
struct cowloop_device *cowdev;
unsigned long cowdevice;
/*
** retrieve info about device to be removed
*/
if ( copy_from_user(&cowdevice, arg, sizeof cowdevice))
return -EFAULT;
/*
** verify major-minor number
*/
if ( MAJOR(cowdevice) != COWMAJOR)
return -EINVAL;
if ( MINOR(cowdevice) >= maxcows)
return -EINVAL;
cowdev = cowdevall[MINOR(cowdevice)];
if ( !(cowdev->state & COWDEVOPEN) )
return -ENODEV;
/*
** synchronize bitmaps and close cowfile
*/
if (cowdev->state & COWRWCOWOPEN) {
down(&cowdevlock);
cowlo_sync();
up(&cowdevlock);
}
/*
** handle specific ioctl-command
*/
switch (cmd) {
case COWRDOPEN:
/*
** if the cowfile is still opened read-write
*/
if (cowdev->state & COWRWCOWOPEN) {
/*
** close the cowfile
*/
if (cowdev->cowfp)
filp_close(cowdev->cowfp, 0);
cowdev->state &= ~COWRWCOWOPEN;
/*
** open again for read-only
*/
cowdev->cowfp = filp_open(cowdev->cowname,
O_RDONLY|O_LARGEFILE, 0600);
if ( (cowdev->cowfp == NULL) || IS_ERR(cowdev->cowfp) ) {
printk(KERN_ERR
"cowloop - failed to reopen cowfile %s\n",
cowdev->cowname);
return -EINVAL;
}
/*
** mark cowfile open for read-only
*/
cowdev->state |= COWRDCOWOPEN;
} else {
return -EINVAL;
}
break;
case COWCLOSE:
/*
** if the cowfile is still open
*/
if (cowdev->state & COWCOWOPEN) {
/*
** close the cowfile
*/
if (cowdev->cowfp)
filp_close(cowdev->cowfp, 0);
cowdev->state &= ~COWCOWOPEN;
}
}
return 0;
}
/*****************************************************************************/
/* Handling of I/O-requests for a cowdevice */
/*****************************************************************************/
/*
** function to be called by core-kernel to handle the I/O-requests
** in the queue
*/
static void cowlo_request(struct request_queue *q)
{
struct request *req;
struct cowloop_device *cowdev;
DEBUGP(DCOW "cowloop - request function called....\n");
while((req = blk_peek_request(q)) != NULL) {
DEBUGP(DCOW "cowloop - got next request\n");
if (! blk_fs_request(req)) {
/* this is not a normal file system request */
__blk_end_request_cur(req, -EIO);
continue;
}
cowdev = req->rq_disk->private_data;
if (cowdev->iobusy)
return;
else
cowdev->iobusy = 1;
/*
** when no kernel-thread is available, the request will
** produce an I/O-error
*/
if (!cowdev->pid) {
printk(KERN_ERR"cowloop - no thread available\n");
__blk_end_request_cur(req, -EIO); /* request failed */
cowdev->iobusy = 0;
continue;
}
/*
** handle I/O-request in the context of the kernel-thread
*/
cowdev->req = req;
cowdev->qfilled = 1;
wake_up_interruptible_sync(&cowdev->waitq);
/*
** get out of this function now while the I/O-request is
** under treatment of the kernel-thread; this function
** will be called again after the current I/O-request has
** been finished by the thread
*/
return;
}
}
/*
** daemon-process (kernel-thread) executes this function
*/
static int
cowlo_daemon(struct cowloop_device *cowdev)
{
int rv;
int minor;
char myname[16];
for (minor = 0; minor < maxcows; minor++) {
if (cowdev == cowdevall[minor]) break;
}
sprintf(myname, "cowloopd%d", minor);
daemonize(myname);
while (!cowdev->closedown) {
/*
** sleep while waiting for an I/O request;
** note that no non-interruptible wait has been used
** because the non-interruptible version of
** a *synchronous* wake_up does not exist (any more)
*/
if (wait_event_interruptible(cowdev->waitq, cowdev->qfilled)){
flush_signals(current); /* ignore signal-based wakeup */
continue;
}
if (cowdev->closedown) /* module will be unloaded ? */{
cowdev->pid = 0;
return 0;
}
/*
** woken up by the I/O-request handler: treat requested I/O
*/
cowdev->qfilled = 0;
rv = cowlo_do_request(cowdev->req);
/*
** reacquire the queue-spinlock for manipulating
** the request-queue and dequeue the request
*/
spin_lock_irq(&cowdev->rqlock);
__blk_end_request_cur(cowdev->req, rv);
cowdev->iobusy = 0;
/*
** initiate the next request from the queue
*/
cowlo_request(cowdev->rqueue);
spin_unlock_irq(&cowdev->rqlock);
}
return 0;
}
/*
** function to be called in the context of the kernel thread
** to handle the queued I/O-requests
**
** returns:
** 0 - fail
** 1 - success
*/
static long int
cowlo_do_request(struct request *req)
{
unsigned long len;
long int rv;
loff_t offset;
struct cowloop_device *cowdev = req->rq_disk->private_data;
/*
** calculate some variables which are needed later on
*/
len = blk_rq_cur_sectors(req) << 9;
offset = (loff_t) blk_rq_pos(req) << 9;
DEBUGP(DCOW"cowloop - req cmd=%d offset=%lld len=%lu addr=%p\n",
*(req->cmd), offset, len, req->buffer);
/*
** handle READ- or WRITE-request
*/
switch (rq_data_dir(req)) {
/**********************************************************/
case READ:
switch ( cowlo_checkio(cowdev, len, offset) ) {
case ALLCOW:
rv = cowlo_readcow(cowdev, req->buffer, len, offset);
break;
case ALLRDO:
rv = cowlo_readrdo(cowdev, req->buffer, len, offset);
break;
case MIXEDUP:
rv = cowlo_readmix(cowdev, req->buffer, len, offset);
break;
default:
rv = 0; /* never happens */
}
break;
/**********************************************************/
case WRITE:
switch ( cowlo_checkio(cowdev, len, offset) ) {
case ALLCOW:
/*
** straight-forward write will do...
*/
DEBUGP(DCOW"cowloop - write straight ");
rv = cowlo_writecow(cowdev, req->buffer, len, offset);
break; /* from switch */
case ALLRDO:
if ( (len & MUMASK) == 0) {
DEBUGP(DCOW"cowloop - write straight ");
rv = cowlo_writecow(cowdev, req->buffer,
len, offset);
break;
}
case MIXEDUP:
rv = cowlo_writemix(cowdev, req->buffer, len, offset);
break;
default:
rv = 0; /* never happens */
}
break;
default:
printk(KERN_ERR
"cowloop - unrecognized command %d\n", *(req->cmd));
rv = 0;
}
return (rv <= 0 ? 0 : 1);
}
/*
** check for a given I/O-request if all underlying blocks
** (with size MAPUNIT) are either in the read-only file or in
** the cowfile (or a combination of the two)
**
** returns:
** ALLRDO - all underlying blocks in rdofile
** ALLCOW - all underlying blocks in cowfile
** MIXEDUP - underlying blocks partly in rdofile and partly in cowfile
*/
static int
cowlo_checkio(struct cowloop_device *cowdev, int len, loff_t offset)
{
unsigned long mapnum, bytenum, bitnum, blocknr, partlen;
long int totcnt, cowcnt;
char *mc;
/*
** notice that the requested block might cross
** a blocksize boundary while one of the concerned
** blocks resides in the read-only file and another
** one in the copy-on-write file; in that case the
** request will be broken up into pieces
*/
if ( (len <= MAPUNIT) &&
(MAPUNIT - (offset & MUMASK) <= len) ) {
/*
** easy situation:
** requested data-block entirely fits within
** the mapunit used for the bitmap
** check if that block is located in rdofile or
** cowfile
*/
blocknr = offset >> MUSHIFT;
mapnum = CALCMAP (blocknr);
bytenum = CALCBYTE(blocknr);
bitnum = CALCBIT (blocknr);
if (*(*(cowdev->mapcache+mapnum)+bytenum)&(1<<bitnum))
return ALLCOW;
else
return ALLRDO;
}
/*
** less easy situation:
** the requested data-block does not fit within the mapunit
** used for the bitmap
** check if *all* underlying blocks involved reside on the rdofile
** or the cowfile (so still no breakup required)
*/
for (cowcnt=totcnt=0; len > 0; len-=partlen, offset+=partlen, totcnt++){
/*
** calculate blocknr of involved block
*/
blocknr = offset >> MUSHIFT;
/*
** calculate partial length for this transfer
*/
partlen = MAPUNIT - (offset & MUMASK);
if (partlen > len)
partlen = len;
/*
** is this block located in the cowfile
*/
mapnum = CALCMAP (blocknr);
bytenum = CALCBYTE(blocknr);
bitnum = CALCBIT (blocknr);
mc = *(cowdev->mapcache+mapnum);
if (*(mc+bytenum)&(1<<bitnum))
cowcnt++;;
DEBUGP(DCOW
"cowloop - check %lu - map %lu, byte %lu, bit %lu, "
"cowcnt %ld, totcnt %ld %02x %p\n",
blocknr, mapnum, bytenum, bitnum, cowcnt, totcnt,
*(mc+bytenum), mc);
}
if (cowcnt == 0) /* all involved blocks on rdofile? */
return ALLRDO;
if (cowcnt == totcnt) /* all involved blocks on cowfile? */
return ALLCOW;
/*
** situation somewhat more complicated:
** involved underlying blocks spread over both files
*/
return MIXEDUP;
}
/*
** read requested chunk partly from rdofile and partly from cowfile
**
** returns:
** 0 - fail
** 1 - success
*/
static int
cowlo_readmix(struct cowloop_device *cowdev, void *buf, int len, loff_t offset)
{
unsigned long mapnum, bytenum, bitnum, blocknr, partlen;
long int rv;
char *mc;
/*
** complicated approach: breakup required of read-request
*/
for (rv=1; len > 0; len-=partlen, buf+=partlen, offset+=partlen) {
/*
** calculate blocknr of entire block
*/
blocknr = offset >> MUSHIFT;
/*
** calculate partial length for this transfer
*/
partlen = MAPUNIT - (offset & MUMASK);
if (partlen > len)
partlen = len;
/*
** is this block located in the cowfile
*/
mapnum = CALCMAP (blocknr);
bytenum = CALCBYTE(blocknr);
bitnum = CALCBIT (blocknr);
mc = *(cowdev->mapcache+mapnum);
if (*(mc+bytenum)&(1<<bitnum)) {
/*
** read (partial) block from cowfile
*/
DEBUGP(DCOW"cowloop - split read "
"cow partlen=%ld off=%lld\n", partlen, offset);
if (cowlo_readcow(cowdev, buf, partlen, offset) <= 0)
rv = 0;
} else {
/*
** read (partial) block from rdofile
*/
DEBUGP(DCOW"cowloop - split read "
"rdo partlen=%ld off=%lld\n", partlen, offset);
if (cowlo_readrdo(cowdev, buf, partlen, offset) <= 0)
rv = 0;
}
}
return rv;
}
/*
** chunk to be written to the cowfile needs pieces to be
** read from the rdofile
**
** returns:
** 0 - fail
** 1 - success
*/
static int
cowlo_writemix(struct cowloop_device *cowdev, void *buf, int len, loff_t offset)
{
unsigned long mapnum, bytenum, bitnum, blocknr, partlen;
long int rv;
char *mc;
/*
** somewhat more complicated stuff is required:
** if the request is larger than one underlying
** block or is spread over two underlying blocks,
** split the request into pieces; if a block does not
** start at a block boundary, take care that
** surrounding data is read first (if needed),
** fit the new data in and write it as a full block
*/
for (rv=1; len > 0; len-=partlen, buf+=partlen, offset+=partlen) {
/*
** calculate partial length for this transfer
*/
partlen = MAPUNIT - (offset & MUMASK);
if (partlen > len)
partlen = len;
/*
** calculate blocknr of entire block
*/
blocknr = offset >> MUSHIFT;
/*
** has this block been written before?
*/
mapnum = CALCMAP (blocknr);
bytenum = CALCBYTE(blocknr);
bitnum = CALCBIT (blocknr);
mc = *(cowdev->mapcache+mapnum);
if (*(mc+bytenum)&(1<<bitnum)) {
/*
** block has been written before;
** write transparantly to cowfile
*/
DEBUGP(DCOW
"cowloop - splitwr transp\n");
if (cowlo_writecow(cowdev, buf, partlen, offset) <= 0)
rv = 0;
} else {
/*
** block has never been written before,
** so read entire block from
** read-only file first, unless
** a full block is requested to
** be written
*/
if (partlen < MAPUNIT) {
if (cowlo_readrdo(cowdev, cowdev->iobuf,
MAPUNIT, (loff_t)blocknr << MUSHIFT) <= 0)
rv = 0;
}
/*
** transfer modified part into
** the block just read
*/
memcpy(cowdev->iobuf + (offset & MUMASK), buf, partlen);
/*
** write entire block to cowfile
*/
DEBUGP(DCOW"cowloop - split "
"partlen=%ld off=%lld\n",
partlen, (loff_t)blocknr << MUSHIFT);
if (cowlo_writecow(cowdev, cowdev->iobuf, MAPUNIT,
(loff_t)blocknr << MUSHIFT) <= 0)
rv = 0;
}
}
return rv;
}
/*****************************************************************************/
/* I/O-support for read-only file and copy-on-write file */
/*****************************************************************************/
/*
** read data from the read-only file
**
** return-value: similar to user-mode read
*/
static long int
cowlo_readrdo(struct cowloop_device *cowdev, void *buf, int len, loff_t offset)
{
long int rv;
mm_segment_t old_fs;
loff_t saveoffset = offset;
DEBUGP(DCOW"cowloop - readrdo called\n");
old_fs = get_fs();
set_fs( get_ds() );
rv = cowdev->rdofp->f_op->read(cowdev->rdofp, buf, len, &offset);
set_fs(old_fs);
if (rv < len) {
printk(KERN_WARNING "cowloop - read-failure %ld on rdofile"
"- offset=%lld len=%d\n",
rv, saveoffset, len);
}
cowdev->rdoreads++;
return rv;
}
/*
** read cowfile from a modified offset, i.e. skipping the bitmap and cowhead
**
** return-value: similar to user-mode read
*/
static long int
cowlo_readcow(struct cowloop_device *cowdev, void *buf, int len, loff_t offset)
{
DEBUGP(DCOW"cowloop - readcow called\n");
offset += cowdev->cowhead->doffset;
return cowlo_readcowraw(cowdev, buf, len, offset);
}
/*
** read cowfile from an absolute offset
**
** return-value: similar to user-mode read
*/
static long int
cowlo_readcowraw(struct cowloop_device *cowdev,
void *buf, int len, loff_t offset)
{
long int rv;
mm_segment_t old_fs;
loff_t saveoffset = offset;
DEBUGP(DCOW"cowloop - readcowraw called\n");
/*
** be sure that cowfile is opened for read-write
*/
if ( !(cowdev->state & COWCOWOPEN) ) {
printk(KERN_WARNING
"cowloop - read request from cowfile refused\n");
return -EBADF;
}
/*
** issue low level read
*/
old_fs = get_fs();
set_fs( get_ds() );
rv = cowdev->cowfp->f_op->read(cowdev->cowfp, buf, len, &offset);
set_fs(old_fs);
if (rv < len) {
printk(KERN_WARNING
"cowloop - read-failure %ld on cowfile"
"- offset=%lld len=%d\n", rv, saveoffset, len);
}
cowdev->cowreads++;
return rv;
}
/*
** write cowfile from a modified offset, i.e. skipping the bitmap and cowhead
**
** if a block is written for the first time while its contents consists
** of binary zeroes only, the concerning bitmap is flushed to the cowfile
**
** return-value: similar to user-mode write
*/
static long int
cowlo_writecow(struct cowloop_device *cowdev, void *buf, int len, loff_t offset)
{
long int rv;
unsigned long mapnum=0, mapbyte=0, mapbit=0, cowblock=0, partlen;
char *tmpptr, *mapptr = NULL;
loff_t tmpoffset, mapoffset = 0;
DEBUGP(DCOW"cowloop - writecow called\n");
/*
** be sure that cowfile is opened for read-write
*/
if ( !(cowdev->state & COWRWCOWOPEN) ) {
printk(KERN_WARNING
"cowloop - Write request to cowfile refused\n");
return -EBADF;
}
/*
** write the entire block to the cowfile
*/
tmpoffset = offset + cowdev->cowhead->doffset;
rv = cowlo_writecowraw(cowdev, buf, len, tmpoffset);
/*
** verify if enough space available on filesystem holding
** the cowfile
** - when the last write failed (might be caused by lack of space)
** - when a watcher is active (to react adequatly)
** - when the previous check indicated fs was almost full
** - with regular intervals
*/
if ( (rv <= 0) ||
(cowdev->state & COWWATCHDOG) ||
(cowdev->blkavail / 2 < SPCDFLINTVL) ||
(cowdev->cowwrites % SPCDFLINTVL == 0) ) {
struct kstatfs ks;
if (vfs_statfs(cowdev->cowfp->f_dentry, &ks)==0){
if (ks.f_bavail <= SPCMINBLK) {
switch (ks.f_bavail) {
case 0:
case 1:
case 2:
case 3:
printk(KERN_ALERT
"cowloop - "
"ALERT: cowfile full!\n");
break;
default:
printk(KERN_WARNING
"cowloop - cowfile almost "
"full (only %llu Kb free)\n",
(unsigned long long)
ks.f_bsize * ks.f_bavail /1024);
}
}
cowdev->blktotal = ks.f_blocks;
cowdev->blkavail = ks.f_bavail;
/*
** wakeup watcher if threshold has been reached
*/
if ( (cowdev->state & COWWATCHDOG) &&
(cowdev->watchthresh >= cowdev->blkavail) ) {
wake_up_interruptible(&cowdev->watchq);
}
}
}
if (rv <= 0)
return rv;
DEBUGP(DCOW"cowloop - block written\n");
/*
** check if block(s) is/are written to the cowfile
** for the first time; if so, adapt the bitmap
*/
for (; len > 0; len-=partlen, offset+=partlen, buf+=partlen) {
/*
** calculate partial length for this transfer
*/
partlen = MAPUNIT - (offset & MUMASK);
if (partlen > len)
partlen = len;
/*
** calculate bitnr of written chunk of cowblock
*/
cowblock = offset >> MUSHIFT;
mapnum = CALCMAP (cowblock);
mapbyte = CALCBYTE(cowblock);
mapbit = CALCBIT (cowblock);
if (*(*(cowdev->mapcache+mapnum)+mapbyte) & (1<<mapbit))
continue; /* already written before */
/*
** if the block is written for the first time,
** the corresponding bit should be set in the bitmap
*/
*(*(cowdev->mapcache+mapnum)+mapbyte) |= (1<<mapbit);
cowdev->nrcowblocks++;
DEBUGP(DCOW"cowloop - bitupdate blk=%ld map=%ld "
"byte=%ld bit=%ld\n",
cowblock, mapnum, mapbyte, mapbit);
/*
** check if the cowhead in the cowfile is currently
** marked clean; if so, mark it dirty and flush it
*/
if ( !(cowdev->cowhead->flags &= COWDIRTY)) {
cowdev->cowhead->flags |= COWDIRTY;
cowlo_writecowraw(cowdev, cowdev->cowhead,
MAPUNIT, (loff_t)0);
}
/*
** if the written datablock contained binary zeroes,
** the bitmap block should be marked to be flushed to disk
** (blocks containing all zeroes cannot be recovered by
** the cowrepair-program later on if cowloop is not properly
** removed via rmmod)
*/
if ( memcmp(buf, allzeroes, partlen) ) /* not all zeroes? */
continue; /* no flush needed */
/*
** calculate positions of bitmap block to be flushed
** - pointer of bitmap block in memory
** - offset of bitmap block in cowfile
*/
tmpptr = *(cowdev->mapcache+mapnum) + (mapbyte & (~MUMASK));
tmpoffset = (loff_t) MAPUNIT + mapnum * MAPCHUNKSZ +
(mapbyte & (~MUMASK));
/*
** flush a bitmap block at the moment that all bits have
** been set in that block, i.e. at the moment that we
** switch to another bitmap block
*/
if ( (mapoffset != 0) && (mapoffset != tmpoffset) ) {
if (cowlo_writecowraw(cowdev, mapptr, MAPUNIT,
mapoffset) < 0) {
printk(KERN_WARNING
"cowloop - write-failure on bitmap - "
"blk=%ld map=%ld byte=%ld bit=%ld\n",
cowblock, mapnum, mapbyte, mapbit);
}
DEBUGP(DCOW"cowloop - bitmap blk written %lld\n",
mapoffset);
}
/*
** remember offset in cowfile and offset in memory
** for bitmap to be flushed; flushing will be done
** as soon as all updates in this bitmap block have
** been done
*/
mapoffset = tmpoffset;
mapptr = tmpptr;
}
/*
** any new block written containing binary zeroes?
*/
if (mapoffset) {
if (cowlo_writecowraw(cowdev, mapptr, MAPUNIT, mapoffset) < 0) {
printk(KERN_WARNING
"cowloop - write-failure on bitmap - "
"blk=%ld map=%ld byte=%ld bit=%ld\n",
cowblock, mapnum, mapbyte, mapbit);
}
DEBUGP(DCOW"cowloop - bitmap block written %lld\n", mapoffset);
}
return rv;
}
/*
** write cowfile from an absolute offset
**
** return-value: similar to user-mode write
*/
static long int
cowlo_writecowraw(struct cowloop_device *cowdev,
void *buf, int len, loff_t offset)
{
long int rv;
mm_segment_t old_fs;
loff_t saveoffset = offset;
DEBUGP(DCOW"cowloop - writecowraw called\n");
/*
** be sure that cowfile is opened for read-write
*/
if ( !(cowdev->state & COWRWCOWOPEN) ) {
printk(KERN_WARNING
"cowloop - write request to cowfile refused\n");
return -EBADF;
}
/*
** issue low level write
*/
old_fs = get_fs();
set_fs( get_ds() );
rv = cowdev->cowfp->f_op->write(cowdev->cowfp, buf, len, &offset);
set_fs(old_fs);
if (rv < len) {
printk(KERN_WARNING
"cowloop - write-failure %ld on cowfile"
"- offset=%lld len=%d\n", rv, saveoffset, len);
}
cowdev->cowwrites++;
return rv;
}
/*
** readproc-function: called when the corresponding /proc-file is read
*/
static int
cowlo_readproc(char *buf, char **start, off_t pos, int cnt, int *eof, void *p)
{
struct cowloop_device *cowdev = p;
revision[sizeof revision - 3] = '\0';
return sprintf(buf,
" cowloop version: %9s\n\n"
" device state: %s%s%s%s\n"
" number of opens: %9d\n"
" pid of thread: %9d\n\n"
" read-only file: %9s\n"
" rdoreads: %9lu\n\n"
"copy-on-write file: %9s\n"
" state cowfile: %9s\n"
" bitmap-blocks: %9lu (of %d bytes)\n"
" cowblocks in use: %9lu (of %d bytes)\n"
" cowreads: %9lu\n"
" cowwrites: %9lu\n",
&revision[11],
cowdev->state & COWDEVOPEN ? "devopen " : "",
cowdev->state & COWRWCOWOPEN ? "cowopenrw " : "",
cowdev->state & COWRDCOWOPEN ? "cowopenro " : "",
cowdev->state & COWWATCHDOG ? "watchdog " : "",
cowdev->opencnt,
cowdev->pid,
cowdev->rdoname,
cowdev->rdoreads,
cowdev->cowname,
cowdev->cowhead->flags & COWDIRTY ? "dirty":"clean",
cowdev->mapsize >> MUSHIFT, MAPUNIT,
cowdev->nrcowblocks, MAPUNIT,
cowdev->cowreads,
cowdev->cowwrites);
}
/*****************************************************************************/
/* Setup and destroy cowdevices */
/*****************************************************************************/
/*
** open and prepare a cowdevice (rdofile and cowfile) and allocate bitmaps
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_openpair(char *rdof, char *cowf, int autorecover, int minor)
{
long int rv;
struct cowloop_device *cowdev = cowdevall[minor];
struct kstatfs ks;
down(&cowdevlock);
/*
** requested device exists?
*/
if (minor >= maxcows) {
up(&cowdevlock);
return -ENODEV;
}
/*
** requested device already assigned to cowdevice?
*/
if (cowdev->state & COWDEVOPEN) {
up(&cowdevlock);
return -EBUSY;
}
/*
** initialize administration
*/
memset(cowdev, 0, sizeof *cowdev);
spin_lock_init (&cowdev->rqlock);
init_waitqueue_head(&cowdev->waitq);
init_waitqueue_head(&cowdev->watchq);
/*
** open the read-only file
*/
DEBUGP(DCOW"cowloop - call openrdo....\n");
if ( (rv = cowlo_openrdo(cowdev, rdof)) ) {
cowlo_undo_openrdo(cowdev);
up(&cowdevlock);
return rv;
}
/*
** open the cowfile
*/
DEBUGP(DCOW"cowloop - call opencow....\n");
if ( (rv = cowlo_opencow(cowdev, cowf, autorecover)) ) {
cowlo_undo_openrdo(cowdev);
cowlo_undo_opencow(cowdev);
up(&cowdevlock);
return rv;
}
/*
** administer total and available size of filesystem holding cowfile
*/
if (vfs_statfs(cowdev->cowfp->f_dentry, &ks)==0) {
cowdev->blksize = ks.f_bsize;
cowdev->blktotal = ks.f_blocks;
cowdev->blkavail = ks.f_bavail;
} else {
cowdev->blksize = 1024; /* avoid division by zero */
}
/*
** flush the (recovered) bitmaps and cowhead to the cowfile
*/
DEBUGP(DCOW"cowloop - call cowsync....\n");
cowlo_sync();
/*
** allocate gendisk for the cow device
*/
DEBUGP(DCOW"cowloop - alloc disk....\n");
if ((cowdev->gd = alloc_disk(1)) == NULL) {
printk(KERN_WARNING
"cowloop - unable to alloc_disk for cowloop\n");
cowlo_undo_openrdo(cowdev);
cowlo_undo_opencow(cowdev);
up(&cowdevlock);
return -ENOMEM;
}
cowdev->gd->major = COWMAJOR;
cowdev->gd->first_minor = minor;
cowdev->gd->minors = 1;
cowdev->gd->fops = &cowlo_fops;
cowdev->gd->private_data = cowdev;
sprintf(cowdev->gd->disk_name, "%s%d", DEVICE_NAME, minor);
/* in .5 Kb units */
set_capacity(cowdev->gd, (cowdev->numblocks*(MAPUNIT/512)));
DEBUGP(DCOW"cowloop - init request queue....\n");
if ((cowdev->rqueue = blk_init_queue(cowlo_request, &cowdev->rqlock))
== NULL) {
printk(KERN_WARNING
"cowloop - unable to get request queue for cowloop\n");
del_gendisk(cowdev->gd);
cowlo_undo_openrdo(cowdev);
cowlo_undo_opencow(cowdev);
up(&cowdevlock);
return -EINVAL;
}
blk_queue_logical_block_size(cowdev->rqueue, cowdev->blocksz);
cowdev->gd->queue = cowdev->rqueue;
/*
** start kernel thread to handle requests
*/
DEBUGP(DCOW"cowloop - kickoff daemon....\n");
cowdev->pid = kernel_thread((int (*)(void *))cowlo_daemon, cowdev, 0);
/*
** create a file below directory /proc/cow for this new cowdevice
*/
if (cowlo_procdir) {
char tmpname[64];
sprintf(tmpname, "%d", minor);
create_proc_read_entry(tmpname, 0 , cowlo_procdir,
cowlo_readproc, cowdev);
}
cowdev->state |= COWDEVOPEN;
cowdev->rdoname = rdof;
cowdev->cowname = cowf;
/*
** enable the new disk; this triggers the first request!
*/
DEBUGP(DCOW"cowloop - call add_disk....\n");
add_disk(cowdev->gd);
up(&cowdevlock);
return 0;
}
/*
** close a cowdevice (pair of rdofile/cowfile) and release memory
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_closepair(struct cowloop_device *cowdev)
{
int minor;
down(&cowdevlock);
/*
** if cowdevice is not activated at all, refuse
*/
if ( !(cowdev->state & COWDEVOPEN) ) {
up(&cowdevlock);
return -ENODEV;
}
/*
** if this cowdevice is still open, refuse
*/
if (cowdev->opencnt > 0) {
up(&cowdevlock);
return -EBUSY;
}
up(&cowdevlock);
/*
** wakeup watcher (if any)
*/
if (cowdev->state & COWWATCHDOG) {
cowdev->watchthresh = cowdev->blkavail;
wake_up_interruptible(&cowdev->watchq);
}
/*
** wakeup kernel-thread to be able to exit
** and wait until it has exited
*/
cowdev->closedown = 1;
cowdev->qfilled = 1;
wake_up_interruptible(&cowdev->waitq);
while (cowdev->pid)
schedule();
del_gendisk(cowdev->gd); /* revert the alloc_disk() */
put_disk(cowdev->gd); /* revert the add_disk() */
if (cowlo_procdir) {
char tmpname[64];
for (minor = 0; minor < maxcows; minor++) {
if (cowdev == cowdevall[minor]) break;
}
sprintf(tmpname, "%d", minor);
remove_proc_entry(tmpname, cowlo_procdir);
}
blk_cleanup_queue(cowdev->rqueue);
/*
** release memory for filenames if these names have
** been allocated dynamically
*/
if ( (cowdev->cowname) && (cowdev->cowname != cowfile))
kfree(cowdev->cowname);
if ( (cowdev->rdoname) && (cowdev->rdoname != rdofile))
kfree(cowdev->rdoname);
cowlo_undo_openrdo(cowdev);
cowlo_undo_opencow(cowdev);
cowdev->state &= ~COWDEVOPEN;
return 0;
}
/*
** open the read-only file
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_openrdo(struct cowloop_device *cowdev, char *rdof)
{
struct file *f;
struct inode *inode;
long int i, nrval;
DEBUGP(DCOW"cowloop - openrdo called\n");
/*
** open the read-only file
*/
if(*rdof == '\0') {
printk(KERN_ERR
"cowloop - specify name for read-only file\n\n");
return -EINVAL;
}
f = filp_open(rdof, O_RDONLY|O_LARGEFILE, 0);
if ( (f == NULL) || IS_ERR(f) ) {
printk(KERN_ERR
"cowloop - open of rdofile %s failed\n", rdof);
return -EINVAL;
}
cowdev->rdofp = f;
inode = f->f_dentry->d_inode;
if ( !S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode) ) {
printk(KERN_ERR
"cowloop - %s not regular file or blockdev\n", rdof);
return -EINVAL;
}
DEBUGP(DCOW"cowloop - determine size rdo....\n");
/*
** determine block-size and total size of read-only file
*/
if (S_ISREG(inode->i_mode)) {
/*
** read-only file is a regular file
*/
cowdev->blocksz = 512; /* other value fails */
cowdev->numblocks = inode->i_size >> MUSHIFT;
if (inode->i_size & MUMASK) {
printk(KERN_WARNING
"cowloop - rdofile %s truncated to multiple "
"of %d bytes\n", rdof, MAPUNIT);
}
DEBUGP(DCOW"cowloop - RO=regular: numblocks=%d, blocksz=%d\n",
cowdev->numblocks, cowdev->blocksz);
} else {
/*
** read-only file is a block device
*/
cowdev->belowdev = inode->i_bdev;
cowdev->belowgd = cowdev->belowdev->bd_disk; /* gendisk */
if (cowdev->belowdev->bd_part) {
cowdev->numblocks = cowdev->belowdev->bd_part->nr_sects
/ (MAPUNIT/512);
}
if (cowdev->belowgd) {
cowdev->belowq = cowdev->belowgd->queue;
if (cowdev->numblocks == 0) {
cowdev->numblocks = get_capacity(cowdev->belowgd)
/ (MAPUNIT/512);
}
}
if (cowdev->belowq)
cowdev->blocksz = queue_logical_block_size(cowdev->belowq);
if (cowdev->blocksz == 0)
cowdev->blocksz = BLOCK_SIZE; /* default 2^10 */
DEBUGP(DCOW"cowloop - numblocks=%d, "
"blocksz=%d, belowgd=%p, belowq=%p\n",
cowdev->numblocks, cowdev->blocksz,
cowdev->belowgd, cowdev->belowq);
DEBUGP(DCOW"cowloop - belowdev.bd_block_size=%d\n",
cowdev->belowdev->bd_block_size);
}
if (cowdev->numblocks == 0) {
printk(KERN_ERR "cowloop - %s has no contents\n", rdof);
return -EINVAL;
}
/*
** reserve space in memory as generic I/O buffer
*/
cowdev->iobuf = kmalloc(MAPUNIT, GFP_KERNEL);
if (!cowdev->iobuf) {
printk(KERN_ERR
"cowloop - cannot get space for buffer %d\n", MAPUNIT);
return -ENOMEM;
}
DEBUGP(DCOW"cowloop - determine fingerprint rdo....\n");
/*
** determine fingerprint for read-only file
** calculate fingerprint from first four datablocks
** which do not contain binary zeroes
*/
for (i=0, cowdev->fingerprint=0, nrval=0;
(nrval < 4)&&(i < cowdev->numblocks); i++) {
int j;
unsigned char cs;
/*
** read next block
*/
if (cowlo_readrdo(cowdev, cowdev->iobuf, MAPUNIT,
(loff_t)i << MUSHIFT) < 1)
break;
/*
** calculate fingerprint by adding all byte-values
*/
for (j=0, cs=0; j < MAPUNIT; j++)
cs += *(cowdev->iobuf+j);
if (cs == 0) /* block probably contained zeroes */
continue;
/*
** shift byte-value to proper place in final fingerprint
*/
cowdev->fingerprint |= cs << (nrval*8);
nrval++;
}
return 0;
}
/*
** undo memory allocs and file opens issued so far
** related to the read-only file
*/
static void
cowlo_undo_openrdo(struct cowloop_device *cowdev)
{
if(cowdev->iobuf);
kfree(cowdev->iobuf);
if (cowdev->rdofp)
filp_close(cowdev->rdofp, 0);
}
/*
** open the cowfile
**
** returns:
** 0 - okay
** < 0 - error value
*/
static int
cowlo_opencow(struct cowloop_device *cowdev, char *cowf, int autorecover)
{
long int i, rv;
int minor;
unsigned long nb;
struct file *f;
struct inode *inode;
loff_t offset;
struct cowloop_device *cowtmp;
DEBUGP(DCOW"cowloop - opencow called\n");
/*
** open copy-on-write file (read-write)
*/
if (cowf[0] == '\0') {
printk(KERN_ERR
"cowloop - specify name of copy-on-write file\n\n");
return -EINVAL;
}
f = filp_open(cowf, O_RDWR|O_LARGEFILE, 0600);
if ( (f == NULL) || IS_ERR(f) ) {
/*
** non-existing cowfile: try to create
*/
f = filp_open(cowf, O_RDWR|O_CREAT|O_LARGEFILE, 0600);
if ( (f == NULL) || IS_ERR(f) ) {
printk(KERN_ERR
"cowloop - failed to open file %s for read-write\n\n",
cowf);
return -EINVAL;
}
}
cowdev->cowfp = f;
inode = f->f_dentry->d_inode;
if (!S_ISREG(inode->i_mode)) {
printk(KERN_ERR "cowloop - %s is not regular file\n", cowf);
return -EINVAL;
}
/*
** check if this cowfile is already in use for another cowdevice
*/
for (minor = 0; minor < maxcows; minor++) {
cowtmp = cowdevall[minor];
if ( !(cowtmp->state & COWDEVOPEN) )
continue;
if (cowtmp == cowdev)
continue;
if (cowtmp->cowfp->f_dentry->d_inode == f->f_dentry->d_inode) {
printk(KERN_ERR
"cowloop - %s: already in use as cow\n", cowf);
return -EBUSY;
}
}
/*
** mark cowfile open for read-write
*/
cowdev->state |= COWRWCOWOPEN;
/*
** calculate size (in bytes) for total bitmap in cowfile;
** when the size of the cowhead block is added, the start-offset
** for the modified data blocks can be found
*/
nb = cowdev->numblocks;
if (nb%8) /* transform #bits to #bytes */
nb+=8; /* rounded if necessary */
nb /= 8;
if (nb & MUMASK) /* round up #bytes to MAPUNIT chunks */
cowdev->mapsize = ( (nb>>MUSHIFT) +1) << MUSHIFT;
else
cowdev->mapsize = nb;
/*
** reserve space in memory for the cowhead
*/
cowdev->cowhead = kmalloc(MAPUNIT, GFP_KERNEL);
if (!cowdev->cowhead) {
printk(KERN_ERR "cowloop - cannot get space for cowhead %d\n",
MAPUNIT);
return -ENOMEM;
}
memset(cowdev->cowhead, 0, MAPUNIT);
DEBUGP(DCOW"cowloop - prepare cowhead....\n");
/*
** check if the cowfile exists or should be created
*/
if (inode->i_size != 0) {
/*
** existing cowfile: read the cow head
*/
if (inode->i_size < MAPUNIT) {
printk(KERN_ERR
"cowloop - existing cowfile %s too small\n",
cowf);
return -EINVAL;
}
cowlo_readcowraw(cowdev, cowdev->cowhead, MAPUNIT, (loff_t) 0);
/*
** verify if the existing file is really a cowfile
*/
if (cowdev->cowhead->magic != COWMAGIC) {
printk(KERN_ERR
"cowloop - cowfile %s has incorrect format\n",
cowf);
return -EINVAL;
}
/*
** verify the cowhead version of the cowfile
*/
if (cowdev->cowhead->version > COWVERSION) {
printk(KERN_ERR
"cowloop - cowfile %s newer than this driver\n",
cowf);
return -EINVAL;
}
/*
** make sure that this is not a packed cowfile
*/
if (cowdev->cowhead->flags & COWPACKED) {
printk(KERN_ERR
"cowloop - packed cowfile %s not accepted\n", cowf);
return -EINVAL;
}
/*
** verify if the cowfile has been properly closed
*/
if (cowdev->cowhead->flags & COWDIRTY) {
/*
** cowfile was not properly closed;
** check if automatic recovery is required
** (actual recovery will be done later on)
*/
if (!autorecover) {
printk(KERN_ERR
"cowloop - cowfile %s is dirty "
"(not properly closed by rmmod?)\n",
cowf);
printk(KERN_ERR
"cowloop - run cowrepair or specify "
"'option=r' to recover\n");
return -EINVAL;
}
}
/*
** verify if the cowfile is really related to this rdofile
*/
if (cowdev->cowhead->rdoblocks != cowdev->numblocks) {
printk(KERN_ERR
"cowloop - cowfile %s (size %lld) not related "
"to rdofile (size %lld)\n",
cowf,
(long long)cowdev->cowhead->rdoblocks <<MUSHIFT,
(long long)cowdev->numblocks <<MUSHIFT);
return -EINVAL;
}
if (cowdev->cowhead->rdofingerprint != cowdev->fingerprint) {
printk(KERN_ERR
"cowloop - cowfile %s not related to rdofile "
" (fingerprint err - rdofile modified?)\n", cowf);
return -EINVAL;
}
} else {
/*
** new cowfile: determine the minimal size (cowhead+bitmap)
*/
offset = (loff_t) MAPUNIT + cowdev->mapsize - 1;
if ( cowlo_writecowraw(cowdev, "", 1, offset) < 1) {
printk(KERN_ERR
"cowloop - cannot set cowfile to size %lld\n",
offset+1);
return -EINVAL;
}
/*
** prepare new cowhead
*/
cowdev->cowhead->magic = COWMAGIC;
cowdev->cowhead->version = COWVERSION;
cowdev->cowhead->mapunit = MAPUNIT;
cowdev->cowhead->mapsize = cowdev->mapsize;
cowdev->cowhead->rdoblocks = cowdev->numblocks;
cowdev->cowhead->rdofingerprint = cowdev->fingerprint;
cowdev->cowhead->cowused = 0;
/*
** calculate start offset of data in cowfile,
** rounded up to multiple of 4K to avoid
** unnecessary disk-usage for written datablocks in
** the sparsed cowfile on e.g. 4K filesystems
*/
cowdev->cowhead->doffset =
((MAPUNIT+cowdev->mapsize+4095)>>12)<<12;
}
cowdev->cowhead->flags = 0;
DEBUGP(DCOW"cowloop - reserve space bitmap....\n");
/*
** reserve space in memory for the entire bitmap and
** fill it with the bitmap-data from disk; the entire
** bitmap is allocated in several chunks because kmalloc
** has restrictions regarding the allowed size per kmalloc
*/
cowdev->mapcount = (cowdev->mapsize+MAPCHUNKSZ-1)/MAPCHUNKSZ;
/*
** the size of every bitmap chunk will be MAPCHUNKSZ bytes, except for
** the last bitmap chunk: calculate remaining size for this chunk
*/
if (cowdev->mapsize % MAPCHUNKSZ == 0)
cowdev->mapremain = MAPCHUNKSZ;
else
cowdev->mapremain = cowdev->mapsize % MAPCHUNKSZ;
/*
** allocate space to store all pointers for the bitmap-chunks
** (initialize area with zeroes to allow proper undo)
*/
cowdev->mapcache = kmalloc(cowdev->mapcount * sizeof(char *),
GFP_KERNEL);
if (!cowdev->mapcache) {
printk(KERN_ERR
"cowloop - can not allocate space for bitmap ptrs\n");
return -ENOMEM;
}
memset(cowdev->mapcache, 0, cowdev->mapcount * sizeof(char *));
/*
** allocate space to store the bitmap-chunks themselves
*/
for (i=0; i < cowdev->mapcount; i++) {
if (i < (cowdev->mapcount-1))
*(cowdev->mapcache+i) = kmalloc(MAPCHUNKSZ, GFP_KERNEL);
else
*(cowdev->mapcache+i) = kmalloc(cowdev->mapremain,
GFP_KERNEL);
if (*(cowdev->mapcache+i) == NULL) {
printk(KERN_ERR "cowloop - no space for bitmapchunk %ld"
" totmapsz=%ld, mapcnt=%d mapunit=%d\n",
i, cowdev->mapsize, cowdev->mapcount,
MAPUNIT);
return -ENOMEM;
}
}
DEBUGP(DCOW"cowloop - read bitmap from cow....\n");
/*
** read the entire bitmap from the cowfile into the in-memory cache;
** count the number of blocks that are in use already
** (statistical purposes)
*/
for (i=0, offset=MAPUNIT; i < cowdev->mapcount;
i++, offset+=MAPCHUNKSZ) {
unsigned long numbytes;
if (i < (cowdev->mapcount-1))
/*
** full bitmap chunk
*/
numbytes = MAPCHUNKSZ;
else
/*
** last bitmap chunk: might be partly filled
*/
numbytes = cowdev->mapremain;
cowlo_readcowraw(cowdev, *(cowdev->mapcache+i),
numbytes, offset);
}
/*
** if the cowfile was dirty and automatic recovery is required,
** reconstruct a proper bitmap in memory now
*/
if (cowdev->cowhead->flags & COWDIRTY) {
unsigned long long blocknum;
char databuf[MAPUNIT];
unsigned long mapnum, mapbyte, mapbit;
printk(KERN_NOTICE "cowloop - recover dirty cowfile %s....\n",
cowf);
/*
** read all data blocks
*/
for (blocknum=0, rv=1, offset=0;
cowlo_readcow(cowdev, databuf, MAPUNIT, offset) > 0;
blocknum++, offset += MAPUNIT) {
/*
** if this datablock contains real data (not binary
** zeroes), set the corresponding bit in the bitmap
*/
if ( memcmp(databuf, allzeroes, MAPUNIT) == 0)
continue;
mapnum = CALCMAP (blocknum);
mapbyte = CALCBYTE(blocknum);
mapbit = CALCBIT (blocknum);
*(*(cowdev->mapcache+mapnum)+mapbyte) |= (1<<mapbit);
}
printk(KERN_NOTICE "cowloop - cowfile recovery completed\n");
}
/*
** count all bits set in the bitmaps for statistical purposes
*/
for (i=0, cowdev->nrcowblocks = 0; i < cowdev->mapcount; i++) {
long numbytes;
char *p;
if (i < (cowdev->mapcount-1))
numbytes = MAPCHUNKSZ;
else
numbytes = cowdev->mapremain;
p = *(cowdev->mapcache+i);
for (numbytes--; numbytes >= 0; numbytes--, p++) {
/*
** for only eight checks the following construction
** is faster than a loop-construction
*/
if ((*p) & 0x01) cowdev->nrcowblocks++;
if ((*p) & 0x02) cowdev->nrcowblocks++;
if ((*p) & 0x04) cowdev->nrcowblocks++;
if ((*p) & 0x08) cowdev->nrcowblocks++;
if ((*p) & 0x10) cowdev->nrcowblocks++;
if ((*p) & 0x20) cowdev->nrcowblocks++;
if ((*p) & 0x40) cowdev->nrcowblocks++;
if ((*p) & 0x80) cowdev->nrcowblocks++;
}
}
/*
** consistency-check for number of bits set in bitmap
*/
if ( !(cowdev->cowhead->flags & COWDIRTY) &&
(cowdev->cowhead->cowused != cowdev->nrcowblocks) ) {
printk(KERN_ERR "cowloop - inconsistent cowfile admi\n");
return -EINVAL;
}
return 0;
}
/*
** undo memory allocs and file opens issued so far
** related to the cowfile
*/
static void
cowlo_undo_opencow(struct cowloop_device *cowdev)
{
int i;
if (cowdev->mapcache) {
for (i=0; i < cowdev->mapcount; i++) {
if (*(cowdev->mapcache+i) != NULL)
kfree( *(cowdev->mapcache+i) );
}
kfree(cowdev->mapcache);
}
if (cowdev->cowhead)
kfree(cowdev->cowhead);
if ( (cowdev->state & COWCOWOPEN) && (cowdev->cowfp) )
filp_close(cowdev->cowfp, 0);
/*
** mark cowfile closed
*/
cowdev->state &= ~COWCOWOPEN;
}
/*
** flush the entire bitmap and the cowhead (clean) to the cowfile
**
** must be called with the cowdevices-lock set
*/
static void
cowlo_sync(void)
{
int i, minor;
loff_t offset;
struct cowloop_device *cowdev;
for (minor=0; minor < maxcows; minor++) {
cowdev = cowdevall[minor];
if ( ! (cowdev->state & COWRWCOWOPEN) )
continue;
for (i=0, offset=MAPUNIT; i < cowdev->mapcount;
i++, offset += MAPCHUNKSZ) {
unsigned long numbytes;
if (i < (cowdev->mapcount-1))
/*
** full bitmap chunk
*/
numbytes = MAPCHUNKSZ;
else
/*
** last bitmap chunk: might be partly filled
*/
numbytes = cowdev->mapremain;
DEBUGP(DCOW
"cowloop - flushing bitmap %2d (%3ld Kb)\n",
i, numbytes/1024);
if (cowlo_writecowraw(cowdev, *(cowdev->mapcache+i),
numbytes, offset) < numbytes) {
break;
}
}
/*
** flush clean up-to-date cowhead to cowfile
*/
cowdev->cowhead->cowused = cowdev->nrcowblocks;
cowdev->cowhead->flags &= ~COWDIRTY;
DEBUGP(DCOW "cowloop - flushing cowhead (%3d Kb)\n",
MAPUNIT/1024);
cowlo_writecowraw(cowdev, cowdev->cowhead, MAPUNIT, (loff_t) 0);
}
}
/*****************************************************************************/
/* Module loading/unloading */
/*****************************************************************************/
/*
** called during insmod/modprobe
*/
static int __init
cowlo_init_module(void)
{
int rv;
int minor, uptocows;
revision[sizeof revision - 3] = '\0';
printk(KERN_NOTICE "cowloop - (C) 2009 ATComputing.nl - version: %s\n", &revision[11]);
printk(KERN_NOTICE "cowloop - info: www.ATComputing.nl/cowloop\n");
memset(allzeroes, 0, MAPUNIT);
/*
** Setup administration for all possible cowdevices.
** Note that their minor numbers go from 0 to MAXCOWS-1 inclusive
** and minor == MAXCOWS-1 is reserved for the control device.
*/
if ((maxcows < 1) || (maxcows > MAXCOWS)) {
printk(KERN_WARNING
"cowloop - maxcows exceeds maximum of %d\n", MAXCOWS);
maxcows = DFLCOWS;
}
/* allocate room for a table with a pointer to each cowloop_device: */
if ( (cowdevall = kmalloc(maxcows * sizeof(struct cowloop_device *),
GFP_KERNEL)) == NULL) {
printk(KERN_WARNING
"cowloop - can not alloc table for %d devs\n", maxcows);
uptocows = 0;
rv = -ENOMEM;
goto error_out;
}
memset(cowdevall, 0, maxcows * sizeof(struct cowloop_device *));
/* then hook an actual cowloop_device struct to each pointer: */
for (minor=0; minor < maxcows; minor++) {
if ((cowdevall[minor] = kmalloc(sizeof(struct cowloop_device),
GFP_KERNEL)) == NULL) {
printk(KERN_WARNING
"cowloop - can not alloc admin-struct for dev no %d\n", minor);
uptocows = minor; /* this is how far we got.... */
rv = -ENOMEM;
goto error_out;
}
memset(cowdevall[minor], 0, sizeof(struct cowloop_device));
}
uptocows = maxcows; /* we got all devices */
sema_init(&cowdevlock, 1);
/*
** register cowloop module
*/
if ( register_blkdev(COWMAJOR, DEVICE_NAME) < 0) {
printk(KERN_WARNING
"cowloop - unable to get major %d for cowloop\n", COWMAJOR);
rv = -EIO;
goto error_out;
}
/*
** create a directory below /proc to allocate a file
** for each cowdevice that is allocated later on
*/
cowlo_procdir = proc_mkdir("cow", NULL);
/*
** check if a cowdevice has to be opened during insmod/modprobe;
** two parameters should be specified then: rdofile= and cowfile=
*/
if( (rdofile[0] != '\0') && (cowfile[0] != '\0') ) {
char *po = option;
int wantrecover = 0;
/*
** check if automatic recovery is wanted
*/
while (*po) {
if (*po == 'r') {
wantrecover = 1;
break;
}
po++;
}
/*
** open new cowdevice with minor number 0
*/
if ( (rv = cowlo_openpair(rdofile, cowfile, wantrecover, 0))) {
remove_proc_entry("cow", NULL);
unregister_blkdev(COWMAJOR, DEVICE_NAME);
goto error_out;
}
} else {
/*
** check if only one parameter has been specified
*/
if( (rdofile[0] != '\0') || (cowfile[0] != '\0') ) {
printk(KERN_ERR
"cowloop - only one filename specified\n");
remove_proc_entry("cow", NULL);
unregister_blkdev(COWMAJOR, DEVICE_NAME);
rv = -EINVAL;
goto error_out;
}
}
/*
** allocate fake disk as control channel to handle the requests
** to activate and deactivate cowdevices dynamically
*/
if (!(cowctlgd = alloc_disk(1))) {
printk(KERN_WARNING
"cowloop - unable to alloc_disk for cowctl\n");
remove_proc_entry("cow", NULL);
(void) cowlo_closepair(cowdevall[0]);
unregister_blkdev(COWMAJOR, DEVICE_NAME);
rv = -ENOMEM;
goto error_out;
}
spin_lock_init(&cowctlrqlock);
cowctlgd->major = COWMAJOR;
cowctlgd->first_minor = COWCTL;
cowctlgd->minors = 1;
cowctlgd->fops = &cowlo_fops;
cowctlgd->private_data = NULL;
/* the device has capacity 0, so there will be no q-requests */
cowctlgd->queue = blk_init_queue(NULL, &cowctlrqlock);
sprintf(cowctlgd->disk_name, "cowctl");
set_capacity(cowctlgd, 0);
add_disk(cowctlgd);
printk(KERN_NOTICE "cowloop - number of configured cowdevices: %d\n",
maxcows);
if (rdofile[0] != '\0') {
printk(KERN_NOTICE "cowloop - initialized on rdofile=%s\n",
rdofile);
} else {
printk(KERN_NOTICE "cowloop - initialized without rdofile yet\n");
}
return 0;
error_out:
for (minor=0; minor < uptocows ; minor++) {
kfree(cowdevall[minor]);
}
kfree(cowdevall);
return rv;
}
/*
** called during rmmod
*/
static void __exit
cowlo_cleanup_module(void)
{
int minor;
/*
** flush bitmaps and cowheads to the cowfiles
*/
down(&cowdevlock);
cowlo_sync();
up(&cowdevlock);
/*
** close all cowdevices
*/
for (minor=0; minor < maxcows; minor++)
(void) cowlo_closepair(cowdevall[minor]);
unregister_blkdev(COWMAJOR, DEVICE_NAME);
/*
** get rid of /proc/cow and unregister the driver
*/
remove_proc_entry("cow", NULL);
for (minor = 0; minor < maxcows; minor++) {
kfree(cowdevall[minor]);
}
kfree(cowdevall);
del_gendisk(cowctlgd); /* revert the alloc_disk() */
put_disk (cowctlgd); /* revert the add_disk() */
blk_cleanup_queue(cowctlgd->queue); /* cleanup the empty queue */
printk(KERN_NOTICE "cowloop - unloaded\n");
}
module_init(cowlo_init_module);
module_exit(cowlo_cleanup_module);
/*
** DO NOT MODIFY THESE VALUES (would make old cowfiles unusable)
*/
#define MAPUNIT 1024 /* blocksize for bit in bitmap */
#define MUSHIFT 10 /* bitshift for bit in bitmap */
#define MUMASK 0x3ff /* bitmask for bit in bitmap */
#define COWMAGIC 0x574f437f /* byte-swapped '7f C O W' */
#define COWDIRTY 0x01
#define COWPACKED 0x02
#define COWVERSION 1
struct cowhead
{
int magic; /* identifies a cowfile */
short version; /* version of cowhead */
short flags; /* flags indicating status */
unsigned long mapunit; /* blocksize per bit in bitmap */
unsigned long mapsize; /* total size of bitmap (bytes) */
unsigned long doffset; /* start-offset datablocks in cow */
unsigned long rdoblocks; /* size of related read-only file */
unsigned long rdofingerprint; /* fingerprint of read-only file */
unsigned long cowused; /* number of datablocks used in cow */
};
#define COWDEVDIR "/dev/cow/"
#define COWDEVICE COWDEVDIR "%ld"
#define COWCONTROL COWDEVDIR "ctl"
#define MAXCOWS 1024
#define COWCTL (MAXCOWS-1) /* minor number of /dev/cow/ctl */
#define COWPROCDIR "/proc/cow/"
#define COWPROCFILE COWPROCDIR "%d"
/*
** ioctl related stuff
*/
#define ANYDEV ((unsigned long)-1)
struct cowpair
{
unsigned char *rdofile; /* pathname of the rdofile */
unsigned char *cowfile; /* pathname of the cowfile */
unsigned short rdoflen; /* length of rdofile pathname */
unsigned short cowflen; /* length of cowfile pathname */
unsigned long device; /* requested/returned device number */
};
struct cowwatch
{
int flags; /* request flags */
unsigned long device; /* requested device number */
unsigned long threshold; /* continue if free Kb < threshold */
unsigned long totalkb; /* ret: total filesystem size (Kb) */
unsigned long availkb; /* ret: free filesystem size (Kb) */
};
#define WATCHWAIT 0x01 /* block until threshold reached */
#define COWSYNC _IO ('C', 1)
#define COWMKPAIR _IOW ('C', 2, struct cowpair)
#define COWRMPAIR _IOW ('C', 3, unsigned long)
#define COWWATCH _IOW ('C', 4, struct cowwatch)
#define COWCLOSE _IOW ('C', 5, unsigned long)
#define COWRDOPEN _IOW ('C', 6, unsigned long)
......@@ -4,6 +4,7 @@
menuconfig IIO
tristate "Industrial I/O support"
depends on !S390
---help---
The industrial I/O subsystem provides a unified framework for
drivers for many different types of embedded sensors using a
......
......@@ -183,7 +183,7 @@ static ssize_t cap_write(struct file *filp, const char __user *buf,
user_buf_running = NULL;
hash_str = NULL;
node_ptr = kmalloc(sizeof(struct cap_node), GFP_KERNEL);
user_buf = kzalloc(count, GFP_KERNEL);
user_buf = kzalloc(count+1, GFP_KERNEL);
if (!node_ptr || !user_buf)
goto out;
......@@ -207,6 +207,7 @@ static ssize_t cap_write(struct file *filp, const char __user *buf,
list_add(&(node_ptr->list), &(dev->head->list));
node_ptr = NULL;
} else {
char *tmpu;
if (!cap_devices[0].head ||
list_empty(&(cap_devices[0].head->list))) {
retval = -EINVAL;
......@@ -218,10 +219,10 @@ static ssize_t cap_write(struct file *filp, const char __user *buf,
* need to split it and hash 'user1@user2' using 'randomstring'
* as the key.
*/
user_buf_running = kstrdup(user_buf, GFP_KERNEL);
source_user = strsep(&user_buf_running, "@");
target_user = strsep(&user_buf_running, "@");
rand_str = strsep(&user_buf_running, "@");
tmpu = user_buf_running = kstrdup(user_buf, GFP_KERNEL);
source_user = strsep(&tmpu, "@");
target_user = strsep(&tmpu, "@");
rand_str = tmpu;
if (!source_user || !target_user || !rand_str) {
retval = -EINVAL;
goto out;
......@@ -229,7 +230,8 @@ static ssize_t cap_write(struct file *filp, const char __user *buf,
/* hash the string user1@user2 with rand_str as the key */
len = strlen(source_user) + strlen(target_user) + 1;
hash_str = kzalloc(len, GFP_KERNEL);
/* src, @, len, \0 */
hash_str = kzalloc(len+1, GFP_KERNEL);
strcat(hash_str, source_user);
strcat(hash_str, "@");
strcat(hash_str, target_user);
......
......@@ -46,6 +46,7 @@
#undef DEBUG_TX_DESC
//#define CONFIG_RTL8192_IO_MAP
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
#include "r8192E_hw.h"
#include "r8192E.h"
......
......@@ -51,10 +51,26 @@ static struct ieee80211_supported_band wbsoft_band_2GHz = {
.n_bitrates = ARRAY_SIZE(wbsoft_rates),
};
static void hal_set_beacon_period(struct hw_data *pHwData, u16 beacon_period)
{
u32 tmp;
if (pHwData->SurpriseRemove)
return;
pHwData->BeaconPeriod = beacon_period;
tmp = pHwData->BeaconPeriod << 16;
tmp |= pHwData->ProbeDelay;
Wb35Reg_Write(pHwData, 0x0848, tmp);
}
static int wbsoft_add_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
printk("wbsoft_add interface called\n");
struct wbsoft_priv *priv = dev->priv;
hal_set_beacon_period(&priv->sHwData, conf->vif->bss_conf.beacon_int);
return 0;
}
......@@ -83,10 +99,16 @@ static int wbsoft_get_tx_stats(struct ieee80211_hw *hw,
return 0;
}
static u64 wbsoft_prepare_multicast(struct ieee80211_hw *hw, int mc_count,
struct dev_addr_list *mc_list)
{
return mc_count;
}
static void wbsoft_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_mc_list *mclist)
u64 multicast)
{
unsigned int new_flags;
......@@ -94,7 +116,7 @@ static void wbsoft_configure_filter(struct ieee80211_hw *dev,
if (*total_flags & FIF_PROMISC_IN_BSS)
new_flags |= FIF_PROMISC_IN_BSS;
else if ((*total_flags & FIF_ALLMULTI) || (mc_count > 32))
else if ((*total_flags & FIF_ALLMULTI) || (multicast > 32))
new_flags |= FIF_ALLMULTI;
dev->flags &= ~IEEE80211_HW_RX_INCLUDES_FCS;
......@@ -138,19 +160,6 @@ static void hal_set_radio_mode(struct hw_data *pHwData, unsigned char radio_off)
Wb35Reg_Write(pHwData, 0x0824, reg->M24_MacControl);
}
static void hal_set_beacon_period(struct hw_data *pHwData, u16 beacon_period)
{
u32 tmp;
if (pHwData->SurpriseRemove)
return;
pHwData->BeaconPeriod = beacon_period;
tmp = pHwData->BeaconPeriod << 16;
tmp |= pHwData->ProbeDelay;
Wb35Reg_Write(pHwData, 0x0848, tmp);
}
static void
hal_set_current_channel_ex(struct hw_data *pHwData, ChanInfo channel)
{
......@@ -244,7 +253,6 @@ static void hal_set_accept_beacon(struct hw_data *pHwData, u8 enable)
static int wbsoft_config(struct ieee80211_hw *dev, u32 changed)
{
struct wbsoft_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
ChanInfo ch;
printk("wbsoft_config called\n");
......@@ -254,7 +262,6 @@ static int wbsoft_config(struct ieee80211_hw *dev, u32 changed)
ch.ChanNo = 1;
hal_set_current_channel(&priv->sHwData, ch);
hal_set_beacon_period(&priv->sHwData, conf->beacon_int);
hal_set_accept_broadcast(&priv->sHwData, 1);
hal_set_accept_promiscuous(&priv->sHwData, 1);
hal_set_accept_multicast(&priv->sHwData, 1);
......@@ -277,6 +284,7 @@ static const struct ieee80211_ops wbsoft_ops = {
.add_interface = wbsoft_add_interface,
.remove_interface = wbsoft_remove_interface,
.config = wbsoft_config,
.prepare_multicast = wbsoft_prepare_multicast,
.configure_filter = wbsoft_configure_filter,
.get_stats = wbsoft_get_stats,
.get_tx_stats = wbsoft_get_tx_stats,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment