Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boxiang Sun
cython
Commits
9d164d45
Commit
9d164d45
authored
Aug 12, 2011
by
Stefan Behnel
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
additional benchmark
parent
c6f4b75e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
196 additions
and
0 deletions
+196
-0
Demos/benchmarks/bpnn3.py
Demos/benchmarks/bpnn3.py
+196
-0
No files found.
Demos/benchmarks/bpnn3.py
0 → 100644
View file @
9d164d45
#!/usr/bin/python
# Back-Propagation Neural Networks
#
# Written in Python. See http://www.python.org/
#
# Neil Schemenauer <nascheme@enme.ucalgary.ca>
import
math
import
random
as
random
import
operator
import
string
#import psyco
#psyco.full()
#from psyco.classes import *
#psyco.log()
#psyco.profile()
#__metaclass__ = type
# Local imports
import
util
random
.
seed
(
0
)
# calculate a random number where: a <= rand < b
def
rand
(
a
,
b
):
return
(
b
-
a
)
*
random
.
random
()
+
a
# Make a matrix (we could use NumPy to speed this up)
def
makeMatrix
(
I
,
J
,
fill
=
0.0
):
m
=
[]
for
i
in
range
(
I
):
m
.
append
([
fill
]
*
J
)
return
m
class
NN
(
object
):
# print 'class NN'
def
__init__
(
self
,
ni
,
nh
,
no
):
# number of input, hidden, and output nodes
self
.
ni
=
ni
+
1
# +1 for bias node
self
.
nh
=
nh
self
.
no
=
no
# activations for nodes
self
.
ai
=
[
1.0
]
*
self
.
ni
self
.
ah
=
[
1.0
]
*
self
.
nh
self
.
ao
=
[
1.0
]
*
self
.
no
# create weights
self
.
wi
=
makeMatrix
(
self
.
ni
,
self
.
nh
)
self
.
wo
=
makeMatrix
(
self
.
nh
,
self
.
no
)
# set them to random vaules
for
i
in
range
(
self
.
ni
):
for
j
in
range
(
self
.
nh
):
self
.
wi
[
i
][
j
]
=
rand
(
-
2.0
,
2.0
)
for
j
in
range
(
self
.
nh
):
for
k
in
range
(
self
.
no
):
self
.
wo
[
j
][
k
]
=
rand
(
-
2.0
,
2.0
)
# last change in weights for momentum
self
.
ci
=
makeMatrix
(
self
.
ni
,
self
.
nh
)
self
.
co
=
makeMatrix
(
self
.
nh
,
self
.
no
)
def
update
(
self
,
inputs
):
# print 'update', inputs
if
len
(
inputs
)
!=
self
.
ni
-
1
:
raise
ValueError
(
'wrong number of inputs'
)
# input activations
for
i
in
range
(
self
.
ni
-
1
):
#self.ai[i] = 1.0/(1.0+math.exp(-inputs[i]))
self
.
ai
[
i
]
=
inputs
[
i
]
# hidden activations
for
j
in
range
(
self
.
nh
):
sum
=
0.0
for
i
in
range
(
self
.
ni
):
sum
=
sum
+
self
.
ai
[
i
]
*
self
.
wi
[
i
][
j
]
self
.
ah
[
j
]
=
1.0
/
(
1.0
+
math
.
exp
(
-
sum
))
# output activations
for
k
in
range
(
self
.
no
):
sum
=
0.0
for
j
in
range
(
self
.
nh
):
sum
=
sum
+
self
.
ah
[
j
]
*
self
.
wo
[
j
][
k
]
self
.
ao
[
k
]
=
1.0
/
(
1.0
+
math
.
exp
(
-
sum
))
return
self
.
ao
[:]
def
backPropagate
(
self
,
targets
,
N
,
M
):
# print N, M
if
len
(
targets
)
!=
self
.
no
:
raise
ValueError
(
'wrong number of target values'
)
# calculate error terms for output
output_deltas
=
[
0.0
]
*
self
.
no
# print self.no
for
k
in
range
(
self
.
no
):
ao
=
self
.
ao
[
k
]
output_deltas
[
k
]
=
ao
*
(
1
-
ao
)
*
(
targets
[
k
]
-
ao
)
# calculate error terms for hidden
hidden_deltas
=
[
0.0
]
*
self
.
nh
for
j
in
range
(
self
.
nh
):
sum
=
0.0
for
k
in
range
(
self
.
no
):
sum
=
sum
+
output_deltas
[
k
]
*
self
.
wo
[
j
][
k
]
hidden_deltas
[
j
]
=
self
.
ah
[
j
]
*
(
1
-
self
.
ah
[
j
])
*
sum
# update output weights
for
j
in
range
(
self
.
nh
):
for
k
in
range
(
self
.
no
):
change
=
output_deltas
[
k
]
*
self
.
ah
[
j
]
self
.
wo
[
j
][
k
]
=
self
.
wo
[
j
][
k
]
+
N
*
change
+
M
*
self
.
co
[
j
][
k
]
self
.
co
[
j
][
k
]
=
change
# update input weights
for
i
in
range
(
self
.
ni
):
for
j
in
range
(
self
.
nh
):
change
=
hidden_deltas
[
j
]
*
self
.
ai
[
i
]
self
.
wi
[
i
][
j
]
=
self
.
wi
[
i
][
j
]
+
N
*
change
+
M
*
self
.
ci
[
i
][
j
]
self
.
ci
[
i
][
j
]
=
change
# calculate error
error
=
0.0
for
k
in
range
(
len
(
targets
)):
error
=
error
+
0.5
*
(
targets
[
k
]
-
self
.
ao
[
k
])
**
2
return
error
def
test
(
self
,
patterns
):
for
p
in
patterns
:
print
(
'%s -> %s'
%
(
p
[
0
],
self
.
update
(
p
[
0
])))
def
weights
(
self
):
print
(
'Input weights:'
)
for
i
in
range
(
self
.
ni
):
print
(
self
.
wi
[
i
])
print
(
''
)
print
(
'Output weights:'
)
for
j
in
range
(
self
.
nh
):
print
(
self
.
wo
[
j
])
def
train
(
self
,
patterns
,
iterations
=
2000
,
N
=
0.5
,
M
=
0.1
):
# N: learning rate
# M: momentum factor
for
i
in
range
(
iterations
):
error
=
0.0
for
p
in
patterns
:
inputs
=
p
[
0
]
targets
=
p
[
1
]
self
.
update
(
inputs
)
error
=
error
+
self
.
backPropagate
(
targets
,
N
,
M
)
#if i % 100 == 0:
# print i, 'error %-14f' % error
def
demo
():
# Teach network XOR function
pat
=
[
[[
0
,
0
],
[
0
]],
[[
0
,
1
],
[
1
]],
[[
1
,
0
],
[
1
]],
[[
1
,
1
],
[
0
]]
]
# create a network with two input, two hidden, and two output nodes
n
=
NN
(
2
,
3
,
1
)
# train it with some patterns
n
.
train
(
pat
,
5000
)
# test it
#n.test(pat)
def
time
(
fn
,
*
args
):
import
time
,
traceback
begin
=
time
.
time
()
result
=
fn
(
*
args
)
end
=
time
.
time
()
return
result
,
end
-
begin
def
test_bpnn
(
iterations
):
times
=
[]
for
_
in
range
(
iterations
):
times
.
append
(
time
(
demo
)
)
return
times
if
__name__
==
"__main__"
:
import
optparse
parser
=
optparse
.
OptionParser
(
usage
=
"%prog [options]"
,
description
=
(
"Test the performance of a neural network."
))
util
.
add_standard_options_to
(
parser
)
options
,
args
=
parser
.
parse_args
()
util
.
run_benchmark
(
options
,
options
.
num_runs
,
test_bpnn
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment