Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boxiang Sun
cython
Commits
fc96c622
Commit
fc96c622
authored
Sep 23, 2010
by
Robert Bradshaw
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Complex powers.
parent
348974c8
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
110 additions
and
16 deletions
+110
-16
Cython/Compiler/ExprNodes.py
Cython/Compiler/ExprNodes.py
+7
-2
Cython/Compiler/PyrexTypes.py
Cython/Compiler/PyrexTypes.py
+70
-14
tests/run/complex_numbers_T305.pyx
tests/run/complex_numbers_T305.pyx
+33
-0
No files found.
Cython/Compiler/ExprNodes.py
View file @
fc96c622
...
...
@@ -5655,8 +5655,13 @@ class PowNode(NumBinopNode):
def
analyse_c_operation
(
self
,
env
):
NumBinopNode
.
analyse_c_operation
(
self
,
env
)
if
self
.
type
.
is_complex
:
error
(
self
.
pos
,
"complex powers not yet supported"
)
self
.
pow_func
=
"<error>"
if
self
.
type
.
real_type
.
is_float
:
self
.
operand1
=
self
.
operand1
.
coerce_to
(
self
.
type
,
env
)
self
.
operand2
=
self
.
operand2
.
coerce_to
(
self
.
type
,
env
)
self
.
pow_func
=
"__Pyx_c_pow"
+
self
.
type
.
real_type
.
math_h_modifier
else
:
error
(
self
.
pos
,
"complex int powers not supported"
)
self
.
pow_func
=
"<error>"
elif
self
.
type
.
is_float
:
self
.
pow_func
=
"pow"
+
self
.
type
.
math_h_modifier
else
:
...
...
Cython/Compiler/PyrexTypes.py
View file @
fc96c622
...
...
@@ -1095,7 +1095,8 @@ class CComplexType(CNumericType):
utility_code
.
specialize
(
self
,
real_type
=
self
.
real_type
.
declaration_code
(
''
),
m
=
self
.
funcsuffix
))
m
=
self
.
funcsuffix
,
is_float
=
self
.
real_type
.
is_float
))
return
True
def
create_to_py_utility_code
(
self
,
env
):
...
...
@@ -1112,7 +1113,8 @@ class CComplexType(CNumericType):
utility_code
.
specialize
(
self
,
real_type
=
self
.
real_type
.
declaration_code
(
''
),
m
=
self
.
funcsuffix
))
m
=
self
.
funcsuffix
,
is_float
=
self
.
real_type
.
is_float
))
self
.
from_py_function
=
"__Pyx_PyComplex_As_"
+
self
.
specialization_name
()
return
True
...
...
@@ -1271,11 +1273,17 @@ proto="""
#ifdef __cplusplus
#define __Pyx_c_is_zero%(m)s(z) ((z)==(%(real_type)s)0)
#define __Pyx_c_conj%(m)s(z) (::std::conj(z))
/*#define __Pyx_c_abs%(m)s(z) (::std::abs(z))*/
#if %(is_float)s
#define __Pyx_c_abs%(m)s(z) (::std::abs(z))
#define __Pyx_c_pow%(m)s(a, b) (::std::pow(a, b))
#endif
#else
#define __Pyx_c_is_zero%(m)s(z) ((z)==0)
#define __Pyx_c_conj%(m)s(z) (conj%(m)s(z))
/*#define __Pyx_c_abs%(m)s(z) (cabs%(m)s(z))*/
#if %(is_float)s
#define __Pyx_c_abs%(m)s(z) (cabs%(m)s(z))
#define __Pyx_c_pow%(m)s(a, b) (cpow%(m)s(a, b))
#endif
#endif
#else
static CYTHON_INLINE int __Pyx_c_eq%(m)s(%(type)s, %(type)s);
...
...
@@ -1286,7 +1294,10 @@ proto="""
static CYTHON_INLINE %(type)s __Pyx_c_neg%(m)s(%(type)s);
static CYTHON_INLINE int __Pyx_c_is_zero%(m)s(%(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_conj%(m)s(%(type)s);
/*static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s);*/
#if %(is_float)s
static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s, %(type)s);
#endif
#endif
"""
,
impl
=
"""
...
...
@@ -1335,15 +1346,60 @@ impl="""
z.imag = -a.imag;
return z;
}
/*
static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s z) {
#if HAVE_HYPOT
return hypot%(m)s(z.real, z.imag);
#else
return sqrt%(m)s(z.real*z.real + z.imag*z.imag);
#endif
}
*/
#if %(is_float)s
static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s z) {
#if HAVE_HYPOT
return hypot%(m)s(z.real, z.imag);
#else
return sqrt%(m)s(z.real*z.real + z.imag*z.imag);
#endif
}
static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
%(real_type)s r, lnr, theta, z_r, z_theta;
if (b.imag == 0 && b.real == (int)b.real) {
if (b.real < 0) {
%(real_type)s denom = a.real * a.real + a.imag * a.imag;
a.real = a.real / denom;
a.imag = -a.imag / denom;
b.real = -b.real;
}
switch ((int)b.real) {
case 0:
z.real = 1;
z.imag = 0;
return z;
case 1:
return a;
case 2:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(a, a);
case 3:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(z, a);
case 4:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(z, z);
}
}
if (a.imag == 0) {
if (a.real == 0) {
return a;
}
r = a.real;
theta = 0;
} else {
r = __Pyx_c_abs%(m)s(a);
theta = atan2%(m)s(a.imag, a.real);
}
lnr = log%(m)s(r);
z_r = exp%(m)s(lnr * b.real - theta * b.imag);
z_theta = theta * b.real + lnr * b.imag;
z.real = z_r * cos%(m)s(z_theta);
z.imag = z_r * sin%(m)s(z_theta);
return z;
}
#endif
#endif
"""
)
...
...
tests/run/complex_numbers_T305.pyx
View file @
fc96c622
...
...
@@ -23,6 +23,39 @@ def test_arithmetic(double complex z, double complex w):
"""
return
+
z
,
-
z
+
0
,
z
+
w
,
z
-
w
,
z
*
w
,
z
/
w
def
test_pow
(
double
complex
z
,
double
complex
w
,
tol
=
None
):
"""
Various implementations produce slightly different results...
>>> a = complex(3, 1)
>>> test_pow(a, 1)
(3+1j)
>>> test_pow(a, 2, 1e-15)
True
>>> test_pow(a, a, 1e-15)
True
>>> test_pow(complex(0.5, -.25), complex(3, 4), 1e-15)
True
"""
if
tol
is
None
:
return
z
**
w
else
:
return
abs
(
z
**
w
/
<
object
>
z
**
<
object
>
w
-
1
)
<
tol
def
test_int_pow
(
double
complex
z
,
int
n
,
tol
=
None
):
"""
>>> [test_int_pow(complex(0, 1), k, 1e-15) for k in range(-4, 5)]
[True, True, True, True, True, True, True, True, True]
>>> [test_int_pow(complex(0, 2), k, 1e-15) for k in range(-4, 5)]
[True, True, True, True, True, True, True, True, True]
>>> [test_int_pow(complex(2, 0.5), k, 1e-15) for k in range(0, 10)]
[True, True, True, True, True, True, True, True, True, True]
"""
if
tol
is
None
:
return
z
**
n
+
<
object
>
0
# add zero to normalize zero sign
else
:
return
abs
(
z
**
n
/
<
object
>
z
**
<
object
>
n
-
1
)
<
tol
@
cython
.
cdivision
(
False
)
def
test_div_by_zero
(
double
complex
z
):
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment