Commit 6417c558 authored by Łukasz Nowak's avatar Łukasz Nowak
#!/usr/bin/python
##############################################################################
#
# Copyright (c) 2009 Nexedi SA and Contributors. All Rights Reserved.
# Vincent Pelletier <vincent@nexedi.com>
# Sebastien Robin <seb@nexedi.com>
#
# WARNING: This program as such is intended to be used by professional
# programmers who take the whole responsability of assessing all potential
# consequences resulting from its eventual inadequacies and bugs
# End users who are looking for a ready-to-use solution with commercial
# garantees and support are strongly adviced to contract a Free Software
# Service Company
#
# This program is Free Software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
##############################################################################
from datetime import date
from os import path
import rpy2.robjects as robjects
import os
from optparse import OptionParser
r = robjects.r
usage = """
Usage:
%prog [OPTION] file1.csv [file2.csv [...]]
Result:
Generates, in current directory, a graph per csv column in out-type format.
Their name is composed of:
- csv file basename (without extension)
- csv column title
- the ratio of present points (100 to 000). The higher the number, the
more the plot will be complete (less holes, longer timespan coverage).
- out-type extension
CSV files must have been generated by parse_timing_log.py tool.
"""
class CSVFile(object):
def __init__(self, file_name, field_delim=','):
file = open(file_name, 'r')
self.column_dict = column_dict = {}
self.column_list = column_list = []
self.ratio_dict = ratio_dict = {}
line_num = 0
self.value_max = value_max = {}
next_ord = 0
for x, title in enumerate(file.readline().split(field_delim)):
title = title.strip()
title = title.strip('"')
if title in column_dict:
title = next_ord
while title in column_dict:
title += 1
next_ord = title + 1
title = str(title)
column_dict[title] = []
column_list.append(title)
for line in file.readlines():
line_num += 1
for x, cell in enumerate(line.split(field_delim)):
cell = cell.strip()
key = column_list[x]
if x != 0:
cell = computeExpr(cell)
if cell is not None:
ratio = ratio_dict.get(key, 0)
ratio_dict[key] = ratio + 1
if cell > value_max.get(key, 0):
value_max[key] = cell
column_dict[key].append(cell)
line_num = float(line_num) / 100
for key in ratio_dict:
ratio_dict[key] /= line_num
def getColumn(self, column_id):
return self.column_dict[self.column_list[column_id]]
def iterColumns(self, start=0, stop=None):
if stop is None:
column_list = self.column_list[start:]
else:
column_list = self.column_list[start:stop]
return ((x, self.column_dict[x], self.value_max.get(x, 0), self.ratio_dict.get(x, 0)) for x in column_list)
def computeExpr(expr):
# only supports '=x/y'
if expr:
assert expr[0] == '='
num, denom = expr[1:].split('/')
result = float(int(num)) / int(denom)
else:
result = None
return result
def main():
parser = OptionParser(usage)
parser.add_option("--with-regression", action="store_true",
dest="regression_enabled", help="enable B-spline regression")
parser.add_option("--ignored-quantity", type="int", dest="ignored_quantity",
help="ignore IGNORED_QUANTITY higher values that might make a graph totally unusable")
parser.add_option("--out-type", type="string", default="png",
help="can be %default (default) or svg")
parser.add_option("--minimal-non-empty-values-ratio", type="float",
dest="minimal_non_empty_ratio", default=None,
help="graph with ratio of non empty values with lesser than value, then graph is ignored")
(options, file_name_list) = parser.parse_args()
current_dir = os.getcwd()
for file_name in file_name_list:
print 'Loading %s...' % (file_name, )
file = CSVFile(file_name)
date_string_list = file.getColumn(0)
date_list = []
x_label_value_list = []
# plotting functionnalities does not select smartly
# a good number of x values to display, so we will display 20 dates
# in order to have good enough dates on the x axis.
# x_label_value_list will be like [1, 5, 10...]
# date_list will be like ['2009/07/01', '2009/07/05', '2009/07/10', ...]
factor = 1
if len(date_string_list) > 20:
factor = int(len(date_string_list) / 20)
i = 0
for date_string in date_string_list:
if i % factor == 0:
x_label_value_list.append(i)
date_split = date_string.replace('"','').split('/')
date_split.reverse()
new_date = '/'.join(date_split)
date_list.append(new_date)
i += 1
max_x = len(date_string_list)
# knots are used for B-spline regression
# We need to add three additional knots at the begin and end in
# order to have the right basis
knot_list = [x_label_value_list[0]] * 3 + x_label_value_list \
+ [max_x] * 4
r_x_label_value_list = robjects.FloatVector(x_label_value_list)
robjects.globalenv["x_label_value_list"] = r_x_label_value_list
robjects.globalenv["knot_list"] = knot_list
r("x_label <- c(%s)" % ','.join(['"%s"' % x for x in date_list]))
# import the splines library in R
if options.regression_enabled:
r("library(splines)")
# now parse all columns and store a out-type file
for title, column, value_max, ratio in file.iterColumns(start=1):
out_file, out_ext = path.splitext(path.basename(file_name))
if out_ext != '.csv':
out_file = '.'.join((out_file, out_ext))
out_file_name = '%s_%s_%03i.%s' % (out_file, title.replace('%',''),
ratio, options.out_type)
i = 0
x_data = []
y_data = []
# First parse the list to retrieve values that we might want to remove
ignored_value_set = set([])
max_y_data = []
if options.ignored_quantity not in (None, 0):
for value in column:
if value is not None:
max_y_data.append(value)
max_y_data.sort()
ignored_value_set = set(max_y_data[-options.ignored_quantity:])
# build list with all data that we want to display
for value in column:
if value is not None and not (value in ignored_value_set):
x_data.append(i)
y_data.append(value)
i += 1
if len(x_data) == 0:
print 'Nothing to plot for %s...' % (out_file_name, )
continue
if options.minimal_non_empty_ratio is not None:
column_len = len(column)
if column_len:
if float(len(x_data))/column_len < options.minimal_non_empty_ratio:
print 'Not enough values to plot for %s...' % (out_file_name, )
continue
r_y_data = robjects.FloatVector(y_data)
r_x_data = robjects.FloatVector(x_data)
robjects.globalenv["y_data"] = r_y_data
robjects.globalenv["x_data"] = r_x_data
display_column_regression = options.regression_enabled
# if there is no more than one unique point, regression is useless
if len(set([x for x in r_y_data])) <= 1:
display_column_regression = 0
regression_string = ''
# Calculate a B-spline regression in order to give clear overview
# about the direction of chaotics values.
if display_column_regression:
r("bx <- splineDesign(knot_list, x_data)")
r("fitted_model <- lm(y_data ~ bx)")
regression_string = ', fitted_model$fit'
# Define the place where to store the graphe and format of the image
r("""%s(file='%s/%s', width=800, height=600)""" % (options.out_type,
current_dir, out_file_name))
# Increase the size for the place of the bottom axis labels (x)
r("""par(mar=c(9, 4, 4, 2) + 0.1)""")
# Plot the graph itself
r("""matplot(x_data, cbind(y_data %s), type='ll',
lty=1, main='%s (average display time per day)',
xlab='', ylab='time (s)', xaxt='n')""" % (
regression_string, title))
r("""axis(1, at=x_label_value_list, lab=x_label, las=2)""")
# stop changing the out-type file
r("""dev.off()""")
print 'Saving %s...' % (out_file_name, )
if __name__ == '__main__':
main()
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment