Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
sdkjs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boris Kocherov
sdkjs
Commits
29f54b5c
Commit
29f54b5c
authored
Sep 18, 2017
by
GoshaZotov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
modify some functions
parent
464a2cb7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
14 deletions
+14
-14
cell/model/FormulaObjects/statisticalFunctions.js
cell/model/FormulaObjects/statisticalFunctions.js
+14
-14
No files found.
cell/model/FormulaObjects/statisticalFunctions.js
View file @
29f54b5c
...
...
@@ -1570,8 +1570,8 @@
function
lcl_TGetColumnMaximumNorm
(
pMatA
,
nR
,
nC
,
nN
)
{
var
fNorm
=
0.0
;
for
(
var
col
=
nC
;
col
<
nN
;
col
++
)
{
if
(
fNorm
<
Math
.
abs
(
pMatA
[
col
][
nR
]))
{
fNorm
=
Math
.
abs
(
pMatA
[
col
][
nR
]);
if
(
fNorm
<
Math
.
abs
(
pMatA
[
nR
][
col
]))
{
fNorm
=
Math
.
abs
(
pMatA
[
nR
][
col
]);
}
}
...
...
@@ -1581,7 +1581,7 @@
function
lcl_TGetColumnEuclideanNorm
(
pMatA
,
nR
,
nC
,
nN
)
{
var
fNorm
=
0.0
;
for
(
var
col
=
nC
;
col
<
nN
;
col
++
)
{
fNorm
+=
(
pMatA
[
col
][
nR
])
*
(
pMatA
[
col
][
nR
]);
fNorm
+=
(
pMatA
[
nR
][
col
])
*
(
pMatA
[
nR
][
col
]);
}
return
Math
.
sqrt
(
fNorm
);
...
...
@@ -1594,7 +1594,7 @@
function
lcl_TGetColumnSumProduct
(
pMatA
,
nRa
,
pMatB
,
nRb
,
nC
,
nN
)
{
var
fResult
=
0.0
;
for
(
var
col
=
nC
;
col
<
nN
;
col
++
)
{
fResult
+=
pMatA
[
col
][
nRa
]
*
pMatB
[
col
][
nRb
];
fResult
+=
pMatA
[
nRa
][
col
]
*
pMatB
[
nRb
][
col
];
}
return
fResult
;
}
...
...
@@ -1611,7 +1611,7 @@
return
false
;
}
for
(
var
col
=
row
;
col
<
nN
;
col
++
)
{
pMatA
[
col
][
row
]
=
pMatA
[
col
][
row
]
/
fScale
;
pMatA
[
row
][
col
]
=
pMatA
[
row
][
col
]
/
fScale
;
var
fEuclid
=
lcl_TGetColumnEuclideanNorm
(
pMatA
,
row
,
row
,
nN
);
var
fFactor
=
1.0
/
fEuclid
/
(
fEuclid
+
Math
.
abs
(
pMatA
[
row
][
row
]));
...
...
@@ -1623,7 +1623,7 @@
for
(
var
r
=
row
+
1
;
r
<
nK
;
r
++
)
{
fSum
=
lcl_TGetColumnSumProduct
(
pMatA
,
row
,
pMatA
,
r
,
row
,
nN
);
for
(
var
col
=
row
;
col
<
nN
;
col
++
)
{
pMatA
[
col
][
r
]
=
pMatA
[
col
][
r
]
-
-
fSum
*
fFactor
*
pMatA
[
col
][
row
];
pMatA
[
r
][
col
]
=
pMatA
[
r
][
col
]
-
-
fSum
*
fFactor
*
pMatA
[
row
][
col
];
}
}
}
...
...
@@ -1676,9 +1676,9 @@
for
(
var
col
=
0
;
col
<
l
;
col
++
)
{
// result element(col, row) =sum[ (row of A) * (column of B)]
sum
=
0.0
;
for
(
var
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
pA
[
k
][
row
]
*
pB
[
col
][
k
];
sum
+=
pA
[
k
][
row
]
*
pB
[
k
][
col
];
}
pR
[
col
][
row
]
=
sum
;
pR
[
row
][
col
]
=
sum
;
}
}
}
...
...
@@ -1687,7 +1687,7 @@
for
(
var
k
=
0
;
k
<
nR
;
k
++
)
{
var
fSum
=
0.0
;
for
(
var
i
=
0
;
i
<
nC
;
i
++
)
{
fSum
+=
pX
[
i
][
k
];
fSum
+=
pX
[
k
][
i
];
}
// GetDouble(Column,Row)
pResMat
[
k
]
=
fSum
/
nC
;
...
...
@@ -1697,7 +1697,7 @@
function
lcl_CalculateRowsDelta
(
pMat
,
pRowMeans
,
nC
,
nR
)
{
for
(
var
k
=
0
;
k
<
nR
;
k
++
)
{
for
(
var
i
=
0
;
i
<
nC
;
i
++
)
{
pMat
[
i
][
k
]
=
approxSub
(
pMat
[
i
][
k
],
pRowMeans
[
k
]);
pMat
[
k
][
i
]
=
approxSub
(
pMat
[
k
][
i
],
pRowMeans
[
k
]);
}
}
}
...
...
@@ -1708,7 +1708,7 @@
var
fNumerator
=
lcl_TGetColumnSumProduct
(
pMatA
,
nR
,
pMatY
,
0
,
nR
,
nN
);
var
fFactor
=
2.0
*
(
fNumerator
/
fDenominator
);
for
(
var
col
=
nR
;
col
<
nN
;
col
++
)
{
pMatY
[
col
]
=
pMatY
[
col
]
-
fFactor
*
pMatA
[
col
][
nR
];
pMatY
[
col
]
=
pMatY
[
col
]
-
fFactor
*
pMatA
[
nR
][
col
];
}
}
...
...
@@ -1787,8 +1787,8 @@
nCountXN
=
nCXN
*
nRXN
;
pMatNewX
=
matrixClone
(
pMatX
);
// pMatX will be changed to X-meanX
}
else
{
n
C
XN
=
pMatNewX
.
length
;
n
R
XN
=
pMatNewX
[
0
].
length
;
n
R
XN
=
pMatNewX
.
length
;
n
C
XN
=
pMatNewX
[
0
].
length
;
if
((
nCase
===
2
&&
K
!==
nCXN
)
||
(
nCase
===
3
&&
K
!==
nRXN
))
{
return
;
}
...
...
@@ -1932,7 +1932,7 @@
}
}
else
{
// nCase == 3, Y is row, all matrices are transposed
var
aVecR
;
// for QR decomposition
var
aVecR
=
[]
;
// for QR decomposition
// Enough memory for needed matrices?
var
pMeans
=
GetNewMat
(
1
,
K
);
// mean of each row
var
pSlopes
=
GetNewMat
(
K
,
1
);
// row from b1 to bK
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment