Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
S
sdkjs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boris Kocherov
sdkjs
Commits
ae978a5e
Commit
ae978a5e
authored
Sep 12, 2017
by
GoshaZotov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add function for trend/growth formulas
parent
a90b4844
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
312 additions
and
1 deletion
+312
-1
cell/model/FormulaObjects/statisticalFunctions.js
cell/model/FormulaObjects/statisticalFunctions.js
+312
-1
No files found.
cell/model/FormulaObjects/statisticalFunctions.js
View file @
ae978a5e
...
...
@@ -1380,6 +1380,303 @@
return
matrix
;
}
/*function forEachMatrixElem(matrix, func){
for(var i = 0; i < matrix.length; i++){
for(var j = 0; j < matrix[i].length; j++){
}
}
}*/
function
GetNewMat
(
c
,
r
){
var
matrix
=
[];
for
(
var
i
=
0
;
i
<
c
;
i
++
){
for
(
var
j
=
0
;
j
<
r
;
j
++
){
if
(
!
matrix
[
i
]){
matrix
[
i
]
=
[];
}
matrix
[
i
][
j
]
=
0
;
}
}
return
matrix
;
}
function
matrixClone
(
matrix
){
var
cloneMatrix
=
[];
for
(
var
i
=
0
;
i
<
matrix
.
length
;
i
++
){
for
(
var
j
=
0
;
j
<
matrix
[
i
].
length
;
j
++
){
if
(
!
cloneMatrix
[
i
]){
cloneMatrix
[
i
]
=
[];
}
cloneMatrix
[
i
][
j
]
=
matrix
[
i
][
j
];
}
}
return
cloneMatrix
;
}
function
CheckMatrix
(
_bLOG
,
pMatX
,
pMatY
)
{
var
nCX
=
0
;
var
nCY
=
0
;
var
nRX
=
0
;
var
nRY
=
0
;
var
M
=
0
;
var
N
=
0
;
var
nCase
;
var
nCY
=
pMatY
.
length
;
var
nRY
=
pMatY
[
0
].
length
;
var
nCountY
=
nCY
*
nRY
;
for
(
var
i
=
0
;
i
<
pMatY
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatY
[
i
].
length
;
j
++
)
{
if
(
!
pMatY
[
i
][
j
])
//!pMatY->IsValue(i)
{
//PushIllegalArgument();
return
false
;
}
}
}
if
(
_bLOG
)
{
var
pNewY
=
matrixClone
(
pMatY
);
for
(
var
i
=
0
;
i
<
pMatY
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatY
[
i
].
length
;
j
++
)
{
var
fVal
=
pNewY
[
i
][
j
];
if
(
fVal
<=
0.0
)
{
//PushIllegalArgument();
return
false
;
}
else
{
pNewY
[
i
][
j
]
=
new
cNumber
(
Math
.
log
(
fVal
));
}
}
}
pMatY
=
pNewY
;
}
if
(
pMatX
)
{
nCX
=
pMatX
.
length
;
nRX
=
pMatX
[
0
].
length
;
var
nCountX
=
nCX
*
nRX
;
for
(
var
i
=
0
;
i
<
pMatX
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatX
[
i
].
length
;
j
++
)
{
if
(
!
pMatX
[
i
][
j
])
//!pMatX->IsValue(i)
{
//PushIllegalArgument();
return
false
;
}
}
}
if
(
nCX
===
nCY
&&
nRX
===
nRY
)
{
nCase
=
1
;
// simple regression
M
=
1
;
N
=
nCountY
;
}
else
if
(
nCY
!==
1
&&
nRY
!==
1
)
{
//PushIllegalArgument();
return
false
;
}
else
if
(
nCY
===
1
)
{
if
(
nRX
!==
nRY
)
{
//PushIllegalArgument();
return
false
;
}
else
{
nCase
=
2
;
// Y is column
N
=
nRY
;
M
=
nCX
;
}
}
else
if
(
nCX
!==
nCY
)
{
//PushIllegalArgument();
return
false
;
}
else
{
nCase
=
3
;
// Y is row
N
=
nCY
;
M
=
nRX
;
}
}
else
{
pMatX
=
GetNewMat
(
nCY
,
nRY
);
nCX
=
nCY
;
nRX
=
nRY
;
if
(
!
pMatX
)
{
//PushIllegalArgument();
return
false
;
}
/*for ( SCSIZE i = 1; i <= nCountY; i++ )
pMatX->PutDouble(static_cast<double>(i), i-1);*/
nCase
=
1
;
N
=
nCountY
;
M
=
1
;
}
return
{
nCase
:
nCase
,
nCX
:
nCX
,
nCY
:
nCY
,
nRX
:
nRX
,
nRY
:
nRY
,
M
:
M
,
N
:
N
,
pMatX
:
pMatX
,
pMatY
:
pMatY
};
}
function
lcl_GetMeanOverAll
(
pMat
,
nN
)
{
var
fSum
=
0.0
;
for
(
var
i
=
0
;
i
<
pMat
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMat
[
i
].
length
;
j
++
)
{
fSum
+=
pMat
[
i
][
j
].
getValue
();
}
}
return
fSum
/
nN
;
}
function
lcl_GetSumProduct
(
pMatA
,
pMatB
,
nM
)
{
var
fSum
=
0.0
;
for
(
var
i
=
0
;
i
<
pMatA
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatA
[
i
].
length
;
j
++
)
{
fSum
+=
pMatA
[
i
][
j
]
*
pMatB
[
i
][
j
];
}
}
return
fSum
;
}
function
approxSub
(
a
,
b
)
{
if
(((
a
<
0.0
&&
b
<
0.0
)
||
(
a
>
0.0
&&
b
>
0.0
))
&&
Math
.
abs
(
a
-
b
)
<
2.22045
e
-
016
)
{
return
0.0
;
}
return
a
-
b
;
}
function
lcl_CalculateColumnMeans
(
pX
,
pResMat
,
nC
,
nR
)
{
for
(
var
i
=
0
;
i
<
nC
;
i
++
)
{
var
fSum
=
0.0
;
for
(
var
k
=
0
;
k
<
nR
;
k
++
)
{
fSum
+=
pX
[
i
][
k
].
getValue
();
// GetDouble(Column,Row)
pResMat
[
i
][
k
]
=
fSum
/
nR
;
}
}
}
function
lcl_CalculateColumnsDelta
(
pMat
,
pColumnMeans
,
nC
,
nR
)
{
for
(
var
i
=
0
;
i
<
nC
;
i
++
)
{
for
(
var
k
=
0
;
k
<
nR
;
k
++
)
{
pMat
[
i
][
k
]
=
approxSub
(
pMat
[
i
][
k
],
pColumnMeans
[
i
]);
}
}
}
function
CalculateTrendGrowth
(
pMatY
,
pMatX
,
pMatNewX
,
bConstant
,
_bGrowth
)
{
var
getMatrixParams
=
CheckMatrix
(
_bGrowth
,
pMatX
,
pMatY
);
if
(
!
getMatrixParams
)
{
return
;
}
// 1 = simple; 2 = multiple with Y as column; 3 = multiple with Y as row
var
nCase
=
getMatrixParams
.
nCase
;
var
nCX
=
getMatrixParams
.
nCX
,
nCY
=
getMatrixParams
.
nCY
;
// number of columns
var
nRX
=
getMatrixParams
.
nRX
,
nRY
=
getMatrixParams
.
nRY
;
//number of rows
var
K
=
getMatrixParams
.
M
,
N
=
getMatrixParams
.
N
;
// K=number of variables X, N=number of data samples
pMatX
=
getMatrixParams
.
pMatX
,
pMatY
=
getMatrixParams
.
pMatY
;
// Enough data samples?
if
((
bConstant
&&
(
N
<
K
+
1
))
||
(
!
bConstant
&&
(
N
<
K
))
||
(
N
<
1
)
||
(
K
<
1
))
{
return
;
}
// Set default pMatNewX if necessary
var
nCXN
,
nRXN
;
var
nCountXN
;
if
(
!
pMatNewX
)
{
nCXN
=
nCX
;
nRXN
=
nRX
;
nCountXN
=
nCXN
*
nRXN
;
pMatNewX
=
matrixClone
(
pMatX
);
// pMatX will be changed to X-meanX
}
else
{
nCXN
=
pMatNewX
.
length
;
nRXN
=
pMatNewX
[
0
].
length
;
if
((
nCase
===
2
&&
K
!==
nCXN
)
||
(
nCase
===
3
&&
K
!==
nRXN
))
{
return
;
}
nCountXN
=
nCXN
*
nRXN
;
for
(
var
i
=
0
;
i
<
nCountXN
;
i
++
)
{
/*if (!pMatNewX->IsValue(i))
{
PushIllegalArgument();
return;
}*/
}
}
var
pResMat
;
// size depends on nCase
if
(
nCase
===
1
)
{
pResMat
=
GetNewMat
(
nCXN
,
nRXN
);
}
else
{
if
(
nCase
===
2
)
{
pResMat
=
GetNewMat
(
1
,
nRXN
);
}
else
{
pResMat
=
GetNewMat
(
nCXN
,
1
);
}
}
if
(
!
pResMat
)
{
//PushError(FormulaError::CodeOverflow);
return
;
}
// Uses sum(x-MeanX)^2 and not [sum x^2]-N * MeanX^2 in case bConstant.
// Clone constant matrices, so that Mat = Mat - Mean is possible.
var
fMeanY
=
0.0
;
if
(
bConstant
)
{
var
pCopyX
=
matrixClone
(
pMatX
);
var
pCopyY
=
matrixClone
(
pMatY
);
if
(
!
pCopyX
||
!
pCopyY
)
{
//PushError(FormulaError::MatrixSize);
return
;
}
pMatX
=
pCopyX
;
pMatY
=
pCopyY
;
// DeltaY is possible here; DeltaX depends on nCase, so later
fMeanY
=
lcl_GetMeanOverAll
(
pMatY
,
N
);
for
(
var
i
=
0
;
i
<
pMatY
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatY
[
i
].
length
;
j
++
)
{
pMatY
[
i
][
j
]
=
approxSub
(
pMatY
[
i
][
j
].
getValue
(),
fMeanY
);
}
}
}
if
(
nCase
===
1
)
{
// calculate simple regression
var
fMeanX
=
0.0
;
if
(
bConstant
)
{
// Mat = Mat - Mean
fMeanX
=
lcl_GetMeanOverAll
(
pMatX
,
N
);
for
(
var
i
=
0
;
i
<
pMatX
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pMatX
[
i
].
length
;
j
++
)
{
pMatX
[
i
][
j
]
=
approxSub
(
pMatX
[
i
][
j
].
getValue
(),
fMeanX
);
}
}
}
var
fSumXY
=
lcl_GetSumProduct
(
pMatX
,
pMatY
,
N
);
var
fSumX2
=
lcl_GetSumProduct
(
pMatX
,
pMatX
,
N
);
if
(
fSumX2
===
0.0
)
{
//PushNoValue(); // all x-values are identical
return
;
}
var
fSlope
=
fSumXY
/
fSumX2
;
var
fHelp
;
if
(
bConstant
)
{
var
fIntercept
=
fMeanY
-
fSlope
*
fMeanX
;
for
(
var
i
=
0
;
i
<
pResMat
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pResMat
[
i
].
length
;
j
++
)
{
fHelp
=
pMatNewX
[
i
][
j
]
*
fSlope
+
fIntercept
;
pResMat
[
i
][
j
]
=
_bGrowth
?
Math
.
exp
(
fHelp
)
:
fHelp
;
}
}
}
else
{
for
(
var
i
=
0
;
i
<
pResMat
.
length
;
i
++
)
{
for
(
var
j
=
0
;
j
<
pResMat
[
i
].
length
;
j
++
)
{
fHelp
=
pMatNewX
[
i
][
j
]
*
fSlope
;
pResMat
[
i
][
j
]
=
_bGrowth
?
Math
.
exp
(
fHelp
)
:
fHelp
;
}
}
}
}
//TODO ELSE
return
pResMat
;
}
function
GAMMADISTFUNCTION
(
fp
,
fAlpha
,
fBeta
){
this
.
fp
=
fp
;
this
.
fAlpha
=
fAlpha
;
...
...
@@ -5644,11 +5941,25 @@
* @extends {AscCommonExcel.cBaseFunction}
*/
function
cGROWTH
()
{
cBaseFunction
.
call
(
this
,
"
GROWTH
"
);
this
.
name
=
"
GROWTH
"
;
this
.
value
=
null
;
this
.
argumentsCurrent
=
0
;
}
cGROWTH
.
prototype
=
Object
.
create
(
cBaseFunction
.
prototype
);
cGROWTH
.
prototype
.
constructor
=
cGROWTH
;
cGROWTH
.
prototype
.
argumentsMin
=
1
;
cGROWTH
.
prototype
.
argumentsMax
=
4
;
/*cGROWTH.prototype.Calculate = function (arg) {
var pMatY = arg[0].getMatrix();
var pMatX = arg[1].getMatrix();
var pMatNewX = arg[2] ? arg[2] : null;
var bConstant = undefined !== arg[3] ? arg[3] : true;
var res = CalculateTrendGrowth( pMatY, pMatX, pMatNewX, bConstant, true);
return new cNumber(res[0][0]);
};*/
/**
* @constructor
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment