Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
order_prediction_methods
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Jérome Perrin
order_prediction_methods
Commits
f7b2142b
Commit
f7b2142b
authored
Oct 26, 2015
by
Douglas
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
initial commit
parents
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
275 additions
and
0 deletions
+275
-0
data.csv
data.csv
+103
-0
scikit-learn-.py
scikit-learn-.py
+67
-0
statsmodels.py
statsmodels.py
+105
-0
No files found.
data.csv
0 → 100644
View file @
f7b2142b
date;quantity
2015/05/01 00:00:00 UTC;3.0
2015/05/02 00:00:00 UTC;60.0
2015/05/03 00:00:00 UTC;59.962507811848994
2015/05/04 00:00:00 UTC;59.85012495834077
2015/05/05 00:00:00 UTC;59.663132338081276
2015/05/06 00:00:00 UTC;59.40199733523725
2015/05/07 00:00:00 UTC;59.06737265131934
2015/05/08 00:00:00 UTC;58.66009467376818
2015/05/09 00:00:00 UTC;58.181181385421375
2015/05/10 00:00:00 UTC;57.63182982008656
2015/05/11 00:00:00 UTC;57.013413070580306
2015/05/12 00:00:00 UTC;56.327476856711186
2015/05/13 00:00:00 UTC;55.575735661785174
2015/05/14 00:00:00 UTC;54.760068447290344
2015/05/15 00:00:00 UTC;53.88251395647168
2015/05/16 00:00:00 UTC;52.945265618534656
2015/05/17 00:00:00 UTC;51.95066606621463
2015/05/18 00:00:00 UTC;50.90120128041495
2015/05/19 00:00:00 UTC;49.799494376549475
2015/05/20 00:00:00 UTC;48.64829904811994
2015/05/21 00:00:00 UTC;47.45049268391651
2015/05/22 00:00:00 UTC;46.209069176044196
2015/05/23 00:00:00 UTC;44.92713143675181
2015/05/24 00:00:00 UTC;43.60788364276732
2015/05/25 00:00:00 UTC;42.25462322652473
2015/05/26 00:00:00 UTC;40.87073263430021
2015/05/27 00:00:00 UTC;39.45967087185806
2015/05/28 00:00:00 UTC;38.02496485873762
2015/05/29 00:00:00 UTC;36.57020061279124
2015/05/30 00:00:00 UTC;35.09901428700723
2015/05/31 00:00:00 UTC;33.615083081021
2015/06/01 00:00:00 UTC;32.12211605003108
2015/06/02 00:00:00 UTC;30.623844834092772
2015/06/03 00:00:00 UTC;29.124014330961337
2015/06/04 00:00:00 UTC;27.626373335797986
2015/06/05 00:00:00 UTC;26.13466517113426
2015/06/06 00:00:00 UTC;24.65261833051524
2015/06/07 00:00:00 UTC;23.18393715920739
2015/06/08 00:00:00 UTC;21.73229259526461
2015/06/09 00:00:00 UTC;20.301312994094896
2015/06/10 00:00:00 UTC;18.894575059461395
2015/06/11 00:00:00 UTC;17.51559490358573
2015/06/12 00:00:00 UTC;16.167819258698618
2015/06/13 00:00:00 UTC;14.854616862004274
2015/06/14 00:00:00 UTC;13.579270035591872
2015/06/15 00:00:00 UTC;12.344966482339625
2015/06/16 00:00:00 UTC;11.154791318317827
2015/06/17 00:00:00 UTC;10.011719361605277
2015/06/18 00:00:00 UTC;8.91860769679338
2015/06/19 00:00:00 UTC;7.878188533762637
2015/06/20 00:00:00 UTC;6.893062378580777
2015/06/21 00:00:00 UTC;5.965691533591989
2015/06/22 00:00:00 UTC;5.098393942943337
2015/06/23 00:00:00 UTC;4.29333739893158
2015/06/24 00:00:00 UTC;3.552534123651423
2015/06/25 00:00:00 UTC;2.8778357394881637
2015/06/26 00:00:00 UTC;2.270928641026093
2015/06/27 00:00:00 UTC;1.733329779940258
2015/06/28 00:00:00 UTC;1.266382873407289
2015/06/29 00:00:00 UTC;0.8712550455122836
2015/06/30 00:00:00 UTC;0.5489339100463764
2015/07/01 00:00:00 UTC;0.30022510198663754
2015/07/02 00:00:00 UTC;0.1257502638281638
2015/07/03 00:00:00 UTC;0.02594549180161554
2015/07/04 00:00:00 UTC;0.0010602458597408493
2015/07/05 00:00:00 UTC;0.05115672615740641
2015/07/06 00:00:00 UTC;0.17610971758361238
2015/07/07 00:00:00 UTC;0.3756069027340536
2015/07/08 00:00:00 UTC;0.6491496425419763
2015/07/09 00:00:00 UTC;0.9960542226161673
2015/07/10 00:00:00 UTC;1.4154535621708586
2015/07/11 00:00:00 UTC;1.9062993812761098
2015/07/12 00:00:00 UTC;2.4673648210117216
2015/07/13 00:00:00 UTC;3.09724750997559
2015/07/14 00:00:00 UTC;3.7943730694818623
2015/07/15 00:00:00 UTC;4.556999048687759
2015/07/16 00:00:00 UTC;5.3832192798131775
2015/07/17 00:00:00 UTC;6.270968642567494
2015/07/18 00:00:00 UTC;7.218028225874765
2015/07/19 00:00:00 UTC;8.222030873995793
2015/07/20 00:00:00 UTC;9.280467103184773
2015/07/21 00:00:00 UTC;10.390691374091642
2015/07/22 00:00:00 UTC;11.549928704232768
2015/07/23 00:00:00 UTC;12.755281604001926
2015/07/24 00:00:00 UTC;14.00373731888537
2015/07/25 00:00:00 UTC;15.292175359779018
2015/07/26 00:00:00 UTC;16.61737530258622
2015/07/27 00:00:00 UTC;17.976024837600736
2015/07/28 00:00:00 UTC;19.364728048556042
2015/07/29 00:00:00 UTC;20.78001390064742
2015/07/30 00:00:00 UTC;22.218344916311217
2015/07/31 00:00:00 UTC;23.676126017076612
2015/08/01 00:00:00 UTC;25.149713509389404
2015/08/02 00:00:00 UTC;26.635424191948353
2015/08/03 00:00:00 UTC;28.129544561790254
2015/08/04 00:00:00 UTC;29.62834009611328
2015/08/05 00:00:00 UTC;31.128064586639297
2015/08/06 00:00:00 UTC;32.624969503183394
2015/08/07 00:00:00 UTC;34.11531336302722
2015/08/08 00:00:00 UTC;35.59537108267727
2015/08/09 00:00:00 UTC;37.061443288633534
\ No newline at end of file
scikit-learn-.py
0 → 100644
View file @
f7b2142b
# coding: utf-8
# In[130]:
get_ipython
().
magic
(
u'matplotlib inline'
)
import
csv
import
requests
import
ggplot
import
matplotlib
matplotlib
.
use
(
'agg'
)
matplotlib
.
style
.
use
(
'ggplot'
)
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
statsmodels
as
sm
from
sklearn
import
linear_model
from
sklearn.gaussian_process
import
regression_models
from
StringIO
import
StringIO
# need ssh tunnel to use this url
url
=
'http://localhost:2200/erp5/portal_skins/erp5_r_order_prediction_tutorial/SaleOrderModule_getArimaPredictionList'
response
=
requests
.
get
(
url
,
auth
=
(
'zope'
,
'password'
))
csv_file
=
StringIO
()
csv_file
.
write
(
response
.
text
)
csv_file
.
seek
(
0
)
ts
=
pd
.
read_csv
(
csv_file
,
sep
=
';'
,
parse_dates
=
[
0
],
infer_datetime_format
=
True
,
squeeze
=
True
,
index_col
=
'date'
)
X
=
(
ts
.
index
-
ts
.
index
[
0
]).
days
.
reshape
(
-
1
,
1
)
y
=
ts
.
values
X_train
=
X
[:]
X_test
=
X
[
20
:]
y_train
=
y
[:]
y_test
=
y
[
20
:]
# Linear Regression
lr
=
linear_model
.
LinearRegression
(
normalize
=
True
)
lr
.
fit
(
X_train
,
y_train
)
print
lr
.
score
(
X_test
,
y_test
)
plt
.
scatter
(
X_test
,
y_test
,
color
=
'black'
)
plt
.
plot
(
X_test
,
lr
.
predict
(
X_test
),
color
=
'blue'
,
linewidth
=
3
)
# ElasticNet Regression
mtl
=
linear_model
.
ElasticNet
(
alpha
=
0.1
,
normalize
=
True
)
mtl
.
fit
(
X_train
,
y_train
)
plt
.
plot
(
X_test
,
mtl
.
predict
(
X_test
),
color
=
'green'
,
linewidth
=
2
)
# SGD Regression
sgd
=
linear_model
.
SGDRegressor
(
shuffle
=
False
,
eta0
=
0.25
)
sgd
.
fit
(
X_train
,
y_train
)
plt
.
plot
(
X_test
,
sgd
.
predict
(
X_test
),
color
=
'red'
,
linewidth
=
1
)
plt
.
xticks
()
plt
.
yticks
()
plt
.
show
()
\ No newline at end of file
statsmodels.py
0 → 100644
View file @
f7b2142b
# coding: utf-8
# # Basic setup and data (with plot)
# In[1]:
get_ipython
().
magic
(
u'matplotlib inline'
)
import
csv
import
requests
import
ggplot
import
matplotlib
matplotlib
.
use
(
'agg'
)
matplotlib
.
style
.
use
(
'ggplot'
)
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
statsmodels.api
as
sm
import
numpy
as
np
from
statsmodels.tsa.arima_process
import
ArmaProcess
from
StringIO
import
StringIO
# need ssh tunnel to use this url
url
=
'http://zope:runescape@localhost:2200/erp5/portal_skins/erp5_r_order_prediction_tutorial/SaleOrderModule_getArimaPredictionList'
response
=
requests
.
get
(
url
,
auth
=
(
'zope'
,
'runescape'
))
csv_file
=
StringIO
()
csv_file
.
write
(
response
.
text
)
csv_file
.
seek
(
0
)
ts
=
pd
.
read_csv
(
csv_file
,
sep
=
';'
,
parse_dates
=
[
0
],
infer_datetime_format
=
True
,
squeeze
=
True
,
index_col
=
'date'
)
ts
.
plot
()
# # Graphics to analyze auto correlation and partial auto correlation
# In[2]:
fig
=
plt
.
figure
(
figsize
=
(
12
,
8
))
ax1
=
fig
.
add_subplot
(
211
)
fig
=
sm
.
graphics
.
tsa
.
plot_acf
(
ts
,
lags
=
30
,
ax
=
ax1
)
ax2
=
fig
.
add_subplot
(
212
)
fig
=
sm
.
graphics
.
tsa
.
plot_pacf
(
ts
,
lags
=
30
,
ax
=
ax2
)
# Looks like partial correlation going to 0 after lag 3. So **ARMA(3,0)** might be an adequated model for out data.
# # Minimum order selection for ARMA
# In[28]:
answers
=
[
sm
.
tsa
.
arma_order_select_ic
(
ts
,
ic
=
[
'aic'
],
trend
=
trend
,
fit_kw
=
{
'method'
:
'css'
})
for
trend
in
[
'c'
,
'nc'
]]
for
answer
in
answers
:
print
answer
[
'aic_min_order'
]
# # Check if series is stationary
# Using the Augmented Dicker-Fuller test we can check if out data is stationary. For this, we need to get an **adf statistic** value __smaller__ (more negative) than the critical value at 5% for regression **c**, **ct** and **nc**.
# In[15]:
def
check_stationarity
(
series
,
regression
=
'c'
):
regressions
=
{
'c'
:
'constant only'
,
'ct'
:
'constant and trend'
,
'ctt'
:
'constant, linear and quadratic trend'
,
'nc'
:
'no constant, no trend'
}
result
=
sm
.
tsa
.
adfuller
(
series
,
regression
=
regression
,
autolag
=
't-stat'
,
store
=
True
)
store
=
result
[
-
1
]
if
store
.
adfstat
>
result
[
2
][
'5%'
]:
print
'Time series is not stationary with %s. See data below:'
%
regressions
[
regression
]
print
' - adf statistics: '
,
store
.
adfstat
print
' - p-value: '
,
result
[
1
]
print
' - critical values: '
,
store
.
critvalues
return
False
else
:
print
'Time series is stationary with regression %s! :D
\
n
'
%
regressions
[
regression
]
return
True
stationarity_tests
=
[
check_stationarity
(
ts
,
regression
)
for
regression
in
[
'c'
,
'ct'
,
'ctt'
,
'nc'
]]
diff_ts
=
ts
.
diff
()
diff_ts
.
plot
()
# # Fit the ARIMA model and plot the data + forecast
# In[32]:
arima
=
sm
.
tsa
.
ARIMA
(
ts
,
(
3
,
0
,
0
))
arima_fit
=
arima
.
fit
()
arima_fit
.
resid
.
plot
()
fig
,
ax
=
plt
.
subplots
()
ax
=
ts
.
plot
(
ax
=
ax
)
fig
=
arima_fit
.
plot_predict
(
100
,
200
,
dynamic
=
True
,
ax
=
ax
)
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment