You need to sign in or sign up before continuing.
frontmatter.py 15.2 KB
Newer Older
Andreas Jung's avatar
updated  
Andreas Jung committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
# Authors: David Goodger, Ueli Schlaepfer
# Contact: goodger@users.sourceforge.net
# Revision: $Revision: 1.5 $
# Date: $Date: 2003/11/30 15:06:09 $
# Copyright: This module has been placed in the public domain.

"""
Transforms related to the front matter of a document (information
found before the main text):

- `DocTitle`: Used to transform a lone top level section's title to
  the document title, and promote a remaining lone top-level section's
  title to the document subtitle.

- `DocInfo`: Used to transform a bibliographic field list into docinfo
  elements.
"""

__docformat__ = 'reStructuredText'

import re
from docutils import nodes, utils
from docutils.transforms import TransformError, Transform


class DocTitle(Transform):

    """
    In reStructuredText_, there is no way to specify a document title
    and subtitle explicitly. Instead, we can supply the document title
    (and possibly the subtitle as well) implicitly, and use this
    two-step transform to "raise" or "promote" the title(s) (and their
    corresponding section contents) to the document level.

    1. If the document contains a single top-level section as its
       first non-comment element, the top-level section's title
       becomes the document's title, and the top-level section's
       contents become the document's immediate contents. The lone
       top-level section header must be the first non-comment element
       in the document.

       For example, take this input text::

           =================
            Top-Level Title
           =================

           A paragraph.

       Once parsed, it looks like this::

           <document>
               <section name="top-level title">
                   <title>
                       Top-Level Title
                   <paragraph>
                       A paragraph.

       After running the DocTitle transform, we have::

           <document name="top-level title">
               <title>
                   Top-Level Title
               <paragraph>
                   A paragraph.

    2. If step 1 successfully determines the document title, we
       continue by checking for a subtitle.

       If the lone top-level section itself contains a single
       second-level section as its first non-comment element, that
       section's title is promoted to the document's subtitle, and
       that section's contents become the document's immediate
       contents. Given this input text::

           =================
            Top-Level Title
           =================

           Second-Level Title
           ~~~~~~~~~~~~~~~~~~

           A paragraph.

       After parsing and running the Section Promotion transform, the
       result is::

           <document name="top-level title">
               <title>
                   Top-Level Title
               <subtitle name="second-level title">
                   Second-Level Title
               <paragraph>
                   A paragraph.

       (Note that the implicit hyperlink target generated by the
       "Second-Level Title" is preserved on the "subtitle" element
       itself.)

    Any comment elements occurring before the document title or
    subtitle are accumulated and inserted as the first body elements
    after the title(s).
    """

    default_priority = 320

    def apply(self):
        if not getattr(self.document.settings, 'doctitle_xform', 1):
            return
        if self.promote_document_title():
            self.promote_document_subtitle()

    def promote_document_title(self):
        section, index = self.candidate_index()
        if index is None:
            return None
        document = self.document
        # Transfer the section's attributes to the document element (at root):
        document.attributes.update(section.attributes)
        document[:] = (section[:1]        # section title
                       + document[:index] # everything that was in the
                                          # document before the section
                       + section[1:])     # everything that was in the section
        return 1

    def promote_document_subtitle(self):
        subsection, index = self.candidate_index()
        if index is None:
            return None
        subtitle = nodes.subtitle()
        # Transfer the subsection's attributes to the new subtitle:
        subtitle.attributes.update(subsection.attributes)
        # Transfer the contents of the subsection's title to the subtitle:
        subtitle[:] = subsection[0][:]
        document = self.document
        document[:] = (document[:1]       # document title
                       + [subtitle]
                       # everything that was before the section:
                       + document[1:index]
                       # everything that was in the subsection:
                       + subsection[1:])
        return 1

    def candidate_index(self):
        """
        Find and return the promotion candidate and its index.

        Return (None, None) if no valid candidate was found.
        """
        document = self.document
        index = document.first_child_not_matching_class(
              nodes.PreBibliographic)
        if index is None or len(document) > (index + 1) or \
              not isinstance(document[index], nodes.section):
            return None, None
        else:
            return document[index], index


class DocInfo(Transform):

    """
    This transform is specific to the reStructuredText_ markup syntax;
    see "Bibliographic Fields" in the `reStructuredText Markup
    Specification`_ for a high-level description. This transform
    should be run *after* the `DocTitle` transform.

    Given a field list as the first non-comment element after the
    document title and subtitle (if present), registered bibliographic
    field names are transformed to the corresponding DTD elements,
    becoming child elements of the "docinfo" element (except for a
    dedication and/or an abstract, which become "topic" elements after
    "docinfo").

    For example, given this document fragment after parsing::

        <document>
            <title>
                Document Title
            <field_list>
                <field>
                    <field_name>
                        Author
                    <field_body>
                        <paragraph>
                            A. Name
                <field>
                    <field_name>
                        Status
                    <field_body>
                        <paragraph>
                            $RCSfile: frontmatter.py,v $
            ...

    After running the bibliographic field list transform, the
    resulting document tree would look like this::

        <document>
            <title>
                Document Title
            <docinfo>
                <author>
                    A. Name
                <status>
                    frontmatter.py
            ...

    The "Status" field contained an expanded RCS keyword, which is
    normally (but optionally) cleaned up by the transform. The sole
    contents of the field body must be a paragraph containing an
    expanded RCS keyword of the form "$keyword: expansion text $". Any
    RCS keyword can be processed in any bibliographic field. The
    dollar signs and leading RCS keyword name are removed. Extra
    processing is done for the following RCS keywords:

    - "RCSfile" expands to the name of the file in the RCS or CVS
      repository, which is the name of the source file with a ",v"
      suffix appended. The transform will remove the ",v" suffix.

    - "Date" expands to the format "YYYY/MM/DD hh:mm:ss" (in the UTC
      time zone). The RCS Keywords transform will extract just the
      date itself and transform it to an ISO 8601 format date, as in
      "2000-12-31".

      (Since the source file for this text is itself stored under CVS,
      we can't show an example of the "Date" RCS keyword because we
      can't prevent any RCS keywords used in this explanation from
      being expanded. Only the "RCSfile" keyword is stable; its
      expansion text changes only if the file name changes.)
    """

    default_priority = 340

    biblio_nodes = {
          'author': nodes.author,
          'authors': nodes.authors,
          'organization': nodes.organization,
          'address': nodes.address,
          'contact': nodes.contact,
          'version': nodes.version,
          'revision': nodes.revision,
          'status': nodes.status,
          'date': nodes.date,
          'copyright': nodes.copyright,
          'dedication': nodes.topic,
          'abstract': nodes.topic}
    """Canonical field name (lowcased) to node class name mapping for
    bibliographic fields (field_list)."""

    def apply(self):
        if not getattr(self.document.settings, 'docinfo_xform', 1):
            return
        document = self.document
        index = document.first_child_not_matching_class(
              nodes.PreBibliographic)
        if index is None:
            return
        candidate = document[index]
        if isinstance(candidate, nodes.field_list):
            biblioindex = document.first_child_not_matching_class(
                  nodes.Titular)
            nodelist = self.extract_bibliographic(candidate)
            del document[index]         # untransformed field list (candidate)
            document[biblioindex:biblioindex] = nodelist
        return

    def extract_bibliographic(self, field_list):
        docinfo = nodes.docinfo()
        bibliofields = self.language.bibliographic_fields
        labels = self.language.labels
        topics = {'dedication': None, 'abstract': None}
        for field in field_list:
            try:
                name = field[0][0].astext()
                normedname = nodes.fully_normalize_name(name)
                if not (len(field) == 2 and bibliofields.has_key(normedname)
                        and self.check_empty_biblio_field(field, name)):
                    raise TransformError
                canonical = bibliofields[normedname]
                biblioclass = self.biblio_nodes[canonical]
                if issubclass(biblioclass, nodes.TextElement):
                    if not self.check_compound_biblio_field(field, name):
                        raise TransformError
                    utils.clean_rcs_keywords(
                          field[1][0], self.rcs_keyword_substitutions)
                    docinfo.append(biblioclass('', '', *field[1][0]))
                elif issubclass(biblioclass, nodes.authors):
                    self.extract_authors(field, name, docinfo)
                elif issubclass(biblioclass, nodes.topic):
                    if topics[canonical]:
                        field[-1] += self.document.reporter.warning(
                            'There can only be one "%s" field.' % name,
                            base_node=field)
                        raise TransformError
                    title = nodes.title(name, labels[canonical])
                    topics[canonical] = biblioclass(
                        '', title, CLASS=canonical, *field[1].children)
                else:
                    docinfo.append(biblioclass('', *field[1].children))
            except TransformError:
                if len(field[-1]) == 1 \
                       and isinstance(field[-1][0], nodes.paragraph):
                    utils.clean_rcs_keywords(
                        field[-1][0], self.rcs_keyword_substitutions)
                docinfo.append(field)
        nodelist = []
        if len(docinfo) != 0:
            nodelist.append(docinfo)
        for name in ('dedication', 'abstract'):
            if topics[name]:
                nodelist.append(topics[name])
        return nodelist

    def check_empty_biblio_field(self, field, name):
        if len(field[-1]) < 1:
            field[-1] += self.document.reporter.warning(
                  'Cannot extract empty bibliographic field "%s".' % name,
                  base_node=field)
            return None
        return 1

    def check_compound_biblio_field(self, field, name):
        if len(field[-1]) > 1:
            field[-1] += self.document.reporter.warning(
                  'Cannot extract compound bibliographic field "%s".' % name,
                  base_node=field)
            return None
        if not isinstance(field[-1][0], nodes.paragraph):
            field[-1] += self.document.reporter.warning(
                  'Cannot extract bibliographic field "%s" containing '
                  'anything other than a single paragraph.' % name,
                  base_node=field)
            return None
        return 1

    rcs_keyword_substitutions = [
          (re.compile(r'\$' r'Date: (\d\d\d\d)/(\d\d)/(\d\d) [\d:]+ \$$',
                      re.IGNORECASE), r'\1-\2-\3'),
          (re.compile(r'\$' r'RCSfile: (.+),v \$$', re.IGNORECASE), r'\1'),
          (re.compile(r'\$[a-zA-Z]+: (.+) \$$'), r'\1'),]

    def extract_authors(self, field, name, docinfo):
        try:
            if len(field[1]) == 1:
                if isinstance(field[1][0], nodes.paragraph):
                    authors = self.authors_from_one_paragraph(field)
                elif isinstance(field[1][0], nodes.bullet_list):
                    authors = self.authors_from_bullet_list(field)
                else:
                    raise TransformError
            else:
                authors = self.authors_from_paragraphs(field)
            authornodes = [nodes.author('', '', *author)
                           for author in authors if author]
            if len(authornodes) > 1:
                docinfo.append(nodes.authors('', *authornodes))
            elif len(authornodes) == 1:
                docinfo.append(authornodes[0])
            else:
                raise TransformError
        except TransformError:
            field[-1] += self.document.reporter.warning(
                  'Bibliographic field "%s" incompatible with extraction: '
                  'it must contain either a single paragraph (with authors '
                  'separated by one of "%s"), multiple paragraphs (one per '
                  'author), or a bullet list with one paragraph (one author) '
                  'per item.'
                  % (name, ''.join(self.language.author_separators)),
                  base_node=field)
            raise

    def authors_from_one_paragraph(self, field):
        text = field[1][0].astext().strip()
        if not text:
            raise TransformError
        for authorsep in self.language.author_separators:
            authornames = text.split(authorsep)
            if len(authornames) > 1:
                break
        authornames = [author.strip() for author in authornames]
        authors = [[nodes.Text(author)] for author in authornames if author]
        return authors

    def authors_from_bullet_list(self, field):
        authors = []
        for item in field[1][0]:
            if len(item) != 1 or not isinstance(item[0], nodes.paragraph):
                raise TransformError
            authors.append(item[0].children)
        if not authors:
            raise TransformError
        return authors

    def authors_from_paragraphs(self, field):
        for item in field[1]:
            if not isinstance(item, nodes.paragraph):
                raise TransformError
        authors = [item.children for item in field[1]]
        return authors