concrete.tex 114 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\chapter{Concrete Objects Layer \label{concrete}}


The functions in this chapter are specific to certain Python object
types.  Passing them an object of the wrong type is not a good idea;
if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first;
for example, to check that an object is a dictionary, use
\cfunction{PyDict_Check()}.  The chapter is structured like the
``family tree'' of Python object types.

\warning{While the functions described in this chapter carefully check
the type of the objects which are passed in, many of them do not check
for \NULL{} being passed instead of a valid object.  Allowing \NULL{}
to be passed in can cause memory access violations and immediate
termination of the interpreter.}


\section{Fundamental Objects \label{fundamental}}

21
This section describes Python type objects and the singleton object
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
\code{None}.


\subsection{Type Objects \label{typeObjects}}

\obindex{type}
\begin{ctypedesc}{PyTypeObject}
  The C structure of the objects used to describe built-in types.
\end{ctypedesc}

\begin{cvardesc}{PyObject*}{PyType_Type}
  This is the type object for type objects; it is the same object as
  \code{types.TypeType} in the Python layer.
  \withsubitem{(in module types)}{\ttindex{TypeType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o}
39 40 41 42 43 44 45 46 47 48
  Returns true if the object \var{o} is a type object, including
  instances of types derived from the standard type object.  Returns
  false in all other cases.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyType_CheckExact}{PyObject *o}
  Returns true if the object \var{o} is a type object, but not a
  subtype of the standard type object.  Returns false in all other
  cases.
  \versionadded{2.2}
49 50 51 52 53 54 55
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature}
  Returns true if the type object \var{o} sets the feature
  \var{feature}.  Type features are denoted by single bit flags.
\end{cfuncdesc}

56 57 58 59 60 61
\begin{cfuncdesc}{int}{PyType_IS_GC}{PyObject *o}
  Return true if the type object includes support for the cycle
  detector; this tests the type flag \constant{Py_TPFLAGS_HAVE_GC}.
  \versionadded{2.0}
\end{cfuncdesc}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
\begin{cfuncdesc}{int}{PyType_IsSubtype}{PyTypeObject *a, PyTypeObject *b}
  Returns true if \var{a} is a subtype of \var{b}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyType_GenericAlloc}{PyTypeObject *type,
                                                  int nitems}
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyType_GenericNew}{PyTypeObject *type,
                                            PyObject *args, PyObject *kwds}
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyType_Ready}{PyTypeObject *type}
78 79 80 81
  Finalize a type object.  This should be called on all type objects
  to finish their initialization.  This function is responsible for
  adding inherited slots from a type's base class.  Returns \code{0}
  on success, or returns \code{-1} and sets an exception on error.
82 83 84 85 86 87
  \versionadded{2.2}
\end{cfuncdesc}


\subsection{The None Object \label{noneObject}}

88
\obindex{None}
89 90 91 92 93 94 95
Note that the \ctype{PyTypeObject} for \code{None} is not directly
exposed in the Python/C API.  Since \code{None} is a singleton,
testing for object identity (using \samp{==} in C) is sufficient.
There is no \cfunction{PyNone_Check()} function for the same reason.

\begin{cvardesc}{PyObject*}{Py_None}
  The Python \code{None} object, denoting lack of value.  This object
96 97
  has no methods.  It needs to be treated just like any other object
  with respect to reference counts.
98 99
\end{cvardesc}

Brett Cannon's avatar
Brett Cannon committed
100
\begin{csimplemacrodesc}{Py_RETURN_NONE}
Fred Drake's avatar
Fred Drake committed
101
  Properly handles returning \cdata{Py_None} from within a C function.
Brett Cannon's avatar
Brett Cannon committed
102 103
\end{csimplemacrodesc}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

\section{Numeric Objects \label{numericObjects}}

\obindex{numeric}


\subsection{Plain Integer Objects \label{intObjects}}

\obindex{integer}
\begin{ctypedesc}{PyIntObject}
  This subtype of \ctype{PyObject} represents a Python integer
  object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyInt_Type}
119
  This instance of \ctype{PyTypeObject} represents the Python plain
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  integer type.  This is the same object as \code{types.IntType}.
  \withsubitem{(in modules types)}{\ttindex{IntType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyInt_Check}{PyObject* o}
  Returns true if \var{o} is of type \cdata{PyInt_Type} or a subtype
  of \cdata{PyInt_Type}.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyInt_CheckExact}{PyObject* o}
  Returns true if \var{o} is of type \cdata{PyInt_Type}, but not a
  subtype of \cdata{PyInt_Type}.
  \versionadded{2.2}
\end{cfuncdesc}

136 137 138 139
\begin{cfuncdesc}{PyObject*}{PyInt_FromString}{char *str, char **pend,
                                               int base}
  Return a new \ctype{PyIntObject} or \ctype{PyLongObject} based on the
  string value in \var{str}, which is interpreted according to the radix in
140
  \var{base}.  If \var{pend} is non-\NULL{}, \code{*\var{pend}} will point to
141 142 143 144 145 146 147 148 149 150 151 152 153 154
  the first character in \var{str} which follows the representation of the
  number.  If \var{base} is \code{0}, the radix will be determined based on
  the leading characters of \var{str}: if \var{str} starts with \code{'0x'}
  or \code{'0X'}, radix 16 will be used; if \var{str} starts with
  \code{'0'}, radix 8 will be used; otherwise radix 10 will be used.  If
  \var{base} is not \code{0}, it must be between \code{2} and \code{36},
  inclusive.  Leading spaces are ignored.  If there are no digits,
  \exception{ValueError} will be raised.  If the string represents a number
  too large to be contained within the machine's \ctype{long int} type and
  overflow warnings are being suppressed, a \ctype{PyLongObject} will be
  returned.  If overflow warnings are not being suppressed, \NULL{} will be
  returned in this case.
\end{cfuncdesc}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
  Creates a new integer object with a value of \var{ival}.

  The current implementation keeps an array of integer objects for all
  integers between \code{-1} and \code{100}, when you create an int in
  that range you actually just get back a reference to the existing
  object. So it should be possible to change the value of \code{1}.  I
  suspect the behaviour of Python in this case is undefined. :-)
\end{cfuncdesc}

\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
  Will first attempt to cast the object to a \ctype{PyIntObject}, if
  it is not already one, and then return its value.
\end{cfuncdesc}

\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io}
  Returns the value of the object \var{io}.  No error checking is
  performed.
\end{cfuncdesc}

175 176
\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongMask}{PyObject *io}
  Will first attempt to cast the object to a \ctype{PyIntObject} or
Fred Drake's avatar
Fred Drake committed
177
  \ctype{PyLongObject}, if it is not already one, and then return its
178 179 180 181 182 183
  value as unsigned long.  This function does not check for overflow.
  \versionadded{2.3}
\end{cfuncdesc}

\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongLongMask}{PyObject *io}
  Will first attempt to cast the object to a \ctype{PyIntObject} or
Fred Drake's avatar
Fred Drake committed
184
  \ctype{PyLongObject}, if it is not already one, and then return its
185 186 187 188
  value as unsigned long long, without checking for overflow.
  \versionadded{2.3}
\end{cfuncdesc}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
\begin{cfuncdesc}{long}{PyInt_GetMax}{}
  Returns the system's idea of the largest integer it can handle
  (\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system
  header files).
\end{cfuncdesc}


\subsection{Long Integer Objects \label{longObjects}}

\obindex{long integer}
\begin{ctypedesc}{PyLongObject}
  This subtype of \ctype{PyObject} represents a Python long integer
  object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyLong_Type}
  This instance of \ctype{PyTypeObject} represents the Python long
  integer type.  This is the same object as \code{types.LongType}.
  \withsubitem{(in modules types)}{\ttindex{LongType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
  Returns true if its argument is a \ctype{PyLongObject} or a subtype
  of \ctype{PyLongObject}.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyLong_CheckExact}{PyObject *p}
  Returns true if its argument is a \ctype{PyLongObject}, but not a
  subtype of \ctype{PyLongObject}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
  Returns a new \ctype{PyLongObject} object from \var{v}, or \NULL{}
  on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
  Returns a new \ctype{PyLongObject} object from a C \ctype{unsigned
  long}, or \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromLongLong}{long long v}
  Returns a new \ctype{PyLongObject} object from a C \ctype{long long},
  or \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLongLong}{unsigned long long v}
  Returns a new \ctype{PyLongObject} object from a C \ctype{unsigned
  long long}, or \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
  Returns a new \ctype{PyLongObject} object from the integer part of
  \var{v}, or \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
                                                int base}
  Return a new \ctype{PyLongObject} based on the string value in
  \var{str}, which is interpreted according to the radix in
251
  \var{base}.  If \var{pend} is non-\NULL{}, \code{*\var{pend}} will
252 253
  point to the first character in \var{str} which follows the
  representation of the number.  If \var{base} is \code{0}, the radix
254
  will be determined based on the leading characters of \var{str}: if
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  \var{str} starts with \code{'0x'} or \code{'0X'}, radix 16 will be
  used; if \var{str} starts with \code{'0'}, radix 8 will be used;
  otherwise radix 10 will be used.  If \var{base} is not \code{0}, it
  must be between \code{2} and \code{36}, inclusive.  Leading spaces
  are ignored.  If there are no digits, \exception{ValueError} will be
  raised.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromUnicode}{Py_UNICODE *u,
                                                 int length, int base}
  Convert a sequence of Unicode digits to a Python long integer
  value.  The first parameter, \var{u}, points to the first character
  of the Unicode string, \var{length} gives the number of characters,
  and \var{base} is the radix for the conversion.  The radix must be
  in the range [2, 36]; if it is out of range, \exception{ValueError}
  will be raised.
  \versionadded{1.6}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyLong_FromVoidPtr}{void *p}
  Create a Python integer or long integer from the pointer \var{p}.
  The pointer value can be retrieved from the resulting value using
  \cfunction{PyLong_AsVoidPtr()}.
  \versionadded{1.5.2}
\end{cfuncdesc}

\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
  Returns a C \ctype{long} representation of the contents of
  \var{pylong}.  If \var{pylong} is greater than
  \constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError}
  is raised.
  \withsubitem{(built-in exception)}{\ttindex{OverflowError}}
\end{cfuncdesc}

\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
  Returns a C \ctype{unsigned long} representation of the contents of
  \var{pylong}.  If \var{pylong} is greater than
  \constant{ULONG_MAX}\ttindex{ULONG_MAX}, an
  \exception{OverflowError} is raised.
294
  \withsubitem{(built-in exception)}{\ttindex{OverflowError}}
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
\end{cfuncdesc}

\begin{cfuncdesc}{long long}{PyLong_AsLongLong}{PyObject *pylong}
  Return a C \ctype{long long} from a Python long integer.  If
  \var{pylong} cannot be represented as a \ctype{long long}, an
  \exception{OverflowError} will be raised.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{unsigned long long}{PyLong_AsUnsignedLongLong}{PyObject
                                                                 *pylong}
  Return a C \ctype{unsigned long long} from a Python long integer.
  If \var{pylong} cannot be represented as an \ctype{unsigned long
  long}, an \exception{OverflowError} will be raised if the value is
  positive, or a \exception{TypeError} will be raised if the value is
  negative.
  \versionadded{2.2}
\end{cfuncdesc}

314 315 316 317 318 319 320 321 322 323 324 325
\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongMask}{PyObject *io}
  Return a C \ctype{unsigned long} from a Python long integer, without
  checking for overflow.
  \versionadded{2.3}
\end{cfuncdesc}

\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongLongMask}{PyObject *io}
  Return a C \ctype{unsigned long long} from a Python long integer, without
  checking for overflow.
  \versionadded{2.3}
\end{cfuncdesc}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
  Returns a C \ctype{double} representation of the contents of
  \var{pylong}.  If \var{pylong} cannot be approximately represented
  as a \ctype{double}, an \exception{OverflowError} exception is
  raised and \code{-1.0} will be returned.
\end{cfuncdesc}

\begin{cfuncdesc}{void*}{PyLong_AsVoidPtr}{PyObject *pylong}
  Convert a Python integer or long integer \var{pylong} to a C
  \ctype{void} pointer.  If \var{pylong} cannot be converted, an
  \exception{OverflowError} will be raised.  This is only assured to
  produce a usable \ctype{void} pointer for values created with
  \cfunction{PyLong_FromVoidPtr()}.
  \versionadded{1.5.2}
\end{cfuncdesc}


\subsection{Floating Point Objects \label{floatObjects}}

\obindex{floating point}
\begin{ctypedesc}{PyFloatObject}
  This subtype of \ctype{PyObject} represents a Python floating point
  object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
  This instance of \ctype{PyTypeObject} represents the Python floating
  point type.  This is the same object as \code{types.FloatType}.
  \withsubitem{(in modules types)}{\ttindex{FloatType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
  Returns true if its argument is a \ctype{PyFloatObject} or a subtype
  of \ctype{PyFloatObject}.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyFloat_CheckExact}{PyObject *p}
  Returns true if its argument is a \ctype{PyFloatObject}, but not a
  subtype of \ctype{PyFloatObject}.
  \versionadded{2.2}
\end{cfuncdesc}

369
\begin{cfuncdesc}{PyObject*}{PyFloat_FromString}{PyObject *str, char **pend}
370
  Creates a \ctype{PyFloatObject} object based on the string value in
371 372
  \var{str}, or \NULL{} on failure.  The \var{pend} argument is ignored.  It
  remains only for backward compatibility.
373 374
\end{cfuncdesc}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
  Creates a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on
  failure.
\end{cfuncdesc}

\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
  Returns a C \ctype{double} representation of the contents of
  \var{pyfloat}.
\end{cfuncdesc}

\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
  Returns a C \ctype{double} representation of the contents of
  \var{pyfloat}, but without error checking.
\end{cfuncdesc}


\subsection{Complex Number Objects \label{complexObjects}}

\obindex{complex number}
Python's complex number objects are implemented as two distinct types
when viewed from the C API:  one is the Python object exposed to
Python programs, and the other is a C structure which represents the
actual complex number value.  The API provides functions for working
with both.

\subsubsection{Complex Numbers as C Structures}

Note that the functions which accept these structures as parameters
and return them as results do so \emph{by value} rather than
dereferencing them through pointers.  This is consistent throughout
the API.

\begin{ctypedesc}{Py_complex}
  The C structure which corresponds to the value portion of a Python
  complex number object.  Most of the functions for dealing with
  complex number objects use structures of this type as input or
  output values, as appropriate.  It is defined as:

\begin{verbatim}
typedef struct {
   double real;
   double imag;
} Py_complex;
\end{verbatim}
\end{ctypedesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
  Return the sum of two complex numbers, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
  Return the difference between two complex numbers, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
  Return the negation of the complex number \var{complex}, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
  Return the product of two complex numbers, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
                                          Py_complex divisor}
  Return the quotient of two complex numbers, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
  Return the exponentiation of \var{num} by \var{exp}, using the C
  \ctype{Py_complex} representation.
\end{cfuncdesc}


\subsubsection{Complex Numbers as Python Objects}

\begin{ctypedesc}{PyComplexObject}
  This subtype of \ctype{PyObject} represents a Python complex number
  object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
  This instance of \ctype{PyTypeObject} represents the Python complex
  number type.
\end{cvardesc}

\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
  Returns true if its argument is a \ctype{PyComplexObject} or a
  subtype of \ctype{PyComplexObject}.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyComplex_CheckExact}{PyObject *p}
  Returns true if its argument is a \ctype{PyComplexObject}, but not a
  subtype of \ctype{PyComplexObject}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
  Create a new Python complex number object from a C
  \ctype{Py_complex} value.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
  Returns a new \ctype{PyComplexObject} object from \var{real} and
  \var{imag}.
\end{cfuncdesc}

\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
  Returns the real part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}

\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
  Returns the imaginary part of \var{op} as a C \ctype{double}.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
  Returns the \ctype{Py_complex} value of the complex number
  \var{op}.
\end{cfuncdesc}



\section{Sequence Objects \label{sequenceObjects}}

\obindex{sequence}
505 506
Generic operations on sequence objects were discussed in the previous
chapter; this section deals with the specific kinds of sequence
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
objects that are intrinsic to the Python language.


\subsection{String Objects \label{stringObjects}}

These functions raise \exception{TypeError} when expecting a string
parameter and are called with a non-string parameter.

\obindex{string}
\begin{ctypedesc}{PyStringObject}
  This subtype of \ctype{PyObject} represents a Python string object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyString_Type}
  This instance of \ctype{PyTypeObject} represents the Python string
  type; it is the same object as \code{types.TypeType} in the Python
  layer.
  \withsubitem{(in module types)}{\ttindex{StringType}}.
\end{cvardesc}

\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
  Returns true if the object \var{o} is a string object or an instance
  of a subtype of the string type.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyString_CheckExact}{PyObject *o}
  Returns true if the object \var{o} is a string object, but not an
  instance of a subtype of the string type.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
  Returns a new string object with the value \var{v} on success, and
541
  \NULL{} on failure.  The parameter \var{v} must not be \NULL{}; it
542
  will not be checked.
543 544 545 546 547 548
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
                                                         int len}
  Returns a new string object with the value \var{v} and length
  \var{len} on success, and \NULL{} on failure.  If \var{v} is
549
  \NULL{}, the contents of the string are uninitialized.
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_FromFormat}{const char *format, ...}
  Takes a C \cfunction{printf()}-style \var{format} string and a
  variable number of arguments, calculates the size of the resulting
  Python string and returns a string with the values formatted into
  it.  The variable arguments must be C types and must correspond
  exactly to the format characters in the \var{format} string.  The
  following format characters are allowed:

  \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
    \lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
    \lineiii{\%c}{int}{A single character, represented as an C int.}
    \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
    \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
    \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
    \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
    \lineiii{\%s}{char*}{A null-terminated C character array.}
    \lineiii{\%p}{void*}{The hex representation of a C pointer.
	Mostly equivalent to \code{printf("\%p")} except that it is
	guaranteed to start with the literal \code{0x} regardless of
	what the platform's \code{printf} yields.}
  \end{tableiii}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_FromFormatV}{const char *format,
                                                   va_list vargs}
  Identical to \function{PyString_FromFormat()} except that it takes
  exactly two arguments.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyString_Size}{PyObject *string}
  Returns the length of the string in string object \var{string}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyString_GET_SIZE}{PyObject *string}
  Macro form of \cfunction{PyString_Size()} but without error
  checking.
\end{cfuncdesc}

\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
591
  Returns a NUL-terminated representation of the contents of
592 593 594 595
  \var{string}.  The pointer refers to the internal buffer of
  \var{string}, not a copy.  The data must not be modified in any way,
  unless the string was just created using
  \code{PyString_FromStringAndSize(NULL, \var{size})}.
596 597 598 599 600
  It must not be deallocated.  If \var{string} is a Unicode object,
  this function computes the default encoding of \var{string} and
  operates on that.  If \var{string} is not a string object at all,
  \cfunction{PyString_AsString()} returns \NULL{} and raises
  \exception{TypeError}.
601 602 603 604
\end{cfuncdesc}

\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
  Macro form of \cfunction{PyString_AsString()} but without error
605 606
  checking.  Only string objects are supported; no Unicode objects
  should be passed.
607 608 609 610 611
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj,
                                                 char **buffer,
                                                 int *length}
612
  Returns a NUL-terminated representation of the contents of the
613 614 615 616 617
  object \var{obj} through the output variables \var{buffer} and
  \var{length}.

  The function accepts both string and Unicode objects as input. For
  Unicode objects it returns the default encoded version of the
618
  object.  If \var{length} is \NULL{}, the resulting buffer may not
619 620
  contain NUL characters; if it does, the function returns \code{-1}
  and a \exception{TypeError} is raised.
621 622 623 624

  The buffer refers to an internal string buffer of \var{obj}, not a
  copy. The data must not be modified in any way, unless the string
  was just created using \code{PyString_FromStringAndSize(NULL,
625 626 627 628 629
  \var{size})}.  It must not be deallocated.  If \var{string} is a
  Unicode object, this function computes the default encoding of
  \var{string} and operates on that.  If \var{string} is not a string
  object at all, \cfunction{PyString_AsString()} returns \NULL{} and
  raises \exception{TypeError}.
630 631 632 633 634 635 636 637 638
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
                                         PyObject *newpart}
  Creates a new string object in \var{*string} containing the contents
  of \var{newpart} appended to \var{string}; the caller will own the
  new reference.  The reference to the old value of \var{string} will
  be stolen.  If the new string cannot be created, the old reference
  to \var{string} will still be discarded and the value of
639
  \var{*string} will be set to \NULL{}; the appropriate exception will
640 641 642 643 644 645 646 647 648 649 650 651 652
  be set.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
                                               PyObject *newpart}
  Creates a new string object in \var{*string} containing the contents
  of \var{newpart} appended to \var{string}.  This version decrements
  the reference count of \var{newpart}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, int newsize}
  A way to resize a string object even though it is ``immutable''.
  Only use this to build up a brand new string object; don't use this
653 654 655 656 657
  if the string may already be known in other parts of the code.  It
  is an error to call this function if the refcount on the input string
  object is not one.
  Pass the address of an existing string object as an lvalue (it may
  be written into), and the new size desired.  On success, \var{*string}
658
  holds the resized string object and \code{0} is returned; the address in
659 660 661
  \var{*string} may differ from its input value.  If the
  reallocation fails, the original string object at \var{*string} is
  deallocated, \var{*string} is set to \NULL{}, a memory exception is set,
662
  and \code{-1} is returned.
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
                                              PyObject *args}
  Returns a new string object from \var{format} and \var{args}.
  Analogous to \code{\var{format} \%\ \var{args}}.  The \var{args}
  argument must be a tuple.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
  Intern the argument \var{*string} in place.  The argument must be
  the address of a pointer variable pointing to a Python string
  object.  If there is an existing interned string that is the same as
  \var{*string}, it sets \var{*string} to it (decrementing the
  reference count of the old string object and incrementing the
  reference count of the interned string object), otherwise it leaves
  \var{*string} alone and interns it (incrementing its reference
  count).  (Clarification: even though there is a lot of talk about
  reference counts, think of this function as reference-count-neutral;
  you own the object after the call if and only if you owned it before
  the call.)
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
  A combination of \cfunction{PyString_FromString()} and
  \cfunction{PyString_InternInPlace()}, returning either a new string
  object that has been interned, or a new (``owned'') reference to an
  earlier interned string object with the same value.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s,
                                               int size,
                                               const char *encoding,
                                               const char *errors}
  Creates an object by decoding \var{size} bytes of the encoded
  buffer \var{s} using the codec registered for
  \var{encoding}.  \var{encoding} and \var{errors} have the same
  meaning as the parameters of the same name in the
  \function{unicode()} built-in function.  The codec to be used is
  looked up using the Python codec registry.  Returns \NULL{} if
  an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_AsDecodedObject}{PyObject *str,
                                               const char *encoding,
                                               const char *errors}
  Decodes a string object by passing it to the codec registered for
  \var{encoding} and returns the result as Python
  object. \var{encoding} and \var{errors} have the same meaning as the
  parameters of the same name in the string \method{encode()} method.
  The codec to be used is looked up using the Python codec registry.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const char *s,
                                               int size,
                                               const char *encoding,
                                               const char *errors}
  Encodes the \ctype{char} buffer of the given size by passing it to
  the codec registered for \var{encoding} and returns a Python object.
  \var{encoding} and \var{errors} have the same meaning as the
  parameters of the same name in the string \method{encode()} method.
  The codec to be used is looked up using the Python codec
  registry.  Returns \NULL{} if an exception was raised by the
  codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedObject}{PyObject *str,
                                               const char *encoding,
                                               const char *errors}
  Encodes a string object using the codec registered for
  \var{encoding} and returns the result as Python object.
  \var{encoding} and \var{errors} have the same meaning as the
  parameters of the same name in the string \method{encode()} method.
  The codec to be used is looked up using the Python codec registry.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}


\subsection{Unicode Objects \label{unicodeObjects}}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}

%--- Unicode Type -------------------------------------------------------

These are the basic Unicode object types used for the Unicode
implementation in Python:

\begin{ctypedesc}{Py_UNICODE}
  This type represents a 16-bit unsigned storage type which is used by
  Python internally as basis for holding Unicode ordinals.  On
  platforms where \ctype{wchar_t} is available and also has 16-bits,
  \ctype{Py_UNICODE} is a typedef alias for \ctype{wchar_t} to enhance
  native platform compatibility.  On all other platforms,
  \ctype{Py_UNICODE} is a typedef alias for \ctype{unsigned short}.
\end{ctypedesc}

\begin{ctypedesc}{PyUnicodeObject}
  This subtype of \ctype{PyObject} represents a Python Unicode object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyUnicode_Type}
  This instance of \ctype{PyTypeObject} represents the Python Unicode
  type.
\end{cvardesc}

The following APIs are really C macros and can be used to do fast
checks and to access internal read-only data of Unicode objects:

\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o}
  Returns true if the object \var{o} is a Unicode object or an
  instance of a Unicode subtype.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_CheckExact}{PyObject *o}
  Returns true if the object \var{o} is a Unicode object, but not an
  instance of a subtype.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_GET_SIZE}{PyObject *o}
  Returns the size of the object.  \var{o} has to be a
  \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_GET_DATA_SIZE}{PyObject *o}
  Returns the size of the object's internal buffer in bytes.  \var{o}
  has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}

\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o}
  Returns a pointer to the internal \ctype{Py_UNICODE} buffer of the
  object.  \var{o} has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}

\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o}
  Returns a pointer to the internal buffer of the object.
  \var{o} has to be a \ctype{PyUnicodeObject} (not checked).
\end{cfuncdesc}

% --- Unicode character properties ---------------------------------------

Unicode provides many different character properties. The most often
needed ones are available through these macros which are mapped to C
functions depending on the Python configuration.

\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a whitespace
  character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a lowercase character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is an uppercase
  character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a titlecase character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a linebreak character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a decimal character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a digit character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a numeric character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is an alphabetic
  character.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is an alphanumeric
  character.
\end{cfuncdesc}

853 854 855 856 857
\begin{cfuncdesc}{int}{Py_UNICODE_ISWIDE}{Py_UNICODE ch}
  Returns 1/0 depending on whether \var{ch} is a wide or full-width
  character.
\end{cfuncdesc}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
These APIs can be used for fast direct character conversions:

\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch}
  Returns the character \var{ch} converted to lower case.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch}
  Returns the character \var{ch} converted to upper case.
\end{cfuncdesc}

\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch}
  Returns the character \var{ch} converted to title case.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch}
  Returns the character \var{ch} converted to a decimal positive
  integer.  Returns \code{-1} if this is not possible.  Does not raise
  exceptions.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch}
  Returns the character \var{ch} converted to a single digit integer.
  Returns \code{-1} if this is not possible.  Does not raise
  exceptions.
\end{cfuncdesc}

\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch}
  Returns the character \var{ch} converted to a (positive) double.
  Returns \code{-1.0} if this is not possible.  Does not raise
  exceptions.
\end{cfuncdesc}

% --- Plain Py_UNICODE ---------------------------------------------------

To create Unicode objects and access their basic sequence properties,
use these APIs:

\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u,
896
                                                    int size}
897 898 899 900
  Create a Unicode Object from the Py_UNICODE buffer \var{u} of the
  given size. \var{u} may be \NULL{} which causes the contents to be
  undefined. It is the user's responsibility to fill in the needed
  data.  The buffer is copied into the new object. If the buffer is
901
  not \NULL{}, the return value might be a shared object. Therefore,
902
  modification of the resulting Unicode object is only allowed when
903
  \var{u} is \NULL{}.
904 905 906 907 908 909 910 911 912 913 914 915
\end{cfuncdesc}

\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode}
  Return a read-only pointer to the Unicode object's internal
  \ctype{Py_UNICODE} buffer, \NULL{} if \var{unicode} is not a Unicode
  object.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_GetSize}{PyObject *unicode}
  Return the length of the Unicode object.
\end{cfuncdesc}

916 917 918 919
\begin{cfuncdesc}{int}{PyUnicode_GetWidth}{PyObject *unicode}
  Return the fixed-width representation length of the Unicode object.
\end{cfuncdesc}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj,
                                                      const char *encoding,
                                                      const char *errors}
  Coerce an encoded object \var{obj} to an Unicode object and return a
  reference with incremented refcount.

  Coercion is done in the following way:

\begin{enumerate}
\item  Unicode objects are passed back as-is with incremented
       refcount. \note{These cannot be decoded; passing a non-\NULL{}
       value for encoding will result in a \exception{TypeError}.}

\item String and other char buffer compatible objects are decoded
      according to the given encoding and using the error handling
      defined by errors.  Both can be \NULL{} to have the interface
      use the default values (see the next section for details).

\item All other objects cause an exception.
\end{enumerate}

  The API returns \NULL{} if there was an error.  The caller is
  responsible for decref'ing the returned objects.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj}
  Shortcut for \code{PyUnicode_FromEncodedObject(obj, NULL, "strict")}
  which is used throughout the interpreter whenever coercion to
  Unicode is needed.
\end{cfuncdesc}

% --- wchar_t support for platforms which support it ---------------------

If the platform supports \ctype{wchar_t} and provides a header file
wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python's own
\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}.

\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w,
                                                     int size}
960
  Create a Unicode object from the \ctype{wchar_t} buffer \var{w} of
961 962 963 964 965 966
  the given size.  Returns \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode,
                                             wchar_t *w,
                                             int size}
967 968 969
  Copies the Unicode object contents into the \ctype{wchar_t} buffer
  \var{w}.  At most \var{size} \ctype{wchar_t} characters are copied.
  Returns the number of \ctype{wchar_t} characters copied or -1 in
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  case of an error.
\end{cfuncdesc}


\subsubsection{Built-in Codecs \label{builtinCodecs}}

Python provides a set of builtin codecs which are written in C
for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and
errors. These parameters encoding and errors have the same semantics
as the ones of the builtin unicode() Unicode object constructor.

Setting encoding to \NULL{} causes the default encoding to be used
which is \ASCII.  The file system calls should use
\cdata{Py_FileSystemDefaultEncoding} as the encoding for file
names. This variable should be treated as read-only: On some systems,
it will be a pointer to a static string, on others, it will change at
989
run-time (such as when the application invokes setlocale).
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

Error handling is set by errors which may also be set to \NULL{}
meaning to use the default handling defined for the codec.  Default
error handling for all builtin codecs is ``strict''
(\exception{ValueError} is raised).

The codecs all use a similar interface.  Only deviation from the
following generic ones are documented for simplicity.

% --- Generic Codecs -----------------------------------------------------

These are the generic codec APIs:

\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s,
                                               int size,
                                               const char *encoding,
                                               const char *errors}
  Create a Unicode object by decoding \var{size} bytes of the encoded
  string \var{s}.  \var{encoding} and \var{errors} have the same
  meaning as the parameters of the same name in the
  \function{unicode()} builtin function.  The codec to be used is
  looked up using the Python codec registry.  Returns \NULL{} if an
  exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s,
                                               int size,
                                               const char *encoding,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size and returns
  a Python string object.  \var{encoding} and \var{errors} have the
  same meaning as the parameters of the same name in the Unicode
  \method{encode()} method.  The codec to be used is looked up using
  the Python codec registry.  Returns \NULL{} if an exception was
  raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode,
                                               const char *encoding,
                                               const char *errors}
  Encodes a Unicode object and returns the result as Python string
  object. \var{encoding} and \var{errors} have the same meaning as the
  parameters of the same name in the Unicode \method{encode()} method.
  The codec to be used is looked up using the Python codec registry.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

% --- UTF-8 Codecs -------------------------------------------------------

These are the UTF-8 codec APIs:

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s,
                                               int size,
                                               const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the UTF-8
  encoded string \var{s}. Returns \NULL{} if an exception was raised
  by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s,
                                               int size,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using UTF-8
  and returns a Python string object.  Returns \NULL{} if an exception
  was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode}
  Encodes a Unicode objects using UTF-8 and returns the result as
  Python string object.  Error handling is ``strict''.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

% --- UTF-16 Codecs ------------------------------------------------------ */

These are the UTF-16 codec APIs:

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s,
                                               int size,
                                               const char *errors,
                                               int *byteorder}
  Decodes \var{length} bytes from a UTF-16 encoded buffer string and
  returns the corresponding Unicode object.  \var{errors} (if
1073
  non-\NULL{}) defines the error handling. It defaults to ``strict''.
1074

1075
  If \var{byteorder} is non-\NULL{}, the decoder starts decoding using
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  the given byte order:

\begin{verbatim}
   *byteorder == -1: little endian
   *byteorder == 0:  native order
   *byteorder == 1:  big endian
\end{verbatim}

  and then switches according to all byte order marks (BOM) it finds
  in the input data.  BOMs are not copied into the resulting Unicode
  string.  After completion, \var{*byteorder} is set to the current
  byte order at the end of input data.

1089
  If \var{byteorder} is \NULL{}, the codec starts in native order mode.
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s,
                                               int size,
                                               const char *errors,
                                               int byteorder}
  Returns a Python string object holding the UTF-16 encoded value of
  the Unicode data in \var{s}.  If \var{byteorder} is not \code{0},
  output is written according to the following byte order:

\begin{verbatim}
   byteorder == -1: little endian
   byteorder == 0:  native byte order (writes a BOM mark)
   byteorder == 1:  big endian
\end{verbatim}

  If byteorder is \code{0}, the output string will always start with
  the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark
  is prepended.

1112 1113 1114 1115
  If \var{Py_UNICODE_WIDE} is defined, a single \ctype{Py_UNICODE}
  value may get represented as a surrogate pair. If it is not
  defined, each \ctype{Py_UNICODE} values is interpreted as an
  UCS-2 character.
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode}
  Returns a Python string using the UTF-16 encoding in native byte
  order. The string always starts with a BOM mark.  Error handling is
  ``strict''.  Returns \NULL{} if an exception was raised by the
  codec.
\end{cfuncdesc}

% --- Unicode-Escape Codecs ----------------------------------------------

1129
These are the ``Unicode Escape'' codec APIs:
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s,
                                               int size,
                                               const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the
  Unicode-Escape encoded string \var{s}.  Returns \NULL{} if an
  exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s,
                                               int size,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using
  Unicode-Escape and returns a Python string object.  Returns \NULL{}
  if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode}
  Encodes a Unicode objects using Unicode-Escape and returns the
  result as Python string object.  Error handling is ``strict''.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

% --- Raw-Unicode-Escape Codecs ------------------------------------------

1155
These are the ``Raw Unicode Escape'' codec APIs:
1156 1157 1158 1159 1160

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s,
                                               int size,
                                               const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the
1161
  Raw-Unicode-Escape encoded string \var{s}.  Returns \NULL{} if an
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s,
                                               int size,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using
  Raw-Unicode-Escape and returns a Python string object.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode}
  Encodes a Unicode objects using Raw-Unicode-Escape and returns the
  result as Python string object. Error handling is ``strict''.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

1179
% --- Latin-1 Codecs -----------------------------------------------------
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

These are the Latin-1 codec APIs:
Latin-1 corresponds to the first 256 Unicode ordinals and only these
are accepted by the codecs during encoding.

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s,
                                                     int size,
                                                     const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the Latin-1
  encoded string \var{s}.  Returns \NULL{} if an exception was raised
  by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s,
                                                     int size,
                                                     const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using
  Latin-1 and returns a Python string object.  Returns \NULL{} if an
  exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode}
  Encodes a Unicode objects using Latin-1 and returns the result as
  Python string object.  Error handling is ``strict''.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

1207
% --- ASCII Codecs -------------------------------------------------------
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

These are the \ASCII{} codec APIs.  Only 7-bit \ASCII{} data is
accepted. All other codes generate errors.

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s,
                                                    int size,
                                                    const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the
  \ASCII{} encoded string \var{s}.  Returns \NULL{} if an exception
  was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s,
                                                    int size,
                                                    const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using
  \ASCII{} and returns a Python string object.  Returns \NULL{} if an
  exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode}
  Encodes a Unicode objects using \ASCII{} and returns the result as
  Python string object.  Error handling is ``strict''.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

1234
% --- Character Map Codecs -----------------------------------------------
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

These are the mapping codec APIs:

This codec is special in that it can be used to implement many
different codecs (and this is in fact what was done to obtain most of
the standard codecs included in the \module{encodings} package). The
codec uses mapping to encode and decode characters.

Decoding mappings must map single string characters to single Unicode
characters, integers (which are then interpreted as Unicode ordinals)
1245
or None (meaning "undefined mapping" and causing an error).
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

Encoding mappings must map single Unicode characters to single string
characters, integers (which are then interpreted as Latin-1 ordinals)
or None (meaning "undefined mapping" and causing an error).

The mapping objects provided must only support the __getitem__ mapping
interface.

If a character lookup fails with a LookupError, the character is
copied as-is meaning that its ordinal value will be interpreted as
Unicode or Latin-1 ordinal resp. Because of this, mappings only need
to contain those mappings which map characters to different code
points.

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s,
                                               int size,
                                               PyObject *mapping,
                                               const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the encoded
  string \var{s} using the given \var{mapping} object.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s,
                                               int size,
                                               PyObject *mapping,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using the
  given \var{mapping} object and returns a Python string object.
  Returns \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode,
                                                        PyObject *mapping}
  Encodes a Unicode objects using the given \var{mapping} object and
  returns the result as Python string object.  Error handling is
  ``strict''.  Returns \NULL{} if an exception was raised by the
  codec.
\end{cfuncdesc}

The following codec API is special in that maps Unicode to Unicode.

\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s,
                                               int size,
                                               PyObject *table,
                                               const char *errors}
  Translates a \ctype{Py_UNICODE} buffer of the given length by
  applying a character mapping \var{table} to it and returns the
  resulting Unicode object.  Returns \NULL{} when an exception was
  raised by the codec.

  The \var{mapping} table must map Unicode ordinal integers to Unicode
  ordinal integers or None (causing deletion of the character).

  Mapping tables need only provide the method{__getitem__()}
  interface; dictionaries and sequences work well.  Unmapped character
  ordinals (ones which cause a \exception{LookupError}) are left
  untouched and are copied as-is.
\end{cfuncdesc}

% --- MBCS codecs for Windows --------------------------------------------

These are the MBCS codec APIs. They are currently only available on
Windows and use the Win32 MBCS converters to implement the
conversions.  Note that MBCS (or DBCS) is a class of encodings, not
just one.  The target encoding is defined by the user settings on the
machine running the codec.

\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s,
                                               int size,
                                               const char *errors}
  Creates a Unicode object by decoding \var{size} bytes of the MBCS
  encoded string \var{s}.  Returns \NULL{} if an exception was
  raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s,
                                               int size,
                                               const char *errors}
  Encodes the \ctype{Py_UNICODE} buffer of the given size using MBCS
  and returns a Python string object.  Returns \NULL{} if an exception
  was raised by the codec.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode}
  Encodes a Unicode objects using MBCS and returns the result as
  Python string object.  Error handling is ``strict''.  Returns
  \NULL{} if an exception was raised by the codec.
\end{cfuncdesc}

% --- Methods & Slots ----------------------------------------------------

\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}}

The following APIs are capable of handling Unicode objects and strings
on input (we refer to them as strings in the descriptions) and return
1342
Unicode objects or integers as appropriate.
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

They all return \NULL{} or \code{-1} if an exception occurs.

\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left,
                                               PyObject *right}
  Concat two strings giving a new Unicode string.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s,
                                              PyObject *sep,
                                              int maxsplit}
1354
  Split a string giving a list of Unicode strings.  If sep is \NULL{},
1355 1356 1357 1358 1359 1360 1361
  splitting will be done at all whitespace substrings.  Otherwise,
  splits occur at the given separator.  At most \var{maxsplit} splits
  will be done.  If negative, no limit is set.  Separators are not
  included in the resulting list.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s,
1362
                                                   int keepend}
1363
  Split a Unicode string at line breaks, returning a list of Unicode
1364 1365 1366
  strings.  CRLF is considered to be one line break.  If \var{keepend}
  is 0, the Line break characters are not included in the resulting
  strings.
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str,
                                                  PyObject *table,
                                                  const char *errors}
  Translate a string by applying a character mapping table to it and
  return the resulting Unicode object.

  The mapping table must map Unicode ordinal integers to Unicode
  ordinal integers or None (causing deletion of the character).

  Mapping tables need only provide the \method{__getitem__()}
  interface; dictionaries and sequences work well.  Unmapped character
  ordinals (ones which cause a \exception{LookupError}) are left
  untouched and are copied as-is.

  \var{errors} has the usual meaning for codecs. It may be \NULL{}
  which indicates to use the default error handling.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator,
                                             PyObject *seq}
  Join a sequence of strings using the given separator and return the
  resulting Unicode string.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Tailmatch}{PyObject *str,
                                                  PyObject *substr,
                                                  int start,
                                                  int end,
                                                  int direction}
  Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at
  the given tail end (\var{direction} == -1 means to do a prefix
  match, \var{direction} == 1 a suffix match), 0 otherwise.
\end{cfuncdesc}

1403 1404 1405 1406 1407
\begin{cfuncdesc}{int}{PyUnicode_Find}{PyObject *str,
                                       PyObject *substr,
                                       int start,
                                       int end,
                                       int direction}
1408 1409 1410
  Return the first position of \var{substr} in
  \var{str}[\var{start}:\var{end}] using the given \var{direction}
  (\var{direction} == 1 means to do a forward search,
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
  \var{direction} == -1 a backward search).  The return value is the
  index of the first match; a value of \code{-1} indicates that no
  match was found, and \code{-2} indicates that an error occurred and
  an exception has been set.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_Count}{PyObject *str,
                                        PyObject *substr,
                                        int start,
                                        int end}
  Return the number of non-overlapping occurrences of \var{substr} in
  \code{\var{str}[\var{start}:\var{end}]}.  Returns \code{-1} if an
  error occurred.
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str,
                                                PyObject *substr,
                                                PyObject *replstr,
                                                int maxcount}
  Replace at most \var{maxcount} occurrences of \var{substr} in
  \var{str} with \var{replstr} and return the resulting Unicode object.
  \var{maxcount} == -1 means replace all occurrences.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right}
  Compare two strings and return -1, 0, 1 for less than, equal, and
  greater than, respectively.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format,
                                              PyObject *args}
  Returns a new string object from \var{format} and \var{args}; this
  is analogous to \code{\var{format} \%\ \var{args}}.  The
  \var{args} argument must be a tuple.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container,
                                           PyObject *element}
  Checks whether \var{element} is contained in \var{container} and
  returns true or false accordingly.

  \var{element} has to coerce to a one element Unicode
  string. \code{-1} is returned if there was an error.
\end{cfuncdesc}


\subsection{Buffer Objects \label{bufferObjects}}
\sectionauthor{Greg Stein}{gstein@lyra.org}

\obindex{buffer}
Python objects implemented in C can export a group of functions called
the ``buffer\index{buffer interface} interface.''  These functions can
be used by an object to expose its data in a raw, byte-oriented
format. Clients of the object can use the buffer interface to access
the object data directly, without needing to copy it first.

1467 1468
Two examples of objects that support
the buffer interface are strings and arrays. The string object exposes
1469 1470 1471 1472 1473 1474 1475
the character contents in the buffer interface's byte-oriented
form. An array can also expose its contents, but it should be noted
that array elements may be multi-byte values.

An example user of the buffer interface is the file object's
\method{write()} method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a
1476
number of format codes to \cfunction{PyArg_ParseTuple()} that operate
1477 1478 1479 1480
against an object's buffer interface, returning data from the target
object.

More information on the buffer interface is provided in the section
Fred Drake's avatar
Fred Drake committed
1481
``Buffer Object Structures'' (section~\ref{buffer-structs}), under
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}.

A ``buffer object'' is defined in the \file{bufferobject.h} header
(included by \file{Python.h}). These objects look very similar to
string objects at the Python programming level: they support slicing,
indexing, concatenation, and some other standard string
operations. However, their data can come from one of two sources: from
a block of memory, or from another object which exports the buffer
interface.

Buffer objects are useful as a way to expose the data from another
object's buffer interface to the Python programmer. They can also be
used as a zero-copy slicing mechanism. Using their ability to
reference a block of memory, it is possible to expose any data to the
Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for
manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory
format.

\begin{ctypedesc}{PyBufferObject}
  This subtype of \ctype{PyObject} represents a buffer object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyBuffer_Type}
  The instance of \ctype{PyTypeObject} which represents the Python
  buffer type; it is the same object as \code{types.BufferType} in the
  Python layer.\withsubitem{(in module types)}{\ttindex{BufferType}}.
\end{cvardesc}

\begin{cvardesc}{int}{Py_END_OF_BUFFER}
  This constant may be passed as the \var{size} parameter to
  \cfunction{PyBuffer_FromObject()} or
  \cfunction{PyBuffer_FromReadWriteObject()}.  It indicates that the
  new \ctype{PyBufferObject} should refer to \var{base} object from
  the specified \var{offset} to the end of its exported buffer.  Using
  this enables the caller to avoid querying the \var{base} object for
  its length.
\end{cvardesc}

\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p}
  Return true if the argument has type \cdata{PyBuffer_Type}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base,
                                                  int offset, int size}
  Return a new read-only buffer object.  This raises
  \exception{TypeError} if \var{base} doesn't support the read-only
  buffer protocol or doesn't provide exactly one buffer segment, or it
  raises \exception{ValueError} if \var{offset} is less than zero. The
  buffer will hold a reference to the \var{base} object, and the
  buffer's contents will refer to the \var{base} object's buffer
  interface, starting as position \var{offset} and extending for
  \var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then
  the new buffer's contents extend to the length of the \var{base}
  object's exported buffer data.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base,
                                                           int offset,
                                                           int size}
  Return a new writable buffer object.  Parameters and exceptions are
  similar to those for \cfunction{PyBuffer_FromObject()}.  If the
  \var{base} object does not export the writeable buffer protocol,
  then \exception{TypeError} is raised.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, int size}
  Return a new read-only buffer object that reads from a specified
  location in memory, with a specified size.  The caller is
  responsible for ensuring that the memory buffer, passed in as
  \var{ptr}, is not deallocated while the returned buffer object
  exists.  Raises \exception{ValueError} if \var{size} is less than
  zero.  Note that \constant{Py_END_OF_BUFFER} may \emph{not} be
  passed for the \var{size} parameter; \exception{ValueError} will be
  raised in that case.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, int size}
  Similar to \cfunction{PyBuffer_FromMemory()}, but the returned
  buffer is writable.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{int size}
  Returns a new writable buffer object that maintains its own memory
  buffer of \var{size} bytes.  \exception{ValueError} is returned if
1568 1569 1570
  \var{size} is not zero or positive.  Note that the memory buffer (as
  returned by \cfunction{PyObject_AsWriteBuffer()}) is not specifically
  aligned.
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
\end{cfuncdesc}


\subsection{Tuple Objects \label{tupleObjects}}

\obindex{tuple}
\begin{ctypedesc}{PyTupleObject}
  This subtype of \ctype{PyObject} represents a Python tuple object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
  This instance of \ctype{PyTypeObject} represents the Python tuple
  type; it is the same object as \code{types.TupleType} in the Python
  layer.\withsubitem{(in module types)}{\ttindex{TupleType}}.
\end{cvardesc}

\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
  Return true if \var{p} is a tuple object or an instance of a subtype
  of the tuple type.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyTuple_CheckExact}{PyObject *p}
  Return true if \var{p} is a tuple object, but not an instance of a
  subtype of the tuple type.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyTuple_New}{int len}
  Return a new tuple object of size \var{len}, or \NULL{} on failure.
\end{cfuncdesc}

1603 1604 1605 1606 1607
\begin{cfuncdesc}{PyObject*}{PyTuple_Pack}{int n, \moreargs}
  Return a new tuple object of size \var{n}, or \NULL{} on failure.
  The tuple values are initialized to the subsequent \var{n} C arguments
  pointing to Python objects.  \samp{PyTuple_Pack(2, \var{a}, \var{b})}
  is equivalent to \samp{Py_BuildValue("(OO)", \var{a}, \var{b})}.
1608
  \versionadded{2.4}
1609 1610
\end{cfuncdesc}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
\begin{cfuncdesc}{int}{PyTuple_Size}{PyObject *p}
  Takes a pointer to a tuple object, and returns the size of that
  tuple.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyTuple_GET_SIZE}{PyObject *p}
  Return the size of the tuple \var{p}, which must be non-\NULL{} and
  point to a tuple; no error checking is performed.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyObject *p, int pos}
  Returns the object at position \var{pos} in the tuple pointed to by
  \var{p}.  If \var{pos} is out of bounds, returns \NULL{} and sets an
  \exception{IndexError} exception.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyObject *p, int pos}
  Like \cfunction{PyTuple_GetItem()}, but does no checking of its
  arguments.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyObject *p,
                                               int low, int high}
  Takes a slice of the tuple pointed to by \var{p} from \var{low} to
  \var{high} and returns it as a new tuple.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p,
                                        int pos, PyObject *o}
  Inserts a reference to object \var{o} at position \var{pos} of the
  tuple pointed to by \var{p}. It returns \code{0} on success.
  \note{This function ``steals'' a reference to \var{o}.}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p,
                                          int pos, PyObject *o}
  Like \cfunction{PyTuple_SetItem()}, but does no error checking, and
  should \emph{only} be used to fill in brand new tuples.  \note{This
  function ``steals'' a reference to \var{o}.}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyObject **p, int newsize}
  Can be used to resize a tuple.  \var{newsize} will be the new length
  of the tuple.  Because tuples are \emph{supposed} to be immutable,
  this should only be used if there is only one reference to the
  object.  Do \emph{not} use this if the tuple may already be known to
  some other part of the code.  The tuple will always grow or shrink
  at the end.  Think of this as destroying the old tuple and creating
  a new one, only more efficiently.  Returns \code{0} on success.
  Client code should never assume that the resulting value of
  \code{*\var{p}} will be the same as before calling this function.
  If the object referenced by \code{*\var{p}} is replaced, the
  original \code{*\var{p}} is destroyed.  On failure, returns
1664
  \code{-1} and sets \code{*\var{p}} to \NULL{}, and raises
1665 1666
  \exception{MemoryError} or
  \exception{SystemError}.
1667
  \versionchanged[Removed unused third parameter, \var{last_is_sticky}]{2.2}
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
\end{cfuncdesc}


\subsection{List Objects \label{listObjects}}

\obindex{list}
\begin{ctypedesc}{PyListObject}
  This subtype of \ctype{PyObject} represents a Python list object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyList_Type}
  This instance of \ctype{PyTypeObject} represents the Python list
  type.  This is the same object as \code{types.ListType}.
  \withsubitem{(in module types)}{\ttindex{ListType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
1685 1686 1687 1688 1689 1690 1691 1692 1693
  Returns true if \var{p} is a list object or an instance of a
  subtype of the list type.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_CheckExact}{PyObject *p}
  Return true if \var{p} is a list object, but not an instance of a
  subtype of the list type.
  \versionadded{2.2}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyList_New}{int len}
  Returns a new list of length \var{len} on success, or \NULL{} on
  failure.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_Size}{PyObject *list}
  Returns the length of the list object in \var{list}; this is
  equivalent to \samp{len(\var{list})} on a list object.
  \bifuncindex{len}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_GET_SIZE}{PyObject *list}
  Macro form of \cfunction{PyList_Size()} without error checking.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, int index}
  Returns the object at position \var{pos} in the list pointed to by
  \var{p}.  If \var{pos} is out of bounds, returns \NULL{} and sets an
  \exception{IndexError} exception.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, int i}
  Macro form of \cfunction{PyList_GetItem()} without error checking.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, int index,
                                       PyObject *item}
  Sets the item at index \var{index} in list to \var{item}.  Returns
  \code{0} on success or \code{-1} on failure.  \note{This function
  ``steals'' a reference to \var{item} and discards a reference to an
  item already in the list at the affected position.}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyList_SET_ITEM}{PyObject *list, int i,
                                              PyObject *o}
  Macro form of \cfunction{PyList_SetItem()} without error checking.
  This is normally only used to fill in new lists where there is no
  previous content.
  \note{This function ``steals'' a reference to \var{item}, and,
  unlike \cfunction{PyList_SetItem()}, does \emph{not} discard a
  reference to any item that it being replaced; any reference in
  \var{list} at position \var{i} will be leaked.}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, int index,
                                      PyObject *item}
  Inserts the item \var{item} into list \var{list} in front of index
  \var{index}.  Returns \code{0} if successful; returns \code{-1} and
  raises an exception if unsuccessful.  Analogous to
  \code{\var{list}.insert(\var{index}, \var{item})}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
  Appends the object \var{item} at the end of list \var{list}.
  Returns \code{0} if successful; returns \code{-1} and sets an
  exception if unsuccessful.  Analogous to
  \code{\var{list}.append(\var{item})}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
                                              int low, int high}
  Returns a list of the objects in \var{list} containing the objects
  \emph{between} \var{low} and \var{high}.  Returns \NULL{} and sets
  an exception if unsuccessful.
  Analogous to \code{\var{list}[\var{low}:\var{high}]}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
                                        int low, int high,
                                        PyObject *itemlist}
  Sets the slice of \var{list} between \var{low} and \var{high} to the
  contents of \var{itemlist}.  Analogous to
1768 1769 1770 1771
  \code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}.
  The \var{itemlist} may be \NULL{}, indicating the assignment
  of an empty list (slice deletion).
  Returns \code{0} on success, \code{-1} on failure.
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
  Sorts the items of \var{list} in place.  Returns \code{0} on
  success, \code{-1} on failure.  This is equivalent to
  \samp{\var{list}.sort()}.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
  Reverses the items of \var{list} in place.  Returns \code{0} on
  success, \code{-1} on failure.  This is the equivalent of
  \samp{\var{list}.reverse()}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
  Returns a new tuple object containing the contents of \var{list};
  equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple}
\end{cfuncdesc}


\section{Mapping Objects \label{mapObjects}}

\obindex{mapping}


\subsection{Dictionary Objects \label{dictObjects}}

\obindex{dictionary}
\begin{ctypedesc}{PyDictObject}
  This subtype of \ctype{PyObject} represents a Python dictionary
  object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyDict_Type}
  This instance of \ctype{PyTypeObject} represents the Python
  dictionary type.  This is exposed to Python programs as
  \code{types.DictType} and \code{types.DictionaryType}.
  \withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
1813 1814 1815
  Returns true if \var{p} is a dict object or an instance of a
  subtype of the dict type.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
1816 1817
\end{cfuncdesc}

1818 1819 1820 1821 1822 1823
\begin{cfuncdesc}{int}{PyDict_CheckExact}{PyObject *p}
  Return true if \var{p} is a dict object, but not an instance of a
  subtype of the dict type.
  \versionadded{2.4}
\end{cfuncdesc}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
  Returns a new empty dictionary, or \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDictProxy_New}{PyObject *dict}
  Return a proxy object for a mapping which enforces read-only
  behavior.  This is normally used to create a proxy to prevent
  modification of the dictionary for non-dynamic class types.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p}
  Empties an existing dictionary of all key-value pairs.
\end{cfuncdesc}

1839 1840 1841 1842 1843
\begin{cfuncdesc}{int}{PyDict_Contains}{PyObject *p, PyObject *key}
  Determine if dictionary \var{p} contains \var{key}.  If an item
  in \var{p} is matches \var{key}, return \code{1}, otherwise return
  \code{0}.  On error, return \code{-1}.  This is equivalent to the
  Python expression \samp{\var{key} in \var{p}}.
1844
  \versionadded{2.4}
1845 1846
\end{cfuncdesc}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p}
  Returns a new dictionary that contains the same key-value pairs as
  \var{p}.
  \versionadded{1.6}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key,
                                       PyObject *val}
  Inserts \var{value} into the dictionary \var{p} with a key of
  \var{key}.  \var{key} must be hashable; if it isn't,
  \exception{TypeError} will be raised.
  Returns \code{0} on success or \code{-1} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyObject *p,
            char *key,
            PyObject *val}
  Inserts \var{value} into the dictionary \var{p} using \var{key} as a
  key. \var{key} should be a \ctype{char*}.  The key object is created
  using \code{PyString_FromString(\var{key})}. Returns \code{0} on
  success or \code{-1} on failure.
  \ttindex{PyString_FromString()}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key}
  Removes the entry in dictionary \var{p} with key \var{key}.
  \var{key} must be hashable; if it isn't, \exception{TypeError} is
1874
  raised.  Returns \code{0} on success or \code{-1} on failure.
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key}
  Removes the entry in dictionary \var{p} which has a key specified by
  the string \var{key}.  Returns \code{0} on success or \code{-1} on
  failure.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key}
  Returns the object from dictionary \var{p} which has a key
  \var{key}.  Returns \NULL{} if the key \var{key} is not present, but
  \emph{without} setting an exception.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, char *key}
  This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
  specified as a \ctype{char*}, rather than a \ctype{PyObject*}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p}
  Returns a \ctype{PyListObject} containing all the items from the
  dictionary, as in the dictinoary method \method{items()} (see the
  \citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p}
  Returns a \ctype{PyListObject} containing all the keys from the
  dictionary, as in the dictionary method \method{keys()} (see the
  \citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p}
  Returns a \ctype{PyListObject} containing all the values from the
  dictionary \var{p}, as in the dictionary method \method{values()}
  (see the \citetitle[../lib/lib.html]{Python Library Reference}).
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_Size}{PyObject *p}
  Returns the number of items in the dictionary.  This is equivalent
  to \samp{len(\var{p})} on a dictionary.\bifuncindex{len}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_Next}{PyObject *p, int *ppos,
                                    PyObject **pkey, PyObject **pvalue}
  Iterate over all key-value pairs in the dictionary \var{p}.  The
  \ctype{int} referred to by \var{ppos} must be initialized to
  \code{0} prior to the first call to this function to start the
  iteration; the function returns true for each pair in the
  dictionary, and false once all pairs have been reported.  The
  parameters \var{pkey} and \var{pvalue} should either point to
  \ctype{PyObject*} variables that will be filled in with each key and
1926
  value, respectively, or may be \NULL{}.  Any references returned through
1927 1928 1929
  them are borrowed.  \var{ppos} should not be altered during iteration.
  Its value represents offsets within the internal dictionary structure,
  and since the structure is sparse, the offsets are not consecutive.
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

  For example:

\begin{verbatim}
PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
    /* do something interesting with the values... */
    ...
}
\end{verbatim}

  The dictionary \var{p} should not be mutated during iteration.  It
  is safe (since Python 2.1) to modify the values of the keys as you
  iterate over the dictionary, but only so long as the set of keys
  does not change.  For example:

\begin{verbatim}
PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
    int i = PyInt_AS_LONG(value) + 1;
    PyObject *o = PyInt_FromLong(i);
    if (o == NULL)
        return -1;
    if (PyDict_SetItem(self->dict, key, o) < 0) {
        Py_DECREF(o);
        return -1;
    }
    Py_DECREF(o);
}
\end{verbatim}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_Merge}{PyObject *a, PyObject *b, int override}
1967 1968 1969 1970 1971
  Iterate over mapping object \var{b} adding key-value pairs to dictionary
  \var{a}.
  \var{b} may be a dictionary, or any object supporting
  \function{PyMapping_Keys()} and \function{PyObject_GetItem()}.
  If \var{override} is true, existing pairs in \var{a} will
1972 1973
  be replaced if a matching key is found in \var{b}, otherwise pairs
  will only be added if there is not a matching key in \var{a}.
1974
  Return \code{0} on success or \code{-1} if an exception was
1975 1976 1977 1978 1979 1980
  raised.
\versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDict_Update}{PyObject *a, PyObject *b}
  This is the same as \code{PyDict_Merge(\var{a}, \var{b}, 1)} in C,
1981
  or \code{\var{a}.update(\var{b})} in Python.  Return \code{0} on
1982 1983 1984 1985
  success or \code{-1} if an exception was raised.
  \versionadded{2.2}
\end{cfuncdesc}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
\begin{cfuncdesc}{int}{PyDict_MergeFromSeq2}{PyObject *a, PyObject *seq2,
                                             int override}
  Update or merge into dictionary \var{a}, from the key-value pairs in
  \var{seq2}.  \var{seq2} must be an iterable object producing
  iterable objects of length 2, viewed as key-value pairs.  In case of
  duplicate keys, the last wins if \var{override} is true, else the
  first wins.
  Return \code{0} on success or \code{-1} if an exception
  was raised.
  Equivalent Python (except for the return value):

\begin{verbatim}
def PyDict_MergeFromSeq2(a, seq2, override):
    for key, value in seq2:
        if override or key not in a:
            a[key] = value
\end{verbatim}

  \versionadded{2.2}
\end{cfuncdesc}
2006

Fred Drake's avatar
Fred Drake committed
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
\section{Other Objects \label{otherObjects}}

\subsection{File Objects \label{fileObjects}}

\obindex{file}
Python's built-in file objects are implemented entirely on the
\ctype{FILE*} support from the C standard library.  This is an
implementation detail and may change in future releases of Python.

\begin{ctypedesc}{PyFileObject}
  This subtype of \ctype{PyObject} represents a Python file object.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyFile_Type}
  This instance of \ctype{PyTypeObject} represents the Python file
  type.  This is exposed to Python programs as \code{types.FileType}.
  \withsubitem{(in module types)}{\ttindex{FileType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
  Returns true if its argument is a \ctype{PyFileObject} or a subtype
  of \ctype{PyFileObject}.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyFile_CheckExact}{PyObject *p}
  Returns true if its argument is a \ctype{PyFileObject}, but not a
  subtype of \ctype{PyFileObject}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode}
  On success, returns a new file object that is opened on the file
  given by \var{filename}, with a file mode given by \var{mode}, where
  \var{mode} has the same semantics as the standard C routine
2043
  \cfunction{fopen()}\ttindex{fopen()}.  On failure, returns \NULL{}.
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
                                              char *name, char *mode,
                                              int (*close)(FILE*)}
  Creates a new \ctype{PyFileObject} from the already-open standard C
  file pointer, \var{fp}.  The function \var{close} will be called
  when the file should be closed.  Returns \NULL{} on failure.
\end{cfuncdesc}

\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyFileObject *p}
  Returns the file object associated with \var{p} as a \ctype{FILE*}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
  Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this
  function reads one line from the object \var{p}.  \var{p} may be a
  file object or any object with a \method{readline()} method.  If
  \var{n} is \code{0}, exactly one line is read, regardless of the
  length of the line.  If \var{n} is greater than \code{0}, no more
  than \var{n} bytes will be read from the file; a partial line can be
  returned.  In both cases, an empty string is returned if the end of
  the file is reached immediately.  If \var{n} is less than \code{0},
  however, one line is read regardless of length, but
  \exception{EOFError} is raised if the end of the file is reached
  immediately.
  \withsubitem{(built-in exception)}{\ttindex{EOFError}}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
  Returns the name of the file specified by \var{p} as a string
  object.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
  Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()}
  only.  This should only be called immediately after file object
  creation.
\end{cfuncdesc}

2084 2085 2086 2087 2088 2089
\begin{cfuncdesc}{int}{PyFile_Encoding}{PyFileObject *p, char *enc}
  Set the file's encoding for Unicode output to \var{enc}. Return
  1 on success and 0 on failure.
  \versionadded{2.3}
\end{cfuncdesc}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag}
  This function exists for internal use by the interpreter.  Sets the
  \member{softspace} attribute of \var{p} to \var{newflag} and
  \withsubitem{(file attribute)}{\ttindex{softspace}}returns the
  previous value.  \var{p} does not have to be a file object for this
  function to work properly; any object is supported (thought its only
  interesting if the \member{softspace} attribute can be set).  This
  function clears any errors, and will return \code{0} as the previous
  value if the attribute either does not exist or if there were errors
  in retrieving it.  There is no way to detect errors from this
  function, but doing so should not be needed.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyFileObject *p,
                                           int flags}
  Writes object \var{obj} to file object \var{p}.  The only supported
  flag for \var{flags} is
  \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW}; if given, the
  \function{str()} of the object is written instead of the
  \function{repr()}.  Returns \code{0} on success or \code{-1} on
  failure; the appropriate exception will be set.
\end{cfuncdesc}

2113
\begin{cfuncdesc}{int}{PyFile_WriteString}{const char *s, PyFileObject *p}
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
  Writes string \var{s} to file object \var{p}.  Returns \code{0} on
  success or \code{-1} on failure; the appropriate exception will be
  set.
\end{cfuncdesc}


\subsection{Instance Objects \label{instanceObjects}}

\obindex{instance}
There are very few functions specific to instance objects.

\begin{cvardesc}{PyTypeObject}{PyInstance_Type}
  Type object for class instances.
\end{cvardesc}

\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj}
  Returns true if \var{obj} is an instance.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class,
                                             PyObject *arg,
                                             PyObject *kw}
  Create a new instance of a specific class.  The parameters \var{arg}
  and \var{kw} are used as the positional and keyword parameters to
  the object's constructor.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class,
                                                PyObject *dict}
  Create a new instance of a specific class without calling it's
  constructor.  \var{class} is the class of new object.  The
  \var{dict} parameter will be used as the object's \member{__dict__};
2146
  if \NULL{}, a new dictionary will be created for the instance.
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
\end{cfuncdesc}


\subsection{Method Objects \label{method-objects}}

\obindex{method}
There are some useful functions that are useful for working with
method objects.

\begin{cvardesc}{PyTypeObject}{PyMethod_Type}
  This instance of \ctype{PyTypeObject} represents the Python method
  type.  This is exposed to Python programs as \code{types.MethodType}.
  \withsubitem{(in module types)}{\ttindex{MethodType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyMethod_Check}{PyObject *o}
  Return true if \var{o} is a method object (has type
2164
  \cdata{PyMethod_Type}).  The parameter must not be \NULL{}.
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_New}{PyObject *func.
                                           PyObject *self, PyObject *class}
  Return a new method object, with \var{func} being any callable
  object; this is the function that will be called when the method is
  called.  If this method should be bound to an instance, \var{self}
  should be the instance and \var{class} should be the class of
  \var{self}, otherwise \var{self} should be \NULL{} and \var{class}
  should be the class which provides the unbound method..
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_Class}{PyObject *meth}
  Return the class object from which the method \var{meth} was
  created; if this was created from an instance, it will be the class
  of the instance.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_GET_CLASS}{PyObject *meth}
  Macro version of \cfunction{PyMethod_Class()} which avoids error
  checking.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_Function}{PyObject *meth}
  Return the function object associated with the method \var{meth}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_GET_FUNCTION}{PyObject *meth}
  Macro version of \cfunction{PyMethod_Function()} which avoids error
  checking.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_Self}{PyObject *meth}
  Return the instance associated with the method \var{meth} if it is
2199
  bound, otherwise return \NULL{}.
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyMethod_GET_SELF}{PyObject *meth}
  Macro version of \cfunction{PyMethod_Self()} which avoids error
  checking.
\end{cfuncdesc}


\subsection{Module Objects \label{moduleObjects}}

\obindex{module}
There are only a few functions special to module objects.

\begin{cvardesc}{PyTypeObject}{PyModule_Type}
  This instance of \ctype{PyTypeObject} represents the Python module
  type.  This is exposed to Python programs as
  \code{types.ModuleType}.
  \withsubitem{(in module types)}{\ttindex{ModuleType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p}
  Returns true if \var{p} is a module object, or a subtype of a module
  object.
  \versionchanged[Allowed subtypes to be accepted]{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyModule_CheckExact}{PyObject *p}
  Returns true if \var{p} is a module object, but not a subtype of
  \cdata{PyModule_Type}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyModule_New}{char *name}
  Return a new module object with the \member{__name__} attribute set
  to \var{name}.  Only the module's \member{__doc__} and
  \member{__name__} attributes are filled in; the caller is
  responsible for providing a \member{__file__} attribute.
  \withsubitem{(module attribute)}{
    \ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module}
  Return the dictionary object that implements \var{module}'s
  namespace; this object is the same as the \member{__dict__}
  attribute of the module object.  This function never fails.
  \withsubitem{(module attribute)}{\ttindex{__dict__}}
2246 2247 2248
  It is recommended extensions use other \cfunction{PyModule_*()}
  and \cfunction{PyObject_*()} functions rather than directly
  manipulate a module's \member{__dict__}.
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
\end{cfuncdesc}

\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module}
  Return \var{module}'s \member{__name__} value.  If the module does
  not provide one, or if it is not a string, \exception{SystemError}
  is raised and \NULL{} is returned.
  \withsubitem{(module attribute)}{\ttindex{__name__}}
  \withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}

\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module}
  Return the name of the file from which \var{module} was loaded using
  \var{module}'s \member{__file__} attribute.  If this is not defined,
  or if it is not a string, raise \exception{SystemError} and return
2263
  \NULL{}.
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
  \withsubitem{(module attribute)}{\ttindex{__file__}}
  \withsubitem{(built-in exception)}{\ttindex{SystemError}}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module,
                                           char *name, PyObject *value}
  Add an object to \var{module} as \var{name}.  This is a convenience
  function which can be used from the module's initialization
  function.  This steals a reference to \var{value}.  Returns
  \code{-1} on error, \code{0} on success.
  \versionadded{2.0}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module,
2278
                                                char *name, long value}
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
  Add an integer constant to \var{module} as \var{name}.  This
  convenience function can be used from the module's initialization
  function. Returns \code{-1} on error, \code{0} on success.
  \versionadded{2.0}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module,
                                                   char *name, char *value}
  Add a string constant to \var{module} as \var{name}.  This
  convenience function can be used from the module's initialization
  function.  The string \var{value} must be null-terminated.  Returns
  \code{-1} on error, \code{0} on success.
  \versionadded{2.0}
\end{cfuncdesc}


\subsection{Iterator Objects \label{iterator-objects}}

Python provides two general-purpose iterator objects.  The first, a
sequence iterator, works with an arbitrary sequence supporting the
\method{__getitem__()} method.  The second works with a callable
object and a sentinel value, calling the callable for each item in the
sequence, and ending the iteration when the sentinel value is
returned.

\begin{cvardesc}{PyTypeObject}{PySeqIter_Type}
  Type object for iterator objects returned by
  \cfunction{PySeqIter_New()} and the one-argument form of the
  \function{iter()} built-in function for built-in sequence types.
  \versionadded{2.2}
\end{cvardesc}

\begin{cfuncdesc}{int}{PySeqIter_Check}{op}
  Return true if the type of \var{op} is \cdata{PySeqIter_Type}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PySeqIter_New}{PyObject *seq}
  Return an iterator that works with a general sequence object,
  \var{seq}.  The iteration ends when the sequence raises
  \exception{IndexError} for the subscripting operation.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cvardesc}{PyTypeObject}{PyCallIter_Type}
  Type object for iterator objects returned by
  \cfunction{PyCallIter_New()} and the two-argument form of the
  \function{iter()} built-in function.
  \versionadded{2.2}
\end{cvardesc}

\begin{cfuncdesc}{int}{PyCallIter_Check}{op}
  Return true if the type of \var{op} is \cdata{PyCallIter_Type}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyCallIter_New}{PyObject *callable,
                                             PyObject *sentinel}
  Return a new iterator.  The first parameter, \var{callable}, can be
  any Python callable object that can be called with no parameters;
  each call to it should return the next item in the iteration.  When
  \var{callable} returns a value equal to \var{sentinel}, the
  iteration will be terminated.
  \versionadded{2.2}
\end{cfuncdesc}


\subsection{Descriptor Objects \label{descriptor-objects}}

Fred Drake's avatar
Fred Drake committed
2348 2349 2350
``Descriptors'' are objects that describe some attribute of an object.
They are found in the dictionary of type objects.

2351
\begin{cvardesc}{PyTypeObject}{PyProperty_Type}
Fred Drake's avatar
Fred Drake committed
2352
  The type object for the built-in descriptor types.
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
  \versionadded{2.2}
\end{cvardesc}

\begin{cfuncdesc}{PyObject*}{PyDescr_NewGetSet}{PyTypeObject *type,
					        PyGetSetDef *getset}
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDescr_NewMember}{PyTypeObject *type,
					        PyMemberDef *meth}
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDescr_NewMethod}{PyTypeObject *type,
                                                PyMethodDef *meth}
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDescr_NewWrapper}{PyTypeObject *type,
						 struct wrapperbase *wrapper,
                                                 void *wrapped}
  \versionadded{2.2}
\end{cfuncdesc}

2377 2378 2379 2380 2381
\begin{cfuncdesc}{PyObject*}{PyDescr_NewClassMethod}{PyTypeObject *type,
						     PyMethodDef *method}
  \versionadded{2.3}
\end{cfuncdesc}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
\begin{cfuncdesc}{int}{PyDescr_IsData}{PyObject *descr}
  Returns true if the descriptor objects \var{descr} describes a data
  attribute, or false if it describes a method.  \var{descr} must be a
  descriptor object; there is no error checking.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyWrapper_New}{PyObject *, PyObject *}
  \versionadded{2.2}
\end{cfuncdesc}


\subsection{Slice Objects \label{slice-objects}}

\begin{cvardesc}{PyTypeObject}{PySlice_Type}
  The type object for slice objects.  This is the same as
  \code{types.SliceType}.
  \withsubitem{(in module types)}{\ttindex{SliceType}}
\end{cvardesc}

\begin{cfuncdesc}{int}{PySlice_Check}{PyObject *ob}
  Returns true if \var{ob} is a slice object; \var{ob} must not be
2404
  \NULL{}.
2405 2406 2407 2408 2409 2410 2411
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PySlice_New}{PyObject *start, PyObject *stop,
                                          PyObject *step}
  Return a new slice object with the given values.  The \var{start},
  \var{stop}, and \var{step} parameters are used as the values of the
  slice object attributes of the same names.  Any of the values may be
2412
  \NULL{}, in which case the \code{None} will be used for the
2413 2414 2415 2416 2417 2418
  corresponding attribute.  Returns \NULL{} if the new object could
  not be allocated.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PySlice_GetIndices}{PySliceObject *slice, int length,
                                           int *start, int *stop, int *step}
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
Retrieve the start, stop and step indices from the slice object
\var{slice}, assuming a sequence of length \var{length}. Treats
indices greater than \var{length} as errors.

Returns 0 on success and -1 on error with no exception set (unless one
of the indices was not \constant{None} and failed to be converted to
an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.  If you want to use
slice objects in versions of Python prior to 2.3, you would probably
do well to incorporate the source of \cfunction{PySlice_GetIndicesEx},
suitably renamed, in the source of your extension.
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PySlice_GetIndicesEx}{PySliceObject *slice, int length,
2434
                                             int *start, int *stop, int *step,
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
                                             int *slicelength}
Usable replacement for \cfunction{PySlice_GetIndices}.  Retrieve the
start, stop, and step indices from the slice object \var{slice}
assuming a sequence of length \var{length}, and store the length of
the slice in \var{slicelength}.  Out of bounds indices are clipped in
a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.

\versionadded{2.3}
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
\end{cfuncdesc}


\subsection{Weak Reference Objects \label{weakref-objects}}

Python supports \emph{weak references} as first-class objects.  There
are two specific object types which directly implement weak
references.  The first is a simple reference object, and the second
acts as a proxy for the original object as much as it can.

\begin{cfuncdesc}{int}{PyWeakref_Check}{ob}
  Return true if \var{ob} is either a reference or proxy object.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyWeakref_CheckRef}{ob}
  Return true if \var{ob} is a reference object.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyWeakref_CheckProxy}{ob}
  Return true if \var{ob} is a proxy object.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyWeakref_NewRef}{PyObject *ob,
                                               PyObject *callback}
  Return a weak reference object for the object \var{ob}.  This will
  always return a new reference, but is not guaranteed to create a new
  object; an existing reference object may be returned.  The second
  parameter, \var{callback}, can be a callable object that receives
  notification when \var{ob} is garbage collected; it should accept a
2477
  single parameter, which will be the weak reference object itself.
2478
  \var{callback} may also be \code{None} or \NULL{}.  If \var{ob}
2479
  is not a weakly-referencable object, or if \var{callback} is not
2480
  callable, \code{None}, or \NULL{}, this will return \NULL{} and
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
  raise \exception{TypeError}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyWeakref_NewProxy}{PyObject *ob,
                                                 PyObject *callback}
  Return a weak reference proxy object for the object \var{ob}.  This
  will always return a new reference, but is not guaranteed to create
  a new object; an existing proxy object may be returned.  The second
  parameter, \var{callback}, can be a callable object that receives
  notification when \var{ob} is garbage collected; it should accept a
2492
  single parameter, which will be the weak reference object itself.
2493
  \var{callback} may also be \code{None} or \NULL{}.  If \var{ob} is not
2494
  a weakly-referencable object, or if \var{callback} is not callable,
2495
  \code{None}, or \NULL{}, this will return \NULL{} and raise
2496 2497 2498 2499 2500 2501
  \exception{TypeError}.
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyWeakref_GetObject}{PyObject *ref}
  Returns the referenced object from a weak reference, \var{ref}.  If
2502
  the referent is no longer live, returns \code{None}.
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
  \versionadded{2.2}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyWeakref_GET_OBJECT}{PyObject *ref}
  Similar to \cfunction{PyWeakref_GetObject()}, but implemented as a
  macro that does no error checking.
  \versionadded{2.2}
\end{cfuncdesc}


\subsection{CObjects \label{cObjects}}

\obindex{CObject}
Refer to \emph{Extending and Embedding the Python Interpreter},
Fred Drake's avatar
Fred Drake committed
2517
section~1.12, ``Providing a C API for an Extension Module,'' for more
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
information on using these objects.


\begin{ctypedesc}{PyCObject}
  This subtype of \ctype{PyObject} represents an opaque value, useful
  for C extension modules who need to pass an opaque value (as a
  \ctype{void*} pointer) through Python code to other C code.  It is
  often used to make a C function pointer defined in one module
  available to other modules, so the regular import mechanism can be
  used to access C APIs defined in dynamically loaded modules.
\end{ctypedesc}

\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p}
2531
  Return true if its argument is a \ctype{PyCObject}.
2532 2533
\end{cfuncdesc}

2534
\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj,
Fred Drake's avatar
Fred Drake committed
2535
                                                    void (*destr)(void *)}
2536
  Create a \ctype{PyCObject} from the \code{void *}\var{cobj}.  The
2537
  \var{destr} function will be called when the object is reclaimed,
2538
  unless it is \NULL{}.
2539 2540 2541 2542
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
	                          void* desc, void (*destr)(void *, void *)}
2543
  Create a \ctype{PyCObject} from the \ctype{void *}\var{cobj}.  The
2544 2545 2546 2547 2548 2549
  \var{destr} function will be called when the object is reclaimed.
  The \var{desc} argument can be used to pass extra callback data for
  the destructor function.
\end{cfuncdesc}

\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self}
2550
  Return the object \ctype{void *} that the \ctype{PyCObject}
2551 2552 2553 2554
  \var{self} was created with.
\end{cfuncdesc}

\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self}
2555
  Return the description \ctype{void *} that the \ctype{PyCObject}
2556 2557
  \var{self} was created with.
\end{cfuncdesc}
2558

2559
\begin{cfuncdesc}{int}{PyCObject_SetVoidPtr}{PyObject* self, void* cobj}
2560
  Set the void pointer inside \var{self} to \var{cobj}.
2561 2562 2563 2564
  The \ctype{PyCObject} must not have an associated destructor.
  Return true on success, false on failure.
\end{cfuncdesc}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

\subsection{Cell Objects \label{cell-objects}}

``Cell'' objects are used to implement variables referenced by
multiple scopes.  For each such variable, a cell object is created to
store the value; the local variables of each stack frame that
references the value contains a reference to the cells from outer
scopes which also use that variable.  When the value is accessed, the
value contained in the cell is used instead of the cell object
itself.  This de-referencing of the cell object requires support from
the generated byte-code; these are not automatically de-referenced
when accessed.  Cell objects are not likely to be useful elsewhere.

Fred Drake's avatar
Fred Drake committed
2578 2579 2580 2581
\begin{ctypedesc}{PyCellObject}
  The C structure used for cell objects.
\end{ctypedesc}

2582 2583 2584 2585 2586 2587
\begin{cvardesc}{PyTypeObject}{PyCell_Type}
  The type object corresponding to cell objects
\end{cvardesc}

\begin{cfuncdesc}{int}{PyCell_Check}{ob}
  Return true if \var{ob} is a cell object; \var{ob} must not be
2588
  \NULL{}.
2589 2590 2591 2592
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyCell_New}{PyObject *ob}
  Create and return a new cell object containing the value \var{ob}.
2593
  The parameter may be \NULL{}.
2594 2595 2596 2597 2598 2599 2600 2601
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyCell_Get}{PyObject *cell}
  Return the contents of the cell \var{cell}.
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyCell_GET}{PyObject *cell}
  Return the contents of the cell \var{cell}, but without checking
Raymond Hettinger's avatar
Raymond Hettinger committed
2602
  that \var{cell} is non-\NULL{} and a cell object.
2603 2604 2605 2606 2607
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyCell_Set}{PyObject *cell, PyObject *value}
  Set the contents of the cell object \var{cell} to \var{value}.  This
  releases the reference to any current content of the cell.
2608
  \var{value} may be \NULL{}.  \var{cell} must be non-\NULL{}; if it is
2609 2610 2611 2612 2613 2614 2615 2616 2617
  not a cell object, \code{-1} will be returned.  On success, \code{0}
  will be returned.
\end{cfuncdesc}

\begin{cfuncdesc}{void}{PyCell_SET}{PyObject *cell, PyObject *value}
  Sets the value of the cell object \var{cell} to \var{value}.  No
  reference counts are adjusted, and no checks are made for safety;
  \var{cell} must be non-\NULL{} and must be a cell object.
\end{cfuncdesc}
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635


\subsection{Generator Objects \label{gen-objects}}

Generator objects are what Python uses to implement generator iterators.
They are normally created by iterating over a function that yields values,
rather than explicitly calling \cfunction{PyGen_New}.

\begin{ctypedesc}{PyGenObject}
  The C structure used for generator objects.
\end{ctypedesc}

\begin{cvardesc}{PyTypeObject}{PyGen_Type}
  The type object corresponding to generator objects
\end{cvardesc}

\begin{cfuncdesc}{int}{PyGen_Check}{ob}
  Return true if \var{ob} is a generator object; \var{ob} must not be
2636
  \NULL{}.
2637 2638 2639 2640 2641
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyGen_CheckExact}{ob}
  Return true if \var{ob}'s type is \var{PyGen_Type}
  is a generator object; \var{ob} must not be
2642
  \NULL{}.
2643 2644 2645 2646
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyGen_New}{PyFrameObject *frame}
  Create and return a new generator object based on the \var{frame} object.
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
  The parameter must not be \NULL{}.
\end{cfuncdesc}


\subsection{DateTime Objects \label{datetime-objects}}

Various date and time objects are supplied by the \module{datetime}
module.  Before using any of these functions, the header file
\file{datetime.h} must be included in your source (note that this is
not include by \file{Python.h}), and macro \cfunction{PyDateTime_IMPORT()}
must be invoked.  The macro arranges to put a pointer to a C structure
in a static variable \code{PyDateTimeAPI}, which is used by the following
2659
macros.
2660

2661 2662 2663
Type-check macros:

\begin{cfuncdesc}{int}{PyDate_Check}{PyObject *ob}
2664 2665 2666 2667 2668 2669
  Return true if \var{ob} is of type \cdata{PyDateTime_DateType} or
  a subtype of \cdata{PyDateTime_DateType}.  \var{ob} must not be
  \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2670
\begin{cfuncdesc}{int}{PyDate_CheckExact}{PyObject *ob}
2671 2672 2673 2674 2675
  Return true if \var{ob} is of type \cdata{PyDateTime_DateType}.
  \var{ob} must not be \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2676
\begin{cfuncdesc}{int}{PyDateTime_Check}{PyObject *ob}
2677 2678 2679 2680 2681 2682
  Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType} or
  a subtype of \cdata{PyDateTime_DateTimeType}.  \var{ob} must not be
  \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2683
\begin{cfuncdesc}{int}{PyDateTime_CheckExact}{PyObject *ob}
2684 2685 2686 2687 2688
  Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType}.
  \var{ob} must not be \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2689
\begin{cfuncdesc}{int}{PyTime_Check}{PyObject *ob}
2690 2691 2692 2693 2694 2695
  Return true if \var{ob} is of type \cdata{PyDateTime_TimeType} or
  a subtype of \cdata{PyDateTime_TimeType}.  \var{ob} must not be
  \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2696
\begin{cfuncdesc}{int}{PyTime_CheckExact}{PyObject *ob}
2697 2698 2699 2700 2701
  Return true if \var{ob} is of type \cdata{PyDateTime_TimeType}.
  \var{ob} must not be \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2702
\begin{cfuncdesc}{int}{PyDelta_Check}{PyObject *ob}
2703 2704 2705 2706 2707 2708
  Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType} or
  a subtype of \cdata{PyDateTime_DeltaType}.  \var{ob} must not be
  \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2709
\begin{cfuncdesc}{int}{PyDelta_CheckExact}{PyObject *ob}
2710 2711 2712 2713 2714
  Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType}.
  \var{ob} must not be \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2715
\begin{cfuncdesc}{int}{PyTZInfo_Check}{PyObject *ob}
2716 2717 2718 2719 2720 2721
  Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType} or
  a subtype of \cdata{PyDateTime_TZInfoType}.  \var{ob} must not be
  \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2722
\begin{cfuncdesc}{int}{PyTZInfo_CheckExact}{PyObject *ob}
2723 2724 2725 2726 2727
  Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType}.
  \var{ob} must not be \NULL{}.
  \versionadded{2.4}
\end{cfuncdesc}

2728 2729
Macros to create objects:

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
\begin{cfuncdesc}{PyObject*}{PyDate_FromDate}{int year, int month, int day}
  Return a \code{datetime.date} object with the specified year, month
  and day.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDate_FromDateAndTime}{int year, int month,
        int day, int hour, int minute, int second, int usecond}
  Return a \code{datetime.datetime} object with the specified year, month,
  day, hour, minute, second and microsecond.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyTime_FromTime}{int hour, int minute,
        int second, int usecond}
  Return a \code{datetime.time} object with the specified hour, minute,
  second and microsecond.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDelta_FromDSU}{int days, int seconds,
        int useconds}
  Return a \code{datetime.timedelta} object representing the given number
  of days, seconds and microseconds.  Normalization is performed so that
  the resulting number of microseconds and seconds lie in the ranges
  documented for \code{datetime.timedelta} objects.
  \versionadded{2.4}
\end{cfuncdesc}

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
Macros to extract fields from date objects.  The argument must an
instance of \cdata{PyDateTime_Date}, including subclasses (such as
\cdata{PyDateTime_DateTime}).  The argument must not be \NULL{}, and
the type is not checked:

\begin{cfuncdesc}{int}{PyDateTime_GET_YEAR}{PyDateTime_Date *o}
  Return the year, as a positive int.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_GET_MONTH}{PyDateTime_Date *o}
  Return the month, as an int from 1 through 12.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_GET_DAY}{PyDateTime_Date *o}
  Return the day, as an int from 1 through 31.
  \versionadded{2.4}
\end{cfuncdesc}

Macros to extract fields from datetime objects.  The argument must an
instance of \cdata{PyDateTime_DateTime}, including subclasses.
The argument must not be \NULL{}, and the type is not checked:

\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_HOUR}{PyDateTime_DateTime *o}
  Return the hour, an an int from 0 though 23.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MINUTE}{PyDateTime_DateTime *o}
  Return the minute, as an int from 0 through 59.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_SECOND}{PyDateTime_DateTime *o}
  Return the second, as an int from 0 through 59.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MICROSECOND}{PyDateTime_DateTime *o}
  Return the microsecond, as an int from 0 through 999999.
  \versionadded{2.4}
\end{cfuncdesc}

Macros to extract fields from time objects.  The argument must an
instance of \cdata{PyDateTime_Time}, including subclasses.
The argument must not be \NULL{}, and the type is not checked:

\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_HOUR}{PyDateTime_Time *o}
  Return the hour, as an int from 0 though 23.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MINUTE}{PyDateTime_Time *o}
  Return the minute, as an int from 0 through 59.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_SECOND}{PyDateTime_Time *o}
  Return the second, as an int from 0 through 59.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MICROSECOND}{PyDateTime_Time *o}
  Return the microsecond, as an int from 0 through 999999.
  \versionadded{2.4}
\end{cfuncdesc}

Macros for the convenience of modules implementing the DB API:

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
\begin{cfuncdesc}{PyObject*}{PyDateTime_FromTimestamp}{PyObject *args}
  Create and return a new \code{datetime.datetime} object given an argument
  tuple suitable for passing to \code{datetime.datetime.fromtimestamp()}.
  \versionadded{2.4}
\end{cfuncdesc}

\begin{cfuncdesc}{PyObject*}{PyDate_FromTimestamp}{PyObject *args}
  Create and return a new \code{datetime.date} object given an argument
  tuple suitable for passing to \code{datetime.date.fromtimestamp()}.
  \versionadded{2.4}
2839
\end{cfuncdesc}