Commit 11c79531 authored by Raymond Hettinger's avatar Raymond Hettinger Committed by GitHub

bpo-36018: Add the NormalDist class to the statistics module (GH-11973)

parent 64d6cc82
......@@ -467,6 +467,201 @@ A single exception is defined:
Subclass of :exc:`ValueError` for statistics-related exceptions.
:class:`NormalDist` objects
===========================
A :class:`NormalDist` is a a composite class that treats the mean and standard
deviation of data measurements as a single entity. It is a tool for creating
and manipulating normal distributions of a random variable.
Normal distributions arise from the `Central Limit Theorem
<https://en.wikipedia.org/wiki/Central_limit_theorem>`_ and have a wide range
of applications in statistics, including simulations and hypothesis testing.
.. class:: NormalDist(mu=0.0, sigma=1.0)
Returns a new *NormalDist* object where *mu* represents the `arithmetic
mean <https://en.wikipedia.org/wiki/Arithmetic_mean>`_ of data and *sigma*
represents the `standard deviation
<https://en.wikipedia.org/wiki/Standard_deviation>`_ of the data.
If *sigma* is negative, raises :exc:`StatisticsError`.
.. attribute:: mu
The mean of a normal distribution.
.. attribute:: sigma
The standard deviation of a normal distribution.
.. attribute:: variance
A read-only property representing the `variance
<https://en.wikipedia.org/wiki/Variance>`_ of a normal
distribution. Equal to the square of the standard deviation.
.. classmethod:: NormalDist.from_samples(data)
Class method that makes a normal distribution instance
from sample data. The *data* can be any :term:`iterable`
and should consist of values that can be converted to type
:class:`float`.
If *data* does not contain at least two elements, raises
:exc:`StatisticsError` because it takes at least one point to estimate
a central value and at least two points to estimate dispersion.
.. method:: NormalDist.samples(n, seed=None)
Generates *n* random samples for a given mean and standard deviation.
Returns a :class:`list` of :class:`float` values.
If *seed* is given, creates a new instance of the underlying random
number generator. This is useful for creating reproducible results,
even in a multi-threading context.
.. method:: NormalDist.pdf(x)
Using a `probability density function (pdf)
<https://en.wikipedia.org/wiki/Probability_density_function>`_,
compute the relative likelihood that a random sample *X* will be near
the given value *x*. Mathematically, it is the ratio ``P(x <= X <
x+dx) / dx``.
Note the relative likelihood of *x* can be greater than `1.0`. The
probability for a specific point on a continuous distribution is `0.0`,
so the :func:`pdf` is used instead. It gives the probability of a
sample occurring in a narrow range around *x* and then dividing that
probability by the width of the range (hence the word "density").
.. method:: NormalDist.cdf(x)
Using a `cumulative distribution function (cdf)
<https://en.wikipedia.org/wiki/Cumulative_distribution_function>`_,
compute the probability that a random sample *X* will be less than or
equal to *x*. Mathematically, it is written ``P(X <= x)``.
Instances of :class:`NormalDist` support addition, subtraction,
multiplication and division by a constant. These operations
are used for translation and scaling. For example:
.. doctest::
>>> temperature_february = NormalDist(5, 2.5) # Celsius
>>> temperature_february * (9/5) + 32 # Fahrenheit
NormalDist(mu=41.0, sigma=4.5)
Dividing a constant by an instance of :class:`NormalDist` is not supported.
Since normal distributions arise from additive effects of independent
variables, it is possible to `add and subtract two normally distributed
random variables
<https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables>`_
represented as instances of :class:`NormalDist`. For example:
.. doctest::
>>> birth_weights = NormalDist.from_samples([2.5, 3.1, 2.1, 2.4, 2.7, 3.5])
>>> drug_effects = NormalDist(0.4, 0.15)
>>> combined = birth_weights + drug_effects
>>> f'mu={combined.mu :.1f} sigma={combined.sigma :.1f}'
'mu=3.1 sigma=0.5'
.. versionadded:: 3.8
:class:`NormalDist` Examples and Recipes
----------------------------------------
A :class:`NormalDist` readily solves classic probability problems.
For example, given `historical data for SAT exams
<https://blog.prepscholar.com/sat-standard-deviation>`_ showing that scores
are normally distributed with a mean of 1060 and standard deviation of 192,
determine the percentage of students with scores between 1100 and 1200:
.. doctest::
>>> sat = NormalDist(1060, 195)
>>> fraction = sat.cdf(1200) - sat.cdf(1100)
>>> f'{fraction * 100 :.1f}% score between 1100 and 1200'
'18.2% score between 1100 and 1200'
To estimate the distribution for a model than isn't easy to solve
analytically, :class:`NormalDist` can generate input samples for a `Monte
Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_ of the
model:
.. doctest::
>>> n = 100_000
>>> X = NormalDist(350, 15).samples(n)
>>> Y = NormalDist(47, 17).samples(n)
>>> Z = NormalDist(62, 6).samples(n)
>>> model_simulation = [x * y / z for x, y, z in zip(X, Y, Z)]
>>> NormalDist.from_samples(model_simulation) # doctest: +SKIP
NormalDist(mu=267.6516398754636, sigma=101.357284306067)
Normal distributions commonly arise in machine learning problems.
Wikipedia has a `nice example with a Naive Bayesian Classifier
<https://en.wikipedia.org/wiki/Naive_Bayes_classifier>`_. The challenge
is to guess a person's gender from measurements of normally distributed
features including height, weight, and foot size.
The `prior probability <https://en.wikipedia.org/wiki/Prior_probability>`_ of
being male or female is 50%:
.. doctest::
>>> prior_male = 0.5
>>> prior_female = 0.5
We also have a training dataset with measurements for eight people. These
measurements are assumed to be normally distributed, so we summarize the data
with :class:`NormalDist`:
.. doctest::
>>> height_male = NormalDist.from_samples([6, 5.92, 5.58, 5.92])
>>> height_female = NormalDist.from_samples([5, 5.5, 5.42, 5.75])
>>> weight_male = NormalDist.from_samples([180, 190, 170, 165])
>>> weight_female = NormalDist.from_samples([100, 150, 130, 150])
>>> foot_size_male = NormalDist.from_samples([12, 11, 12, 10])
>>> foot_size_female = NormalDist.from_samples([6, 8, 7, 9])
We observe a new person whose feature measurements are known but whose gender
is unknown:
.. doctest::
>>> ht = 6.0 # height
>>> wt = 130 # weight
>>> fs = 8 # foot size
The posterior is the product of the prior times each likelihood of a
feature measurement given the gender:
.. doctest::
>>> posterior_male = (prior_male * height_male.pdf(ht) *
... weight_male.pdf(wt) * foot_size_male.pdf(fs))
>>> posterior_female = (prior_female * height_female.pdf(ht) *
... weight_female.pdf(wt) * foot_size_female.pdf(fs))
The final prediction is awarded to the largest posterior -- this is known as
the `maximum a posteriori
<https://en.wikipedia.org/wiki/Maximum_a_posteriori_estimation>`_ or MAP:
.. doctest::
>>> 'male' if posterior_male > posterior_female else 'female'
'female'
..
# This modelines must appear within the last ten lines of the file.
kate: indent-width 3; remove-trailing-space on; replace-tabs on; encoding utf-8;
......@@ -278,6 +278,32 @@ Added :func:`statistics.fmean` as a faster, floating point variant of
:func:`statistics.mean()`. (Contributed by Raymond Hettinger and
Steven D'Aprano in :issue:`35904`.)
Added :class:`statistics.NormalDist`, a tool for creating
and manipulating normal distributions of a random variable.
(Contributed by Raymond Hettinger in :issue:`36018`.)
::
>>> temperature_feb = NormalDist.from_samples([4, 12, -3, 2, 7, 14])
>>> temperature_feb
NormalDist(mu=6.0, sigma=6.356099432828281)
>>> temperature_feb.cdf(3) # Chance of being under 3 degrees
0.3184678262814532
>>> # Relative chance of being 7 degrees versus 10 degrees
>>> temperature_feb.pdf(7) / temperature_feb.pdf(10)
1.2039930378537762
>>> el_nino = NormalDist(4, 2.5)
>>> temperature_feb += el_nino # Add in a climate effect
>>> temperature_feb
NormalDist(mu=10.0, sigma=6.830080526611674)
>>> temperature_feb * (9/5) + 32 # Convert to Fahrenheit
NormalDist(mu=50.0, sigma=12.294144947901014)
>>> temperature_feb.samples(3) # Generate random samples
[7.672102882379219, 12.000027119750287, 4.647488369766392]
tokenize
--------
......
......@@ -76,7 +76,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
"""
__all__ = [ 'StatisticsError',
__all__ = [ 'StatisticsError', 'NormalDist',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
'mean', 'mode', 'harmonic_mean', 'fmean',
......@@ -85,11 +85,13 @@ __all__ = [ 'StatisticsError',
import collections
import math
import numbers
import random
from fractions import Fraction
from decimal import Decimal
from itertools import groupby
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau
......@@ -694,3 +696,155 @@ def pstdev(data, mu=None):
return var.sqrt()
except AttributeError:
return math.sqrt(var)
## Normal Distribution #####################################################
class NormalDist:
'Normal distribution of a random variable'
# https://en.wikipedia.org/wiki/Normal_distribution
# https://en.wikipedia.org/wiki/Variance#Properties
__slots__ = ('mu', 'sigma')
def __init__(self, mu=0.0, sigma=1.0):
'NormalDist where mu is the mean and sigma is the standard deviation'
if sigma < 0.0:
raise StatisticsError('sigma must be non-negative')
self.mu = mu
self.sigma = sigma
@classmethod
def from_samples(cls, data):
'Make a normal distribution instance from sample data'
if not isinstance(data, (list, tuple)):
data = list(data)
xbar = fmean(data)
return cls(xbar, stdev(data, xbar))
def samples(self, n, seed=None):
'Generate *n* samples for a given mean and standard deviation'
gauss = random.gauss if seed is None else random.Random(seed).gauss
mu, sigma = self.mu, self.sigma
return [gauss(mu, sigma) for i in range(n)]
def pdf(self, x):
'Probability density function: P(x <= X < x+dx) / dx'
variance = self.sigma ** 2.0
if not variance:
raise StatisticsError('pdf() not defined when sigma is zero')
return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance)
def cdf(self, x):
'Cumulative density function: P(X <= x)'
if not self.sigma:
raise StatisticsError('cdf() not defined when sigma is zero')
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
@property
def variance(self):
'Square of the standard deviation'
return self.sigma ** 2.0
def __add__(x1, x2):
if isinstance(x2, NormalDist):
return NormalDist(x1.mu + x2.mu, hypot(x1.sigma, x2.sigma))
return NormalDist(x1.mu + x2, x1.sigma)
def __sub__(x1, x2):
if isinstance(x2, NormalDist):
return NormalDist(x1.mu - x2.mu, hypot(x1.sigma, x2.sigma))
return NormalDist(x1.mu - x2, x1.sigma)
def __mul__(x1, x2):
return NormalDist(x1.mu * x2, x1.sigma * fabs(x2))
def __truediv__(x1, x2):
return NormalDist(x1.mu / x2, x1.sigma / fabs(x2))
def __pos__(x1):
return x1
def __neg__(x1):
return NormalDist(-x1.mu, x1.sigma)
__radd__ = __add__
def __rsub__(x1, x2):
return -(x1 - x2)
__rmul__ = __mul__
def __eq__(x1, x2):
if not isinstance(x2, NormalDist):
return NotImplemented
return (x1.mu, x2.sigma) == (x2.mu, x2.sigma)
def __repr__(self):
return f'{type(self).__name__}(mu={self.mu!r}, sigma={self.sigma!r})'
if __name__ == '__main__':
# Show math operations computed analytically in comparsion
# to a monte carlo simulation of the same operations
from math import isclose
from operator import add, sub, mul, truediv
from itertools import repeat
g1 = NormalDist(10, 20)
g2 = NormalDist(-5, 25)
# Test scaling by a constant
assert (g1 * 5 / 5).mu == g1.mu
assert (g1 * 5 / 5).sigma == g1.sigma
n = 100_000
G1 = g1.samples(n)
G2 = g2.samples(n)
for func in (add, sub):
print(f'\nTest {func.__name__} with another NormalDist:')
print(func(g1, g2))
print(NormalDist.from_samples(map(func, G1, G2)))
const = 11
for func in (add, sub, mul, truediv):
print(f'\nTest {func.__name__} with a constant:')
print(func(g1, const))
print(NormalDist.from_samples(map(func, G1, repeat(const))))
const = 19
for func in (add, sub, mul):
print(f'\nTest constant with {func.__name__}:')
print(func(const, g1))
print(NormalDist.from_samples(map(func, repeat(const), G1)))
def assert_close(G1, G2):
assert isclose(G1.mu, G1.mu, rel_tol=0.01), (G1, G2)
assert isclose(G1.sigma, G2.sigma, rel_tol=0.01), (G1, G2)
X = NormalDist(-105, 73)
Y = NormalDist(31, 47)
s = 32.75
n = 100_000
S = NormalDist.from_samples([x + s for x in X.samples(n)])
assert_close(X + s, S)
S = NormalDist.from_samples([x - s for x in X.samples(n)])
assert_close(X - s, S)
S = NormalDist.from_samples([x * s for x in X.samples(n)])
assert_close(X * s, S)
S = NormalDist.from_samples([x / s for x in X.samples(n)])
assert_close(X / s, S)
S = NormalDist.from_samples([x + y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X + Y, S)
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X - Y, S)
......@@ -5,9 +5,11 @@ approx_equal function.
import collections
import collections.abc
import copy
import decimal
import doctest
import math
import pickle
import random
import sys
import unittest
......@@ -2025,6 +2027,181 @@ class TestStdev(VarianceStdevMixin, NumericTestCase):
expected = math.sqrt(statistics.variance(data))
self.assertEqual(self.func(data), expected)
class TestNormalDist(unittest.TestCase):
def test_slots(self):
nd = statistics.NormalDist(300, 23)
with self.assertRaises(TypeError):
vars(nd)
self.assertEqual(nd.__slots__, ('mu', 'sigma'))
def test_instantiation_and_attributes(self):
nd = statistics.NormalDist(500, 17)
self.assertEqual(nd.mu, 500)
self.assertEqual(nd.sigma, 17)
self.assertEqual(nd.variance, 17**2)
# default arguments
nd = statistics.NormalDist()
self.assertEqual(nd.mu, 0)
self.assertEqual(nd.sigma, 1)
self.assertEqual(nd.variance, 1**2)
# error case: negative sigma
with self.assertRaises(statistics.StatisticsError):
statistics.NormalDist(500, -10)
def test_alternative_constructor(self):
NormalDist = statistics.NormalDist
data = [96, 107, 90, 92, 110]
# list input
self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
# tuple input
self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9))
# iterator input
self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
# error cases
with self.assertRaises(statistics.StatisticsError):
NormalDist.from_samples([]) # empty input
with self.assertRaises(statistics.StatisticsError):
NormalDist.from_samples([10]) # only one input
def test_sample_generation(self):
NormalDist = statistics.NormalDist
mu, sigma = 10_000, 3.0
X = NormalDist(mu, sigma)
n = 1_000
data = X.samples(n)
self.assertEqual(len(data), n)
self.assertEqual(set(map(type, data)), {float})
# mean(data) expected to fall within 8 standard deviations
xbar = statistics.mean(data)
self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)
# verify that seeding makes reproducible sequences
n = 100
data1 = X.samples(n, seed='happiness and joy')
data2 = X.samples(n, seed='trouble and despair')
data3 = X.samples(n, seed='happiness and joy')
data4 = X.samples(n, seed='trouble and despair')
self.assertEqual(data1, data3)
self.assertEqual(data2, data4)
self.assertNotEqual(data1, data2)
# verify that subclass type is honored
class NewNormalDist(NormalDist):
pass
nnd = NewNormalDist(200, 5)
self.assertEqual(type(nnd), NewNormalDist)
def test_pdf(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
# Verify peak around center
self.assertLess(X.pdf(99), X.pdf(100))
self.assertLess(X.pdf(101), X.pdf(100))
# Test symmetry
self.assertAlmostEqual(X.pdf(99), X.pdf(101))
self.assertAlmostEqual(X.pdf(98), X.pdf(102))
self.assertAlmostEqual(X.pdf(97), X.pdf(103))
# Test vs CDF
dx = 2.0 ** -10
for x in range(90, 111):
est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx
self.assertAlmostEqual(X.pdf(x), est_pdf, places=4)
# Error case: variance is zero
Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError):
Y.pdf(90)
def test_cdf(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
cdfs = [X.cdf(x) for x in range(1, 200)]
self.assertEqual(set(map(type, cdfs)), {float})
# Verify montonic
self.assertEqual(cdfs, sorted(cdfs))
# Verify center
self.assertAlmostEqual(X.cdf(100), 0.50)
# Error case: variance is zero
Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError):
Y.cdf(90)
def test_same_type_addition_and_subtraction(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 12)
Y = NormalDist(40, 5)
self.assertEqual(X + Y, NormalDist(140, 13)) # __add__
self.assertEqual(X - Y, NormalDist(60, 13)) # __sub__
def test_translation_and_scaling(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
y = 10
self.assertEqual(+X, NormalDist(100, 15)) # __pos__
self.assertEqual(-X, NormalDist(-100, 15)) # __neg__
self.assertEqual(X + y, NormalDist(110, 15)) # __add__
self.assertEqual(y + X, NormalDist(110, 15)) # __radd__
self.assertEqual(X - y, NormalDist(90, 15)) # __sub__
self.assertEqual(y - X, NormalDist(-90, 15)) # __rsub__
self.assertEqual(X * y, NormalDist(1000, 150)) # __mul__
self.assertEqual(y * X, NormalDist(1000, 150)) # __rmul__
self.assertEqual(X / y, NormalDist(10, 1.5)) # __truediv__
with self.assertRaises(TypeError):
y / X
def test_equality(self):
NormalDist = statistics.NormalDist
nd1 = NormalDist()
nd2 = NormalDist(2, 4)
nd3 = NormalDist()
self.assertNotEqual(nd1, nd2)
self.assertEqual(nd1, nd3)
# Test NotImplemented when types are different
class A:
def __eq__(self, other):
return 10
a = A()
self.assertEqual(nd1.__eq__(a), NotImplemented)
self.assertEqual(nd1 == a, 10)
self.assertEqual(a == nd1, 10)
# All subclasses to compare equal giving the same behavior
# as list, tuple, int, float, complex, str, dict, set, etc.
class SizedNormalDist(NormalDist):
def __init__(self, mu, sigma, n):
super().__init__(mu, sigma)
self.n = n
s = SizedNormalDist(100, 15, 57)
nd4 = NormalDist(100, 15)
self.assertEqual(s, nd4)
# Don't allow duck type equality because we wouldn't
# want a lognormal distribution to compare equal
# to a normal distribution with the same parameters
class LognormalDist:
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
lnd = LognormalDist(100, 15)
nd = NormalDist(100, 15)
self.assertNotEqual(nd, lnd)
def test_pickle_and_copy(self):
nd = statistics.NormalDist(37.5, 5.625)
nd1 = copy.copy(nd)
self.assertEqual(nd, nd1)
nd2 = copy.deepcopy(nd)
self.assertEqual(nd, nd2)
nd3 = pickle.loads(pickle.dumps(nd))
self.assertEqual(nd, nd3)
def test_repr(self):
nd = statistics.NormalDist(37.5, 5.625)
self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
# === Run tests ===
......
Add statistics.NormalDist, a tool for creating and manipulating normal
distributions of random variable. Features a composite class that treats
the mean and standard deviation of measurement data as single entity.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment