Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
47d99872
Commit
47d99872
authored
Feb 21, 2019
by
Raymond Hettinger
Committed by
GitHub
Feb 21, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bpo-35904: Add statistics.fmean() (GH-11892)
parent
f36f8925
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
104 additions
and
3 deletions
+104
-3
Doc/library/random.rst
Doc/library/random.rst
+2
-2
Doc/library/statistics.rst
Doc/library/statistics.rst
+18
-0
Doc/whatsnew/3.8.rst
Doc/whatsnew/3.8.rst
+9
-0
Lib/statistics.py
Lib/statistics.py
+28
-1
Lib/test/test_statistics.py
Lib/test/test_statistics.py
+45
-0
Misc/NEWS.d/next/Library/2019-02-16-00-55-52.bpo-35904.V88MCD.rst
...S.d/next/Library/2019-02-16-00-55-52.bpo-35904.V88MCD.rst
+2
-0
No files found.
Doc/library/random.rst
View file @
47d99872
...
...
@@ -404,7 +404,7 @@ with replacement to estimate a confidence interval for the mean of a sample of
size five::
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import mean
from statistics import
fmean as
mean
from random import choices
data = 1, 2, 4, 4, 10
...
...
@@ -419,7 +419,7 @@ to determine the statistical significance or `p-value
between the effects of a drug versus a placebo::
# Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import mean
from statistics import
fmean as
mean
from random import shuffle
drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
...
...
Doc/library/statistics.rst
View file @
47d99872
...
...
@@ -39,6 +39,7 @@ or sample.
======================= =============================================
:func:`mean` Arithmetic mean ("average") of data.
:func:`fmean` Fast, floating point arithmetic mean.
:func:`harmonic_mean` Harmonic mean of data.
:func:`median` Median (middle value) of data.
:func:`median_low` Low median of data.
...
...
@@ -111,6 +112,23 @@ However, for reading convenience, most of the examples show sorted sequences.
``mean(data)`` is equivalent to calculating the true population mean μ.
.. function:: fmean(data)
Convert *data* to floats and compute the arithmetic mean.
This runs faster than the :func:`mean` function and it always returns a
:class:`float`. The result is highly accurate but not as perfect as
:func:`mean`. If the input dataset is empty, raises a
:exc:`StatisticsError`.
.. doctest::
>>> fmean([3.5, 4.0, 5.25])
4.25
.. versionadded:: 3.8
.. function:: harmonic_mean(data)
Return the harmonic mean of *data*, a sequence or iterator of
...
...
Doc/whatsnew/3.8.rst
View file @
47d99872
...
...
@@ -254,6 +254,15 @@ Added :attr:`SSLContext.post_handshake_auth` to enable and
post-handshake authentication.
(Contributed by Christian Heimes in :issue:`34670`.)
statistics
----------
Added :func:`statistics.fmean` as a faster, floating point variant of
:func:`statistics.mean()`. (Contributed by Raymond Hettinger and
Steven D'Aprano in :issue:`35904`.)
tokenize
--------
...
...
Lib/statistics.py
View file @
47d99872
...
...
@@ -79,7 +79,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
__all__
=
[
'StatisticsError'
,
'pstdev'
,
'pvariance'
,
'stdev'
,
'variance'
,
'median'
,
'median_low'
,
'median_high'
,
'median_grouped'
,
'mean'
,
'mode'
,
'harmonic_mean'
,
'mean'
,
'mode'
,
'harmonic_mean'
,
'fmean'
,
]
import
collections
...
...
@@ -312,6 +312,33 @@ def mean(data):
assert
count
==
n
return
_convert
(
total
/
n
,
T
)
def
fmean
(
data
):
""" Convert data to floats and compute the arithmetic mean.
This runs faster than the mean() function and it always returns a float.
The result is highly accurate but not as perfect as mean().
If the input dataset is empty, it raises a StatisticsError.
>>> fmean([3.5, 4.0, 5.25])
4.25
"""
try
:
n
=
len
(
data
)
except
TypeError
:
# Handle iterators that do not define __len__().
n
=
0
def
count
(
x
):
nonlocal
n
n
+=
1
return
x
total
=
math
.
fsum
(
map
(
count
,
data
))
else
:
total
=
math
.
fsum
(
data
)
try
:
return
total
/
n
except
ZeroDivisionError
:
raise
StatisticsError
(
'fmean requires at least one data point'
)
from
None
def
harmonic_mean
(
data
):
"""Return the harmonic mean of data.
...
...
Lib/test/test_statistics.py
View file @
47d99872
...
...
@@ -1810,6 +1810,51 @@ class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
# counts, this should raise.
self
.
assertRaises
(
statistics
.
StatisticsError
,
self
.
func
,
data
)
class
TestFMean
(
unittest
.
TestCase
):
def
test_basics
(
self
):
fmean
=
statistics
.
fmean
D
=
Decimal
F
=
Fraction
for
data
,
expected_mean
,
kind
in
[
([
3.5
,
4.0
,
5.25
],
4.25
,
'floats'
),
([
D
(
'3.5'
),
D
(
'4.0'
),
D
(
'5.25'
)],
4.25
,
'decimals'
),
([
F
(
7
,
2
),
F
(
4
,
1
),
F
(
21
,
4
)],
4.25
,
'fractions'
),
([
True
,
False
,
True
,
True
,
False
],
0.60
,
'booleans'
),
([
3.5
,
4
,
F
(
21
,
4
)],
4.25
,
'mixed types'
),
((
3.5
,
4.0
,
5.25
),
4.25
,
'tuple'
),
(
iter
([
3.5
,
4.0
,
5.25
]),
4.25
,
'iterator'
),
]:
actual_mean
=
fmean
(
data
)
self
.
assertIs
(
type
(
actual_mean
),
float
,
kind
)
self
.
assertEqual
(
actual_mean
,
expected_mean
,
kind
)
def
test_error_cases
(
self
):
fmean
=
statistics
.
fmean
StatisticsError
=
statistics
.
StatisticsError
with
self
.
assertRaises
(
StatisticsError
):
fmean
([])
# empty input
with
self
.
assertRaises
(
StatisticsError
):
fmean
(
iter
([]))
# empty iterator
with
self
.
assertRaises
(
TypeError
):
fmean
(
None
)
# non-iterable input
with
self
.
assertRaises
(
TypeError
):
fmean
([
10
,
None
,
20
])
# non-numeric input
with
self
.
assertRaises
(
TypeError
):
fmean
()
# missing data argument
with
self
.
assertRaises
(
TypeError
):
fmean
([
10
,
20
,
60
],
70
)
# too many arguments
def
test_special_values
(
self
):
# Rules for special values are inherited from math.fsum()
fmean
=
statistics
.
fmean
NaN
=
float
(
'Nan'
)
Inf
=
float
(
'Inf'
)
self
.
assertTrue
(
math
.
isnan
(
fmean
([
10
,
NaN
])),
'nan'
)
self
.
assertTrue
(
math
.
isnan
(
fmean
([
NaN
,
Inf
])),
'nan and infinity'
)
self
.
assertTrue
(
math
.
isinf
(
fmean
([
10
,
Inf
])),
'infinity'
)
with
self
.
assertRaises
(
ValueError
):
fmean
([
Inf
,
-
Inf
])
# === Tests for variances and standard deviations ===
...
...
Misc/NEWS.d/next/Library/2019-02-16-00-55-52.bpo-35904.V88MCD.rst
0 → 100644
View file @
47d99872
Added statistics.fmean() as a faster, floating point variant of the existing
mean() function.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment