Commit 5ae299ac authored by Serhiy Storchaka's avatar Serhiy Storchaka Committed by GitHub

bpo-37128: Add math.perm(). (GH-13731)

parent d71f3170
......@@ -207,6 +207,19 @@ Number-theoretic and representation functions
of *x* and are floats.
.. function:: perm(n, k)
Return the number of ways to choose *k* items from *n* items
without repetition and with order.
It is mathematically equal to the expression ``n! / (n - k)!``.
Raises :exc:`TypeError` if the arguments not integers.
Raises :exc:`ValueError` if the arguments are negative or if *k* > *n*.
.. versionadded:: 3.8
.. function:: prod(iterable, *, start=1)
Calculate the product of all the elements in the input *iterable*.
......
......@@ -240,6 +240,9 @@ def result_check(expected, got, ulp_tol=5, abs_tol=0.0):
else:
return None
class IntSubclass(int):
pass
# Class providing an __index__ method.
class MyIndexable(object):
def __init__(self, value):
......@@ -1862,6 +1865,64 @@ class IsCloseTests(unittest.TestCase):
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)
def testPerm(self):
perm = math.perm
factorial = math.factorial
# Test if factorial defintion is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(perm(n, k),
factorial(n) // factorial(n - k))
# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))
# Test corner cases
for n in range(1, 100):
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, n), factorial(n))
# Raises TypeError if any argument is non-integer or argument count is
# not 2
self.assertRaises(TypeError, perm, 10, 1.0)
self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, perm, 10, "1")
self.assertRaises(TypeError, perm, 10.0, 1)
self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, perm, "10", 1)
self.assertRaises(TypeError, perm, 10)
self.assertRaises(TypeError, perm, 10, 1, 3)
self.assertRaises(TypeError, perm)
# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, perm, -1, 1)
self.assertRaises(ValueError, perm, -2**1000, 1)
self.assertRaises(ValueError, perm, 1, -1)
self.assertRaises(ValueError, perm, 1, -2**1000)
# Raises value error if k is greater than n
self.assertRaises(ValueError, perm, 1, 2)
self.assertRaises(ValueError, perm, 1, 2**1000)
n = 2**1000
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, 2), n * (n-1))
self.assertRaises((OverflowError, MemoryError), perm, n, n)
for n, k in (True, True), (True, False), (False, False):
self.assertEqual(perm(n, k), 1)
self.assertIs(type(perm(n, k)), int)
self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
for k in range(3):
self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)
def testComb(self):
comb = math.comb
factorial = math.factorial
......@@ -1925,8 +1986,11 @@ class IsCloseTests(unittest.TestCase):
for n, k in (True, True), (True, False), (False, False):
self.assertEqual(comb(n, k), 1)
self.assertIs(type(comb(n, k)), int)
self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(2))), int)
for k in range(3):
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)
def test_main():
......
......@@ -638,6 +638,41 @@ exit:
return return_value;
}
PyDoc_STRVAR(math_perm__doc__,
"perm($module, n, k, /)\n"
"--\n"
"\n"
"Number of ways to choose k items from n items without repetition and with order.\n"
"\n"
"It is mathematically equal to the expression n! / (n - k)!.\n"
"\n"
"Raises TypeError if the arguments are not integers.\n"
"Raises ValueError if the arguments are negative or if k > n.");
#define MATH_PERM_METHODDEF \
{"perm", (PyCFunction)(void(*)(void))math_perm, METH_FASTCALL, math_perm__doc__},
static PyObject *
math_perm_impl(PyObject *module, PyObject *n, PyObject *k);
static PyObject *
math_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *n;
PyObject *k;
if (!_PyArg_CheckPositional("perm", nargs, 2, 2)) {
goto exit;
}
n = args[0];
k = args[1];
return_value = math_perm_impl(module, n, k);
exit:
return return_value;
}
PyDoc_STRVAR(math_comb__doc__,
"comb($module, n, k, /)\n"
"--\n"
......@@ -674,4 +709,4 @@ math_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
exit:
return return_value;
}
/*[clinic end generated code: output=6709521e5e1d90ec input=a9049054013a1b77]*/
/*[clinic end generated code: output=a82b0e705b6d0ec0 input=a9049054013a1b77]*/
......@@ -2998,6 +2998,120 @@ math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
}
/*[clinic input]
math.perm
n: object
k: object
/
Number of ways to choose k items from n items without repetition and with order.
It is mathematically equal to the expression n! / (n - k)!.
Raises TypeError if the arguments are not integers.
Raises ValueError if the arguments are negative or if k > n.
[clinic start generated code]*/
static PyObject *
math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
/*[clinic end generated code: output=e021a25469653e23 input=f71ee4f6ff26be24]*/
{
PyObject *result = NULL, *factor = NULL;
int overflow, cmp;
long long i, factors;
n = PyNumber_Index(n);
if (n == NULL) {
return NULL;
}
if (!PyLong_CheckExact(n)) {
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
if (n == NULL) {
return NULL;
}
}
k = PyNumber_Index(k);
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
if (!PyLong_CheckExact(k)) {
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
}
if (Py_SIZE(n) < 0) {
PyErr_SetString(PyExc_ValueError,
"n must be a non-negative integer");
goto error;
}
cmp = PyObject_RichCompareBool(n, k, Py_LT);
if (cmp != 0) {
if (cmp > 0) {
PyErr_SetString(PyExc_ValueError,
"k must be an integer less than or equal to n");
}
goto error;
}
factors = PyLong_AsLongLongAndOverflow(k, &overflow);
if (overflow > 0) {
PyErr_Format(PyExc_OverflowError,
"k must not exceed %lld",
LLONG_MAX);
goto error;
}
else if (overflow < 0 || factors < 0) {
if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_ValueError,
"k must be a non-negative integer");
}
goto error;
}
if (factors == 0) {
result = PyLong_FromLong(1);
goto done;
}
result = n;
Py_INCREF(result);
if (factors == 1) {
goto done;
}
factor = n;
Py_INCREF(factor);
for (i = 1; i < factors; ++i) {
Py_SETREF(factor, PyNumber_Subtract(factor, _PyLong_One));
if (factor == NULL) {
goto error;
}
Py_SETREF(result, PyNumber_Multiply(result, factor));
if (result == NULL) {
goto error;
}
}
Py_DECREF(factor);
done:
Py_DECREF(n);
Py_DECREF(k);
return result;
error:
Py_XDECREF(factor);
Py_XDECREF(result);
Py_DECREF(n);
Py_DECREF(k);
return NULL;
}
/*[clinic input]
math.comb
......@@ -3028,11 +3142,24 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
if (n == NULL) {
return NULL;
}
if (!PyLong_CheckExact(n)) {
Py_SETREF(n, _PyLong_Copy((PyLongObject *)n));
if (n == NULL) {
return NULL;
}
}
k = PyNumber_Index(k);
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
if (!PyLong_CheckExact(k)) {
Py_SETREF(k, _PyLong_Copy((PyLongObject *)k));
if (k == NULL) {
Py_DECREF(n);
return NULL;
}
}
if (Py_SIZE(n) < 0) {
PyErr_SetString(PyExc_ValueError,
......@@ -3050,7 +3177,7 @@ math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
"k must be an integer less than or equal to n");
goto error;
}
cmp = PyObject_RichCompareBool(k, temp, Py_GT);
cmp = PyObject_RichCompareBool(temp, k, Py_LT);
if (cmp > 0) {
Py_SETREF(k, temp);
}
......@@ -3174,6 +3301,7 @@ static PyMethodDef math_methods[] = {
{"tanh", math_tanh, METH_O, math_tanh_doc},
MATH_TRUNC_METHODDEF
MATH_PROD_METHODDEF
MATH_PERM_METHODDEF
MATH_COMB_METHODDEF
{NULL, NULL} /* sentinel */
};
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment