Commit 5c08ce9b authored by Mark Dickinson's avatar Mark Dickinson Committed by GitHub

bpo-36957: Speed up math.isqrt (#13405)

* Add math.isqrt function computing the integer square root.

* Code cleanup: remove redundant comments, rename some variables.

* Tighten up code a bit more; use Py_XDECREF to simplify error handling.

* Update Modules/mathmodule.c
Co-Authored-By: default avatarSerhiy Storchaka <storchaka@gmail.com>

* Update Modules/mathmodule.c

Use real argument clinic type instead of an alias
Co-Authored-By: default avatarSerhiy Storchaka <storchaka@gmail.com>

* Add proof sketch

* Updates from review.

* Correct and expand documentation.

* Fix bad reference handling on error; make some variables block-local; other tidying.

* Style and consistency fixes.

* Add missing error check; don't try to DECREF a NULL a

* Simplify some error returns.

* Another two test cases:

- clarify that floats are rejected even if they happen to be
  squares of small integers
- TypeError beats ValueError for a negative float

* Add fast path for small inputs. Needs tests.

* Speed up isqrt for n >= 2**64 as well; add extra tests.

* Reduce number of test-cases to avoid dominating the run-time of test_math.

* Don't perform unnecessary extra iterations when computing c_bit_length.

* Abstract common uint64_t code out into a separate function.

* Cleanup.

* Add a missing Py_DECREF in an error branch. More cleanup.

* Update Modules/mathmodule.c

Add missing `static` declaration to helper function.
Co-Authored-By: default avatarSerhiy Storchaka <storchaka@gmail.com>

* Add missing backtick.
parent 7c59362a
...@@ -917,6 +917,7 @@ class MathTests(unittest.TestCase): ...@@ -917,6 +917,7 @@ class MathTests(unittest.TestCase):
test_values = ( test_values = (
list(range(1000)) list(range(1000))
+ list(range(10**6 - 1000, 10**6 + 1000)) + list(range(10**6 - 1000, 10**6 + 1000))
+ [2**e + i for e in range(60, 200) for i in range(-40, 40)]
+ [3**9999, 10**5001] + [3**9999, 10**5001]
) )
......
...@@ -1620,6 +1620,22 @@ completes the proof sketch. ...@@ -1620,6 +1620,22 @@ completes the proof sketch.
*/ */
/* Approximate square root of a large 64-bit integer.
Given `n` satisfying `2**62 <= n < 2**64`, return `a`
satisfying `(a - 1)**2 < n < (a + 1)**2`. */
static uint64_t
_approximate_isqrt(uint64_t n)
{
uint32_t u = 1U + (n >> 62);
u = (u << 1) + (n >> 59) / u;
u = (u << 3) + (n >> 53) / u;
u = (u << 7) + (n >> 41) / u;
return (u << 15) + (n >> 17) / u;
}
/*[clinic input] /*[clinic input]
math.isqrt math.isqrt
...@@ -1633,8 +1649,9 @@ static PyObject * ...@@ -1633,8 +1649,9 @@ static PyObject *
math_isqrt(PyObject *module, PyObject *n) math_isqrt(PyObject *module, PyObject *n)
/*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/ /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
{ {
int a_too_large, s; int a_too_large, c_bit_length;
size_t c, d; size_t c, d;
uint64_t m, u;
PyObject *a = NULL, *b; PyObject *a = NULL, *b;
n = PyNumber_Index(n); n = PyNumber_Index(n);
...@@ -1653,24 +1670,55 @@ math_isqrt(PyObject *module, PyObject *n) ...@@ -1653,24 +1670,55 @@ math_isqrt(PyObject *module, PyObject *n)
return PyLong_FromLong(0); return PyLong_FromLong(0);
} }
/* c = (n.bit_length() - 1) // 2 */
c = _PyLong_NumBits(n); c = _PyLong_NumBits(n);
if (c == (size_t)(-1)) { if (c == (size_t)(-1)) {
goto error; goto error;
} }
c = (c - 1U) / 2U; c = (c - 1U) / 2U;
/* s = c.bit_length() */ /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
s = 0; fast, almost branch-free algorithm. In the final correction, we use `u*u
while ((c >> s) > 0) { - 1 >= m` instead of the simpler `u*u > m` in order to get the correct
++s; result in the corner case where `u=2**32`. */
if (c <= 31U) {
m = (uint64_t)PyLong_AsUnsignedLongLong(n);
Py_DECREF(n);
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
return NULL;
}
u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
u -= u * u - 1U >= m;
return PyLong_FromUnsignedLongLong((unsigned long long)u);
} }
a = PyLong_FromLong(1); /* Slow path: n >= 2**64. We perform the first five iterations in C integer
arithmetic, then switch to using Python long integers. */
/* From n >= 2**64 it follows that c.bit_length() >= 6. */
c_bit_length = 6;
while ((c >> c_bit_length) > 0U) {
++c_bit_length;
}
/* Initialise d and a. */
d = c >> (c_bit_length - 5);
b = _PyLong_Rshift(n, 2U*c - 62U);
if (b == NULL) {
goto error;
}
m = (uint64_t)PyLong_AsUnsignedLongLong(b);
Py_DECREF(b);
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
goto error;
}
u = _approximate_isqrt(m) >> (31U - d);
a = PyLong_FromUnsignedLongLong((unsigned long long)u);
if (a == NULL) { if (a == NULL) {
goto error; goto error;
} }
d = 0;
while (--s >= 0) { for (int s = c_bit_length - 6; s >= 0; --s) {
PyObject *q; PyObject *q;
size_t e = d; size_t e = d;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment