Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
66821e70
Commit
66821e70
authored
Mar 08, 1998
by
Fred Drake
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Markup adjustments.
parent
5a83105e
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
50 additions
and
46 deletions
+50
-46
Doc/lib/librandom.tex
Doc/lib/librandom.tex
+25
-23
Doc/librandom.tex
Doc/librandom.tex
+25
-23
No files found.
Doc/lib/librandom.tex
View file @
66821e70
...
...
@@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular
uniform and von Mises distributions are available.
The module exports the following functions, which are exactly
equivalent to those in the
\code
{
whrandom
}
module:
\code
{
choice
}
,
\code
{
randint
}
,
\code
{
random
}
,
\code
{
uniform
}
. See the documentation
for the
\code
{
whrandom
}
module for these functions.
equivalent to those in the
\module
{
whrandom
}
module:
\function
{
choice()
}
,
\function
{
randint()
}
,
\function
{
random()
}
and
\function
{
uniform()
}
. See the documentation for the
\module
{
whrandom
}
module for these functions.
The following functions specific to the
\
cod
e
{
random
}
module are also
The following functions specific to the
\
modul
e
{
random
}
module are also
defined, and all return real values. Function parameters are named
after the corresponding variables in the distribution's equation, as
used in common mathematical practice; most of these equations can be
found in any statistics text.
\setindexsubitem
{
(in module random)
}
\begin{funcdesc}
{
betavariate
}{
alpha
\
,
beta
}
Beta distribution. Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>-1
}
.
\begin{funcdesc}
{
betavariate
}{
alpha, beta
}
Beta distribution. Conditions on the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>-1
}
.
Returned values will range between 0 and 1.
\end{funcdesc}
\begin{funcdesc}
{
cunifvariate
}{
mean
\
,
arc
}
\begin{funcdesc}
{
cunifvariate
}{
mean, arc
}
Circular uniform distribution.
\var
{
mean
}
is the mean angle, and
\var
{
arc
}
is the range of the distribution, centered around the mean
angle. Both values must be expressed in radians, and can range
between 0 and
\code
{
pi
}
. Returned values will range between
\code
{
mean - arc/2
}
and
\code
{
mean + arc
/2
}
.
\code
{
\var
{
mean
}
-
\var
{
arc
}
/2
}
and
\code
{
\var
{
mean
}
+
\var
{
arc
}
/2
}
.
\end{funcdesc}
\begin{funcdesc}
{
expovariate
}{
lambd
}
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired mean.
(The parameter would be called ``lambda'', but that's also a reserved
word in Python.) Returned values will range from 0 to positive infinity.
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired
mean. (The parameter would be called ``lambda'', but that is a
reserved word in Python.) Returned values will range from 0 to
positive infinity.
\end{funcdesc}
\begin{funcdesc}
{
gamma
}{
alpha
\
,
beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>0
}
.
\begin{funcdesc}
{
gamma
}{
alpha, beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on
the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>0
}
.
\end{funcdesc}
\begin{funcdesc}
{
gauss
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
gauss
}{
mu, sigma
}
Gaussian distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation. This is slightly faster than the
\
code
{
normalvariate
}
function defined below.
\
function
{
normalvariate()
}
function defined below.
\end{funcdesc}
\begin{funcdesc}
{
lognormvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
lognormvariate
}{
mu, sigma
}
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean
\var
{
mu
}
and
standard deviation
\var
{
sigma
}
\var
{
mu
}
can have any value, and
\var
{
sigma
}
standard deviation
\var
{
sigma
}
.
\var
{
mu
}
can have any value, and
\var
{
sigma
}
must be greater than zero.
\end{funcdesc}
\begin{funcdesc}
{
normalvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
normalvariate
}{
mu, sigma
}
Normal distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation.
\end{funcdesc}
\begin{funcdesc}
{
vonmisesvariate
}{
mu
\
,
kappa
}
\begin{funcdesc}
{
vonmisesvariate
}{
mu, kappa
}
\var
{
mu
}
is the mean angle, expressed in radians between 0 and pi,
and
\var
{
kappa
}
is the concentration parameter, which must be greater
then or equal to zero. If
\var
{
kappa
}
is equal to zero, this
distribution reduces to a uniform random angle over the range 0 to
\code
{
2*pi
}
.
$
2
\pi
$
.
\end{funcdesc}
\begin{funcdesc}
{
paretovariate
}{
alpha
}
...
...
@@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter.
\end{funcdesc}
\begin{funcdesc}
{
weibullvariate
}{
alpha, beta
}
Weibull distribution.
\var
{
alpha
}
is the scale parameter
,
and
Weibull distribution.
\var
{
alpha
}
is the scale parameter and
\var
{
beta
}
is the shape parameter.
\end{funcdesc}
...
...
Doc/librandom.tex
View file @
66821e70
...
...
@@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular
uniform and von Mises distributions are available.
The module exports the following functions, which are exactly
equivalent to those in the
\code
{
whrandom
}
module:
\code
{
choice
}
,
\code
{
randint
}
,
\code
{
random
}
,
\code
{
uniform
}
. See the documentation
for the
\code
{
whrandom
}
module for these functions.
equivalent to those in the
\module
{
whrandom
}
module:
\function
{
choice()
}
,
\function
{
randint()
}
,
\function
{
random()
}
and
\function
{
uniform()
}
. See the documentation for the
\module
{
whrandom
}
module for these functions.
The following functions specific to the
\
cod
e
{
random
}
module are also
The following functions specific to the
\
modul
e
{
random
}
module are also
defined, and all return real values. Function parameters are named
after the corresponding variables in the distribution's equation, as
used in common mathematical practice; most of these equations can be
found in any statistics text.
\setindexsubitem
{
(in module random)
}
\begin{funcdesc}
{
betavariate
}{
alpha
\
,
beta
}
Beta distribution. Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>-1
}
.
\begin{funcdesc}
{
betavariate
}{
alpha, beta
}
Beta distribution. Conditions on the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>-1
}
.
Returned values will range between 0 and 1.
\end{funcdesc}
\begin{funcdesc}
{
cunifvariate
}{
mean
\
,
arc
}
\begin{funcdesc}
{
cunifvariate
}{
mean, arc
}
Circular uniform distribution.
\var
{
mean
}
is the mean angle, and
\var
{
arc
}
is the range of the distribution, centered around the mean
angle. Both values must be expressed in radians, and can range
between 0 and
\code
{
pi
}
. Returned values will range between
\code
{
mean - arc/2
}
and
\code
{
mean + arc
/2
}
.
\code
{
\var
{
mean
}
-
\var
{
arc
}
/2
}
and
\code
{
\var
{
mean
}
+
\var
{
arc
}
/2
}
.
\end{funcdesc}
\begin{funcdesc}
{
expovariate
}{
lambd
}
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired mean.
(The parameter would be called ``lambda'', but that's also a reserved
word in Python.) Returned values will range from 0 to positive infinity.
Exponential distribution.
\var
{
lambd
}
is 1.0 divided by the desired
mean. (The parameter would be called ``lambda'', but that is a
reserved word in Python.) Returned values will range from 0 to
positive infinity.
\end{funcdesc}
\begin{funcdesc}
{
gamma
}{
alpha
\
,
beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on the parameters are
\code
{
alpha>-1
}
and
\code
{
beta
>0
}
.
\begin{funcdesc}
{
gamma
}{
alpha, beta
}
Gamma distribution. (
\emph
{
Not
}
the gamma function!)
Conditions on
the parameters are
\code
{
\var
{
alpha
}
>-1
}
and
\code
{
\var
{
beta
}
>0
}
.
\end{funcdesc}
\begin{funcdesc}
{
gauss
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
gauss
}{
mu, sigma
}
Gaussian distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation. This is slightly faster than the
\
code
{
normalvariate
}
function defined below.
\
function
{
normalvariate()
}
function defined below.
\end{funcdesc}
\begin{funcdesc}
{
lognormvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
lognormvariate
}{
mu, sigma
}
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean
\var
{
mu
}
and
standard deviation
\var
{
sigma
}
\var
{
mu
}
can have any value, and
\var
{
sigma
}
standard deviation
\var
{
sigma
}
.
\var
{
mu
}
can have any value, and
\var
{
sigma
}
must be greater than zero.
\end{funcdesc}
\begin{funcdesc}
{
normalvariate
}{
mu
\
,
sigma
}
\begin{funcdesc}
{
normalvariate
}{
mu, sigma
}
Normal distribution.
\var
{
mu
}
is the mean, and
\var
{
sigma
}
is the
standard deviation.
\end{funcdesc}
\begin{funcdesc}
{
vonmisesvariate
}{
mu
\
,
kappa
}
\begin{funcdesc}
{
vonmisesvariate
}{
mu, kappa
}
\var
{
mu
}
is the mean angle, expressed in radians between 0 and pi,
and
\var
{
kappa
}
is the concentration parameter, which must be greater
then or equal to zero. If
\var
{
kappa
}
is equal to zero, this
distribution reduces to a uniform random angle over the range 0 to
\code
{
2*pi
}
.
$
2
\pi
$
.
\end{funcdesc}
\begin{funcdesc}
{
paretovariate
}{
alpha
}
...
...
@@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter.
\end{funcdesc}
\begin{funcdesc}
{
weibullvariate
}{
alpha, beta
}
Weibull distribution.
\var
{
alpha
}
is the scale parameter
,
and
Weibull distribution.
\var
{
alpha
}
is the scale parameter and
\var
{
beta
}
is the shape parameter.
\end{funcdesc}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment