Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
6993d579
Commit
6993d579
authored
Jan 03, 2011
by
Senthil Kumaran
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
py3k implmentation of RSA algorithm,
parent
1d1df825
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
181 additions
and
0 deletions
+181
-0
py3rsa.py
py3rsa.py
+181
-0
No files found.
py3rsa.py
0 → 100644
View file @
6993d579
# Copyright (c) 2010 Russell Dias
# Licensed under the MIT licence.
# http://www.inversezen.com
#
# This is an implementation of the RSA public key
# encryption written in Python by Russell Dias
__author__
=
'Russell Dias // inversezen.com'
# Py3k port done by Senthil (senthil@uthcode.com)
__date__
=
'05/12/2010'
__version__
=
'0.0.1'
import
random
from
math
import
log
def
gcd
(
u
,
v
):
""" The Greatest Common Divisor, returns
the largest positive integer that divides
u with v without a remainder.
"""
while
v
:
u
,
v
=
u
,
u
%
v
return
u
def
eec
(
u
,
v
):
""" The Extended Eculidean Algorithm
For u and v this algorithm finds (u1, u2, u3)
such that uu1 + vu2 = u3 = gcd(u, v)
We also use auxiliary vectors (v1, v2, v3) and
(tmp1, tmp2, tmp3)
"""
(
u1
,
u2
,
u3
)
=
(
1
,
0
,
u
)
(
v1
,
v2
,
v3
)
=
(
0
,
1
,
v
)
while
(
v3
!=
0
):
quotient
=
u3
//
v3
tmp1
=
u1
-
quotient
*
v1
tmp2
=
u2
-
quotient
*
v2
tmp3
=
u3
-
quotient
*
v3
(
u1
,
u2
,
u3
)
=
(
v1
,
v2
,
v3
)
(
v1
,
v2
,
v3
)
=
(
tmp1
,
tmp2
,
tmp3
)
return
u3
,
u1
,
u2
def
stringEncode
(
string
):
""" Brandon Sterne's algorithm to convert
string to long
"""
message
=
0
messageCount
=
len
(
string
)
-
1
for
letter
in
string
:
message
+=
(
256
**
messageCount
)
*
ord
(
letter
)
messageCount
-=
1
return
message
def
stringDecode
(
number
):
""" Convert long back to string
"""
letters
=
[]
text
=
''
integer
=
int
(
log
(
number
,
256
))
while
(
integer
>=
0
):
letter
=
number
//
(
256
**
integer
)
letters
.
append
(
chr
(
letter
))
number
-=
letter
*
(
256
**
integer
)
integer
-=
1
for
char
in
letters
:
text
+=
char
return
text
def
split_to_odd
(
n
):
""" Return values 2 ^ k, such that 2^k*q = n;
or an odd integer to test for primiality
Let n be an odd prime. Then n-1 is even,
where k is a positive integer.
"""
k
=
0
while
(
n
>
0
)
and
(
n
%
2
==
0
):
k
+=
1
n
>>=
1
return
(
k
,
n
)
def
prime
(
a
,
q
,
k
,
n
):
if
pow
(
a
,
q
,
n
)
==
1
:
return
True
elif
(
n
-
1
)
in
[
pow
(
a
,
q
*
(
2
**
j
),
n
)
for
j
in
range
(
k
)]:
return
True
else
:
return
False
def
miller_rabin
(
n
,
trials
):
"""
There is still a small chance that n will return a
false positive. To reduce risk, it is recommended to use
more trials.
"""
# 2^k * q = n - 1; q is an odd int
(
k
,
q
)
=
split_to_odd
(
n
-
1
)
for
trial
in
range
(
trials
):
a
=
random
.
randint
(
2
,
n
-
1
)
if
not
prime
(
a
,
q
,
k
,
n
):
return
False
return
True
def
get_prime
(
k
):
""" Generate prime of size k bits, with 50 tests
to ensure accuracy.
"""
prime
=
0
while
(
prime
==
0
):
prime
=
random
.
randrange
(
pow
(
2
,
k
//
2
-
1
)
+
1
,
pow
(
2
,
k
//
2
),
2
)
if
not
miller_rabin
(
prime
,
50
):
prime
=
0
return
prime
def
modular_inverse
(
a
,
m
):
""" To calculate the decryption exponent such that
(d * e) mod phi(N) = 1 OR g == 1 in our implementation.
Where m is Phi(n) (PHI = (p-1) * (q-1) )
s % m or d (decryption exponent) is the multiplicative inverse of
the encryption exponent e.
"""
g
,
s
,
t
=
eec
(
a
,
m
)
if
g
==
1
:
return
s
%
m
else
:
return
None
def
key_gen
(
bits
):
""" The public encryption exponent e,
can be an artibrary prime number.
Obviously, the higher the number,
the more secure the key pairs are.
"""
e
=
17
p
=
get_prime
(
bits
)
q
=
get_prime
(
bits
)
d
=
modular_inverse
(
e
,
(
p
-
1
)
*
(
q
-
1
))
return
p
*
q
,
d
,
e
def
write_to_file
(
e
,
d
,
n
):
""" Write our public and private keys to file
"""
public
=
open
(
"publicKey"
,
"w"
)
public
.
write
(
str
(
e
))
public
.
write
(
"
\
n
"
)
public
.
write
(
str
(
n
))
public
.
close
()
private
=
open
(
"privateKey"
,
"w"
)
private
.
write
(
str
(
d
))
private
.
write
(
"
\
n
"
)
private
.
write
(
str
(
n
))
private
.
close
()
if
__name__
==
'__main__'
:
bits
=
input
(
"Enter the size of your key pairs, in bits: "
)
n
,
d
,
e
=
key_gen
(
int
(
bits
))
#Write keys to file
write_to_file
(
e
,
d
,
n
)
print
(
"Your keys pairs have been saved to file"
)
m
=
input
(
"Enter the message you would like to encrypt: "
)
m
=
stringEncode
(
m
)
encrypted
=
pow
(
m
,
e
,
n
)
print
(
"Your encrypted message is: %s"
%
encrypted
)
decrypted
=
pow
(
encrypted
,
d
,
n
)
message
=
stringDecode
(
decrypted
)
print
(
"You message decrypted is: %s"
%
message
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment