Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
714c60d7
Commit
714c60d7
authored
Mar 18, 2019
by
Raymond Hettinger
Committed by
GitHub
Mar 18, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bpo-36324: Add inv_cdf() to statistics.NormalDist() (GH-12377)
parent
faddaedd
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
182 additions
and
0 deletions
+182
-0
Doc/library/statistics.rst
Doc/library/statistics.rst
+22
-0
Lib/statistics.py
Lib/statistics.py
+95
-0
Lib/test/test_statistics.py
Lib/test/test_statistics.py
+63
-0
Misc/NEWS.d/next/Library/2019-03-17-01-17-45.bpo-36324.dvNrRe.rst
...S.d/next/Library/2019-03-17-01-17-45.bpo-36324.dvNrRe.rst
+2
-0
No files found.
Doc/library/statistics.rst
View file @
714c60d7
...
...
@@ -569,6 +569,18 @@ of applications in statistics.
compute the probability that a random variable *X* will be less than or
equal to *x*. Mathematically, it is written ``P(X <= x)``.
.. method:: NormalDist.inv_cdf(p)
Compute the inverse cumulative distribution function, also known as the
`quantile function <https://en.wikipedia.org/wiki/Quantile_function>`_
or the `percent-point
<https://www.statisticshowto.datasciencecentral.com/inverse-distribution-function/>`_
function. Mathematically, it is written ``x : P(X <= x) = p``.
Finds the value *x* of the random variable *X* such that the
probability of the variable being less than or equal to that value
equals the given probability *p*.
.. method:: NormalDist.overlap(other)
Compute the `overlapping coefficient (OVL)
...
...
@@ -628,6 +640,16 @@ rounding to the nearest whole number:
>>> round(fraction * 100.0, 1)
18.4
Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles
<https://en.wikipedia.org/wiki/Decile>`_ for the SAT scores:
.. doctest::
>>> [round(sat.inv_cdf(p)) for p in (0.25, 0.50, 0.75)]
[928, 1060, 1192]
>>> [round(sat.inv_cdf(p / 10)) for p in range(1, 10)]
[810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310]
What percentage of men and women will have the same height in `two normally
distributed populations with known means and standard deviations
<http://www.usablestats.com/lessons/normal>`_?
...
...
Lib/statistics.py
View file @
714c60d7
...
...
@@ -745,6 +745,101 @@ class NormalDist:
raise
StatisticsError
(
'cdf() not defined when sigma is zero'
)
return
0.5
*
(
1.0
+
erf
((
x
-
self
.
mu
)
/
(
self
.
sigma
*
sqrt
(
2.0
))))
def
inv_cdf
(
self
,
p
):
''' Inverse cumulative distribution function: x : P(X <= x) = p
Finds the value of the random variable such that the probability of the
variable being less than or equal to that value equals the given probability.
This function is also called the percent-point function or quantile function.
'''
if
(
p
<=
0.0
or
p
>=
1.0
):
raise
StatisticsError
(
'p must be in the range 0.0 < p < 1.0'
)
if
self
.
sigma
<=
0.0
:
raise
StatisticsError
(
'cdf() not defined when sigma at or below zero'
)
# There is no closed-form solution to the inverse CDF for the normal
# distribution, so we use a rational approximation instead:
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
q
=
p
-
0.5
if
fabs
(
q
)
<=
0.425
:
a0
=
3.38713_28727_96366_6080e+0
a1
=
1.33141_66789_17843_7745e+2
a2
=
1.97159_09503_06551_4427e+3
a3
=
1.37316_93765_50946_1125e+4
a4
=
4.59219_53931_54987_1457e+4
a5
=
6.72657_70927_00870_0853e+4
a6
=
3.34305_75583_58812_8105e+4
a7
=
2.50908_09287_30122_6727e+3
b1
=
4.23133_30701_60091_1252e+1
b2
=
6.87187_00749_20579_0830e+2
b3
=
5.39419_60214_24751_1077e+3
b4
=
2.12137_94301_58659_5867e+4
b5
=
3.93078_95800_09271_0610e+4
b6
=
2.87290_85735_72194_2674e+4
b7
=
5.22649_52788_52854_5610e+3
r
=
0.180625
-
q
*
q
num
=
(
q
*
(((((((
a7
*
r
+
a6
)
*
r
+
a5
)
*
r
+
a4
)
*
r
+
a3
)
*
r
+
a2
)
*
r
+
a1
)
*
r
+
a0
))
den
=
((((((((
b7
*
r
+
b6
)
*
r
+
b5
)
*
r
+
b4
)
*
r
+
b3
)
*
r
+
b2
)
*
r
+
b1
)
*
r
+
1.0
))
x
=
num
/
den
return
self
.
mu
+
(
x
*
self
.
sigma
)
r
=
p
if
q
<=
0.0
else
1.0
-
p
r
=
sqrt
(
-
log
(
r
))
if
r
<=
5.0
:
c0
=
1.42343_71107_49683_57734e+0
c1
=
4.63033_78461_56545_29590e+0
c2
=
5.76949_72214_60691_40550e+0
c3
=
3.64784_83247_63204_60504e+0
c4
=
1.27045_82524_52368_38258e+0
c5
=
2.41780_72517_74506_11770e-1
c6
=
2.27238_44989_26918_45833e-2
c7
=
7.74545_01427_83414_07640e-4
d1
=
2.05319_16266_37758_82187e+0
d2
=
1.67638_48301_83803_84940e+0
d3
=
6.89767_33498_51000_04550e-1
d4
=
1.48103_97642_74800_74590e-1
d5
=
1.51986_66563_61645_71966e-2
d6
=
5.47593_80849_95344_94600e-4
d7
=
1.05075_00716_44416_84324e-9
r
=
r
-
1.6
num
=
((((((((
c7
*
r
+
c6
)
*
r
+
c5
)
*
r
+
c4
)
*
r
+
c3
)
*
r
+
c2
)
*
r
+
c1
)
*
r
+
c0
))
den
=
((((((((
d7
*
r
+
d6
)
*
r
+
d5
)
*
r
+
d4
)
*
r
+
d3
)
*
r
+
d2
)
*
r
+
d1
)
*
r
+
1.0
))
else
:
e0
=
6.65790_46435_01103_77720e+0
e1
=
5.46378_49111_64114_36990e+0
e2
=
1.78482_65399_17291_33580e+0
e3
=
2.96560_57182_85048_91230e-1
e4
=
2.65321_89526_57612_30930e-2
e5
=
1.24266_09473_88078_43860e-3
e6
=
2.71155_55687_43487_57815e-5
e7
=
2.01033_43992_92288_13265e-7
f1
=
5.99832_20655_58879_37690e-1
f2
=
1.36929_88092_27358_05310e-1
f3
=
1.48753_61290_85061_48525e-2
f4
=
7.86869_13114_56132_59100e-4
f5
=
1.84631_83175_10054_68180e-5
f6
=
1.42151_17583_16445_88870e-7
f7
=
2.04426_31033_89939_78564e-15
r
=
r
-
5.0
num
=
((((((((
e7
*
r
+
e6
)
*
r
+
e5
)
*
r
+
e4
)
*
r
+
e3
)
*
r
+
e2
)
*
r
+
e1
)
*
r
+
e0
))
den
=
((((((((
f7
*
r
+
f6
)
*
r
+
f5
)
*
r
+
f4
)
*
r
+
f3
)
*
r
+
f2
)
*
r
+
f1
)
*
r
+
1.0
))
x
=
num
/
den
if
q
<
0.0
:
x
=
-
x
return
self
.
mu
+
(
x
*
self
.
sigma
)
def
overlap
(
self
,
other
):
'''Compute the overlapping coefficient (OVL) between two normal distributions.
...
...
Lib/test/test_statistics.py
View file @
714c60d7
...
...
@@ -2174,6 +2174,69 @@ class TestNormalDist(unittest.TestCase):
self
.
assertEqual
(
X
.
cdf
(
float
(
'Inf'
)),
1.0
)
self
.
assertTrue
(
math
.
isnan
(
X
.
cdf
(
float
(
'NaN'
))))
def
test_inv_cdf
(
self
):
NormalDist
=
statistics
.
NormalDist
# Center case should be exact.
iq
=
NormalDist
(
100
,
15
)
self
.
assertEqual
(
iq
.
inv_cdf
(
0.50
),
iq
.
mean
)
# Test versus a published table of known percentage points.
# See the second table at the bottom of the page here:
# http://people.bath.ac.uk/masss/tables/normaltable.pdf
Z
=
NormalDist
()
pp
=
{
5.0
:
(
0.000
,
1.645
,
2.576
,
3.291
,
3.891
,
4.417
,
4.892
,
5.327
,
5.731
,
6.109
),
2.5
:
(
0.674
,
1.960
,
2.807
,
3.481
,
4.056
,
4.565
,
5.026
,
5.451
,
5.847
,
6.219
),
1.0
:
(
1.282
,
2.326
,
3.090
,
3.719
,
4.265
,
4.753
,
5.199
,
5.612
,
5.998
,
6.361
)}
for
base
,
row
in
pp
.
items
():
for
exp
,
x
in
enumerate
(
row
,
start
=
1
):
p
=
base
*
10.0
**
(
-
exp
)
self
.
assertAlmostEqual
(
-
Z
.
inv_cdf
(
p
),
x
,
places
=
3
)
p
=
1.0
-
p
self
.
assertAlmostEqual
(
Z
.
inv_cdf
(
p
),
x
,
places
=
3
)
# Match published example for MS Excel
# https://support.office.com/en-us/article/norm-inv-function-54b30935-fee7-493c-bedb-2278a9db7e13
self
.
assertAlmostEqual
(
NormalDist
(
40
,
1.5
).
inv_cdf
(
0.908789
),
42.000002
)
# One million equally spaced probabilities
n
=
2
**
20
for
p
in
range
(
1
,
n
):
p
/=
n
self
.
assertAlmostEqual
(
iq
.
cdf
(
iq
.
inv_cdf
(
p
)),
p
)
# One hundred ever smaller probabilities to test tails out to
# extreme probabilities: 1 / 2**50 and (2**50-1) / 2 ** 50
for
e
in
range
(
1
,
51
):
p
=
2.0
**
(
-
e
)
self
.
assertAlmostEqual
(
iq
.
cdf
(
iq
.
inv_cdf
(
p
)),
p
)
p
=
1.0
-
p
self
.
assertAlmostEqual
(
iq
.
cdf
(
iq
.
inv_cdf
(
p
)),
p
)
# Now apply cdf() first. At six sigmas, the round-trip
# loses a lot of precision, so only check to 6 places.
for
x
in
range
(
10
,
190
):
self
.
assertAlmostEqual
(
iq
.
inv_cdf
(
iq
.
cdf
(
x
)),
x
,
places
=
6
)
# Error cases:
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
inv_cdf
(
0.0
)
# p is zero
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
inv_cdf
(
-
0.1
)
# p under zero
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
inv_cdf
(
1.0
)
# p is one
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
inv_cdf
(
1.1
)
# p over one
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
sigma
=
0.0
# sigma is zero
iq
.
inv_cdf
(
0.5
)
with
self
.
assertRaises
(
statistics
.
StatisticsError
):
iq
.
sigma
=
-
0.1
# sigma under zero
iq
.
inv_cdf
(
0.5
)
def
test_overlap
(
self
):
NormalDist
=
statistics
.
NormalDist
...
...
Misc/NEWS.d/next/Library/2019-03-17-01-17-45.bpo-36324.dvNrRe.rst
0 → 100644
View file @
714c60d7
Add method to statistics.NormalDist for computing the inverse cumulative
normal distribution.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment