Commit 7496b417 authored by Raymond Hettinger's avatar Raymond Hettinger

Add example, tighten text, and minor clean-ups.

parent d01df468
......@@ -42,40 +42,52 @@ The :mod:`functools` module defines the following functions:
.. versionadded:: 3.2
.. decorator:: lru_cache(maxsize)
.. decorator:: lru_cache(maxsize=100)
Decorator to wrap a function with a memoizing callable that saves up to the
*maxsize* most recent calls. It can save time when an expensive or I/O bound
function is periodically called with the same arguments.
The *maxsize* parameter defaults to 100. Since a dictionary is used to cache
results, the positional and keyword arguments to the function must be
hashable.
Since a dictionary is used to cache results, the positional and keyword
arguments to the function must be hashable.
The wrapped function is instrumented with a :attr:`cache_info` attribute that
can be called to retrieve a named tuple with the following fields:
To help measure the effectiveness of the cache and tune the *maxsize*
parameter, the wrapped function is instrumented with a :func:`cache_info`
function that returns a :term:`named tuple` showing *hits*, *misses*,
*maxsize* and *currsize*.
- :attr:`maxsize`: maximum cache size (as set by the *maxsize* parameter)
- :attr:`size`: current number of entries in the cache
- :attr:`hits`: number of successful cache lookups
- :attr:`misses`: number of unsuccessful cache lookups.
These statistics are helpful for tuning the *maxsize* parameter and for measuring
the effectiveness of the cache.
The wrapped function also has a :attr:`cache_clear` attribute which can be
called (with no arguments) to clear the cache.
The decorator also provides a :func:`cache_clear` function for clearing or
invalidating the cache.
The original underlying function is accessible through the
:attr:`__wrapped__` attribute. This allows introspection, bypassing
the cache, or rewrapping the function with a different caching tool.
:attr:`__wrapped__` attribute. This is useful for introspection, for
bypassing the cache, or for rewrapping the function with a different cache.
A `LRU (least recently used) cache
<http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used>`_
works best when more recent calls are the best predictors of upcoming calls
(for example, the most popular articles on a news server tend to
change each day). The cache's size limit assurs that caching does not
grow without bound on long-running processes such as web servers.
<http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used>`_ works
best when more recent calls are the best predictors of upcoming calls (for
example, the most popular articles on a news server tend to change daily).
The cache's size limit assures that the cache does not grow without bound on
long-running processes such as web servers.
Example -- Caching static web content::
@functools.lru_cache(maxsize=20)
def get_pep(num):
'Retrieve text of a Python Enhancement Proposal'
resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
try:
with urllib.request.urlopen(resource) as s:
return s.read()
except urllib.error.HTTPError:
return 'Not Found'
>>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
... pep = get_pep(n)
... print(n, len(pep))
>>> print(get_pep.cache_info())
CacheInfo(hits=3, misses=8, maxsize=20, currsize=8)
.. versionadded:: 3.2
......
......@@ -332,13 +332,14 @@ New, Improved, and Deprecated Modules
c.execute('SELECT phonenumber FROM phonelist WHERE name=?', (name,))
return c.fetchone()[0]
>>> for name in user_requests:
... get_phone_number(name) # cached lookup
To help with choosing an effective cache size, the wrapped function is
instrumented with info function:
instrumented for tracking cache statistics:
>>> for name in user_requests:
... get_phone_number(name)
>>> get_phone_number.cache_info()
CacheInfo(maxsize=300, size=300, hits=4805, misses=980)
CacheInfo(hits=4805, misses=980, maxsize=300, currsize=300)
If the phonelist table gets updated, the outdated contents of the cache can be
cleared with:
......
......@@ -114,7 +114,7 @@ def cmp_to_key(mycmp):
raise TypeError('hash not implemented')
return K
_CacheInfo = namedtuple("CacheInfo", "maxsize, size, hits, misses")
_CacheInfo = namedtuple("CacheInfo", "hits misses maxsize currsize")
def lru_cache(maxsize=100):
"""Least-recently-used cache decorator.
......@@ -166,7 +166,7 @@ def lru_cache(maxsize=100):
def cache_info():
"""Report cache statistics"""
with lock:
return _CacheInfo(maxsize, len(cache), hits, misses)
return _CacheInfo(hits, misses, maxsize, len(cache))
def cache_clear():
"""Clear the cache and cache statistics"""
......
......@@ -501,7 +501,7 @@ class TestLRU(unittest.TestCase):
def orig(x, y):
return 3*x+y
f = functools.lru_cache(maxsize=20)(orig)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(maxsize, 20)
self.assertEqual(currsize, 0)
self.assertEqual(hits, 0)
......@@ -513,18 +513,18 @@ class TestLRU(unittest.TestCase):
actual = f(x, y)
expected = orig(x, y)
self.assertEqual(actual, expected)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertTrue(hits > misses)
self.assertEqual(hits + misses, 1000)
self.assertEqual(currsize, 20)
f.cache_clear() # test clearing
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 0)
self.assertEqual(misses, 0)
self.assertEqual(currsize, 0)
f(x, y)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 0)
self.assertEqual(misses, 1)
self.assertEqual(currsize, 1)
......@@ -532,7 +532,7 @@ class TestLRU(unittest.TestCase):
# Test bypassing the cache
self.assertIs(f.__wrapped__, orig)
f.__wrapped__(x, y)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 0)
self.assertEqual(misses, 1)
self.assertEqual(currsize, 1)
......@@ -548,7 +548,7 @@ class TestLRU(unittest.TestCase):
for i in range(5):
self.assertEqual(f(), 20)
self.assertEqual(f_cnt, 5)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 0)
self.assertEqual(misses, 5)
self.assertEqual(currsize, 0)
......@@ -564,7 +564,7 @@ class TestLRU(unittest.TestCase):
for i in range(5):
self.assertEqual(f(), 20)
self.assertEqual(f_cnt, 1)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 4)
self.assertEqual(misses, 1)
self.assertEqual(currsize, 1)
......@@ -581,7 +581,7 @@ class TestLRU(unittest.TestCase):
# * * * *
self.assertEqual(f(x), x*10)
self.assertEqual(f_cnt, 4)
maxsize, currsize, hits, misses = f.cache_info()
hits, misses, maxsize, currsize = f.cache_info()
self.assertEqual(hits, 12)
self.assertEqual(misses, 4)
self.assertEqual(currsize, 2)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment